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Background: To evaluate whether radiomic feature-based computed tomography (CT)

imaging signatures allow prediction of lymph node (LN) metastasis in gastric cancer (GC)

and to develop a preoperative nomogram for predicting LN status.

Methods: We retrospectively analyzed radiomics features of CT images in 1,689

consecutive patients from three cancer centers. The prediction model was developed

in the training cohort and validated in internal and external validation cohorts. Lasso

regression model was utilized to select features and build radiomics signature.

Multivariable logistic regression analysis was utilized to develop the model. We integrated

the radiomics signature, clinical T and N stage, and other independent clinicopathologic

variables, and this was presented as a radiomics nomogram. The performance of the

nomogram was assessed with calibration, discrimination, and clinical usefulness.

Results: The radiomics signature was significantly associated with pathological LN

stage in training and validation cohorts. Multivariable logistic analysis found the radiomics

signature was an independent predictor of LN metastasis. The nomogram showed good

discrimination and calibration.

Conclusions: The newly developed radiomic signature was a powerful predictor of LN

metastasis and the radiomics nomogram could facilitate the preoperative individualized

prediction of LN status.
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INTRODUCTION

Gastric cancer (GC) is one of the most common
malignant tumors and the second leading cause of cancer-
related deaths worldwide (1). Accurate evaluation of lymph node
metastasis (LNM) status in GC patients is vital for prognosis
and treatment decisions (2–4). Some histopathologic factors and
biomarkers (e.g., lymphatic invasion, matrix metalloproteinase-
2) are found to be able to predict LNM in GC, but most of them
are only available after surgery (5–9). Preoperative evaluation
of LNM could provide meaningful messages for determining
the options of adjuvant therapy and the adequacy of surgical
resection, hence assisting in pretreatment decision making (2–4).
D2 gastrectomy was accepted as the standard surgery, especially
advanced GC (10). Recently, surgeons think of endoscopic
resection as the best choice for early GC without LNM, on
account of more postoperative complication and mortality of
D2 gastrectomy (4). Besides, clinical node staging is often under
estimating the higher node staging seen by pathology (3, 4).
Therefore, accurate preoperative predictions of LNM status

are vital for GC patients, especially at the early stage. Recent

studies showed that several serum markers (e.g., serum human

apurinic/apyrimidinic endonuclease 1, circulating microRNAs)

could preoperatively predict LNM in GC, but these biomarkers
still need further validation and are not a part of standard clinical
practice (8).

Sentinel lymph nodes was proven to be effective in
predicting LNM of breast cancer and malignant melanoma
(11, 12). However, the drainage of the lymph node in
GC is net-style, which is much more complicated than in
breast cancer and melanoma. Thus, accurate location of the
sentinel lymph node is very difficult in GC, even with nano
tracers or 99mTc tin colloid (11, 13). Computed tomography
(CT) scan, endoscopic ultrasonography (EUS), or PET-CT
are currently commonly used to evaluate the preoperative
staging of GC. The accuracy of these tools is still not
satisfactory (13, 14).

Recent years, radiomics increasingly attracts attention, and
it is the process of the conversion of imaging data into high
dimensional mineable data via automatically extracting a large
number of quantitative image features, followed by further data
analysis for clinical decision support (15, 16). By combining
multiple imaging features in parallel, radiomics enables the
non-invasive profiling of tumor heterogeneity (15–19). Recent
studies of radiomics have provided insights in personalized
medicine in oncologic practice related to cancer detection,
subtype classification, LNM, survival, and therapeutic response
evaluation (15, 16, 18, 20–22). Although texture features of CT
images have been reported to be related with survival in patients
with GC (23–25), an optimal approach that integrates multiple
imaging features as a predictive signature for LNM is quite
necessary to be developed. However, there is still not a radiomics
model that would enable excellent prediction of LNM in GC.

Hence, in the study, we want to develop a radiomics signature
based on preoperative CT images to estimate the LNM in
patients with GC and to further establish a radiomics nomogram
that integrated the radiomics signature and clinicopathological

findings for the individual preoperative prediction of LNM stage
in GC patients.

MATERIALS AND METHODS

Patients
The study enrolled three independent cohorts of 1,689 patients
with GC. The training cohort and internal validation cohort that
comprised 312 consecutive patients and 360 consecutive patients
with total or partial radical gastrectomy were obtained from
Nanfang Hospital of Southern Medical University (Guangzhou,
China) between January 2007 and December 2013, January
2014, and December 2016, respectively. The external validation
cohort comprising 1,017 consecutive patients was collected
from Sun Yat-sen University Cancer Center and the third
affiliated hospital of Southern Medical University between
January 2008 and December 2012 with same enrollment criteria.
Clinicopathological information was retrospectively collected for
all these patients. The clinical sources of the 1,689 patients are
listed in Table 1. All the patients satisfied the following inclusion
criteria: histologically confirmed GC, standard unenhanced and
contrast-enhanced abdominal CT performed <30 days before
surgical resection, lymphadenectomy performed, and more than
15 lymph nodes harvested, complete clinicopathologic data,
no combined malignant neoplasm, no distant metastasis, no
preoperative chemotherapy. We excluded patients if the lesions
of tumor could not be identified by CT or if they previously
had received any anticancer therapy. Baseline clinicopathologic
information, including age, gender, preoperative differentiation
status, carcinoembryonic antigen (CEA), and cancer antigen 19-
9 (CA19-9) was derived from medical records. Patients’ clinical
T stage (cT) and N stage (cN) and dates of CT imaging were
also obtained. Ethical approval was obtained for this retrospective
study at the three participating centers, and the informed consent
requirement was waved.

Based on the pathological N stage (pN) of the TNM staging,
LNM was assigned to one of the four outcome categories: no
lymph nodes metastasis (pN0 stage, reference category); 1–2
lymph nodes metastasis (pN1 stage); 3–6 lymph nodes metastasis
(pN2 stage); or ≥7 lymph nodes metastasis (pN3 stage). Hence,
the outcome of this study was multinomial.

Image Acquisition
All these patients underwent contrast-enhanced abdominal CT
using themultidetector rowCT (MDCT) systems (GE Lightspeed
16, GE Healthcare Milwaukee, WI; 64-section LightSpeed VCT,
GE Medical Systems, Milwaukee, Wis; or 256-MDCT scanner
Brilliance iCT, Philips Healthcare, Cleveland, OH, USA). The
acquisition parameters are as follows: 120 kV; 150–190 mAs; 0.5-
or 0.4-second rotation time; detector collimation: 8 × 2.5mm or
64 × 0.625mm; field of view, 350 × 350mm; matrix, 512 × 512.
After routine non-enhanced CT, arterial and portal venous-
phase contrast-enhanced CT were performed after delays of
28 s and 60 s following intravenous administration of 90–100ml
of iodinated contrast material (Ultravist 370, Bayer Schering
Pharma, Berlin, Germany) at a rate of 3.0 or 3.5 ml/s with a pump
injector (Ulrich CT Plus 150, Ulrich Medical, Ulm, Germany).
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TABLE 1 | Descriptive statistics for gastric cancer cohorts.

Variables Training cohort

(N = 312)

Internal validation cohort

(N =3 60)

External validation cohort

(N = 1,017)

N % N % N %

Age (Years)

≥60 119 38.1 154 42.8 405 39.8

<60 193 61.9 206 57.2 612 60.2

Gender

Male 216 69.2 256 71.1 681 67

Female 96 30.8 104 28.9 336 33

Size

≥4cm 168 53.8 163 47.9 634 62.3

<4cm 144 46.2 177 52.1 383 37.3

Differentiation

Well 28 9 40 11.1 121 11.9

Moderate 93 29.8 100 27.8 181 17.8

Poor or undifferentiation 191 61.2 220 61.1 715 70.3

Location

Cardia 64 20.5 81 22.5 276 27.1

Body 51 16.3 93 25.8 230 22.6

Antrum 154 49.4 168 46.7 452 44.4

Whole 43 13.8 18 5 59 5.8

CEA

elevated 59 18.9 112 31.1 191 19.4

normal 253 81.1 268 68.9 826 80.6

CA199

elevated 93 29.8 110 30.6 184 18.1

normal 219 70.2 250 69.4 833 81.9

Clinical T stage

T1 14 4.5 30 8.3 129 12.7

T2 28 9 44 12.2 118 11.6

T3 39 12.5 68 18.9 291 28.6

T4a 191 61.2 183 50.8 324 31.9

T4b 40 12.8 35 9.7 155 15.2

Clinical N stage

N0 97 31.1 146 40.6 379 37.3

N1 149 47.8 75 20.8 268 26.4

N2 50 16 85 23.6 178 17.5

N3 16 5.1 54 15 192 18.9

pT stage

pT1 20 6.4 48 13.3 123 12.1

pT2 22 7.1 29 8.1 118 11.6

pT3 18 5.8 55 15.3 229 22.5

pT4a 176 56.4 165 45.8 463 45.5

pT4b 76 24.4 63 17.5 84 8.3

pN stage

pN0 72 23.1 123 34.2 321 31.6

pN1 57 18.3 53 14.7 141 13.9

pN2 73 23.4 52 14.4 159 15.6

pN3 110 35.2 132 36.7 396 38.9

Contrast-enhanced CT was reconstructed with a thickness of
2.5mm. Portal venous phase CT images (thickness: 2.5mm) were
retrieved from the picture archiving and communication system

(PACS) (Carestream, Canada) for image feature extraction
because of well-differentiation of the tumor tissue from the
adjacent tissue.
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Imaging Texture Analysis
We used the popular texture analysis software (MaZda 4.6),
which was developed within COST (European Cooperation in
the field of Scientific and Technical Research) projects B11
and B21, and which has been utilized for a large number of
studies in the field, for all texture calculations (25, 26). For every
lesion, a single region of interest (ROI) was constructed manually
under the supervision of a senior board-certified radiologist,
specializing in abdominal imaging, on the transverse image
section that depicted the maximum lesion diameter. The free-
form ROI covered the whole area of the lesion, as manifested
by the thickened gastric wall. Gray-level normalization of each
ROI was performed, using the limitation of dynamics to µ ±

3σ (µ, gray-level mean; and σ, gray-level standard deviation)
to minimize the impact of contrast and brightness variation,
which may otherwise overcurtain the true image texture (27).
Besides, texture features derived from the gray-level histogram,
the co-occurrence matrix, the run-length matrix, the absolute
gradient, the autoregressive model, and the wavelet transform
were calculated. The process of texture feature calculation only
takes a few seconds per ROI. A detailed list of the individual
texture features could be found in the MaZda documentation
(26). The detailed list of all these features is shown in
Supplementary Methods, Supplementary Table S10.

The inter-observer reproducibility was initially analyzed with
100 randomly chosen images for ROI-based texture feature
extraction by two experienced radiologists (readers 1 and 2, with
11 and 10 years of clinical experience in abdominal CT study
interpretation, respectively) (Figure S1). The complete details are
shown in Supplementary Methods.

Radiomics Feature Selection and Signature Building
The LASSO logistic regression model was utilized to identify the
optimal radiomics features for predicting pN stage from all these
texture features, and then a multiple-feature-based radiomics
signature, the radiomics score (Rad-score), was developed for
predicting pN stage in the training cohort (28, 29). The LASSO
regression was performed using R software version 3.4.0 with
the “glmnet” package. Complete details are shown in the
Supplementary Materials.

Development of an Individualized Prediction Model
Univariable associations between candidate predictors and the
different outcome categories were estimated with multinomial
logistic regression analysis. Multinomial logistic regression
allows for simultaneous estimation of the probability of the
different outcomes (pN1, pN2, pN3, and pN0 stage [the reference
category]) (Figure S2) (30, 31). Essentially, the multinomial
logistic regression model includes several logistic regression
models simultaneously, to evaluate the relationship between the
predictors and each of the outcomes compared with the reference
category (30, 31). Therefore, estimated regression coefficients of
the predictors might differ per outcome (32).

Multivariate multinomial logistic regression analysis was
performed, which formed the basis for the pN stage prediction
model. In the training cohort, univariate logistic regression
analysis was performed for different variable values and variables

that achieved statistical significance at P < 0.05 were entered
into the multivariate analyses. Backward step-wise selection
was applied by utilizing the likelihood ratio test with Akaike’s
information criterion as the stopping rule (30, 31). The model
was also implemented into nomograms to enable use on plain
paper and implementation as a calculation tool.

Validation of the Prediction Model
The prediction model was validated by measuring both
discrimination and calibration. Both discrimination and
calibration were evaluated by bootstrapping with 1,000
resamples. Discrimination was evaluated by the concordance
index (C-index). The area under the receiver operating
characteristic curve (AUC) was also used to measure
discriminative ability of binary models representing each
pathological N stage (pN1, pN2, pN3) compared to pN0 stage
(33). Similarly, calibration plots were used to graphically display
agreement between the predicted and actual probability of each
pN stage, based on the binary models.

Clinical Use
Decision curve analysis (DCA) was conducted to evaluate the
potential net benefit of the predictive models (34). The AUC
value only shows the discriminative accuracy of a model (35).
Whereas, DCA, which is a recently proposed novel method for
evaluating predictive model, visualizes the clinical impacts of
a treatment strategy (34, 36). This represents a potential net
benefit of each decision strategy at each threshold probability.
DCA was carried out to compare the clinical usefulness of the
radiomics nomogram, Rad-score and cN stage by quantifying the
net benefits at different threshold probabilities.

Statistical Analysis
Continuous variables are expressed as mean± SD and compared
using an unpaired, 2-tailed t test, one-way ANOVA or Mann-
Whitney test. Categorical variables were compared using the χ2
test or Fisher exact test. Nomograms and calibration plots were
generated using the rms package of R version 3.4.0 (http://www.r-
project.org).C-index calculation was performedwith the “Hmisc”
package. All other statistical analyses were conducted using R
version 3.4.0 and SPSS version 21.0 (IBM). All statistical tests
were 2-sided and P < 0.05 was considered statistically significant.

RESULTS

Clinical Characteristics
The clinicopathologic characteristics of patients in the training
cohort (n = 312), internal (n = 360), and external validation
cohort (n = 1,017) are listed in Table 1 and Tables S1–S3. And,
the clinical characteristics of patients were similar among the
three cohorts. In internal cohort (training and internal validation
cohorts), pN1 stage occurred in 110 (16.4%) patients, pN2 in 125
(18.6%), pN3 in 242 (36.0%), and pN0 occurred in 195 (29.0%)
patients. In external validation cohort, pN1 stage occurred in 141
(13.9%) patients, pN2 in 159 (15.6%), pN3 in 396 (38.9%), and
pN0 occurred in 321 (31.6%) patients (Table 1).
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FIGURE 1 | Distribution of radiomics scores regarding the classification of pN stage (pN1, pN2, pN3 vs. pN0) in the training, internal, and external validation cohorts.

(A–C) Scatter plots of the radiomics scores (Rad-scores) in the training (A), internal (B), and external validation (C) cohorts; The black solid lines present mean values.

(D–F) Represents the median values and 95% CI of radiomics scores distribution in the training (D), internal (E), and external validation (F) cohorts. pN, pathological N

stage.

The inter- and intra-observer reproducibility of the texture
features extraction was high (Supplementary Material).
Hence, all outcomes were based on the measurements of the
first radiologist.

Feature Selection and Radiomics
Signature Development
Of the texture features, 269 features were reduced to 15 potential
predictors on the basis of 312 patients in the training cohort (21:1
ratio; Figure S3), and were features with non-zero coefficients
in the LASSO logistic regression model. The features were
constructed as a radiomics signature, which was presented in
the Rad-score calculation formula: Rad-score = 0.026593967
∗ Kurtosis + 0.035877138 ∗ S(2, 0)Entropy + 1.278065286
∗ S(2, 2)InvDfMom + 0.195298398 ∗ S(3, 3)Correlat +

0.138878969 ∗ S(4, -4)Correlat+ 0.000378754∗ S(4, -4)SumVarnc
- 0.000113878 ∗ S(5, 5)Contrast + 0.087501674 ∗ S(5, 5)Correlat
- 0.00152959 ∗ S(5, 5)SumOfSqs - 0.20114528 ∗ S(5, 5)DifEntrp
+ 0.81106837 ∗ S(5, -5)InvDfMom + 0.002575539 ∗

Vertl_GLevNonU +−0.003948845 ∗ WavEnHH_s-2 -
0.000270237 ∗ WavEnHH_s-4 - 0.000242295 ∗ WavEnHL_s-5.
Tables S1–S3 showed the relationships between the Rad-score,
clinicopathological characteristics, and pN stage in the training
and validation cohorts.

We used three heat maps to determine the association
between radiomics features, Rad-score and pN stage in each
cohort (Figures S4–S6). The results showed significant positive
correlation between Rad-score and pN stage in the training,
internal and external validation cohort (correlation coefficient:
0.47, 0.41, 0.40; respectively, all P < 0.0001). Significant negative
correlations were found between pN stage and signature

features S (5, 5)Contrast, WavEnHH_s-2, WavEnHH_s-
4, and WavEnHL_s-5. S(2, 2)InvDfMom, S(3, 3)Correlat,
S(5, -5)InvDfMom, Vertl_GLevNonU were positively correlated
with pN stage.

Diagnostic Validation of Radiomics Signature
There was a significant difference in Rad-score between pN1,
pN2, pN3, and pN0 patients in the training cohort (P < 0.001,
Figure 1), which was confirmed in the internal and external
validation cohorts (P < 0.001, Figure 1). Higher pN stage
patients generally had higher Rad-scores in the training and
validation cohorts. The radiomics signature yielded a C-index of
0.704 (95% CI, 0.661–0.744) in training cohort, and 0.674 (0.634–
0.715) and 0.687 (0.662–0.711) in internal and external validation
cohorts, respectively. When stratified analysis was performed
according to clinicopathological risk factors, the Rad-score were
still significantly associated with pN stage in the training,
internal, and external validation cohorts (Tables S4–S6).

Development of an Individualized Prediction Model
In univariable analysis, the radiomics signature were significantly
associated with pN stage (Table S7). Variables demonstrating
a significant effect were included in the multivariable analysis.
Multivariate logistic regression analysis after adjustment for
clinicopathological factors demonstrated that the radiomics
signature remained a powerful and independent predictor for
pN stage in the training, internal and external validation cohorts
(Table 2). Then, we constructed a nomogram, integrating the
radiomics signature, preoperative differentiation status, CA199
level, cT and cN stages, based on the coefficients of the
multivariate analysis in the training cohort (Figure 2). The DCA
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TABLE 2 | Multivariate association of Rad-score, clinicopathological characteristics with Lymph node metastasis in the training, internal and external validation cohorts.

Variables pN1 vs. pN0 pN2 vs. pN0 pN3 vs. pN0

OR (95%CI) P OR (95%CI) P OR (95%CI) P

TRAINING COHORT

Rad-score 7.769 (1.971-30.626) 0.003 45.225 (10.11–202.37) <0.0001 110.99 (23.40–526.35) <0.0001

Differentiation 2.014 (1.131–3.587) 0.017 2.711 (1.458–5.043) 0.002 2.423 (1.289–4.554) 0.006

CA199 2.778 (0.936–8.247) 0.066 3.360 (1.146–9.845) 0.027 3.414 (1.148–10.15) 0.027

cT stage 1.509 (1.134–2.009) 0.005 1.536 (1.157–2.040) 0.003 2.131 (1.545–2.946) <0.0001

cN stage 2.647 (1.357–5.162) 0.004 2.982 (1.534–5.796) 0.001 5.586 (2.841–10.98) <0.0001

INTERNAL VALIDATION COHORT

Rad-score 12.619 (2.699–58.99) 0.001 18.966 (3.50–102.84) 0.0006 50.925 (11.37–228.04) <0.0001

Differentiation 1.496 (0.908–2.467) 0.114 2.759 (1.455–5.233) 0.002 2.311 (1.389–3.847) 0.001

CA199 2.225 (0.944–5.243) 0.068 0.995 (0.388–2.548) 0.992 1.162 (0.515–2.624) 0.718

cT stage 1.505 (1.183–1.917) 0.001 2.315 (1.680–3.191) <0.0001 2.071 (1.608–2.666) <0.0001

cN stage 1.168 (0.772–1.769) 0.462 1.713 (1.132–2.592) 0.011 2.520 (1.745–3.638) <0.0001

EXTERNAL VALIDATION COHORT

Rad-score 14.737 (6.035–35.99) 0.001 30.056 (12.34–73.20) <0.0001 57.442 (24.20–136.36) <0.0001

Differentiation 1.654 (1.198–2.283) 0.002 2.152 (1.506–3.075) <0.0001 3.365 (2.336–4.848) <0.0001

CA199 4.330 (2.118–8.850) <0.0001 4.562 (2.206–9.431) <0.0001 5.525 (2.710–11.26) <0.0001

CEA 1.214 (0.628–2.347) 0.564 2.897 (1.614–5.202) <0.0001 3.060 (1.720–5.446) <0.0001

cT stage 1.150 (1.014–1.306) 0.03 1.327 (1.163–1.516) <0.0001 1.602 (1.407–1.824) <0.0001

cN stage 1.251 (0.999–1.567) 0.051 1.783 (1.437–2.211) <0.0001 3.582 (2.917–4.398) <0.0001

Bold values denotes Rad-score.

curve of a nomogram maps the predicted probabilities into
points on a scale from 0 to 100 in a user-friendly graphical
interface. The total points accumulated by the various variables
correspond to the predicted probability for a patient (22, 25,
37, 38). To use the nomogram for a patient, firstly draw a
vertical line to the top points row to assign points for each
variable; then, add the points of each variable together and
drop a vertical line of the total points row to obtain the
probability of pN1, pN2, pN3 stage for each patient (Figure 2).
A calculating tool (Figure S7) is also implemented that could
calculate the estimated the probability of pN1, pN2, pN3
stage after the user inputs the needed patient and tumor
characteristics. For example, for a patient with Rad-score of
−0.40 and CT reported T4aN1 tumor that is poorly differentiated
as well as elevated levels of CA19-9, the model predicts that
the probability of pN1, pN2, pN3 stage were 75, 44, 18.5%,
respectively (Figure S7).

Validation of the Nomogram
The calibration curve of the radiomics nomogram for the
probability of pN1, pN2, pN3 stage revealed good agreement
between prediction and observation in the training cohort
(Figure 3A). The C-index for the nomogram was 0.788 (95% CI
0.752–0.825) for the training cohort. The model’s AUCs for pN1,
pN2, pN3 vs. pN0were 0.802 (0.725–880), 0.892 (0.840–945), and
0.949 (0.918–980), respectively (Figure 4A and Table S8). And
the model’s AUCs were also calculated for pN2 vs. pN1, pN3 vs.
pN1, and pN3 vs. pN2 (0.596 (0.496–0.695), 0.752 (0.673–0.832),
and 0.683 (0.603–0.763), respectively; Figure S8A and Table S9).

Good calibration was also observed for the prediction of pN1,
pN2, pN3 stage in the internal and external validation cohorts

(Figures 3B,C). In the internal validation cohort, the model’s
C-index was 0.802 (0.769–0.836). The AUCs for the prediction
of pN1, pN2, and pN3 were 0.772 (0.699–758), 0.873 (0.818–
928), and 0.913 (0.879–948), respectively (Figure 4B). And the
model’s AUCs for pN2 vs. pN1, pN3 vs. pN1, and pN3 vs.
pN2 were 0.664 (0.559–0.769), 0.750 (0.673–0.827), and 0.612
(0.524–0.701), respectively (Figure S8B and Table S9). In the
external validation cohort, the model’s C-index was 0.829 (0.810–
0.847). The AUCs for pN1, pN2, and pN3 were 0.772 (0.699–
758), 0.873 (0.818–928), and 0.913 (0.879–948), respectively
(Figure 4C and Table S8). And the model’s AUCs for pN2
vs. pN1, pN3 vs. pN1, and pN3 vs. pN2 were 0.627 (0.564–
0.690), 0.796 (0.757–0.836), and 0.688 (0.641–0.735), respectively
(Figure S8C and Table S9).

In addition, we also constructed the clinicopathological
nomogram incorporating only the clinicopathological
factors (preoperative differentiation status, CA199 level,
cT, and cN stages) (Figure S9). And, the AUCs of the
radiomics nomogram were higher than the AUCs of
the clinicopathological factors for pN1, pN2, pN3 vs.
pN0 in the training, internal, and external validation
cohorts (Figure 4).

Clinical Use
The DCA curves of the nomogram in the training and validation
cohorts were presented in Figure 5. The DCA curves showed
that if the threshold probability of a physician or patient is
>10%, using the nomogram to predict the pN stage provides
more benefit than either the treat-no-patients scheme or the
treat-all-patients scheme. The DCA showed that the integrated
radiomics nomogram had a higher net benefit than the cN
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FIGURE 2 | Developed radiomics nomogram. The radiomics nomogram was developed in the training cohort, with the radiomics signature, cT stage and cN stage,

differentiation status, and CA199 level incorporated.

stage and Rad-score across the majority of the range of
reasonable threshold probabilities in the training and validation
cohorts (Figure 5).

DISCUSSION

In this study, we constructed a 15 texture features based
radiomics signature that was significantly associated with LN
metastasis and was an independent predictive factor of pN
stage in patients with GC. Then, we constructed and validated
a radiomics nomogram for the preoperative individualized
prediction of pN stage. Incorporating the radiomics signature,
preoperative differentiation status, CA199 level, cT, and cN
stages, the easy-to-use nomogram may facilitate the preoperative
individual prediction of LNM status.

The combined analysis of multiple markers as a signature,
rather than individual analyses, is the approach that
demonstrates the most promise to change clinical practice
(20, 21, 28). The LASSOmethod is a popular mean for regression
of high-dimensional variables (28, 29, 39). With the LASSO Cox
regression model, we have built a five-immune feature signature
that can predict disease-free survival and overall survival for
patients with GC (40, 41). Furthermore, Jiang et al. developed
and validated a 19 features radiomics signature of CT images
that could predict GC survival and chemotherapeutic benefits
(25). Besides, radiomics signature of Coroller et al. (18) F
fluorodeoxyglucose PET images was also associated with survival
and chemotherapeutic benefits in GC (22). For the construction
of the radiomics signature in this study, 269 candidate radiomics
features were cut down to 15 potential predictors by inspecting

the predictor-outcome relationship by shrinking the regression
coefficients with the LASSO regression. Similarly, the radiomics
signature that integrated multiple individual imaging features
demonstrated adequate discrimination CT scans of the abdomen
are mandatory for precise preoperative T and N staging (4).

Radiomic studies on CT, PET, and MRI have reported
that radiomics feature values vary through different image
reconstruction, filtration, slice thickness, matrix size, exposure
parameters, and type of scanners (42, 43). In the present study,
the CT images were obtained from two scanners as many
previous studies (20–22, 25), which was a limitation of this study.
Thus, the variability of the values of radiomics features computed
on CT images from different CT scanners should be considered,
and the effects must be minimized in future studies of radiomics
(42). Previous studies showed that first-order features were
more reproducible than shape metrics and textural features (44).
Entropy was consistently deemed as one of the most stable first-
order features. There was still no emergent consensus with regard
to either textural features or shape metrics; whereas, coarseness
and contrast appeared among the least reproducible (44).
Whereas, Lv et al. found that radiomics features depicting poor
absolute-scale robustness regarding to parameter settings could
still result in good diagnostic performance in nasopharyngeal
PET/CT (45). In the same way, robustness of radiomics features
ought not to be overemphasized for removal of features toward
evaluation of clinical tasks (45). In this study, the radiomics
signature, which was composed of 15 radiomics features, was
significantly associated with pathological LN stage in the training
cohort, which was also validated in the internal and external
validation cohorts. Therefore, it is still necessary of devoted
researches to select features with sufficient dynamic range among
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FIGURE 3 | Calibration plots of each nomogram predicting pN1, pN2, pN3 stage. The calibration plot is a comparison between predicted and actual outcome. The

45-degree reference line represents an ideal model perfectly calibrated with an outcome. The solid line is the apparent accuracy of the nomogram, without correction

for overfit. The dotted line is the bootstrap corrected performance of the nomogram, with a scatter estimate for future accuracy. pN1 stage, left panels; pN2 stage,

middle panels; pN3 stage, right panels.

patients, with intra-patient reproducibility and low sensitivity to
image acquisition and reconstruction protocols (46).

The accuracy of CT for the preoperative prediction of LN
status was poor in GC patients (47, 48). Previous studies
showed that the accuracy of pN stage by CT scan was only
around 64–78%, even when these other techniques are used(47,
48); besides, the accuracy of EUS was 50–71.2% (49). PET-
CT was also applied to preoperative identification of LNM
and had advantages on distant LNM and bone metastasis (50).
Nevertheless, the accuracy of PET-CT for regional LNM did
not reveal an advantage over CT or EUS (50). Many studies
have showed that several clinicopathological factors, for example

depth of invasion, tumor size, differentiation type, CEA/CA199
level, lymphovascular invasion associated with LNM (2, 51,
52). Using these clinicopathological factors, several nomograms
were established for prediction of LNM in early GC, but these
nomograms still require further validation and no particular
nomogram has been widely used in clinical practice (2, 51, 52).
Recently, Huang et. al. presented a radiomics signature that
could be useful for LNM prediction in colorectal cancer (21).
Thus, we tried to develop an accurate model to preoperatively
predict pN staging by combining radiomics features and the
preoperative clinicopathological variables, including these tumor
characteristics and serologic markers.
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FIGURE 4 | Receiver operating characteristic (ROC) curves of binary logistic regression models comparing pN1, pN2, or pN3 stage to pN0 stage in each cohort. pN1

vs. pN0: left panels; pN2 vs. pN0: middle panels; pN3 vs. pN0: right panels. R-Nom, Radiomics nomogram; C-Nom, Clinicopathological nomogram.

The standard treatment for advanced GC in East Asian
countries is curative gastrectomy followed by postoperative
chemotherapy, and the feasibility of utilizing neoadjuvant
chemotherapy is currently being investigated (4, 53, 54). Several
phase II or III clinical trials are ongoing to assess the efficacy of
neoadjuvant chemotherapy in Japan. In these trials, GC patients
with extensive LNM are receiving preoperative chemotherapy.
Therefore, preoperative prediction of pN stage using the

radiomics nomogram may help to screen patients who can
benefit from neoadjuvant chemotherapy.

Gastrectomy with D2 dissection was a standard surgical
procedure for resectable GC according to the treatment
guidelines of the Japanese Gastric Cancer Association (JGCA)
(4). Whereas, several studies from western countries showed that
patients with GC treated by D2 dissection had a significantly
higher rate of complications, a longer hospital stay and
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FIGURE 5 | Decision curve analysis for the radiomics nomogram, Rad-score and Clinical N stage in the training, internal and external validation cohorts. The y-axis

measures the net benefit. The red line represents the radiomics nomogram. The green line represents the radiomics score (Rad-score). The blue line represents the

Clinical N stage (cN stage). The azure line represents the assumption that all patients were pN stage (pN1, pN2, or pN3 stage). Thin black line represents the

assumption that no patients have LN metastases. The net benefit was calculated by subtracting the proportion of all patients who are false positives from the

proportion who are true positives, weighting the relative harm of forgoing treatment against the negative consequences of an unnecessary treatment. Here, the relative

harm was calculated by [pt/(1–pt)]. “pt” (threshold probability) is where the expected benefit of treatment is equal to the expected benefit of avoiding treatment; a

patient considering treatment informs us how he or she weighs the relative harms of false positive results and false negative results ([a–c]/[b–d] = [1–pt]/pt); a–c is the

harm from a false-negative result; b–d is the harm from a false-positive result. a, b, c, and d give the value of true positive, false positive, false negative, and true

negative, respectively (34, 36). The decision curve showed that if the threshold probability of a patient or doctor is >10%, using the nomogram in the current study to

predict pN stage adds more benefit than the treat-all-patients scheme or the treat-no-patients scheme.

a higher postoperative mortality rate than those who had
D1 dissection (4, 51). Thus, more attention should be paid
to improve postoperative quality of life without impairing
long-term survival. D2 gastrectomy seems to be an overly
invasive surgery for pN0 patients. Hence, accurate preoperative
predictions of LNM are crucial for patients, especially with early
GC. Endoscopic mucosal resection and endoscopic submucosal
dissection have been adopted as the least invasive procedures for

the resection of early GC. In such circumstances, sentinel node
(SN) concept has been introduced for early GC surgery. Recently,
PINPOINT R© (NOVADAQ, Canada) has been developed for
indocyanine green (ICG) fluorescence guided surgery (55, 56).
Ohdaira et al. showed a new method with ICG and PINPOINT R©

could facilitate the identification of ICG positive lymph nodes
in SN mapping in back-table under room light, which may
be able to be applied for avoiding for intraoperative SN
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mapping of laparoscopic GC surgery (55). Encouraged by several
favorable single-institution reports, Kitagawa et al. conducted
a multicenter, single-arm, phase II study of SN mapping
that utilized a standardized dual tracer endoscopic injection
technique with technetium 99 me labeled tin colloid and 1%
isosulfan blue dye (57). Although several successful studies have
been reported, there are still some controversial aspects as to the
clinical application of SN mapping in GC, which has a relatively
complicated lymphatic flow.

Our radiomics signature and nomogram could provide
valuable information for preoperative prediction of pN stage.
In the future, comprehensively considering the information of
the radiomics features and the development of SN mapping,
we may develop a preoperative prediction model for avoiding
unnecessary D2 dissection, intra-operative SN mapping and
modified laparoscopic surgery.

To provide a more individualized LNM prediction model,
nomograms have been constructed to evaluate massive
significant clinicopathologic predictors to better predict the
outcomes of individual patients. Although, some nomograms
were developed to predict the lymph node status for GC
(2, 51, 52), no particular nomogram has been widely used in
clinical practice. The previous nomograms only combined
several clinicalpathological factors, and some models can’t be
used preoperatively (51), that lost the value of guide surgical
operation. However, our radiomics nomogram incorporated the
15-feature radiomics signature and four preoperative clinical
factors (preoperative differentiation status, preoperative CA199
level, and cT and cN stage), more comprehensively reflecting
the status of the disease and obviously improving the accuracy.
Validation of the nomogram was performed by calibration
plots, the C-index and ROC analysis. The nomogram performed
well with a good calibration and the C-index was satisfactory.
Furthermore, our radiomics nomogram could preoperatively
predict the pN stages with high AUCs both in internal and
external cohorts (AUCs for pN1: 0.802 (95% CI 0.725–880), pN2:
0.892 (0.840–945), and pN3: 0.949 (0.918–980), respectively,
in the training cohort), that could provide more valuable
information to estimate the necessary of adjuvant therapy and
the adequacy of surgical resection, thus assisting in pretreatment
decision making.

According to the GC molecular classification of The
Cancer Genome Atlas (TCGA), GC was classified into 4
subtypes: Epstein-Barr virus-positive, microsatellite instability,
genomically stable, and chromosomal instability (58). Further
understanding of GC molecular characterizations could give
rise to new therapeutic strategies, which could contribute to
understand the molecular mechanism of LNM. The association
of GC molecular subtype and radiomics features was not
clear, and should be explored in future studies. In oncology,
radiogenomics represents a novel entity in clinical sciences that
bidirectionally links imaging features with underlying molecular
profile and thus could serve as a surrogate for noninvasive
genomic correlation, prediction, and identification (19, 59).
Banerjee et al. constructed a CT radiogenomic biomarker
to predict microvascular invasion and clinical outcomes in
hepatocellular carcinoma (19). On the basis of magnetic

resonance image features, glioblastoma was divided into 3
distinct subtypes with distinct molecular pathway activities
(59). In the future, we will dedicate to develop radiogenomic
biomarkers for LNMprediction and treatment strategy decisions.
Further studies in radiogenomics should devote to clarify the
association between tumor genomics characteristics and their
imaging appearance, and construct imaging features integrating
phenotypic and genotypic metrics that could predict lymph node
metastasis, recurrence risk or survival, and thus better stratify
patients for more precise therapeutic care (60–62).

Whereas, there are some limitations of our study. The
nomogram was developed and externally validated using three
retrospective data sets from three Chinese institutions. The
limitations of the study also included the uncertainty related
to the measurement of radiomics features on the range of CT
scanner used in the study. Besides, the use of contrast probably
impacts the radiomics features and normalization may not be
sufficient to overcome this influence. A multicenter, prospective
study is needed to validate these results in a larger population
in future. Moreover, other predictive biomarkers might be
incorporated to improve the accuracy of the model.

In conclusion, our results showed the identified radiomics
signature has the potential to be used as a biomarker for
prediction of LN metastasis in patients with GC. In addition,
our study showed that a radiomics nomogram that incorporated
both the radiomics signature and clinicopathologic risk factors,
could be conveniently applied to facilitate the preoperative
individualized prediction of LN status in patients with GC.
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