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Background: During the last decades a number of genome-wide association studies
(GWASs) has identified numerous single nucleotide polymorphisms (SNPs) associated
with different complex diseases. However, associations reported in one population are
often conflicting and did not replicate when studied in other populations. One of the
reasons could be that most GWAS employ a case-control design in one or a limited
number of populations, but little attention was paid to the global distribution of disease-
associated alleles across different populations. Moreover, the majority of GWAS have
been performed on selected European, African, and Chinese populations and the
considerable number of populations remains understudied.

Aim: We have investigated the global distribution of so far discovered disease-
associated SNPs across worldwide populations of different ancestry and geographical
regions with a special focus on the understudied population of Armenians.

Data and Methods: We have used genotyping data from the Human Genome Diversity
Project and of Armenian population and combined them with disease-associated SNP
data taken from public repositories leading to a final dataset of 44,234 markers. Their
frequency distribution across 1039 individuals from 53 populations was analyzed using
self-organizing maps (SOM) machine learning. Our SOM portrayal approach reduces
data dimensionality, clusters SNPs with similar frequency profiles and provides two-
dimensional data images which enable visual evaluation of disease-associated SNPs
landscapes among human populations.

Results: We find that populations from Africa, Oceania, and America show specific
patterns of minor allele frequencies of disease-associated SNPs, while populations from
Europe, Middle East, Central South Asia, and Armenia mostly share similar patterns.
Importantly, different sets of SNPs associated with common polygenic diseases, such as
cancer, diabetes, neurodegeneration in populations from different geographic regions.
Armenians are characterized by a set of SNPs that are distinct from other populations
from the neighboring geographical regions.
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Conclusion: Genetic associations of diseases considerably vary across populations
which necessitates health-related genotyping efforts especially for so far understudied
populations. SOM portrayal represents novel promising methods in population genetic
research with special strength in visualization-based comparison of SNP data.

Keywords: complex diseases, genetic risk alleles, small populations, genome-wide association study, machine
learning, self-organizing maps, population-level disease variant distribution, single nucleotide polymorphisms

INTRODUCTION

Non-communicable polygenic diseases such as cancers,
neurodegeneration, cardiovascular, and metabolic disorders
have become the most prevalent type worldwide and account
for the majority of death events in developed and transition
economy countries (Habib and Saha, 2010; Benziger et al.,
2016). Initiation and development of complex diseases
is governed by both, genetic and environmental factors
(Ramos and Olden, 2008). Genetic predisposition to complex
diseases is not a result of a single mutation, but they require
synergic effect of variations in many genes. These variants
can be more frequent and/or rare in a population giving
rise to “common variant” and “rare variant” hypotheses
(Pritchard, 2001; Reich and Lander, 2001). Currently, one of
the primary tasks of genome medicine is to identify panels
of complex disease-predisposing genetic markers for use in
disease prognostics, diagnostics as well as drug development
(Abraham and Inouye, 2015).

The most applied method for searching multiple genetic
variants is a genome-wide association study (GWAS). During
last decades, thousands GWAS have identified numerous single
nucleotide polymorphisms (SNPs) associated with different
complex diseases such as cancers, schizophrenia and diabetes,
Alzheimer’s and Parkinson’s diseases (Giri et al., 2016; Foley
et al., 2017; Sud et al., 2017; Billingsley et al., 2018). However,
associations reported in one population often do not replicate
when studied in another population and, moreover, sometimes
they are being reported as neutral or even protective ones
(Colhoun et al., 2003; Rice et al., 2007; Li and Meyre, 2013).

The explanation for this fact is that most GWAS employ a
case-control design in selected populations, mainly of European,
and in lesser extent from African and Chinese origin while other
populations largely remain understudied. This issue has gained
significant attention during recent years and number of papers
has been published which evaluate how risk allele frequencies
at known disease loci vary across populations and how this
causes biases in population risk score estimation (Jankovic et al.,
2010; Abraham and Inouye, 2015; Kim et al., 2018). Moreover,
it has been lately shown that assessment of population-level
distribution of disease risk alleles can contribute to public
healthcare planning (Lau et al., 2018). However, most of this kind
of studies either focus on limited population diversity or on a
limited set of disease-SNP associations.

Moreover, the inclusion of genetically isolated populations
will considerably enhance the understanding of complex trait-
associated variants because of their reduced allele diversity
(Kristiansson et al., 2008).

In order to describe the entire landscape of population-level
variation of diseases-associated SNPs across multiple populations
and geographic regions, we used a bioinformatics pipeline based
on self-organizing maps (SOM) machine learning. This method
has been previously applied to different high-dimensional omics
data such as transcriptomic, epigenomic, and proteomic data
(Binder et al., 2014; Hopp et al., 2015, 2018; Arakelyan
et al., 2017). Its strong visualization capabilities and options
for downstream bioinformatics analysis motivated us to apply
SOM machine learning to genomic SNP data to study disease-
associated risk profiles. We have investigated the distribution of
about 44,000 disease-associated SNPs across 52 populations of
different ancestry and geographical origin; among them the so-far
understudied population of Armenians. Historically inhabiting
the region of the South Caucasus, Armenian population was
reproductively isolated since the Bronze Age (Haber et al.,
2016), which makes them an interesting example for studying
local specifics of the interaction of distribution of genetic risks
for complex diseases with actual disease prevalence on the
population level.

MATERIALS AND METHODS

Data and Pre-processing
In the first step of analysis population-related SNP data
were merged with disease-associated SNPs and preprocessed
(Figure 1). We considered the following data sets.

Population Data (HGDP and Armenians Data Set)
We used preprocessed genome-wide SNP data (Illumina 650Y
arrays) taken from the Human Genome Diversity Project
(HGDP1) after removal of atypical and duplicated samples. The
data collect genotypes (650,0000 SNPs) from 940 individuals
from 51 populations in 8 geographical regions (Africa, Europe,
Middle East, South and Central Asia, East Asia, Oceania, and
America) (Rosenberg, 2006).

Single nucleotide polymorphisms data (Illumina Human
Omniexpress microarray platform) of 99 Armenians
(Eastern Armenian population) was taken from the recent
publication by Haber et al. (2016).

Disease-Associated SNP Data
Lists of SNPs associated with diseases were collected from the
following four databases: UniProt humsavar2, NCBI Clinvar3,

1http://www.hagsc.org/hgdp/
2www.uniprot.org/docs/humsavar
3https://www.ncbi.nlm.nih.gov/clinvar/
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FIGURE 1 | Schematic overview of the SOM-portrayal method applied for analysis of population SNP data (see section “Materials and Methods”). SNP data of
different populations around the world taken from the Human Genome Diversity Project (HDGP) and of a cohort of 99 Armenians were filtered for disease associated
SNPs collected from four databases (see section “Materials and Methods”). Then, the data matrix (44,234 SNPs × 1039 individuals) was used to train a SOM which
delivers a SNP portrait of each individual. It represents a colored image showing clusters of SNPs with increased minor allele frequency (MAF) as red ‘spot-like’
areas. They were then used for extracting population-specific associations with disease risks and biological functions by applying enrichment techniques. The SOM
mining step also makes use of overview maps summarizing all spots observed on population averaged mean portraits which characterize the SNP landscape of
individuals of a certain geographic region and of SNP profiles showing the allele score across all individuals and populations studied. For example, the red
minor-allelic spot in the right-upper corner of the map (see dashed circle) is specific for Africans because it is observed in their portraits but not in the portrait of
Europeans. Its profile shows high and low values of the allele score for individuals from these regions. Each of the spots delivers a list of SNPs and associated genes,
which, in turn, are used to extract disease risks for populations showing these spots.

GWASdb4, and DisGenNet5. The lists from all sources were then
combined and the duplicated records were removed. The final list
consisted of 321,955 disease-associated SNPs.

SNP-Filtered Population Data
Disease-associated SNPs with minor allele frequency
(MAF) > 0.05 were selected from both data sets after

4http://jjwanglab.org/gwasdb
5http://www.disgenet.org/

removing missing genotypes using “vcftools.” VCF genotype
files were transformed into genotype matrix using “variant
annotation” (Obenchain et al., 2014) and “snpstats” (Guino
et al., 2006) R packages. Final dataset consisted of 44,234
disease-associated SNPs in 1039 samples that combined HGDP
and Armenian populations.

Allele Coding
For further data processing, SNP-genotypes were coded by the
following integers: 0 – homozygous major alleles genotype, 1 –
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heterozygous alleles genotype, and 2 – homozygous minor allele
genotype. The full set of SNPs of each individual constitutes its
SNP-portrait while the allele-coded values of each SNP over all
individuals in the data set constitute its SNP-profile (Figure 1).

Disease Classification
We used Disease Ontology (DO, release 2018-07-05) based
classification of diseases. The DO is structured into types
of disease on different levels using a tree-model (Schriml
et al., 2012). For comparability of disease-SNP associations, we
mapped DO-terms of level 4 and higher to level 3 of DO
terms. For instance, diabetes mellitus (level 5) is assigned to
carbohydrate metabolism disease (level 3) in further analysis
(Supplementary Figure S1).

Generating SNP-Portraits Using
Self-Organizing Maps
In the next step preprocessed and filtered HDGP SNP datasets
were feature centralized and then clustered using SOM machine
learning (see Wirth et al., 2011 for a detailed description of
the method, and Figure 1 for a schematic representation). It
translates the original data matrix consisting of the allele scores
of N = 44,234 disease-associated SNPs collected from M = 1,039
individuals into a data matrix of reduced dimensionality of
K = 3,025 so-called meta-SNP profiles. Hereby, the term ‘profile’
denotes the vector of allele score values across the individuals.
The SOM training algorithm distributes the SNPs over the
K micro-clusters of meta-SNPs by minimizing the Euclidian
distance between the SNP-profiles as a similarity measure. This
ensures that SNPs with similar profiles cluster together in the
same or in closely located meta-SNPs. Each meta-SNP profile
can be interpreted as the mean profile averaged over all SNP
profiles referring to the respective meta-SNP cluster. The allele
scores of the meta-SNPs of each individual are visualized by
arranging them into a two-dimensional M = 55 × 55 grid
and by using red to blue colors for a maximum to minimum
allele score values in each of the grid images. These images
‘portray’ the genetic landscape of each individual studied. We
used SOM implemented in “oposSOM” R package (Löffler-
Wirth et al., 2015). All populations were labeled according
to the geographical location while Armenians were considered
as a separate group. Mean SNP-SOM portraits of populations
from the same geographic regions were obtained by averaging
the meta-SNP values of the respective individual SNP-portraits.
A separate “zoom-in” SOM (Wirth et al., 2011) was trained
by considering only populations of the HDGP data set from
the Middle East and Europe together with Armenians to better
resolve details of their disease-associated genomes. Full data
analysis results are available from Zenodo Open data platform
(Nikoghosyan et al., 2018).

Spot Clustering, Disease, and GO-Term
Enrichment
In the third step, we performed an analysis of the SOM-
clustered data to assess disease-associated genetic risks across the
populations. Our SOM implementation used a ternary code for

coloring each meta-SNP giving rise to spot-like red and blue
colored regions in the SNP-portraits due to the self-organizing
properties of the SOM algorithm. Red and blue spots refer
to minor and major allelic regions while green areas mark
heterozygous alleles. We then used segmentation algorithms
developed previously (Wirth et al., 2011) to extract so-called spot-
clusters of (red) minor-allelic regions. Each of these spot-clusters
consists of 100 to 1000s of SNP-profiles. Enrichment of disease
DO terms in the spot clusters was then estimated by Fisher’s
exact test. For each spot, the test assesses whether the number
of SNPs associated with a given disease is larger than expected
under the assumption of random distribution of SNPs among the
spots. Enrichment analysis was also performed for gene-ontology
(GO) terms “biological process” and “cellular component” using
over-representation analysis as implemented in WebGestalt web-
server (Wang et al., 2017) to assess the functional context of the
genes containing the SNPs in a given spot.

RESULTS

SOM-Portrayal of Geographical Diversity
of Disease-Associated SNPs
Human disease-related genetic diversity is shaped by
demographic, biological, and environmental factors. Here
we applied a SOM approach to gain new insights about
population-level distributions of disease-predisposing alleles
across geographic regions using whole genome SNP-scans of
1039 individual selected from 52 ethnicities in seven geographic
regions and of Armenians considered separately. SOM was
trained using ca. 44,000 disease-associated SNPs. We obtained a
gallery of “SNP portraits” visualizing the genotypes of disease-
associated SNPs for each individual studied (Supplementary
Figure S2). Inspection of the portraits reveals high diversity of
textures reflecting the allelic landscapes in terms of areas enriched
for major homozygous, heterozygous and minor homozygous
genotypes color-coded in blue, green, and red, respectively. On
the other hand, sample portraits were mostly very similar for
individuals originating from the same geographic region while
the portraits of individuals from different regions progressively
diverge with increasing geographic distance in most cases. For
example, individuals from sub-Saharan Africa typically show
a red “spot” in the right upper corner of their SOM-portraits
which shifts toward the right lower corner for individuals
from Middle East and Europe including Armenians. This shift
reflects the fact that the latter three populations show on average
similar collections of minor homozygous disease-associated
SNPs which however differ markedly from those of Sub-Saharan
Africans. The red spots in the mean portrait of individuals
from Central and South Asia partly overlap with those of
Europeans but it shows also new, ubiquitous spots referring
to disease-risk associated SNPs not observed in Europeans.
Also the mean portraits of East Asian, Native American, and
Oceania populations reflect a combination of common and
ubiquitous spots reflecting footprints of their population history.
To visualize the similarity relations between the individuals
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FIGURE 2 | Variation of disease-associated SNP portraits across geographic regions. (A) Mean SNP-portraits of seven geographic regions show systematic
changes of their spot patterns. A minimum spanning tree (MST) was calculated using Pearson’s correlation coefficient between the SOM portraits of the individuals
to visualize the similarity relations between their SNP-patterns. It is mapped on the geographic map to illustrate the relation between the genetic drift and the
geographic distribution of the populations. Each circle refers to one individual. Their colors assign the respective geographic region. Armenians (red) form a cluster at
the crossroad between African, European, and Asian branches of the MST. (B) A zoom-in SOM was calculated using data of selected populations from Middle East,
Europe and Armenians for SOM-training to better resolve local similarity relations. The zoom-in MST reveals a relative compact clusters of Armenians bordered by
populations from Middle East and Europe, respectively. (C) Difference portraits of Armenians with respect to other populations show an increase of non-African
genetic contributions with respect to Middle Eastern populations and increased European contributions with respect to Central and South Asian populations.
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from different geographic regions we generated a minimum
spanning tree (MST) based on Pearson’s correlation coefficients
between their SOM-portraits (Figure 2A). For comparison
we generated an independent component analysis (ICA) plot
which is often applied as similarity presentation in population
genetics (Supplementary Figure S3). The results reflect the
variation of disease-associated alleles across the geographic
regions. Interestingly the MST resembles also the distribution
of the populations across the geographic regions ranging from
Africa at one end to America and Oceania at the other one.
A similar MST was recently reported by us using a selection of
most variant SNPs instead for disease-associated ones (Binder
and Wirth, 2014). The disease-associated SNP-genotypes selected
here reflect similar genetic drift effects as the most-variant SNPs.

Interestingly, the Armenian individuals accumulate into a
homogenous cloud at the crossroad between three branches
collecting populations from (sub-Saharan) Africa and Middle-
East, from Europe and from Asia, respectively. This localization
of the Armenian cluster is in accordance with the previous genetic
studies based on the genetic variation data on autosomal and
uniparental loci (Hovhannisyan et al., 2014; Haber et al., 2016;
Yepiskoposyan et al., 2016).

A more detailed view using a zoom-in SOM using only
populations from the Middle East and Europe further emphasize
the intermediate position of the Armenian population in-
between the Middle East and Europe (Figure 2B). Difference
portraits show that disease-associated allele-landscapes of
Armenians are characterized by non-African patterns compared
with Middle East populations and by European patterns
compared with Central and South Asian populations. The
difference in comparison to other European populations
is subtler showing also marked similarities in the allelic
composition. In summary, SOM-portrayal of disease-associated
SNPs reflects and characterizes the distribution of humans
across geographical regions. Armenians occupy a central position
of their disease-associated genome between Middle Eastern,
European, and Central Asian populations in a region of an
ancient crossroad of human migration.

Segmenting the SNP Landscape Into
Minor-Allelic Spots
The majority (about 70%) of minor alleles in the HGDP dataset
associated with the diseases studied, which is in accordance
with previous observations (Lachance, 2010). We were interested
to study clusters of co-localized minor-allelic SNPs that are
evident as red, spot-like areas in the SNP-portraits. The spot
summary map collects all relevant red spots (clusters of SNPs
with minor allele high frequency) to provide an overview of the
minor-allelic spot regions observed in the mean SOM portraits
of the different geographic regions (Figure 3A). Overall we
identified 13 minor-allelic spots labeled by capital letters A–M
(Figure 3A). Mean profiles averaged over the allelic codes of
all alleles collected in the respective spot reveal the geographic
specificity of minor allele prevalence (Figure 3C). We identified
seven spots which were unique for a given geographic region and
another six (mixed) spots which shared between several regions

(Figure 3D). For instance, portraits for Armenians, Europeans,
Central South Asians and populations from the Middle East are
characterized by red spots located in the right-lower corner, while
the portraits from (sub-Saharan) Africa and from East Asia show
different spots in the right and left upper corners of the map,
respectively. On the other hand, SNP portraits from Oceania and,
to a lesser degree, from America are characterized by two or
more spot both unique and/or mixed distribution. For example,
spot L reflects similar minor allelic SNP profiles of Oceanians,
Native Americans and East Asians and partly also Africans while
spot I reflects common genetic history of original populations in
America and East Asia.

In order to demonstrate how SOM assigns single SNPs into
clusters based on their allele frequency profiles, we mapped 40
SNPs from 17 genes with a high number of disease associations
taken from Price et al. (2015) into the SNP landscape (Figure 3B).
The most of the SNPs accumulate in the regions of spots D
and E (19.5%) and of spots J and K (34.1%) corresponding to
European and East Asian populations, respectively. About 38%
of the genes were found in or near spots assigned to minor allele
enrichment in other geographic regions such as Africa, Oceania,
and America. This unbalanced distribution is presumably due to
the population bias in the studied SNPs toward Europe and East
Asia. It emphasized the necessity of extending genetic association
studies to other populations.

We also evaluated the effect of linkage disequilibrium (LD) on
distribution of SNPs in the SOM portraits, using SNPs located
on chromosome 1 available in our dataset. SOM algorithm
naturally tries to allocate SNPs with correlated profiles in
close proximity (or in the same cluster) while SNPs with
anti-correlated profiles are positioned in furthest regions of
the SNP portrait. Thus SNPs that are in LD will be either
located in one cluster (for positively associated alleles) or
in two clusters located most distantly on the “SNP portrait”
(for negatively associated alleles) (Supplementary Figure S4).
Furthermore, since the disease-associated SNPs used in our
study were already “pre-selected” based on GWAS or functional
studies, and since the goal of our study was “portraying the
population-level genetic risks” for known associations rather than
identifying new ones, we can assume that LD’s effect on our
findings was minimal.

Thus, the SOM method aggregates disease-associated
alleles into clusters associated with one or more regions
this way reflecting geographical variability of disease
susceptibility coded in MAF.

Associations Between Diseases and
Spot-Modules of SNPs and Their
Functional Context
Next, we evaluated disease enrichment in spots compared with
their background distribution based on the clustered SNPs
using Fisher’s exact test. This “background” distribution shows
that the largest number of SNPs is associated with complex
diseases such as cardiovascular, nervous and respiratory system
disorders and carbohydrate metabolism disease (Supplementary
Figures S5, S6).
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FIGURE 3 | Characterization of the SNP landscape. (A) The spot summary map segments into 13 spots (see labels A–M) enriching minor-alleles in a
population/geography specific way. (B) The positions of 17 SNPs referring to different genes selected from the top 40 genes having a high number of disease
associations (Price et al., 2015) in the SOM are indicated by arrows. Accumulation of these genes in the spot areas is indicated by dashed circles. The profiles of
selected SNPs reveal a population-specific enrichment of minor-allelic scores. (C) Mean allele profiles of the SNPs collected in each of the spots are shown as
barplots. Each of the spots refers to a different profile. (D) Part of the spots can be assigned to one geographic region while ‘mixed’ spots show enrichment of minor
alleles in populations from more than one region (see also the mean portraits in Figure 2A).
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We detected 11 significant disease associations per spot on
the average (Supplementary Figures S7–S19). The top diseases
per spot are presented in Figure 4A. Hereby the same diseases
such as carbohydrate metabolism disease (diabetes mellitus),
mood disorders, immune system, and neuronal diseases enrich in
different spots. These redundantly distributed diseases typically
associated with SNPs in different genes as shown in the plots in
Figure 4C. They revealed predominantly a one-to-one relation
between the SNPs in spots and diseases (Figure 4B). The
distribution of genes counts over the spots (Figure 4C) roughly
follows an exponential decay law meaning that the number of
genes associated with one spot dominates over the number of
genes associated with multiple spots.

In order to further assess the difference on the functional
context of the genes carrying the SNPs, we performed functional
annotation of GO in each spot using over-representation analysis
implemented in Webgestalt web-server (Wang et al., 2017). The
results demonstrate that each spot is characterized by an almost
unique set of enriched GO biological process terms (Figure 5A).
Similar patterns are observed in the enrichment of GO terms
related to molecular function (Supplementary Figure S20) and
cellular localization (Figure 5B). On the other hand, one finds the
same terms [e.g., related to adhesion, which plays an important
role in maintaining the physiological state of various organs
(Müller, 2006)] in different spots. Other GO-terms enriched in
the spots included cell migration, cell and organ development and
signaling which all appear to be deregulated in various diseases.

Our results underpin the complex character of diseases
pathophysiology, which involves deregulations in multiple
biological pathways and cellular networks (Zheng et al., 2018)
often in a population-specific fashion (Ran et al., 2011). In
summary, our results demonstrated considerable specificity of
the distribution of genes and biological processes associated with
the same diseases at the geographic levels.

Genetic-Risk Profiling
For the detailed overview, we represented the disease-spot
associations as a heatmap in Figure 6A. We compared
them with the minor allele score profiles of the spots
(Figure 6B) to combine the assignment of diseases with
geographic regions.

The diseases accumulating in the lower part of the heatmap in
Figure 5A are the most thoroughly studied ones showing highest
overall enrichment in the background distribution (compare with
Supplementary Figure S5) as well as in spots. According to the
minor allele enrichment, these diseases can be considered as the
most prevalent ones worldwide. Indeed, the global prevalence
of diabetes (carbohydrate metabolism disease) is 8.5% (Kakkar,
2016), which makes it one of the most frequent diseases.
Mood disorders (bipolar disorder, anxiety, and depression) are
considered as the most frequent mental conditions (Steel et al.,
2014), while immune system cancers (mostly malignant diseases
of blood and lymphoid system) also have been reported to
have high incidence rate worldwide (Foreman et al., 2018).
Thoracic cancer (including lung cancer) associated SNPs were
significantly enriched in three spots (A, E, K) covering all
geographic regions.

The diseases in the upper part of the heatmap in Figure 6A
are less enriched in the background distribution and thus they
refer to moderately prevalent/studied ones. These diseases reveal
region specificity of spot enrichment.

For example, vitamin metabolic disorders associated SNPs
were enriched in spots A and K showing increased minor
allele scores in Africa and East Asia, respectively. Vitamin
deficiency in these regions was mostly attributed to economic and
political reasons and also to local dietary practices (Bailey et al.,
2015). Our results, however, showed that four SNPs (rs1348864,
rs4778359, rs7781309, rs9937918) which associate with vitamin
D metabolism (Bernatzky et al., 2009; Engelman et al., 2010)
show high MAF in Africa and East Asia suggesting also increased
genetic risk. Notably, for these regions, low levels of the vitamin D
deficiency marker 25-hydroxyvitamin D in blood were reported
(Prentice, 2008; Prentice et al., 2009).

Likewise, SNPs for bilirubin metabolic disorder accumulate
in five spots (A, D, E, F, and K) linked to Africa, Europe, the
Middle East, Asia, and Armenia. Interestingly, previous studies
clearly implicated SNPs identified in the spots with the serum
bilirubin levels in Europeans, Asians, and Africans (Kim et al.,
2010; Chen et al., 2012; Cox et al., 2013). Moreover, population-
dependent sets of mutations and polymorphisms were shown
to be implicated in the development of inherited disorders of
bilirubin clearance (Memon et al., 2016).

Finally, we found that some diseases are enriched in a
single spot. For example, SNPs related to anxiety disorders were
significantly enriched in Europe, the Middle East and Armenia
(spot D). This result is in line with the large-scale meta-analysis
performed by Baxter et al. (2013) indicating significantly reduced
risk for anxiety disorders in non-western cultures compared with
the western ones.

Overall, the results of population levels genetic risk profiling
indicate a bias toward more prevalent diseases with global
impact, such as cancers, immune system diseases, and diabetes.
This, in turn, results in a larger number of associations,
compared with less widespread diseases. We also find that the
enrichment of diseases associated SNPs links to the disease
prevalence in many cases.

Genetic Risks of Armenians
The analysis of the global SNP-landscape of worldwide
populations provided an overview of the geographic distribution
of disease-related genetic risk factors. However, it virtually does
not resolve finer-granular population-level diseases-associations,
especially, for relatively small populations such as Armenians.
Our initial analyses reveal patterns of disease-associated alleles
that they share with neighboring populations from the Middle
East and Europe (e.g., Spots D and E in Figure 3A).

A detailed comparison of SNP portraits showed that
Armenians are characterized by different spot patterns compared
with that observed for populations from Europe, the Middle East
and Central South Asia (Figure 2C).

In order to better resolve differences between these
neighboring populations, we performed a so-called zoom-
in SOM-analysis (Wirth et al., 2011) that considered only
populations from Europe (French, Sardinian, Russian,
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FIGURE 4 | Spot-enrichment of disease-associated SNPs. (A) Top enriched disease terms in each of the spots (see Supplementary Figures S7–S19 for full lists of
enriched diseases and Supplementary Figures S5, S6 for their background distribution). Enrichment p-values are obtained using Fishers exact test. (B) The
circular plots link genes with spot-clusters containing SNPs referring to these genes. Each circular plot shows SNPs which associate with one disease. Different
genes which associate with the same disease distribute over different spots. Genes specifically accumulate in the spots in a one-to-one fashion as a rule of thumb.
Only a few genes were found in two or more spots according to different SNPs in the same gene (e.g., SH2B3). Examples were shown for three selected disease
classes. (C) The number–number distributions over the spots follow an exponential decay meaning that the majority of genes associates with a single spot.
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FIGURE 5 | The biological context of the spots is estimated by means of enrichment analysis using the GO terms (A) biological process and (B) cellular component.
Enrichment p-values (Fisher’s exact test) were visualized as heatmap. One sees that, e.g., GO-terms related to neuronal function are enriched in most of spots but
especially in spots showing minor allele preference in Europeans.

North Italians), Middle East (Bedouin, Druze, Palestinians)
and Armenia.

It revealed a spot cluster of minor alleles of SNPs
which specifically characterize Armenians (spot H in

Figure 7). These SNPs associated with immune diseases,
diabetes mellitus, skin diseases, and musculoskeletal
diseases as the top-four ones. The top SNPs showing
highest MAF, the affected genes, associated diseases and
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FIGURE 6 | Associations of spots with diseases (A) and with geographic regions (B) are shown as heatmaps. Diseases represented with high numbers of SNPs in
the background distribution accumulate in the lower part of the heatmap (A). More rarely-presented diseases frequently associate with one or two spots only (A)
which, in turn, are assigned to specific regions according to the respective mean allele score (B). SNPs associated with mood disorders are enriched in spots having
high MAF in Europeans and East Asians which corresponds to the enrichment of GO-terms related to neuronal functions in Figure 5.

their incidence in Armenia (Andreasyan et al., 2017) are
listed in Table 1.

For example, the incidence of Behcet’s disease was reported
to be higher in Armenians and other South Caucasus
populations compared with Russians (Lennikov et al., 2015).

The highest prevalence of this disease has been reported among
Turkish (450–500 per 100000), however, the prevalence of 90
per 100000 in ethnic Armenians (Oke and Khulief, 2016)
is still considerably higher compared to Europeans
(Leonardo and McNeil, 2015).
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FIGURE 7 | Zoom-in analysis of selected populations from Europe and Middle East and of Armenians resolve geographic specifics of association between SNPs
and disease risks with higher resolution. (A) Spot enrichment of diseases and (B) of minor allele scores are shown as heatmaps. Notably, spot H collects SNPs
which suggest specifically increased disease risks in Armenians. (C) Profiles of spot H in the zoom-in and the world-wide SOM indicate specifically increased MAF of
the included SNPs for Armenians. Top diseases which associate with spot H are shown as barplot of enrichment p-values.

Toutette syndrome SNP is among the disease SNPs
associated with Armenians. Systematic studies considering
44 populations have reported that Tourette syndrome is rare
among Afro-Americans in the United States and sub-Saharan
Africans. Till date, most of the Tourette syndrome cohorts have

been described from Western sites and also from China, Japan,
and the United Arab Emirates (Qi et al., 2017).

Currently no data is also available about the incidence and
prevalence rates of Alzheimer’s disease in Armenia, however, it
is accepted that the actual rates are comparable if not higher
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TABLE 1 | Top disease-risk associated SNPs in Armenians.

SNP-ID∗ Genomic
region/GENE
SYMBOL

REF/ALT MAF Armenia MAF other P ASSOC DO_TERM Prevalence
per 100000 in

Armenia

rs2848713 Intergenic G/A 0.21 0.1 5.6E-45 Behcet’s disease NA

rs2298075 SEC31B C/A 0.35 0.2 2E-04 Breast cancer 66

rs10166672 Intergenic A/G 0.24 0.15 9E-04 Alzheimer’s disease NA

rs627834 Intergenic A/G 0.25 0.07 3.3E-04 Alzheimer’s disease NA

rs10952163 Intergenic A/G 0.22 0.08 8.6E-05 Obesity NA

rs17213431 ANLN G/A 0.26 0.1 4.4E-05 Obesity NA

rs11669309 LOC284395 C/T 0.21 0.09 9E-04 Hypertension 5643

rs4239131 Intergenic T/C 0.2 0.09 4.4E-04 Gilles de la Tourette syndrome NA

rs4239131 Intergenic T/C 0.2 0.09 4.4E-04 Obsessive-compulsive disorder NA

rs4239131 Intergenic T/C 0.2 0.09 4.4E-04 Attention deficit hyperactivity disorder NA

rs7022505 Intergenic C/T 0.22 0.12 3.7E-06 Kidney disease NA

rs10237038 FLJ43663 C/T 0.22 0.11 2.7E-05 Pancreatic cancer 32

rs2269706 PPP1R18 G/A 0.21 0.16 6.3E-06 Rheumatoid arthritis 865

∗SNPs were located in spot H (Figure 6) and further sorted according maximum ratio MAF (Armenians)/MAF (others).

compared with worldwide rates (Saberi et al., 2012; Tataryan,
2012). Official statistics is also unavailable for obesity; however,
the 2013 report by WHO (WHO, 2013) indicated that 55.5%
of the adult population in Armenia were overweight and 24.0%
were obese. Overall our analysis suggests links of population-level
enrichment of diseases associated alleles and disease prevalence
particularly in Armenians, which however presently lack reliable
data about disease prevalence.

DISCUSSION

In this study, we analyzed population and geographic region-
wide distributions of disease-associated genetic risk factors using
SOM machine learning. This approach generated region and
population specific “SNP portraits” visualizing the distribution of
disease-predisposing alleles and allowed for direct comparisons
and assessment the variation of disease-associated alleles across
the geographic regions.

Our results clearly indicate that there region/population-level
specifics in the enrichment of disease-associated alleles, which
could be linked to the disease prevalence. Moreover, we noticed a
significant variation of disease predisposition background across
the worldwide populations, in particular, for common diseases,
such as diabetes, cancers, cardiovascular, and mental diseases.
These observations confirm driving their multifactorial nature
and involvement in multiple pathways their pathogenesis. It is
worth to note that the low-frequency alleles associated with a
disease in one population showed considerably high population
levels frequency in another. We also observed a bias in present
knowledge toward most prevalent diseases (like cancers, diabetes)
as well as toward variants reported in Western World and few
Asian and African populations. Future studies are required which
focus more on so far understudied diseases and populations.

Further, our results raise the question of how the genetic risk in
one population transfers into another one and it emphasizes the

need for involving as much as possible populations into clinical
genomics initiatives.

As an example of the understudied population, we focused
on Armenians. Portraying of disease-related SNPs in Armenians
demonstrated similarities with the Middle East, European and
Central Asian populations. A more detailed analysis detected
SNPs with specifically increased MAFs in Armenians compared
with all other populations studied which indicates local disease
prevalence in agreement with epidemiological data.

It is worth to notice a few limitations of our analysis.
Population-level high MAFs does not necessarily indicate
increased disease’s susceptibility or prevalence in a particular
region. Alternatively, it can be also the result of long periods
of “non-exposure” to the disease in a certain population. Next,
our study neglected a large number of variations of disease-
causing mutations, because they were not included neither
in the array data used nor in available disease association
catalogs. DNA sequencing will have more resolution in this
respect, but there is presently no enough consistent data.
Currently, there are several available datasets that contain exome
or whole genome sequencing data from various population
genetic and disease-specific studies, such as ExAC/gnomAD or
1000 Genomes which will enable studying population diversity
based on larger number of samples. We have chosen HGDP
for our methodical study because it provides a relative large
population diversity which still exceeds that in the other
datasets (51 in HGDP vs. 26 in 1000 Genomes, 10 in
genomAD, and 17 in ExAC) and because of matched measuring
platforms with SNP-data for Armenians. Future studies have
to consider population diversity in Caucasus region and the
surrounding areas and also ancient samples which become
increasingly available for more detailed disease-risk profiling
in space and time.

From a methodological point of view, our study demonstrates
the power of machine learning and, particularly, of SOM
portrayal or analyzing genomic data. This method possesses
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strong visualization capabilities by providing maps of the
SNP-landscapes of the populations under study. They project
the highly-multidimensional SNP-patterns strictly into two
dimensions in contrast to principal component plots which
still are multidimensional. Moreover and most importantly, the
method generates a “SNP portrait” for each individual this way
enabling the personalized evaluation of its SNP-patterns. These
individual portraits can be used to generate mean portraits
averaged over selected groups of individuals, e.g., of populations
from selected geographic regions which then can be compared
to identify common and different SNP patterns. The strong
clustering capabilities of SOM deliver groups of SNPs showing
similar profiles and application of enrichment techniques provide
their functional and disease context. The method needs further
development for applications to genomic data, for example, to
include other genetic defects and to integrate and to visualize
additional phenotypic information.

Overall, our novel approach extends the toolset employed
of association and population genetic studies. The strength of
SOM portrayal used here can be seen in the possibility of
disentangling entire genetic variation landscape into functional
clusters, which subsequently can be assigned to various features
of the groups studied. This includes stratification of populations
and identification of diseases associated variants.

CONCLUSION

Our results clearly indicate that there is a great scope for
further research in this area. There is a strong need to include

non-Western populations in future studies that are clinically,
geographically, and ethnically well-characterized.
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