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Blood biomarkers have been explored for their potential to provide objective measures in

the assessment of traumatic brain injury (TBI). However, it is not clear which biomarkers

are best for diagnosis and prognosis in different severities of TBI. Here, we compare

existing studies on the discriminative abilities of serum biomarkers for four commonly

studied clinical situations: detecting concussion, predicting intracranial damage after mild

TBI (mTBI), predicting delayed recovery after mTBI, and predicting adverse outcome after

severe TBI (sTBI). We conducted a literature search of publications on biomarkers in TBI

published up until July 2018. Operating characteristics were pooled for each biomarker

for comparison. For detecting concussion, 4 biomarker panels and creatine kinase B type

had excellent discriminative ability. For detecting intracranial injury and the need for a head

CT scan after mTBI, 2 biomarker panels, and hyperphosphorylated tau had excellent

operating characteristics. For predicting delayed recovery after mTBI, top candidates

included calpain-derived αII-spectrin N-terminal fragment, tau A, neurofilament light,

and ghrelin. For predicting adverse outcome following sTBI, no biomarker had excellent

performance, but several had good performance, including markers of coagulation and

inflammation, structural proteins in the brain, and proteins involved in homeostasis. The

highest-performing biomarkers in each of these categories may provide insight into the

pathophysiologies underlying mild and severe TBI. With further study, these biomarkers

have the potential to be used alongside clinical and radiological data to improve TBI

diagnostics, prognostics, and evidence-based medical management.

Keywords: traumatic brain injury, TBI, concussion, diagnosis, prognosis, biomarker, biomarkers

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201023966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2019.00446
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2019.00446&domain=pdf&date_stamp=2019-04-26
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:smithdou@pennmedicine.upenn.edu
https://doi.org/10.3389/fneur.2019.00446
https://www.frontiersin.org/articles/10.3389/fneur.2019.00446/full
http://loop.frontiersin.org/people/678468/overview
http://loop.frontiersin.org/people/423295/overview
http://loop.frontiersin.org/people/670749/overview


Gan et al. Blood Biomarkers for Traumatic Brain Injury

INTRODUCTION

Traumatic brain injury (TBI) is a common cause of disability and
mortality in the US (1) and worldwide (2). Pathological responses
to TBI in the CNS include structural and metabolic changes, as
well as excitotoxicity, neuroinflammation, and cell death (3, 4).
Fluid biomarkers that may track these injury and inflammatory
processes have been explored for their potential to provide
objective measures in TBI assessment. However, at present there
are limited clinical guidelines available regarding the use of
biomarkers in both the diagnosis of TBI and outcome prediction
following TBI. To inform future guideline formulation, it is
critical to distinguish between different clinical situations for
biomarker use in TBI, such as detection of concussion, prediction
of positive and negative head computed tomography (CT)
findings, and prediction of outcome for different TBI severities.
This allows for comparisons to determine which biomarkers
may be used most appropriately to characterize different aspects
of TBI.

The identification of TBI severity has become a contentious
issue. Currently, inclusion in TBI clinical trials is primarily
based on the Glasgow Coma Scale (GCS), which stratifies
patients into categories of mild, moderate, and severe TBI.
The GCS assesses consciousness and provides prognostic
information, but it does not inform the underlying pathologies
that may be targeted for therapy (5, 6). Furthermore, brain
damage and persistent neurological symptoms can occur
across the spectrum of TBI severity, limiting the use of GCS-
determined injury severity to inform clinical management.
Biomarkers in TBI have the potential to provide objective and
quantitative information regarding the pathophysiologic
mechanisms underlying observed neurological deficits.
Such information may be more appropriate for guiding
management than initial assessments of severity alone. Since
the existing literature primarily focuses on applications of
biomarkers in either suspected concussion, mild TBI (mTBI),
or severe TBI (sTBI), we will discuss biomarker usage in
these contexts.

Concussion is a clinical syndrome involving alteration in
mental function induced by head rotational acceleration. This
may be due to direct impact or unrestrained rapid head
movements, such as in automotive crashes. Although there are
over 30 official definitions of concussion, none include the
underlying pathology. Missing from the literature have been
objective measures to not only identify the underlying pathology
associated with the given clinical symptoms, but also to indicate
prognosis in long-term survival. Indeed, current practices in
forming an opinion of concussion involve symptom reports,
neurocognitive testing, and balance testing, all of which have
elements of subjectivity and questionable reliability (7). While
such information generally reflects functional status, it does not
identify any underlying processes that may have prognostic or
therapeutic consequences. Furthermore, because patients with
concussion typically present with negative head CT findings,
there is a potential role for blood-based biomarkers to provide
objective information regarding the presence of concussion,
based on an underlying pathology. This information could

inform management decisions regarding resumption of activities
for both athletes and non-athletes alike.

Blood-based biomarkers have utility far beyond a simple
detection of concussion by elucidating specific aspects of the
injury that could drive individual patient management. For
example, biomarkers may aid in determining whether a mTBI
patient presenting to the emergency department requires a CT
scan to identify intracranial pathology. The clinical outcome
for a missed epidural hematoma in which the patient is either
discharged or admitted for routine observation is catastrophic;
25% are left severely impaired or dead (8). The Canadian CT
Head Rule (9) and related clinical decision instruments achieve
high sensitivities in predicting the need for CT scans in mild TBI
cases. However, they do this at specificities of only 30–50% (10).
Adding a blood biomarker to clinical evaluation may be useful
to improve specificity without sacrificing sensitivity, as recently
suggested (11). In addition, given concern about radiation
exposure from head CT scans in concussion cases, particularly
in pediatric populations, identification of patients who would be
best assessed with neuroimaging is crucial. Thus, the use of both
sensitive and specific biomarkers may serve as cost-effective tools
to aid in acute assessment, especially in the absence of risk factors
for intracranial injury (12). S-100B, an astroglial protein, has been
the most extensively studied biomarker for TBI thus far and has
been incorporated into some clinical guidelines for CT scans
(13, 14). However, S-100B is not CNS-specific (15, 16) and has
shown inconsistent predictive capacity in the outcome of mild
TBI (17, 18). Given that several other promising biomarkers have
also been investigated in this context, it is important to evaluate
and compare the discriminative abilities of S-100B with other
candidate blood-based biomarkers for future use.

Blood biomarkers also have the potential to help predict
unfavorable outcomes across the spectrum of TBI severity.
Outcome predication is difficult; in mTBI, existing prognostic
models performed poorly in an external validation study (19).
Identifying biomarkers that best predict delayed recovery or
persistent neurological symptoms following mTBI would help
with the direction of resources toward patients who may benefit
most from additional rehabilitation or prolonged observation. In
sTBI, poorer outcome has often been associated with a low GCS
score (20). However, factors such as intoxication or endotracheal
intubation may make it difficult to assess GCS reliably in the
acute setting (21, 22). The addition of laboratory parameters to
head CT and admission characteristics have improved prognostic
models (23). Thus, prognostic biomarkers in sTBI could help
determine whether patients are likely to benefit from intensive
treatment. Several candidate biomarkers that correlate with
various pathologies of mild and severe TBI have been studied
(24), but their relative prognostic abilities remain unclear.

Existing reviews on biomarkers in TBI have provided
valuable insight into the pathologic correlates of biomarkers,
as well as how biomarkers may be used for diagnosis and
prognosis (25–31). However, there has been no previous
quantitative comparison of the literature regarding biomarkers’
discriminative abilities in specific clinical situations. Here, we
compare existing studies on the discriminative abilities of
serum biomarkers for four commonly studied clinical situations:
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detecting concussion, predicting intracranial damage after mTBI,
predicting delayed recovery after mTBI, and predicting adverse
outcome after sTBI.

MATERIALS AND METHODS

Categories
There has been substantial confusion about the role of blood-
based biomarkers in TBI. Therefore, we chose four scenarios in
which blood biomarkers might be considered most helpful:

1. To document whether a concussion has occurred, especially
when the history is unclear. This might be most useful for
professional athletes and military service members, for whom
decisions to return to play or to combat could have serious
consequences. This assessment relied on individual authors to
define concussion, as no single gold standard definition exists.

2. To predict intracranial damage after mTBI (GCS 13–
15). This could help decide whether or not a CT scan
is indicated to identify occult intracranial lesions with
potentially catastrophic consequences.

3. To predict delayed recovery after mTBI (GCS 13–15). This
might help direct early rehabilitation therapy to patients at risk
of a poor outcome. It could also serve to select these patients
as clinical study subjects to evaluate treatment efficacy. This
assessment allowed individual authors to define recovery
given the variety of clinically relevant endpoints.

4. To predict outcome after sTBI (GCS ≤8). This might help
alert the healthcare team in cases in which intensive treatment
is either helpful or futile, as well as providing prognostic
information to the patient’s family.

Although several other potential uses of biomarkers have been
suggested, we thought these four categories were the most useful
clinically and had been covered most thoroughly in the literature.
We omitted analysis of publications in which the outcome
categories did not conform to the four categories or were unclear.
We also elected to limit our analysis to biomarkers measured
in peripheral blood and exclude reports of measurements done
on CSF, brain tissue, urine, etc. Studies which reported results
obtained too long after injury to be of predictive value were not
included in the analysis. Cutoff points were 48 h for Category
1, 24 h for Category 2, 72 h for Category 3 and 7 days for
Category 4.

Literature Search
We conducted a search of Medline, Embase and the Cochrane
library for reports of biomarkers of TBI published in English
up to July 2018. The search strategy was limited to articles
which included the medical subject headings of both “head
injury” and “brain injury,” along with either “biomarker(s)” or
“marker(s)” in the text. Additional articles were obtained from
the bibliographies of selected reports and from the “Similar
articles” feature of PubMed. Abstracts limited to animal studies
or to samples other than blood were excluded. All other articles
were downloaded and reviewed by at least two authors (SS, ZG,
KG, DM, LG).

Data Management and Analysis
Data abstracted from each report included TBI category,
biomarker(s) measured, time(s) after injury, number of
observations, cut point (point dividing positive from negative
tests), sensitivity, specificity, area under the receiver operating
curve (AUC) (32), any additional features reported (injury
mechanism, age of subjects, outcome measured, etc.). If the TBI
cohort of a given study was of mixed severity, and at least 70% of
the patients met the severity criteria for a certain category, then
the study was assigned to that category. Series which included
adverse GOS scores were included in the severe injury category,
even if fewer than 70% of reported cases had sTBI. For each set of
observations, we calculated the AUC if not already provided. We
also calculated the Youden J-statistic (33), another measure of
diagnostic accuracy. A detailed discussion of diagnostic accuracy
is given in the Supplementary Appendix.

If multiple reports dealt with the use of the same biomarkers
to predict the same outcome, we pooled the data to obtain
a single measure. For the AUC, we used a random-effects,
inverse variance-weighted meta-analytic model to pool values
(34). Since only the maximum J-statistic is used to report on a
series of sensitivity/specificity values, we chose only the highest
J-statistic measurement for each biomarker. We compared
reported biomarkers with how well they predicted outcomes in a
given category. We used a previously proposed semi-quantitative
scale (35) to rate the accuracy of tests from their AUC’s. An AUC
above 0.9 is considered excellent, with decreasing intervals of 0.1
through “good,” “fair” and “poor.” An AUC below 0.6 is graded
a “fail.”

A number of studies reporting mean biomarker levels
were excluded if it was not possible to calculate operating
characteristics from the published data. Other reports were
excluded for reporting biomarker levels only as combinations of
multiple markers or trajectories of a single marker over time.

RESULTS

Literature Search
Our search yielded 2,015 publications, of which 1,034 abstracts
were omitted as being unlikely to provide useful data. The
remaining 981 articles were downloaded and reviewed. We
excluded 233 reviews, editorials, letters to the editor, duplicate
reports and other publications containing no original data.
Also excluded were 162 case series limited to tissue other than
blood (CSF, brain tissue, etc.), 40 reports containing fewer
than 10 observations and 346 reports not relevant to the four
outlined scenarios or from which operating characteristics could
not be calculated. Included for analysis were 200 publications,
encompassing a total of 61,722 observations.

The flow chart of the study selection process is shown in
Figure 1. Included studies are listed by category in Table S1

(Supplementary Appendix), along with the biomarker tested
and the number of observations. It should be noted that several
reports are listed more than once, owing to their reporting on
multiple biomarkers or multiple scenarios. An alphabetical list
of abbreviations for biomarkers reported in the tables and the
remainder of the manuscript is shown in Table 1.
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FIGURE 1 | Flow chart of the study selection process.

Analyses
Category 1 (Document Concussion)
There were 9 unique publications, documenting 15 biomarkers
and containing a total of 946 observations. Several but
not all authors defined concussion based on the 2012
Concussion in Sports Group guidelines (36) or the 2011
Team Physician Consensus Statement (37). Table 2 shows
the pooled values for AUC and the maximum J-statistic
obtained for each. Four biomarker panels (copeptin, galectin-
3, and MMP-9; GFAP and UCH-L1; 10 metabolites; and
17 metabolites) are in the “excellent” range (AUC≥0.9).
The AUC for copeptin, CKBB, and a 10-metabolite panel
are also “excellent,” and 3 other biomarkers, galectin 3,
MMP-9, and occludin rate as “good” (AUC = 0.80:0.89).
However, the observations are few, and no study has been
independently verified.

Category 2 (Need for CT Scan After mTBI)
There are 56 publications and 23,316 observations of 24
biomarkers in this category. As shown in Table 3, a single
report shows excellent operating characteristics for two panels of
biomarkers (MMP-2, CRP, and CKBB; UCH-L1 and GFAP), as
well as for phospho tau (P-tau) and its ratio with total tau (P-
tau/T-tau ratio). The UCH-L1/GFAP panel and P-tau also have
excellent J-statistics. The AUC values for GFAP/GFAP-BDP and
D-Dimer are in the “good” range; the excellent J-statistic for
GFAP/GFAP-BDP is aided by a high specificity. S-100B protein,
the most studied biomarker in this category, performs only in the
fair category (AUC=0.70:0.79).

Category 3 (Delayed Recovery After mTBI)
There are 44 publications reporting results of 29 biomarkers in
13,291 observations. Most but not all authors defined delayed

recovery as post-concussive syndrome (PCS) at various time
points after injury (notably, there is current debate regarding
the term “PCS”). As shown in Table 4, small studies suggest that
ghrelin, glucose, NFL, SNTF, and A-tau have AUC values in the
“good” range and show promise for predicting mTBI patients
who can be expected to suffer prolonged neurobehavioral or post-
concussive symptoms. More commonly-studied biomarkers,
such as GFAP, S-100B, NSE, and UCH-L1, have fair to poor
discriminating ability.

Category 4 (Poor Outcome After sTBI)
In this category, 85 publications reported 23,442 observations of
59 different biomarkers. As shown in Table 5, several biomarkers
had “good” ability to predict death, severe disability or other
adverse outcomes after sTBI. They include ceruloplasmin,
copeptin, D-Dimer, ficolin-3, galectin-3, gelsolin, H-FABP,
HMGB1, icORP, IL-1beta, −6 and −8, leptin, MBL, MBP,
MIF, NFM, periostin, RDW, S100A12, SCUBE1, SuPAR,
TAC, tenascin-C, thrombospondin-1, and T-tau. However,
numbers of observations are small, and independent verification
is lacking.

DISCUSSION

We have identified leading candidate biomarkers potentially
useful for four clinical purposes in TBI, as determined by
the highest pooled AUC and J-statistic from the existing data.
Figure 2 provides a visual overview of the candidate biomarkers’
anatomical locations. These biomarkers have the potential to
be used not as stand-alone diagnostic or prognostic tests, but
rather alongside clinical and radiological data in the collective
process of forming a clinical decision. In particular, in the
absence of acute or chronic behavioral changes, excessive
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TABLE 1 | Abbreviations used for biomarkers.

Abbreviation Full name

A-beta-42 Amyloid beta peptide

A-Tau Tau-protein A

BDNF Brain-derived neurotrophic factor

BMX Tyrosine kinase

CKBB Creatine kinase B type

CRP C-reactive protein

C-Tau Tau-protein C

FDP Fibrin degradation products

GFAP/GFAP-BDP Glial fibrillary acidic protein (breakdown products)

GM-CSF Granulocyte-macrophage colony-stimulating factor

GSH Glutathione

H-FABP Heart-fatty acidic binding protein

HMGB1 High-mobility group box 1 gene

Hsp70 Heat shock protein

ICAM-1,-5 Intercellular adhesion molecule-1 and−5

icORP Capacity for induced oxidative stress

IL-1beta, -6, -10 Interleukins

INR International normalized ratio

LGALS3 Galectin 3

MBL Mannose-binding lectin

MBP Myelin basic protein

MCP-1 Monocyte chemoattractant protein

MDA-LDL Malondialdehyde modified low density lipoprotein

MIF Macrophage migration inhibitory factor

MMP-2 -,9 Matrix metalloproteinase-2 and−9

MT3 Metallothionein 3

NCAM Neuron cell adhesion molecule

NF-H Hyperphosphorylated neurofilament

NFL Neurofilament light

NFM Neurofilament medium

NRGN Neurogranin

NSE Neuron-specific enolase

OCLN Occludin

pNF-H Phosphorylated neurofilament heavy protein

PRDX-6 Peroxiredoxin

PTT Partial thromboplastin time

P-Tau Hyperphosphorylated tau

RDW Red cell distribution width

S-100A1B, -A12, -B S-100 calcium-binding proteins

SCUBE1 Signal peptide-cub-egf domain-containing protein-1

SNTF Calpain-derived αII-spectrin N-terminal fragment

SuPAR Soluble urokinase plasminogen activator receptor

sVCAM-1 Soluble vascular cell adhesion molecule-1

TAC Total antioxidant capacity

TIMP-1 Tissue inhibitor of matrix metalloproteinase 1

T-Tau Total tau

UCH-L1 Ubiquitin C-terminal hydrolase

VWF Von Willebrand factor

focus on biomarker values may lead to unnecessary testing
with negative psychological and economic consequences. Blood
biomarkers offer potentially valuable objective information that

TABLE 2 | Presence of Concussion.

Biomarker #Reports #Observations Pooled AUC Maximum

J-statistic

CKBB 1 18 0.902 0.602

copeptin 1 55 0.922 0.766

GFAP 2 238 0.533 0.030

LGALS3 1 55 0.849 0.508

MMP9 1 55 0.846 0.655

OCLN 1 55 0.836 0.562

panel (10

metabolites)

1 10 0.976 0.778

panel (17

metabolites)

1 29 0.910 0.76

panel(copeptin,

LGALS3, MMP-9)

1 55 0.968 0.79

panel(GFAP,

UCH-L1)

1 206 0.940

panel(UCH-L1,

S-100B)

1 32 0.750

S-100B 2 108 0.680 0.441

SNTF 1 28 0.760 0.550

T-Tau 1 28 0.740 0.303

A-Tau 1 28 0.750 0.500

C-Tau 1 28 0.711 0.422

Ubiquitin 1 206 0.670

UCH-L1 1 32 0.740 0.500

Best results are indicated in boldface. Blank cells = either no data reported in original

publication, or pooled AUC was considered too low (below “good” range, <0.80) to

calculate J-statistic. See Table 1 for abbreviations.

may augment rather than replace existing tools for clinical
assessment and contribute to a holistic approach to management.

Category 1 (Document Concussion)
Two single biomarkers had excellent operating characteristics
(AUC>0.9) for documenting concussion. Copeptin, the C-
terminal part of the arginine vasopressin (AVP) prohormone,
is thought to reflect the hypothalamic pituitary adrenal axis
activity as part of the stress response, and serum levels increase
in proportion to TBI severity (38, 39). CKBB is an intracellular
enzyme that catalyzes the phosphorylation of creatine to
phosphocreatine as part of cellular energy homeostasis and is
primarily found in oligodendrocytes, which may be due to large
energy requirements in these cells (40). The good performance
of these biomarkers suggests that both stress axis activation and
cellular damage within specific brain areas are involved in the
pathophysiology of concussion.

Three other biomarkers, galectin 3, MMP-9, and occludin,
had good operating characteristics (AUC = 0.80–0.89) for
detecting concussion based on a single study (ref. S17 in
Supplementary Appendix) while the combination of all 3
yielded an excellent operating characteristic. Galectin-3, a beta–
galactoside-binding lectin, was previously found to be expressed
in activated microglia after diffuse axonal injury (DAI) (41).
MMP-9, a matrix metalloprotease that is expressed in humans
early after TBI (42), modifies the brain extracellular matrix and
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TABLE 3 | Mild TBI—need for CT scan.

Biomarker #Reports #Observations Pooled AUC Maximum

J-statistic

A-beta-42 1 46 0.689

BDNF 1 159 0.670 0.839

CKBB 1 92 0.714

CRP 1 92 0.698

d-Dimer 2 93 0.890 0.669

GFAP/GFAP-BDP 16 2040 0.831 0.936

GM-CSF 1 92 0.432

H-FABP 2 264 0.641 0.293

IL-10 1 133 0.646 0.318

MDA-LDL 1 92 0.497

MMP-2 1 92 0.616

MT3 1 306 0.590

NF-H 1 68 0.717 0.575

NFM 1 52 0.605 0.211

NRGN 1 494 0.510

NSE 5 844 0.798 0.690

panel(MMP-2,

CRP, CKBB)

1 110 0.964 0.7190

panel(UCH-L1,

GFAP)

1 1947 0.986 0.9710

S-100B 30 8464 0.723 0.580

P-Tau 2 350 0.921 0.944

T-Tau 6 176 0.666 0.440

P-Tau/T-Tau ratio 2 350 0.923 0.816

Ubiquitin 2 302 0.710 0.210

UCH-L1 5 3108 0.700 0.470

Best results are indicated in boldface. Blank cells = either no data reported in original

publication, or pooled AUC was considered too low (below “good” range, <0.80) to

calculate J-statistic. See Table 1 for abbreviations.

leads to cerebral edema and disruption of blood-brain barrier
(BBB) integrity following TBI (43, 44). OCLN is a regulatory
protein at the tight junctions of the BBB that correlates with
increased resistance and decreased permeability of the BBB
(45). While these findings identify osmotic dysregulation, BBB
disruption, cerebral edema, and DAI as potential pathologic
correlates of concussion, conclusions regarding clinical utility
are limited by the relatively small sample size and lack of
independent verification. Furthermore, concern has been raised
about the authors’ limited characterization of the control group
and its subsequent impact on their conclusions (46).

The superior performance of other biomarker panels in this
category reflects the multifaceted pathophysiology associated
with concussion. These panels appear to successfully gather data
about different mechanisms of injury to maximize sensitivity
and specificity. The combination of GFAP and UCH-L1, two
biomarkers thought to reflect focal mass lesions and diffuse
injuries, respectively, also performed at the “excellent” level
(ref. S11). However, the combination of UCH-L1 and S-100B
only had fair performance, reflective of the poor individual
performance of the nonspecific marker S-100B. Incorporation
of higher-performing individual biomarkers, such as copeptin

TABLE 4 | Mild TBI—delayed recovery.

Biomarker #Reports #Observations Pooled AUC Maximum

J-statistic

BDNF 1 299 0.585

BMX 1 63 0.760 0.400

CRP 1 846 0.615 0.330

GFAP 17 1959 0.716 0.850

Ghrelin 1 118 0.829 0.659

GSH 1 88 0.773 0.514

ICAM-1 1 118 0.485

IL-6 1 118 0.535

IL-8 1 118 0.615

NCAM 1 118 0.614

Neuroglobin 1 34 0.682

NFL 1 35 0.82 0.79

Nogo-A 1 34 0.754

NSE 6 543 0.685 0.691

pNF-H 1 118 0.614

S-100B 24 2800 0.691 0.810

E-selectin 1 118 0.600

SNTF 2 73 0.863 0.750

regulatory T cells 1 40 0.592

Testosterone 1 181 0.684 0.786

VCAM-1 2 186 0.654 0.481

A-Tau 1 56 0.87 0.77

C-Tau 1 56 0.59 0.28

P-Tau 1 134 0.663 0.350

T-Tau 5 335 0.640 0.863

P-Tau/T-Tau ratio 1 134 0.658 0.300

UCH-L1 7 3158 0.787 0.740

Best results are indicated in boldface. Blank cells = either no data reported in original

publication, or pooled AUC was considered too low (below “good” range, <0.80) to

calculate J-statistic. See Table 1 for abbreviations.

and CKBB, into panels may be useful to study in the
future. Metabolite panels demonstrated also excellent operating
characteristics; some metabolites are thought to reflect altered
brain energy metabolism and mitochondrial dysfunction in TBI
(47). However, the use of a metabolite panel is limited by
variability of specific metabolites used across studies (refs. S10,
S12). Given the limitations of these single, small studies, further
verification is warranted to identify the best candidate serum
biomarkers for a panel to objectively detect concussion.

Category 2 (Need for CT Scan After mTBI)
It should be noted that several clinical decision rules are available
to predict the need for CT scan in mild TBI. These rules have
near 100% sensitivity. However, their specificities are low (10),
resulting in roughly 50% negative CT scans in those patients
predicted to need them. A recent report (48) demonstrated that
GFAP and UCH-L1 levels were no higher in patients with mild
TBI and negative CT scans than in patients with orthopedic but
not head injuries. This suggests that low GFAP and/or UCH-
L1 levels may be useful in reducing unnecessary CT scans for
mild TBI.
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TABLE 5 | Severe TBI—adverse outcomes.

Biomarker #Reports #Observations Pooled

AUC

Maximum

J-statistic

Adiponectin 1 86 0.785 0.604

Base deficit 1 216 0.479

BDNF ‘ 170 0.482

Caspase-Cleaved

Cytokeratin-18

1 100 0.685 0.370

ceruloplasmin 1 20 0.800 0.600

Cholinesterase 1 188 0.381 0.519

Copeptin 4 422 0.825 0.635

Copper 1 20 0.795 0.590

D-Dimer 2 226 0.819 0.895

DNA 2 106 0.694 0.430

FDP 1 1266 0.755 0.426

Ferritin 1 69 0.585 0.170

Fibinogen 1 1266 0.712 0.382

Ficolin-3 1 384 0.823 0.619

Galectin-3 1 300 0.808 0.553

Gelsolin 2 322 0.805 0.679

GFAP 10 2448 0.749 0.800

H-FABP 1 49 0.840 0.680

HMGB1 1 106 0.882 0.657

Hsp70 1 20 0.750 0.500

ICAM-1 1 13 0.498 0.222

ICAM-5 1 170 0.544

icORP 1 104 0.870 0.333

IL-1beta 1 28 0.871 0.800

IL-6 3 337 0.840 0.840

IL-8 1 20 0.835 0.67

IL-10 1 426 0.550 0.265

INR 1 1266 0.738 0.394

Leptin 1 284 0.875 0.649

MBL 1 244 0.832 0.562

MBP 2 127 0.831 0.875

MCP-1 1 170 0.677

MDA 1 100 0.760 0.370

MIF 1 216 0.817 0.547

MMP-9 1 88 0.585 0.340

Nesfatin 1 300 0.786 0.487

NF-H 2 200 0.760 0.552

NFL 1 70 0.700 0.390

NFM 1 12 0.857 0.714

NSE 9 911 0.715 0.905

Periostin 1 130 0.815 0.506

Platelet count 1 1266 0.618 0.201

PRDX-6 1 170 0.524

PTT 1 1266 0.748 0.410

RDW 1 122 0.693 0.611

S-100A1B 1 59 0.677 0.3

S100A12 1 306 0.855 0.630

S-100B 25 3712 0.762 0.880

SCUBE1 1 113 0.831

(Continued)

TABLE 5 | Continued

Biomarker #Reports #Observations Pooled

AUC

Maximum

J-statistic

Substance P 1 100 0.700 0.360

SuPAR 1 78 0.801 0.363

TAC 1 100 0.830 0.410

Tenascin-C 1 216 0.827 0.590

Thioredoxin 1 216 0.798 0.549

thrombospondin-1 1 402 0.827 0.619

TIMP-1 1 100 0.645 0.290

T-Tau 6 344 0.818 0.833

UCH-L1 5 195 0.696 0.54

VWF 1 44 0.660 0.32

Best results are indicated in boldface. Blank cells= no data reported in original publication;

pooled AUC was considered too low (below “good” range, <0.80) to calculate J-statistic.

See Table 1 for abbreviations.

While the current study shows that operating characteristics
were good for GFAP and its breakdown products and poor
for UCH-L1, the use of both biomarkers in combination had
excellent discriminative ability for identifying CT-positive mTBI.
Another biomarker panel includingMMP-2, CRP, and CKBB also
had excellent performance, reflecting mechanisms of generalized
inflammation (CRP), local brain inflammation (MMP-2), and cell
membrane damage (CKBB, previously discussed in Category 1)
(ref. S65). Our analysis shows superior performance of these two
biomarker panels to S-100B, the only biomarker with a low-
level recommendation for determining the need for a CT scan
following mTBI (13). Panels may thus provide a more holistic
approach to detecting intracranial injury warranting a CT scan.

Two individual biomarkers performed slightly lower than
the panels but still rated as “excellent” based on single studies.
The superior discriminative ability of P-tau compared to the
more commonly studied T-tau highlights the significance of
tau hyperphosphorylation in brain tauopathy. D-dimer also had
good performance in this category in a pediatric population (ref.
S23), although there are additional clinical scenarios that may
cause an elevated D-dimer unrelated to TBI, such as trauma and
infection (49). In addition, the applicability of this finding to
adults is unknown, and the sample size is small. Further research
is warranted to confirm the results of these single studies.

Category 3 (Delayed Recovery After mTBI)
A few less-studied biomarkers performed best for predicting
delayed recovery following mTBI. Single studies demonstrated
that SNTF, tau A, ghrelin, and NFL all had operating
characteristics in the “good” range, outperforming more
commonly-studied biomarkers such as GFAP, S100B, NSE
and UCH-L1.

Three axon-associated proteins, calpain-derived αII-spectrin
N-terminal fragment (SNTF), tau-A, and NFL, may be
indicative of DAI, which is thought to be one of the most
common pathological mechanisms accounting for long-term
dysfunction in all severities of TBI (50–53). SNTF accumulates in
damaged axons (54–56) following intra-axonal calcium overload
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FIGURE 2 | Anatomical locations of potential TBI biomarkers. The biomarkers included in this schematic all rated as “good” (AUC=0.80:0.89) or better for any of

the four clinical situations studied (detecting concussion, predicting intracranial damage after concussion, predicting delayed recovery after concussion, and predicting

adverse outcome after severe TBI). Biomarkers with a pooled AUC <0.8 are not shown. 1Also found in adipose tissue; 2synthesized in cells of stomach and

pancreas; may regulate HPA axis; 3found mostly in pons; 4also found extracellularly; 5 lectin pathway of the complement system; 6also found in endothelial cells.

BBB, blood brain barrier. ECM, Extracellular matrix. Image licensed under Creative Commons Attribution-ShareAlike 4.0 International license. https://

creativecommons.org/licenses/by-sa/4.0/deed.en. See Supplementary Material for image credits and licensing.

and calpain-mediated proteolysis in stretch injury (57, 58).
Furthermore, SNTF has been found in degenerating axons after
TBI that were undetected by the gold standard marker of
transport interruption, amyloid precursor protein (APP) (59).
Tau protein may mediate DAI by regulating axon microtubule
assembly; (60, 61) tau-A fragments in particular are easily
detectable and quantifiable by standard ELISA, perhaps due
to their small size, and subsequent ability to cross the BBB
(62). NFL is predominantly expressed in subcortical axons and
correlates with magnetic resonance diffusion tensor imaging
parameters of DAI (63). The included studies found that elevated
serum SNTF predicted failure to improve cognitive function at 3
months in CT-negative concussion patients (ref. S83), while tau A
and NFL predicted late resolution of post-concussive symptoms
in concussed professional ice hockey players (refs. S16, S82).
Thus, these proteins may be mechanism-specific biomarkers
for identifying patients at risk for persistent cognitive deficits
following mTBI.

Ghrelin is an orexigenic peptide hormone that may be linked
to stress-induced hypothalamic-pituitary axis (HPA) activation
(64, 65) and cognitive dysfunction in neurodegenerative disease
(66). In the included study, low values of ghrelin within the first
few days following concussion were independently associated
with three-month neurocognitive impairment (ref. S89). Thus,
ghrelin may be a nonspecific prognostic indicator in mTBI to
be used in conjunction with other brain-specific biomarkers such
as SNTF.

Reliable biomarkers in this category have the potential to
be used in conjunction with radiologic data as well as current
predictors of worse outcome after mTBI, such as older age, lower

level of education, and pre-existing psychiatric conditions (19).
This could help identify patients at risk of persistent disability and
the development of additional neurocognitive sequelae. However,
as the results for tau-A, SNTF, NFL, and ghrelin were based
on a handful of studies with relatively small sample sizes, these
candidate biomarkers warrant further investigation regarding
their prognostic abilities and rehabilitative implications in mTBI.

Category 4 (Poor Outcome After sTBI)
For predicting mortality and poor outcome in sTBI, there
were no biomarkers with operating characteristics in the
“excellent” range. However, several biomarkers performed in
the “good” range based on single studies, including markers
of coagulation and inflammation, structural proteins in the
brain, and regulatory proteins in normal homeostasis. The
prognostic value of these downstream biological processes
suggests that there may be potential for considering some TBIs as
systemic rather than primarily localized disorders. Such a holistic
approach could have significant implications for both acute and
chronic treatments.

Serum biomarkers of coagulation with good ability to predict
poor outcome in sTBI include D-Dimer, thrombospondin-1,
and SCUBE1. D-dimer is thought to indicate TBI-induced
coagulopathy (67–69) that largely occurs secondary to DIC
and leads to further cerebral injury (70). Thrombospondin-1
is a thrombin-sensitive, anti-angiogenic factor (71, 72) whose
expression is increased after intracerebral hemorrhage (73).
SCUBE1 is released from endothelial cells and platelet alpha
granules during platelet activation (74, 75). As coagulopathy
in isolated TBI is associated with increased mortality (76, 77),
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D-Dimer, thrombospondin-1, and SCUBE1 could be important
prognostic indicators in sTBI.

Several inflammatory markers with good operating
characteristics were identified, including IL-1beta, IL-6, IL-
8, HMGB1, ceruloplasmin, ficolin-3, macrophage inhibitory
factor (MIF), MBL, galectin-3, S100A12, and SuPAR. HMGB1
had the highest pooled AUC in this category, based on a
single study (ref. S165). HMGB1’s high expression in the
brain (78, 79) suggests that it may be useful for recognizing
patients with critical inflammatory responses to brain injury
that are associated with severe disability and death. While these
markers of inflammation are not specific for brain-localized
insults, they may contribute prognostic information by helping
to characterize strong inflammatory responses to TBI that
contribute to secondary brain injury (80) and ultimately poor
outcome. The good performance of periostin and tenascin-C,
two extracellular matrix proteins involved in various cell cycle
processes including proliferation, migration, differentiation, and
apoptosis, suggests that measures of cell turnover in response to
injury may have prognostic value as well (refs. S105, S179).

Measurements of the capacity to endure oxidative stress also
fared well. The brain is particularly susceptible to oxidative stress
due to high oxygen consumption, limited neuron regeneration,
and high levels of unsaturated fatty acids in membranes (81).
In TBI, the release of reactive oxygen species (ROS) induces
inflammation, compromise of the BBB, and cell death (82–85).
Quantitation of antioxidants in the brain and the oxidative-
reduction potential have subsequently been used to detect
oxidative stress (81, 86, 87). The icORP measures the ability of
a biological sample to endure an oxidative insult by using an
oxidative current to deplete antioxidants in the sample (ref. S92),
whereas TAC measures the capacity of antioxidants in a sample
to prevent oxidation of a peroxidase substrate (ref. S126). These
measures may indicate not only the extent of ongoing ROS-
induced damage and inflammation, but also the limited ability
of the body to deal with oxidative insults that translate into
poor prognosis.

Structural proteins in the brain may also predict outcome as a
result of brain-specific injury. High performers identified in this
category were MBP, an abundant structural protein of the myelin
sheath (88); tau protein, discussed earlier in Category 3 for its
ability to predict delayed recovery after mTBI; and NFM, a type
IV intermediate filament that contributes to neuron structure,
as well as axonal structure and transport (89). Interestingly, the
astroglial protein S100B, the most extensively studied biomarker
in TBI, had a similar J-statistic but a lower pooled AUC when
compared to biomarkers discussed here. Further prognostic
studies on these biomarkers in multiple severe TBI populations,
particularly on the less-studied MBP and NFM, may allow for
better comparison with S-100B.

A handful of proteins involved in homeostatic functions also
demonstrated good operating characteristics for predicting poor
outcome. Copeptin, which was identified above as a promising
marker for detecting concussion, also performed well in this
category. This indicates that the degree of stress axis activation
has prognostic implications in sTBI, although the prognostic
value of copeptin is not limited to TBI (90). Gelsolin mediates

cell shape changes &motility (91) and is decreased in acute tissue
injury after trauma (92). Leptin, the “satiety hormone,” fared well
in a pediatric population (ref. S121). It is secreted by adipose
tissue (93, 94), is also expressed in the hypothalamus (95), and
may play an important role in neuronal and glial maturation
(96). H-FABP, which is involved in the intracellular traffic of fatty
acids and other hydrophobic ligands, primarily reflects cardiac
injury (97) but is also found in smaller concentrations in the brain
(98, 99) and other tissues (100). Changes in these markers of
osmoregulation, cell motility, energy homeostasis, and fatty acid
trafficking may reflect systemic disturbances in sTBI that lead to
poor prognosis.

Top-performing biomarkers in this category have the
potential to inform which pathologic mechanisms may be
most indicative of poor outcome after sTBI. While TBI
pathophysiology is undoubtedly complex, making management
decisions in this context challenging, the information provided
by biomarkers may add value to existing prognostic models
(101). The IMPACT (International Mission on Prognosis and
Analysis of Clinical Trials) (102) and CRASH (Corticosteroid
Randomization After Significant Head Injury) (103) models
predict mortality and unfavorable outcome at 6 months after
sTBI. Both models take into account age, GCS motor score,
pupillary reactivity, and CT classification, and both have been
externally validated with comparably reasonable discriminative
ability (104). However, lower discriminative performance of these
models in a different validation set (105) and at the individual
level (106) perhaps indicates the need to update prognostic
models to improve generalizability. Validation of promising
markers identified in this analysis could potentially lead to the
improvement of such models.

LIMITATIONS

This study has a number of consequential limitations. Within
each outcome category, the data exhibited considerable
heterogeneity. Different patient populations, ages, definitions
of outcome, and delays between injury and sampling all detract
from the reliability of our findings. In particular, the numerous
definitions of concussion and recovery in our included studies
limit the strength of our conclusions in these categories. While
this variability reflects the heterogeneous nature of these terms
in clinical usage, we attempted to identify studies that fit into
general categories of clinical interest. Furthermore, the small
number of observations, often only a single small study, make
statistical comparisons, and stratification (by age, time after
injury, etc.) unreliable.

We omitted several otherwise-excellent studies in which
levels of a particular biomarker were shown to be significantly
associated with the presence of TBI sequelae of interest to us.
However, in the absence of operating characteristics or individual
subject measurements, we could not calculate how well the
biomarker would predict the outcomes of interest. Other studies
failed to separate head injuries of different severities or chose
outcomes other than those of interest in this study. Biomarkers
from tissues other than blood, combinations of biomarkers, and
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changes in their levels over time are potentially quite useful but
beyond the scope of this study.

The developing field of anti-neuronal autoantibodies could
be especially promising for predicting delayed recovery and
chronic complications after TBI, across the spectrum of severity
levels. An exponential increase in neuroimmunology research
over the past decade has contributed to a significant shift in
our understanding of anti-neuronal autoantibodies and led to
the development of novel blood-based diagnostics for several
neurological disorders (107–118). Following the landmark
2007 study that introduced anti-N-methyl-D-aspartate receptor
(NMDAr) encephalitis (119), IgG autoantibodies against
neuronal membrane targets have been implicated in the
pathogenesis of various neurological disorders (119–128).
Human studies investigating anti-neuronal autoantibodies
present in the blood post-TBI have largely investigated the
role of TBI-induced (adaptive) IgG autoantibodies, which
appear ∼4–6 days following TBI (129–132). However, it has
recently shown that serum IgG autoantibodies are present
in both human and animal serum, regardless of age, sex or
disease state (133–136). The recent discovery that all human
blood contains thousands of autoantibodies (133, 136) and that
individual autoantibody profiles are influenced by the presence
of disease (111, 113, 118, 123, 137) leads to the promising
hypothesis that quantification of disease-specific changes
in serum anti-neuronal autoantibody titer concentrations
can serve as highly sensitive and specific biomarkers of
persistent post-TBI neurodegeneration. Indeed, the discovery
of non-invasive serum biomarkers such as autoantibody
profiling which objectively demonstrate chronic post-TBI
neurodegeneration would provide objective information to
inform clinical trials for both mechanism discovery and
therapeutic intervention.

Genetic variants have been increasingly studied to explain the
variability in outcome following TBI. Many single nucleotide
polymorphisms (SNPs), single nucleotide substitutions within
a gene’s coding or regulatory regions, have been identified for
this purpose (138–140). In particular, SNPs in genes of proteins
involved in dopamine availability and transmission have been
targeted, as dopamine dysregulation after TBI is thought to
contribute to chronic deficits inmemory, attention, and executive
function (141). SNPs in both catechol-O-methyltransferase
(COMT) and ankyrin repeat and kinase domain-containing
1 (ANKK1) have been associated with a variety of cognitive
impairments after predominantly mTBI (142–145), but this
association is less clear in sTBI (146–149). A better understanding
of which genes are implicated in the neurocognitive response
to TBI may shed light on mechanisms of such injury and have
both prognostic and therapeutic implications. Future studies will
need to clarify the effects of age, gender, ethnicity, environment,
and gene-gene interactions on the relationship between gene
expression and brain function (150).

Finally, there are questions about the reliability of any blood
biomarker as an indicator of brain injury severity. The integrity
of the blood-brain barrier, as well as proteolytic degradation of
some biomarkers in serum, could affect measured levels (26).
Plog et al. hypothesize that the transport mechanisms, which they

term the “glymphatic” system, may have a greater influence on
biomarker levels than TBI severity itself (151). Thus, clinically
relevant manipulations of this system, such as cisternotomy and
sleep deprivation, could prevent accurate interpretation of serum
biomarker levels. Peripheral surgical trauma also disrupts the
BBB and leads to neuroinflammation (152). While comparing
the discriminative abilities of CSF biomarkers may bypass these
challenges, there exists much more data on blood biomarkers
due in part to the ease and convenience with which they may be
collected in a variety of settings. Due to these limitations, it must
be emphasized that blood biomarkers have value not as isolated
diagnostic tests, but rather as adjuncts to clinical, radiological,
and other diagnostic information.

CONCLUSION

We have reviewed the literature and identified blood biomarkers
with the highest discriminative abilities as determined by
operating characteristics in four commonly encountered clinical
situations: diagnosing concussion, predicting the need for a CT
scan after mTBI, predicting delayed recovery after mTBI, and
predicting poor outcome after sTBI. The top performers in each
category may provide insight into pathogenic mechanisms of
TBI that most influence the measured endpoint. Nonetheless,
many challenges remain before these biomarkers can be
incorporated into clinical practice. In particular, it remains
unclear whether a large panel of biomarkers in addition to
clinical assessment will be sufficient to first stratify patients into
categories of TBI before more specific biomarker assessments
are applied. Alternatively, in the age of precision medicine,
biomarker assessment may be tailored to individual patients.
Ideally, pre-clinical development will help refine approaches for
clinical application.
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