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Abstract. Buckling of elastically restrained carbon nanotubes is studied subject to a combination of uniformly
distributed and concentrated compressive loads. Governing equations are based on the nonlocal model of car-
bon nanotubes. Weak formulation of the problem is formulated and the Rayleigh quotients are obtained for
distributed and concentrated axial loads. Numerical solutions are obtained by Rayleigh–Ritz method using or-
thogonal Chebyshev polynomials. The method of solution is verified by checking against results available in the
literature. The effect of the elastic restraints on the buckling load is studied by counter plots in term of small-scale
parameter and the spring constants.

1 Introduction

Presently nanoscale components are being used extensively
in a variety of nanotechnology applications (Morris and
Iniewski, 2013; Tserpes and Silvestre, 2014). In particular,
carbon nanotubes (CTN) are used in diverse fields due their
superior properties (Endo et al., 2008; Zhang, 2012; Tserpes
and Silvestre, 2014) which include high stiffness and low
density. To exploit their properties in specific applications,
their mechanical behaviour under loading needs to be investi-
gated by mathematical modelling and/or molecular dynamic
simulations. The modelling employed in the present study is
nonlocal continuum mechanics. Continuum approach in the
study of the mechanical behaviour of nano scale structures
has been implemented extensively as can be judged from
the review articles and the books on the subject (Wang et
al., 2010; Eltaher et al., 2016; Kaushik and Majumder, 2015;
Rafiei, 2015; Rafii-Tabar et al., 2016). In particular, buckling
of carbon nanotubes has been studied extensively by con-
tinuum modelling and the recent work on this subject can
be found in Reddy (2007), Reddy and Pang (2008), Zhang
et al. (2010), Xu et al. (2012), Arash and Wang (2012) and
Askari et al. (2017).

Previous studies on the buckling of nanotubes mostly in-
volved rigid boundary conditions such as clamped, hinged
and free boundaries. Recent studies on the buckling of nan-
otubes under a tip load and subject to classical bound-
ary conditions include Ansari et al. (2011), Sahmani and
Ansari (2011), Kumar (2016), Kumar and Deol (2016) and
Taghizadeh and Ovesy (2016). In these studies the buckling
loads for carbon nanotubes were obtained subject to classical
boundary conditions. However, elastically restrained bound-
aries can be observed in a number of applications of nano-
scale components. One such application area is nanomechan-
ical sensors (Kiani, 2015) and for sensing nanosized objects
(Kiani et al., 2013). Restraints such as rotational springs af-
fect the buckling load that can be carried by a nanotube.
Study of the buckling of CTNs subject to elastically re-
strained end conditions extends the previous results to the
cases when the CTN boundaries cannot be modelled simply
as hinged, clamped or free boundaries. Previous work on this
subject involved the buckling of a nanotube with rotational
springs on the boundaries and subject to a concentrated axial
load (Wang et al., 2015; Yayli, 2015, 2016).

Present study is directed to determining the stability of car-
bon nanotubes under compressive axial loads when the nan-
otube is subject to elastically restrained boundary conditions.
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Such end conditions arise in situations when the nanotube
cannot be attached to the boundaries in a rigid manner. Axial
loads are taken as a concentrated tip load and a uniformly dis-
tributed axial load which corresponds to buckling under self-
weight. Buckling of nanotubes under self-weight has been
the subject of studies in Wang et al. (2004), Mustapha and
Zhong (2012), Wang et al. (2016). Buckling of nanotubes
subject to uniformly and triangularly distributed axial loads
has been studied for uniform nanotubes in Robinson and
Adali (2016), Robinson et al. (2018) and for non-uniform
nanotubes in Robinson and Adali (2017, 2018).

In the present study, the numerical solution of the problem
is based on a variational approach involving the weak for-
mulation of the problem incorporating the differential equa-
tion and the elastic boundary conditions in a single expres-
sion. Rayleigh quotients for the tip load and the distributed
axial loads are derived using the weak formulation frame-
work. Rayleigh–Ritz method of solution is implemented via
orthogonal Chebyshev polynomials. Solution method is val-
idated by comparing the accuracy of the results with re-
sults available in the literature. There have been a number
of studies applying Rayleigh–Ritz method to the buckling
and vibration of nanotubes (Behera and Chakraverty, 2014;
Ghannadpour et al., 2013; Ghannadpour and Mohammadi,
2010, 2011) and the method has been covered extensively in
the book by Reddy (2002). Variational formulations for the
buckling of nonlocal CTNs have been given in a number of
cases (Adali, 2008, 2012).

2 Nonlocal problem formulation

We consider an elastically restrained single-walled carbon
nanotube subject to concentrated and uniformly distributed
axial loads. The nanotube has length L and the axial load is
expressed as

N (x)= P +Q(L− x), 0≤ x ≤ L (1)

where P is the concentrated axial load applied at the end
point x = L and Q is the magnitude of the uniformly dis-
tributed axial load as shown in Fig. 1.

The support at x = 0 is elastically restrained by a rota-
tional spring with a torsional constant Kr0. The support at
x = L is elastically restrained by a rotational spring with
a torsional constant Kr1 and a translational spring of con-
stant Kt. The clamped end boundary conditions correspond
to Kr0→∞ at x = 0 and Kr1→∞ and Kt→∞ at x = L.
Simply supported boundary conditions correspond to Kr0 =

0 at x = 0, and Kr1 = 0 and Kt→∞ at x = L. Free end
boundary condition at x = L is given byKr1 = 0 andKt = 0.
The equation governing the buckling of the elastically re-
strained column can be expressed in terms of moment M(x)
and deflection w(x) as

Figure 1. Elastically restraint columns under concentrated and dis-
tributed axial loads.

d2M

dx2 −
d

dx

(
N

dw
dx

)
+

i=1∑
i=0

Kri
d2w

dx2 δ(x− xi)

−Ktw(x)δ(x−L)= 0 (2)

where x0 = 0, x1 = L and δ(x− xi) is Dirac delta function.
The constitutive relation based on the nonlocal theory of elas-
ticity can be expressed as

M − η2 d2M

dx2 =−EI
d2w

dx2 (3)

where η = e0a is the small scale parameter, E is the Young’s
modulus and I is the moment of inertia. In the expression
η = e0a, e0 stands for a constant which is specific to each
material. It can be determined either experimentally by us-
ing vibration or buckling load measurements or by the use
of atomic dispersion relations. The constant a represents an
internal characteristics length such as granular distance or
lattice parameter. The nonlocal parameter η is also called
a small-scale parameter and can be determined by conduct-
ing experiments and a comparison of dispersion curves ob-
tained from nonlocal continuum mechanics and molecular
dynamics simulations. Generally η ≤ 2 nm for SWCNT and
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its value depends on many parameters such as boundary con-
ditions, chirality, mode shape, number of walls and type
of motion. Further information on the computation and the
meaning of η can be found in Challamel et al. (2014) and
Wang et al. (2017).

The expression for M(x) is obtained from Eqs. (2) and (3)
as

M(x)=−EI
d2w

dx2 + η
2
[

d
dx

(
N

dw
dx

)
−

i=1∑
i=0

Kri
d2w

dx2 δ(x− xi)+Ktw(x)δ(x−L)
]

(4)

From Eqs. (2) and (4), the differential equation governing the
buckling of an elastically restrained nanotube subject to the
buckling load N (x) given by Eq. (1) is obtained as

D(w)= EI
d4w

dx4 +
d

dx

(
N

dw
dx

)
−K (w(xi))

− η2 d2

dx2

[
d

dx

(
N

dw
dx

)
−K (w(xi))

]
= 0 (5)

where

K (w(xi))=
i=1∑
i=0

Kri
d2w

dx2 δ(x− xi)−Ktw(x)δ(x−L) (6)

3 Weak formulation

Next the weak formulation for Eq. (5) is derived by noting
that

L∫
0

D(w)wdx = 0 (7)

The weak formulation of Eq. (5) is a weighted-integral form
that incorporates both the governing differential equation and
the associated natural boundary conditions. The use of equa-
tion Eq. (7) facilitates the derivation of the variational form
of the problem as well as the derivation of the boundary con-
ditions as shown below. This approach has been employed
in Robinson and Adali (2016, 2017, 2018) for a number of
nonlocal buckling problems. Using integration by parts, the
following equation can be obtained from Eqs. (5) and (7):
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0
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dw
dx

d2w

dx2
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)2]}
dx+B1 (w(xi))+B2 (w(xi))= 0 (8)

where the boundary terms are given by

B1 (w(xi))=
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Kri

(
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)2
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x=xi

+ Ktw
2
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 (9)

B2 (w(xi))=
(

dw
dx
m+wV

)∣∣∣∣x=L
x=0

(10)

with m(xi) and V (xi) denoting the expressions

m(xi)=−EI
d2w

dx2 + η
2 d

dx

(
N

dw
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)
,

V (xi)= EI
d3w

dx3 − η
2 d2

dx2

(
N

dw
dx

)
+N

dw
dx

(11)

4 Rayleigh quotients

First the Rayleigh quotient for the concentrated load is de-
rived for the case P > 0 andQ= 0 (no distributed load). For
this case the following relation can be obtained from Eqs. (8),
(10) and (11)
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0
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w

d3w

dx3

)∣∣∣∣x=L
x=0

− η2P

(
w

d3w

dx3

)∣∣∣∣x=L
x=0
+P

(
w

dw
dx

)∣∣∣∣x=L
x=0
= 0 (12)

The Rayleigh quotient for P (Q= 0) follows from Eq. (12)
as
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0

(
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+η2
(
w d3w
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−

(
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(13)

Rayleigh quotient for the distributed loadQ with no concen-
trated load applied (P = 0) is obtained by a similar compu-
tation and the Rayleigh quotient for the case is given by
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Q=
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where

b(xi)= η2
(
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dx

)2
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dw
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d2w

dx2

∣∣∣∣x=L
x=0

+ η2w
d2

dx2

(
(L− x)

dw
dx

)∣∣∣∣x=L
x=0
− (L− x)

(
w

dw
dx

)∣∣∣∣x=L
x=0

Following dimensionless variables are introduced:

X =
x

L
, W =

w

L
, µ=

η

L
, p =

PL2

EI
, q =

QL3

EI
,

kri =
KriL

EI
, kt =

KtL
3

EI
(15)

Dimensionless Rayleigh quotient for the case p > 0, q = 0
can be expressed as

p =

∫ 1
0

d2W
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2
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−
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Dimensionless Rayleigh quotient for q > 0, p = 0 is given
by
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where

b(Xi)= µ2
(
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5 Method of solution

Numerical results are obtained by Rayleigh–Ritz method
based on the weak formulation of the problem given in
Sect. 3 and the Rayleigh quotients given in Sect. 4. Varia-
tional methods of solution of differential equations have been
outlined in a number of books (Reddy, 2002; Wunderlich and
Pilkey, 2003; Cassel, 2013) and are not detailed here. The
essence of the method involves approximating the solution of
a differential equation by polynomials using the weak formu-
lation of the problem given by Eq. (8). In the present study,
Chebyshev polynomials are employed as the approximating
functions expressed as

W (X)=Xr (1−X)s
N∑
j=1

cjfj−1(X) (18)

where r and s take the values 0, 1 or 2 for free, simply sup-
ported and clamped boundaries, respectively. Parameters cj
are determined as part of the solution of an eigenvalue prob-
lem which yields the buckling load as the minimum of the
eigenvalues. In Eq. (18), fj (X) is the j th Chebyshev polyno-
mial with f0(X)= 1 and f1(X)=X. The remaining terms
are obtained from

fj+1(X)= 2Xfj (X)− fj−1(X) (19)

As noted in Ghannadpour et al. (2013), Chebyshev polyno-
mials provide a set of complete and orthogonal series which
leads to rapid convergence as compared to other polyno-
mial series. Furthermore they can be expressed in a rela-
tively simple and uniform form making the coding easier.
Fourier series method can also be used effectively as shown
in Kadıoglu and Yaylı (2017) where the buckling problem
for a nonlocal Timoshenko beam was solved using Fourier
series approach.

The polynomial approximation method implemented in
the present study to solve the buckling problem for elastically
restrained nanotubes is applied to the buckling of elastically
restrained columns in order to assess and verify its accuracy.
The specific problem involves an elastically restrained col-
umn subject to a tip load only, i.e., p > 0 and q = 0. Numer-
ical results for this problem are given in Wang et al. (2005).
Comparative results are given in Table 1 involving a column
with a rotational spring constant kr0 at x = 0 and a rotational
spring constant kr1 at x = Lwith no translation of the bound-
ary at x = L, i.e., kt =∞. Corresponding results for a col-
umn with free end at x = L (kt = 0) are given in Table 2.
Solutions obtained with the present method are observed to
be quite accurate judging from the comparison of the present
results with the ones given in Wang et al. (2005) as shown in
Tables 1 and 2.
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Table 1. Critical buckling load p (q = 0) for various elastic constraint values with kt =∞ and µ= 0 (local column).

kr1 kr0

0 0.5 1 2 4 10 20 ∞

kr0 (present) 9.8696 11.772 13.492 16.463 20.957 28.170 32.789 39.501
(Wang et al., 2005) π2 11.772 13.492 16.463 20.957 28.168 30.335 4π2

0 (present) 9.8696 10.839 11.735 13.276 15.486 18.570 20.174 22.207
(Wang et al., 2005) π2 10.798 11.598 12.894 14.660 17.076 18.417 20.191

∞ (present) 22.207 23.193 24.140 25.878 28.668 33.191 35.916 39.501
(Wang et al., 2005) 20.191 21.659 22.969 25.182 28.397 33.153 35.902 4π2

Table 2. Critical buckling load p (q = 0) for various elastic constraints values with kt = 0 and µ= 0 (local column).

kr1 kr0

0 0.5 1 2 4 10 20 ∞

kr0 (present) 0 0.9219 1.7070 2.9609 4.6386 6.9046 8.1667 9.8697
(Wang et al., 2005) 0 0.9220 1.7071 2.9607 4.6386 6.9047 8.1667 π2

0 (present) 0 0.4267 0.7401 1.1596 1.5991 2.0416 2.2384 2.4674
(Wang et al., 2005) 0 0.4268 0.7402 1.1597 1.5992 2.0517 2.2384 π2/4

∞ (present) 2.4674 3.3730 4.1158 5.2391 6.6071 8.1955 8.9583 9.8697
(Wang et al., 2005) π2/4 3.3731 4.1159 5.2392 6.6071 8.1955 8.9583 π2

Figure 2. Contour plot of the buckling load p (q = 0) with respect
to µ and kr0 for kr1 = 0, kt = 108 (SS at x = L).

6 Numerical results

In this section the effect of the elastic restraints on the buck-
ling loads of nonlocal nanotubes is investigated by means of
contour plots. Furthermore the buckling loads of nanotubes
under a tip load and a distributed load are compared. The nu-
merical results are given in terms of the small scale parameter
µ with the range taken as 0≤ µ≤ 0.4. The contour plots of
the buckling load p with respect to µ and kr0 are shown in
Fig. 2 for the case kr1 = 0, kt = 108, i.e., the end point x = L

Figure 3. Contour plot of the buckling load q (p = 0) with respect
to µ and kr0 with kr1 = 0, kt = 108 (SS at x = L).

is simply supported. It is observed that the buckling load in-
creases as the rotational spring at x = 0 becomes stiffer as
expected. However this increase becomes minor after a cer-
tain value of kr0 depending on the small scale parameter µ.
The buckling load increases most as kr0 increases at low val-
ues of µ. Increase in the buckling load with increasing kr0
is much less as µ approaches µ= 0.4. The corresponding
results for uniformly distributed axial load q are shown in
Fig. 3. The trends are the same as the concentrated load case
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Figure 4. Contour plot of the buckling load p (q = 0) with respect
to µ and kr1 for kr0 = 108 (clamped at x = 0) and kt = 108 (no
translation at x = L).

Figure 5. Contour plot of the buckling load q (p = 0) with respect
to µ and kr1 for kr0 = 108 (clamped at x = 0) and kt = 108 (no
translation at x = L).

Figure 6. Contour plot of the buckling load p (q = 0) with respect
of kt and µ with kr0 = 108 (clamped at x = 0), kr1 = 0 (hinge at
x = L).

Figure 7. Contour plot of the buckling load q (p = 0) with respect
of kt and µ with kr0 = 108 (clamped at x = 0), kr1 = 0 (hinge at
x = L).

Figure 8. Stability boundaries with respect to q and p for kr0 = 0,
kr1 = 0, kt = 108 (SS column) for various values of µ.

shown in Fig. 2. However, the decrease in the buckling load
as µ increases is more pronounced.

Next contour plot of the buckling load under the concen-
trated load p is shown with respect to µ and kr1 in Fig. 4 for
a nanocolumn clamped at x = L. A comparison of Figs. 2
and 4 shows that in this case increase in the buckling load
as kr1 increases is more pronounced, but the increase tapers
of quickly as µ increases. The corresponding results for uni-
formly distributed axial load q are shown in Fig. 5 where the
increase in the buckling load as kr1 increases is mostly ob-
served for the low values of µ. This increase in the buckling
load as kr1 increases is observed to be of minor magnitude.
Figure 6 shows the contour plot for the concentrated load p
for a clamped-pinned nanocolumn with respect to µ and kt
which is the translational spring at x = L. As kt increases,
the buckling load p increases substantially for low values of
µ with this increase tapering off quickly as µ increases. The
corresponding results for uniformly distributed axial load q
are shown in Fig. 7 where the increase in q as kt increases
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is observed to be less pronounced as compared to p. At high
values of µ the increase in q is considerably less as kt in-
creases.

Stability boundaries with respect to q and p are shown in
Fig. 8 for a simply supported nanocolumn for several values
of µ. As expected stability boundary approaches the origin
as µ increases.

7 Conclusions

Buckling of elastically restrained nanotubes subject to con-
centrated and uniformly distributed axial loads was stud-
ied. The elastic restraint at x = 0 is specified as a rotational
spring and its value changes between a simply supported col-
umn (kr0 = 0) and clamped column (kr0→ 0). The elastic re-
straints at x = L are specified as a rotational spring 0≤ kr1 <

∞ and a translational spring 0≤ kt <∞. The value of kr1
changes between a simply supported column (kr1 = 0) and a
clamped column (kr1→∞). Thus the boundary conditions
at x = L can vary between a simple support and a clamped
support. Numerical results are obtained by Rayleigh–Ritz
method employing Chebyshev polynomials of the first kind
as the approximating functions. The accuracy of the present
method of solution is verified by comparing the numerical
results with available results on local columns available in
the literature.

The numerical results are given mostly in the form of con-
tour plots to study the effect of the small scale parameter µ
and elastic restraints on the buckling loads. It is observed
that the effect of the elastic restraints on the buckling load
decreases as the small scale parameter increases. Buckling
loads are observed to be more sensitive to the changes in the
values of the elastic constants when the small-scale parame-
ter is µ≥ 0.1.

Data availability. The data was used to generate the graphs in
Figs. 2 to 8. Thus these figures contain the data of the present re-
search. The numerical data can be made available upon request from
the authors.
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