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Background: Cerebral amyloid beta (Aβ) is a hallmark of Alzheimer’s disease (AD).
Aβ can be detected in vivo with amyloid imaging or cerebrospinal fluid assessments.
However, these technologies can be both expensive and invasive, and their accessibility
is limited in many clinical settings. Hence the current study aims to identify multivariate
cost-efficient markers for Aβ positivity among non-demented individuals using machine
learning (ML) approaches.

Methods: The relationship between cost-efficient candidate markers and Aβ status was
examined by analyzing 762 participants from the Alzheimer’s Disease Neuroimaging
Initiative-2 cohort at baseline visit (286 cognitively normal, 332 with mild cognitive
impairment, and 144 with AD; mean age 73.2 years, range 55–90). Demographic
variables (age, gender, education, and APOE status) and neuropsychological test
scores were used as predictors in an ML algorithm. Cerebral Aβ burden and Aβ

positivity were measured using 18F-florbetapir positron emission tomography images.
The adaptive least absolute shrinkage and selection operator (LASSO) ML algorithm
was implemented to identify cognitive performance and demographic variables and
distinguish individuals from the population at high risk for cerebral Aβ burden. For
generalizability, results were further checked by randomly dividing the data into training
sets and test sets and checking predictive performances by 10-fold cross-validation.

Results: Out of neuropsychological predictors, visuospatial ability and episodic memory
test results were consistently significant predictors for Aβ positivity across subgroups
with demographic variables and other cognitive measures considered. The adaptive
LASSO model using out-of-sample classification could distinguish abnormal levels of
Aβ. The area under the curve of the receiver operating characteristic curve was 0.754 in
the mild change group, 0.803 in the moderate change group, and 0.864 in the severe
change group, respectively.

Conclusion: Our results showed that the cost-efficient neuropsychological model with
demographics could predict Aβ positivity, suggesting a potential surrogate method for
detecting Aβ deposition non-invasively with clinical utility. More specifically, it could
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be a very brief screening tool in various settings to recruit participants with potential
biomarker evidence of AD brain pathology. These identified individuals would be valuable
participants in secondary prevention trials aimed at detecting an anti-amyloid drug effect
in the non-demented population.

Keywords: amyloid beta deposition, neuropsychological assessment, machine learning, cognitive profiling,
Alzheimer’s disease

INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia,
contributing to about 70% of dementia cases (Plassman et al.,
2007). Amyloid beta (Aβ) deposition is a hallmark of AD and
begins to accumulate 10–20 years before the clinical onset of
AD (Jack et al., 2013). Detection of cerebral Aβ deposition
at the presymptomatic stage of AD is very essential, because
this intervention makes it possible to identify individuals who
would benefit the most from anti-amyloid therapies (Chételat
et al., 2010, 2012). Currently, cerebral Aβ deposition can be
detected in vivo using positron emission tomography (PET)
imaging with an Aβ-binding ligand or cerebrospinal fluid (CSF)
analysis. However, these processes have several limitations. Using
amyloid PET is expensive, and it is not commonly available except
in specialized medical center hospitals (e.g., tertiary hospitals).
Additionally, it increases exposure to radiation. As for CSF
analysis, its use is limited because of the necessity for an invasive
lumbar puncture, is labor intensive, and has poor interlaboratory
reliability (Mattsson and Zetterberg, 2009). Therefore, developing
a new method that is less invasive, less expensive, and accessible
in all hospitals could facilitate more effective screening for Aβ

deposition. Even if traditional procedures cannot be substituted
completely, techniques to help detect Aβ deposition properly
should be considered.

Neuropsychological assessment that includes a sensitive and
cost-effective clinical measure for evaluating AD could be
used to screen for individuals in the preclinical AD phase
among cognitively normal (CN) adults and those with mild
cognitive impairment (MCI). There is clear value in applying
neuropsychological assessment to screen individuals at high
risk of developing AD pathology; however, only few studies
have shown an association between amyloid deposition and
specific cognitive performance among CN participants (Rentz
et al., 2010; Sperling et al., 2013; Loewenstein et al., 2016;
Schindler et al., 2017). Moreover, there has been little attempt
to detect cerebral amyloid deposition using neuropsychological
test performance as predictors or to compare the cognitive
performance between individuals with high and low levels of Aβ

deposition. It is, however, still unclear what specific cognitive
performance reflects AD-specific neuropathology. Although
many researchers have focused on identifying subtle cognitive
changes at presymptomatic stages, there is no consensus to date
on a cognitive profile among individuals with Aβ deposition.

Up until now, state-of-the-art machine learning (ML)
approaches have rarely been used to detect cerebral Aβ status
based on cognitive performance. A previous study used several
neuropsychological variables based on ML to distinguish AD

from other causes for cognitive impairment but did not look
at Aβ status (Gurevich et al., 2017). Most of the studies using
an ML algorithm have focused on diagnosis of disease or
disease progression based on AD-specific biomarkers, such as
volumetric brain measure, cortical thickness, and blood proteins
(Moradi et al., 2015; Salvatore et al., 2015; Casanova et al.,
2016). Unlike conventional statistical models, ML methods can
elucidate multivariate patterns of data, especially useful for highly
dimensional and complex data. Furthermore, ML approaches are
more effective in minimizing Type I and II errors than univariate
statistical methods (Hastie et al., 2009). Given that variables
of cognitive function are intricately intertwined, applying ML
methods can be helpful in investigating specific patterns of a
cognitive profile related to abnormal Aβ deposition.

The goal of the present study was to identify multivariate
neuropsychological tests combined with demographic measures,
such as age, gender, education, and apolipoprotein E (APOE)
ε4 status, using ML algorithm that distinguishes individuals
with abnormal levels of cortical Aβ deposition measured
by PET in the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) sample. The sample includes participants who are
CN, have a significant memory concern (SMC), early MCI
(EMCI), late MCI (LMCI), or dementia from AD. We
also aimed to compare the predictability of the model
respectively, based on specific cognitive profiling with variable
demographics among several groups of participants within
the AD spectrum.

MATERIALS AND METHODS

Ethics Statement
In this study, we used participant data from the ADNI, a
multicenter project with approximately 50 medical centers and
university sites across the United States and Canada (Petersen
et al., 2010). The ADNI was launched in 2003 as a public–
private partnership led by Principal Investigator Michael W.
Weiner, MD. Its primary goal has been to test whether serial
magnetic resonance imaging, PET, other biological markers, and
clinical and neuropsychological assessment can be combined
to measure the progression of patients with MCI and early
AD. Participants were between 55 and 90 years old, and were
able to undergo all assessment procedures, and consent to
participate in longitudinal follow-up. Written informed consent
was obtained from all participants and the study was conducted
after prior Institutional Review Board approval was obtained at
each participating institution.
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Participants
Cognitively normal participants were the control group in the
ADNI study and showed no significant clinical symptoms,
including depression, MCI, or dementia. Participants with
SMC scored within the normal range for cognitive function
but reported concerns about their memory. Participants with
EMCI and LMCI reported an SMC either autonomously or
via an informant or clinician. However, activities of daily
living were preserved, other cognitive domains showed no
significant impairment, and no signs of dementia existed.
The degree of MCI (early or late) was determined using the
Wechsler Memory Scale Logical Memory II (Wechsler, 1984).
Participants with AD met the National Institute of Neurological
and Communicative Disorders and Stroke Alzheimer’s Disease
and Related Disorders Association criteria for probable AD
(McKhann et al., 1984; Dubois et al., 2007). A detailed
description of the inclusion/exclusion criteria can be found at
http://adni.loni.usc.edu/.

Data were downloaded from the ADNI database and
included all subjects recruited in the ADNI-2 with complete
baseline data available for cognitive assessment, APOE genotype
processing and PET Aβ quantitation. Our study sample
included 762 subjects (183 control subjects, 103 with SMC,
332 with MCI (175 with EMCI and 157 with LMCI),
and 144 with AD) who were recruited between 2011 and
2013, each of whom had a baseline APOE genotype and
18F-florbetapir session.

In this study, subgroups were divided into overlapped
clinical condition to consider ecological validation. Given the
heterogeneity of the clinical spectrum of AD, the clinical
standards to determine who was within the disease spectrum
cannot always be clear without an accurate identification of
the AD biomarkers in the screening tests in clinics or clinical
trials. Accordingly, it seemed plausible that dividing the group
based on the above properties would reflect the clinical utility
of predicting Aβ in various clinical groups. Three groups were
specified: mild change group (CN + SMC + EMCI), moderate
change group (SMC+ EMCI+ LMCI), and severe change group
(EMCI+ LMCI+ AD).

Amyloid PET Data
Baseline Aβ deposition was visualized using florbetapir-PET.
Semi-quantitative PET results were retrieved from the latest
available dataset (“UCBERKELEYAV45_11_14_17.csv”). The
methods for PET acquisition and analysis are described in more
detail elsewhere (Landau et al., 2012; Landau et al., 2013).
Florbetapir images consisted of 4 × 5 min frames acquired 50–
70 min after injection. Images were realigned, averaged, resliced
to a common voxel size (1.5 mm), and smoothed to a common
resolution of 8 mm in full width at half-maximum (Joshi et al.,
2009). Structural T1-weighted images acquired concurrently
with the baseline florbetapir images were used as a structural
template to define the cortical regions of interest (ROIs), and
the reference regions in native space for each subject, using
FreeSurfer software (version 5.3.01). Baseline florbetapir scans

1http://surfer.nmr.mgh.harvard.edu

for each participant were co-registered to baseline structural
T1-weighted images. Images were subsequently used to extract
weighted cortical retention indices, standardized uptake value
(SUV) from gray matter within four cortical ROIs (frontal,
anterior/posterior cingulate, lateral parietal, and lateral temporal)
that were averaged to generate a mean cortical SUV as described
in greater detail online2. Cortical SUV ratios (SUVR) were
obtained by normalizing cortical SUV with the mean uptake
in the whole cerebellum reference region. Participants were
classified as cerebral Aβ positive if the florbetapir SUV ratio was
greater than 1.1.

Neuropsychological Assessment
The following measurements were considered: Mini-
Mental State Examination (MMSE; Folstein et al., 1975);
Alzheimer’s Disease Assessment Scale (ADAS-Cog 13)
(Mohs et al., 1997); Montreal Cognitive Assessment
(MoCA; Nasreddine et al., 2005); Rey Auditory Verbal
Learning Test (AVLT; Rey, 1964); Logical Memory (LM;
Wechsler, 1984); Clock Drawing Task (Kaplan, 1983); Trail
Making Test (Reitan and Wolfson, 1985); Category Fluency
(Morris et al., 1989); Boston Naming Test (BNT; Kaplan
et al., 1983); and American National Adults Reading Test
(ANART; Grober et al., 1991).

Statistical Analyses
Groups were first compared using a conventional approach.
Demographics were compared between groups using t-test.
Cognitive variables were compared between groups adjusted
for age gender, and education. χ2 tests were used to compare
dichotomous variables.

Next, to identify multivariate cognitive and demographic
profiles that are accurately distinguished from Aβ positivity
for participants, the adaptive least absolute shrinkage and
selection operator (LASSO) ML algorithm were applied to the
dataset (Zou, 2006). The adaptive LASSO, which is a penalized
regression method (Tikhonov, 1943), is a popular technique for
simultaneous estimation and consistent variable selection (Zou,
2006). With the adaptive LASSO implemented, the regression
coefficients of unimportant variables shrank to 0. In that regard,
adaptive LASSO algorithm provided interpretable results related
to abnormal levels of cerebral Aβ status. In adaptive LASSO,
the purpose was to minimize the sum of the square error,
but within a constraint (1). The adaptive LASSO estimates
are defined as

argmin
β

∣∣∣∣∣∣
∣∣∣∣∣∣y−

p∑
j=1

xjβj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+ λ

p∑
j=1

wj
∣∣βj
∣∣ (1)

where λ was a shrinkage parameter that controlled the strength
of the constraint and w was a known weights vector. When λ

was close to 0, adaptive LASSO would produce similar estimates
as the ordinary least squares method. On the other hand, when

2http://adni.bitbucket.org/docs/UCBERKELEYAV45/UCBERKELEY_AV45_
Methods_12.03.15.pdf
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λ was large, estimates approached 0 and were removed from
the fitted model.

Ten-fold cross-validation was applied during the variable
selection process to evaluate the generalizability of the adaptive
LASSO model. The data was randomly split into a training
set (66.3% of the data) and a test set (33.4% of the data), the
adaptive LASSO model was fitted using the training set, and
classifications were separately made on the test and training
datasets. The optimal parameter, lambda, was determined across
1,000 iterations of 10-fold CV to minimize the deviance of the
model. Then, predictions were made on the test set based on
the adaptive LASSO model trained in the training set. The area
under the curve (AUC) of the receiver operating characteristic
(ROC) curve was used as an index of predictability performance.
Analyses were performed using R, version 3.4.33.

RESULTS

Subject Characteristics
Demographic data for all participants are presented in Table 1.
Of the 762 study participants, 350 (46%) were APOE ε4 carriers,
and 418 (45%) were Aβ positive (Aβ+).

Table 2 presents demographic and neuropsychological testing
by Aβ status for each analytical group. In all groups, the Aβ+

group was older and had more APOE ε4 carriers than the negative
Aβ (Aβ−) group. There were significant differences in education
between Aβ+ and Aβ−, except for the moderate change group.

For the neuropsychological assessment, the differences
between participants who were Aβ+ and Aβ− were greater than
differences in participants with pathological changes.

Adaptive LASSO Results
The predictability of demographic (age, gender, and APOE ε4
status) and neuropsychological data of participants was assessed

3http://www.r-project.org/

TABLE 1 | Participants characteristics.

Characteristics All participants

No. of study participants 762

Age, years 72.3 (7.2)

No. of females (%) 363 (48%)

Education, year 16.3 (2.6)

No. of APOE ε4 carriers (%)a 350 (46%)

Aβ positivity (%) 418 (45%)

CN, no. (%) 183 (24%)

SMC, no. (%) 103 (13.5)

EMCI, no. (%) 175 (23%)

LMCI, no. (%) 157 (20.6%)

AD, no. (%) 144 (18.9%)

APOE ε4, apolipoprotein; Aβ, amyloid-beta; CN, clinically normal; SMC, subjective
memory concerns; EMCI, early mild cognitive impairment; LMCI, late mild cognitive
impairment; AD, Alzheimer’s disease. Data are presented as mean (SD) unless
otherwise indicated. aAPOE ε4 carriers are the percentage of individuals with at
least one APOE ε4 allele.

for ability to predict cerebral amyloid positivity. Figure 1 shows
the multivariate profiles for cerebral Aβ positivity, revealed
by ML algorithm. First, Aβ positivity was more prevalent in
participants who were older, female, APOE ε4 carriers, and
showed poor cognitive performance in several measures in the
mild change group (worse delayed recall, clock drawing, and
ADAS-Cog 13). In the moderate change group, the demographics
were like those in the mild change group. Several additional
cognitive performance variables were added to the results for
the mild change group (worse delayed recall, clock drawing,
AVLT list B, BNT, ANART, ADAS-Cog 13, and MMSE score).
In the severe change group, demographic variables and cognitive
performances variables (LM delayed recall, clock drawing, AVLT
list B, ANART, ADAS-Cog 13, and MMSE) also predicted
Aβ positivity.

Figures 2, 3 show the ROC curve and its AUC for the
classification of Aβ positivity. For the mild change group, the
AUC was 0.764 for the training set and 0.754 for the test set.
For the moderate change group, the AUC was 0.840 and 0.811
for the training and test sets, respectively. For the severe change
group, the AUC was 0.871 and 0.864 for the training and test
sets, respectively.

DISCUSSION

This study confirmed that multivariate profiles of
neuropsychological assessment with demographic measures
could efficiently predict Aβ positivity using an ML method. The
adaptive LASSO algorithm selected a subset of variables that
were most predictive of Aβ positivity, whereas the estimates of
other variables were 0 due to its penalized procedure. Although
some studies have reported high predictive accuracy for Aβ

positivity based on ML methods, these studies were based on
blood biomarkers or combined with neuropsychological tests
(Burnham et al., 2014; Haghighi et al., 2015). To our knowledge,
this is one of the first studies that demonstrates relative profile
predicting cerebral amyloid status based on an ML algorithm
using only demographic and neuropsychological measures.

Current findings show that neuropsychological test
performance and demographics can predict Aβ positivity
with about 80% predictability in the non-demented population.
Given these results, specific neuropsychological measures have
implications for early detection of neuropathological biomarkers
in AD without invasive methods such as PET and CSF analysis.

In the mild change group (CN to EMCI), clock drawing,
LM delayed recall, and ADAS-Cog 13 are significant predictors
for Aβ positivity with demographic measures (age, gender, and
APOE ε4 status). The LM test, which consists of two brief stories,
is also very sensitive to early episodic memory decline before
the clinical onset of AD (Rubin et al., 1998) even before the
onset of MCI (Howieson et al., 2008). According to a recent
review of studies with preclinical neuroimaging and prospective
cohorts, the LM test has the most consistent association with
the amyloid level among CN individuals (Mortamais et al.,
2017). Moreover, a recent study using the preclinical Alzheimer’s
cognitive composite demonstrated that logical memory delayed
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recall test consistently improved the effect sizes at less than
5 years follow-up in CN participants (Mormino et al., 2017). The
ADAS-Cog is considered the gold standard for estimating the
effectiveness of anti-dementia treatments (Kueper et al., 2018).
Although the ADAS-Cog was developed for use in clinical trials
of dementia, a study using ADNI dataset showed results reflecting
Aβ-related decline in performance on the ADAS-Cog (Li et al.,
2017). In the current study, the Aβ+with APOE ε4 carriers group
shows significantly impaired performance on the ADAS-Cog test
but not the MMSE among CN and EMIC participants compared
with other groups. The result is consistent with a recent meta-
analysis focused on cognitive impairment and high Aβ status
in CN individuals (Baker et al., 2017). The general cognitive
impairment in Aβ+CN individuals would indicate that increased
Aβ burden is related to disturbed cognitive function even in very
early stage of AD. It is interesting that the coefficient of the
Clock Drawing Task from penalized regression was higher than
the other cognitive measures. Previous studies showed that poor
performance of the Clock Drawing Task was related to cortical
dysfunction in the bilateral temporoparietal regions (Shon et al.,
2013). It has also been found that Aβ+ CN older adults have
more amyloid burden as measured by Pittsburgh Compound B
PET imaging in these regions compared with Aβ− older adults
(Sperling et al., 2009). In that regard, visuospatial impairment in
copying task may capture a very early Aβ−related sign.

In the moderate change group, as the degree of the disease
progresses, three neuropsychological measures are added for
predicting Aβ positivity. The AVLT list B has 15 different words
than the AVLT list A, which serves as an interference trial.
A previous study showed that intrusion errors from a word-
list episodic memory test and APOE ε4 status significantly
predicted progression to AD in CN elderly individuals (Bondi
et al., 1999). It may be possible that elevated errors on the
AVLT list B arise because of deficits in semantic memory storage
for learning after the AVLT list A has been learned. A recent
study also showed that the AVLT intrusion errors predicted
progression from CN to MCI and CN to clinical symptom of
dementia (i.e., clinical dementia rating = 1), suggesting that
intrusion errors were likely to reflect subtle change during early
AD pathology. With respect to the ANART, it is a premorbid
intelligence test that is known as a proxy of cognitive reserve
(CR), which may explain how some individuals can preserve
normal cognitive function despite pathological change, such as
cortical atrophy (Stern, 2012). It may be possible that people
with high performance on the ANART have higher CR than
those with low performance on the ANART. That is, if there
is an increase in CR accompanied by impairment in other
cognitive domains, it is likely to reflect neuropathology in
AD more than low CR, at the same time as compensating
for other cognitive function. Indeed, it is consistent with the

TABLE 2 | Demographics and neuropsychological characteristics of data sets for machine learning analyses.

Mild Change (N = 461) Moderate Change (N = 435) Severe Change (N = 476)

Aβ + Aβ − Sig. Aβ + Aβ − Sig. Aβ + Aβ − Sig.

(N = 183) (N = 278) (N = 232) (N = 203) (N = 322) (N = 154)

Age 74.7(6.7) 71.8(6.4) 0.000 73.5(6.8) 71.1(7.1) 0.000 73.9(7.5) 71.3(8.1) 0.001

Education 16.0(2.7) 16.7(2.4) 0.003 16.3(2.8) 16.6(2.4) 0.162 16.0(2.7) 16.5(2.4) 0.044

Gender: female 98(46%) 131(47%) 0.177 114(49%) 95(47%) 0.626 144(45%) 65(42%) 0.605

APOE ε4: positive 99(54%) 63(23%) 0.000 156(67%) 45(22%) 0.000 233(72%) 89(59%) 0.000

LM Immediate Recall 12.5(3.3) 13.4(3.1) 0.017 9.3(4.0) 11.6(3.5) 0.000 6.7(3.9) 9.7(3.3) 0.000

LM Delayed Recall 11(3.2) 12.2(3.3) 0.000 6.8(4.3) 9.7(3.7) 0.000 4.1(3.7) 7.3(3.1) 0.000

AVLT Total 40.9(10.3) 44.8(11.1) 0.005 35.5(10.7) 41.9(11.6) 0.000 29.2(10.8) 38.2(12.2) 0.000

AVLT List B 4.5(1.9) 5.3(2.0) 0.004 4.1(1.8) 4.9(1.9) 0.000 3.5(1.7) 4.6(1.9) 0.000

AVLT Delayed Recall 5.9(3.9) 7.4(4.2) 0.003 4.0(3.9) 6.4(4.3) 0.000 2.3(3.2) 5.3(4.3) 0.000

AVLT Recognition 12.1(2.6) 12.6(2.6) 0.125 10.8(3.3) 12.2(2.8) 0.000 8.9(4.1) 11.4(3.2) 0.000

CLOCK Drawing 4.5(0.7) 4.7(0.6) 0.331 4.4(0.9) 4.6(0.7) 0.045 3.9(1.3) 4.4(0.9) 0.000

CLOCK Copy 4.8(0.5) 4.8(0.4) 0.253 4.7(0.7) 4.8(0.5) 0.018 4.5(0.9) 4.7(0.6) 0.005

Category Fluency (Animals) 19.3(5.6) 20.5(5.3) 0.306 17.5(5.4) 19.5(4.9) 0.002 15(5.7) 18.5(5.3) 0.000

Boston Naming Test 27.4(2.6) 28.1(2.5) 0.070 26.3(3.6) 27.8(2.5) 0.000 24.3(5.2) 27(3.5) 0.000

TMT A (seconds) 37.1(14.8) 33.1(11.3) 0.028 40.3(18.6) 35.2(13.5) 0.012 49.5(28.6) 37.1(14.1) 0.000

TMT B (seconds) 98.3(52.6) 82.9(44) 0.069 114.5(68) 90.6(47.4) 0.002 138.7(89.7) 98.9(58) 0.000

ANART (# of Errors) 11.1(8.6) 9.8(7.4) 0.806 12.0(9.5) 11.3(8.0) 0.961 14.0(9.8) 12.1(8.7) 0.301

MOCA 23.6(2.9) 24.1(1.9) 0.142 23.2(3.0) 23.8(2.0) 0.070 21.3(4.2) 23.2(2.8) 0.000

ADAS-Cog 13 12.0(5.4) 9.6(4.9) 0.000 16.4(7.4) 11.4(5.7) 0.000 22.9(10.4) 14.4(7.7) 0.000

MMSE 28.6(1.5) 28.9(1.4) 0.100 27.8(1.8) 28.7(1.4) 0.000 25.8(3.0) 27.9(2.3) 0.000

ADAS-Cog 13, 13 item version of the cognitive subscale of the Alzheimer’s Disease Assessment Scale-Cog; ANART, American National Adults Reading Test; APOE ε4,
apolipoprotein epsilon 4 allele carrier; AVLT, Rey Auditory Verbal Learning Test; LM, logical memory; MMSE, mini-mental status examination; MOCA, montreal cognitive
assessment; TMT, Trail Making Test. Count (%) or mean (standard deviation). Comparisons for cognitive performances were adjusted for age, gender and education.
P-values are from F-tests and Pearson chi-square tests. Significant p-values are highlighted in bold.
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FIGURE 1 | Multivariate patterns of demographic information and cognitive measures predicting amyloid positivity in mild (A), moderate (B), and severe group (C).
ADAS13, Alzheimer’s disease assessment scale; APOE, ApoE ε4 positivity; AVLT, Rey auditory verbal learning test; AVLT _B, Rey auditory verbal learning test list B;
ANRAT; American national adults reading test; BNT, Boston naming test, CLOCK, clock drawing task, CLOCK_Copy; clock drawing task copy; LM_del, logical
memory delayed recall; MMSE, mini-mental state examination; MoCA, Montreal cognitive assessment scale.

FIGURE 2 | Classification accuracy as indexed by the receiver-operating characteristic (ROC) curves and their area under the curve (AUC) on the training set. Mild,
mild change group (CN+SMC+EMCI); Moderate, moderate change group (SMC+EMCI+LMCI); Severe, severe change group (EMIC+LMCI+AD).

study that early intellectual enrichment, including educational
attainment, is associated with an increase in higher florbetapir-
PET uptake in MCI, suggesting a compensatory increase for

Aβ burden (Arenaza-Urquijo et al., 2017). The MoCA has been
developed as a more challenging test that measures higher-level
language, complex visuospatial ability, and executive function

Frontiers in Aging Neuroscience | www.frontiersin.org 6 April 2019 | Volume 11 | Article 95

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-11-00095 April 26, 2019 Time: 16:19 # 7

Ko et al. Cognitive Profiling Related to Aβ

FIGURE 3 | Classification accuracy as indexed by the receiver-operating characteristic (ROC) curves and their area under the curve (AUC) on the testinkg set. Mild,
mild change group (CN+SMC+EMCI); Moderate, moderate change group (SMC+EMCI+LMCI); Severe, severe change group (EMIC+LMCI+AD).

FIGURE 4 | Distributions of the Aβ retention (SUVR) across groups.

to enable the detection of MCI and to address the inability
of the MMSE to detect MCI (Nasreddine et al., 2005). The
MoCA may have more sensitivity to neuropathological changes
in AD compared with the MMSE. In the severe change group,
in addition to results of the moderate group, there is one
more significant cognitive measure to predict Aβ status. The
lower performance on Clock Drawing Test is related to higher
possibility of Aβ positivity. Due to changes in the brain as the
disease progresses, episodic memory ability may be reduced and
the ability to draw from memory impaired. Thus, considering

the other damage to episodic memory, including LM and AVLT
list B, poor performance on Clock Drawing Test would suggest
neuropathological change as a marker of AD.

Across all groups, age, gender, and APOE ε4 status are
significant variables to predict Aβ positivity. It is well established
that cortical Aβ burden increases with older age and the APOE
ε4 genotype (Morris et al., 2010; Jansen et al., 2015). As for
gender, a recent study revealed that CN females who had a lower
testosterone level were more likely to be Aβ+ than those with a
higher level (Lee et al., 2017). It is notable that several cognitive
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measures show higher predictability for Aβ positivity than age.
Considering these findings, it seems that Aβ-related profiles
of cognitive measures, although subtle, can detect AD-specific
changes before the clinical onset of AD.

Overall, the result of the highly predictive model for the
moderate change group suggests that multivariate profiles in
cognitive and demographics measures based on ML can be useful
for non-demented individuals, including those with SMC and
MCI, who are targeted for anti-amyloid therapeutic intervention
as a preliminary screening tool before undergoing invasive
methods. There are medical benefits in early diagnosis of
individuals with AD pathology. The earlier that a diagnosis
is determined, the earlier that medical intervention can begin,
which can delay cognitive decline and disease progression in
individuals at preclinical stages of AD.

In addition to an early intervention, there is a potentially
financial benefit of early detection of Aβ positivity. Many people
have been impacted by the high cost of amyloid PET. An
amyloid PET scan costs approximately $5,000 per person in
the United States (O’Bryant et al., 2017). Specifically, current
findings can be used to identify those who should undergo
amyloid PET imaging for inclusion in clinical trials or anti-
amyloid therapy. Considering the increasing ability to distinguish
Aβ+ from Aβ−, the availability of this cognitive profile model
would result in a significant cost saving for dementia caregivers
as well as clinical trials.

Potential limitation of this study exists in the cross-
sectional design, and any inference about progression from the
asymptomatic to clinical stages must be cautiously examined.
Moreover, ADNI is not reflective of the general population.
However, it compares multiple cognitive scales related to Aβ

burden simultaneously, which estimates the relative effects on
Aβ positivity based on several subgroups reflecting actual clinical
practice. Considering the change in distribution to Aβ status
(SUVR) in Figure 4, the distribution becomes dichotomous as
the extent of the disease develops. This bimodal distribution
has been previously reported for a study using the ADNI
dataset (Ewers et al., 2011). This result would reflect the
neuropathological changes in the continuous course of AD,
which may suggest a causal relationship between cognitive
function and Aβ deposition. Our findings also demonstrate
potential benefits in clinical utility for non-demented individuals
as well as out-of-sample generalization using an ML algorithm.

Further studies are needed to specify the robust relationship
between cognitive function and Aβ burden by using longitudinal
design. Developing novel assessments to capture subtle cognitive
impairment related to Aβ among individuals those who are
clinically normal is also a priority.

CONCLUSION

In conclusion, our findings demonstrate that multivariate
neuropsychological assessment and demographic measures using
an ML algorithm might predict abnormal level of Aβ status in the
non-demented population. Results also provide useful cognitive
markers related to Aβ deposition, suggesting subtle changes in
preclinical stage of AD. Application of these findings may help
more specific identification of Aβ-related changes in cognition
at the early stage of AD than before, which can contribute
to the development of precision medicine in the field of AD
research and therapy.

AUTHOR CONTRIBUTIONS

HK and H-GK designed the study, acquired and interpreted
the data, and were major contributors to the writing of
the manuscript and critically revising the manuscript for
intellectual content. J-JL analyzed the data and helped to
draft the manuscript.

FUNDING

This research was supported by the Ministry of Science and
ICT, Korea, under the Information Technology Research Center
support program (No. IITP-2019-2017-0-01630) supervised by
the Institute for Information and communications Technology
Promotion (IITP).

ACKNOWLEDGMENTS

The manuscript was proofread by the Dental Research Institute
of Seoul National University.

REFERENCES
Arenaza-Urquijo, E. M., Bejanin, A., Gonneaud, J., Wirth, M., La

Joie, R., Mutlu, J., et al. (2017). Association between educational
attainment and amyloid deposition across the spectrum from normal
cognition to dementia: neuroimaging evidence for protection and
compensation. Neurobiol. Aging 59, 72–79 doi: 10.1016/j.neurobiolaging.2017.
06.016.

Baker, J. E., Lim, Y. Y., Pietrzak, R. H., Hassenstab, J., Snyder, P. J., Masters, C.
L., et al. (2017). Cognitive impairment and decline in cognitively normal older
adults with high amyloid-β: a meta-analysis. Alzheimers Dement. (Amst) 6,
108–121. doi: 10.1016/j.dadm.2016.09.002

Bondi, M. W., Salmon, D. P., Galasko, D., Thomas, R. G., and Thal, L. J. (1999).
Neuropsychological function and apolipoprotein E genotype in the preclinical

detection of Alzheimer’s disease. Psychol. Aging 14:295. doi: 10.1037//0882-
7974.14.2.295

Burnham, S. C., Faux, N. G., Wilson, W., Laws, S. M., Ames, D., Bedo, J., et al.
(2014). A blood-based predictor for neocortical Aβ burden in Alzheimer’s
disease: results from the AIBL study. Mol. Psychiatry 19, 519–526. doi: 10.1038/
mp.2013.40

Casanova, R., Varma, S., Simpson, B., Kim, M., An, Y., Saldana, S., et al.
(2016). Blood metabolite markers of preclinical Alzheimer’s disease in two
longitudinally followed cohorts of older individuals. Alzheimer’s Dement. 12,
815–822. doi: 10.1016/j.jalz.2015.12.008

Chételat, G., Villemagne, V. L., Bourgeat, P., Pike, K. E., Jones, G., Ames,
D., et al. (2010). Relationship between atrophy and β-amyloid deposition
in Alzheimer disease. Ann. Neurol. 67, 317–324. doi: 10.1002/ana.
21955

Frontiers in Aging Neuroscience | www.frontiersin.org 8 April 2019 | Volume 11 | Article 95

https://doi.org/10.1016/j.neurobiolaging.2017.06.016
https://doi.org/10.1016/j.neurobiolaging.2017.06.016
https://doi.org/10.1016/j.dadm.2016.09.002
https://doi.org/10.1037//0882-7974.14.2.295
https://doi.org/10.1037//0882-7974.14.2.295
https://doi.org/10.1038/mp.2013.40
https://doi.org/10.1038/mp.2013.40
https://doi.org/10.1016/j.jalz.2015.12.008
https://doi.org/10.1002/ana.21955
https://doi.org/10.1002/ana.21955
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-11-00095 April 26, 2019 Time: 16:19 # 9

Ko et al. Cognitive Profiling Related to Aβ

Chételat, G., Villemagne, V. L., Villain, N., Jones, G., Ellis, K. A., Ames,
D., et al. (2012). Accelerated cortical atrophy in cognitively normal elderly
with high β-amyloid deposition. Neurology 78, 477–484. doi: 10.1212/WNL.
0b013e318246d67a

Dubois, B., Feldman, H. H., Jacova, C., DeKosky, S. T., Barberger-Gateau, P.,
Cummings, J., et al. (2007). Research criteria for the diagnosis of Alzheimer’s
disease: revising the NINCDS–ADRDA criteria. Lancet Neurol. 6, 734–746.
doi: 10.1016/s1474-4422(07)70178-3

Ewers, M., Insel, P., Jagust, W. J., Shaw, L., Trojanowski, J. J. Q., Aisen, P., et al.
(2011). CSF biomarker and PIB-PET–derived beta-amyloid signature predicts
metabolic, gray matter, and cognitive changes in nondemented subjects. Cereb.
Cortex 22, 1993–2004. doi: 10.1093/cercor/bhr271

Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975). “Mini-mental state”: a
practical method for grading the cognitive state of patients for the clinician.
J. Psychiatr. Res. 12, 189–198.

Grober, E., Sliwinsk, M., and Korey, S. R. (1991). Development and validation of a
model for estimating premorbid verbal intelligence in the elderly. J. Clin. Exp.
Neuropsychol. 13, 933–949. doi: 10.1080/01688639108405109

Gurevich, P., Stuke, H., Kastrup, A., Stuke, H., and Hildebrandt, H. (2017).
Neuropsychological testing and machine learning distinguish Alzheimer’s
disease from other causes for cognitive impairment. Front. Aging Neurosci.
9:114. doi: 10.3389/fnagi.2017.00114

Haghighi, M., Smith, A., Morgan, D., Small, B., and Huang, S. (2015).
Identifying cost-effective predictive rules of amyloid-β level by integrating
neuropsychological tests and plasma-based markers. J. Alzheimers Dis. 43,
1261–1270. doi: 10.3233/JAD-140705

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical
Learning. New York, NY: Springer.

Howieson, D. B., Carlson, N. E., Moore, M. M., Wasserman, D., Abendroth, C. D.,
Payne-Murphy, J., et al. (2008). Trajectory of mild cognitive impairment onset.
J. Int. Neuropsychol. Soc. 14, 192–198. doi: 10.1017/S1355617708080375

Jack, C. R. Jr., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner,
M. W., Aisen, P. S., et al. (2013). Tracking pathophysiological processes
in Alzheimer’s disease: an updated hypothetical model of dynamic
biomarkers. Lancet Neurol. 12, 207–216. doi: 10.1016/S1474-4422(12)7
0291-0

Jansen, W. J., Ossenkoppele, R., Knol, D. L., Tijms, B. M., Scheltens, P., Verhey,
F. R., et al. (2015). Prevalence of cerebral amyloid pathology in persons without
dementia: a meta-analysis. JAMA 313, 1924–1938. doi: 10.1001/jama.2015.4668

Joshi, A., Koeppe, R. A., and Fessler, J. A. (2009). Reducing between scanner
differences in multi-center PET studies. Neuroimage 46, 154–159. doi: 10.1016/
j.neuroimage.2009.01.057

Kaplan, E. (1983). The Assessment of Aphasia and Related Disorders. Philadelphia:
Lippincott Williams & Wilkins.

Kaplan, E., Goodglass, H., and Weintraub, S. (1983). The Boston Naming Test, 2nd
Edn. Philadelphia: Lea & Febiger.

Kueper, J. K., Speechley, M., and Montero-Odasso, M. (2018). The Alzheimer’s
disease assessment scale–cognitive subscale (ADAS-Cog): modifications and
responsiveness in pre-dementia populations. a narrative review. J. Alzheimers
Dis. 63, 423–444. doi: 10.3233/jad-170991

Landau, S. M., Breault, C., Joshi, A. D., Pontecorvo, M., Mathis, C. A., Jagust, W. J.,
et al. (2013). Amyloid-β imaging with pittsburgh compound B and florbetapir:
comparing radiotracers and quantification methods. J. Nucl. Med. 54:70.
doi: 10.2967/jnumed.112.109009

Landau, S. M., Mintun, M. A., Joshi, A. D., Koeppe, R. A., Petersen, R. C.,
Aisen, P. S., et al. (2012). Amyloid deposition, hypometabolism, and
longitudinal cognitive decline. Ann. Neurol. 72, 578–586. doi: 10.1002/ana.
23650

Lee, J. H., Byun, M. S., Yi, D., Choe, Y. M., Choi, H. J., Baek, H., et al. (2017). Sex-
specific association of sex hormones and gonadotropins, with brain amyloid
and hippocampal neurodegeneration. Neurobiol. Aging 58, 34–40. doi: 10.1016/
j.neurobiolaging.2017.06.005

Li, C., Loewenstein, D. A., Duara, R., Cabrerizo, M., Barker, W., and Adjouadi, M.
(2017). The relationship of brain amyloid load and APOE status to regional
cortical thinning and cognition in the ADNI Cohort. J. Alzheimers Dis. 59,
1269–1282. doi: 10.3233/JAD-170286

Loewenstein, D. A., Curiel, R. E., Greig, M. T., Bauer, R. M., Rosado, M., Bowers,
D., et al. (2016). A novel cognitive stress test for the detection of preclinical

Alzheimer disease: discriminative properties and relation to amyloid load. Am.
J. Geriatr. Psychiatry 24, 804–813. doi: 10.1016/j.jagp.2016.02.056

Mattsson, N., and Zetterberg, H. (2009). Alzheimer’s disease and CSF biomarkers:
key challenges for broad clinical applications. Biomark. Med. 3, 735–737.
doi: 10.2217/bmm.09.65

McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., and Stadlan,
E. M. (1984). Clinical diagnosis of Alzheimer’s disease report of the NINCDS-
ADRDA Work Group∗ under the auspices of department of health and human
services task force on Alzheimer’s disease. Neurology 34, 939–944.

Mohs, R. C., Knopman, D., Petersen, R. C., Ferris, S. H., Ernesto, C., Grundman,
M., et al. (1997). Development of cognitive instruments for use in clinical trials
of antidementia drugs: additions to the Alzheimer’s disease assessment scale
that broaden its scope. The Alzheimer’s disease cooperative study. Alzheimer
Dis. Assoc. Disord. 11(Suppl. 2), S13–S21.

Mortamais, M., Ash, J. A., Harrison, J., Kaye, J., Kramer, J., Randolph, C., et al.
(2017). Detecting cognitive changes in preclinical Alzheimer’s disease: a review
of its feasibility. Alzheimers Dement. 13, 468–492. doi: 10.1016/j.jalz.2016.06.
2365

Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., and Alzheimer’s Disease
Neuroimaging Initiative (2015). Machine learning framework for early MRI-
based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104,
398–412. doi: 10.1016/j.neuroimage.2014.10.002

Mormino, E. C., Papp, K. V., Rentz, D. M., Donohue, M. C., Amariglio,
R., Quiroz, Y. T., et al. (2017). Early and late change on the preclinical
Alzheimer’s cognitive composite in clinically normal older individuals with
elevated amyloid β. Alzheimers Dement. 13, 1004–1012. doi: 10.1016/j.jalz.2017.
01.018

Morris, J., Heyman, A., Mohs, R., Hughes, J., Van Belle, G., Fillenbaum, G., et al.
(1989). The consortium to establish a registry for Alzheimer’s disease (CERAD):
I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology
39, 1159–1165.

Morris, J. C., Roe, C. M., Xiong, C., Fagan, A. M., Goate, A. M., Holtzman, D. M.,
et al. (2010). APOE predicts amyloid-beta but not tau Alzheimer pathology in
cognitively normal aging. Ann. Neurol. 67, 122–131. doi: 10.1002/ana.21843

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V.,
Collin, I., et al. (2005). The montreal cognitive assessment, MoCA: a brief
screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699.
doi: 10.1111/j.1532-5415.2005.53221.x

O’Bryant, S. E., Mielke, M. M., Rissman, R. A., Lista, S., Vanderstichele, H.,
Zetterberg, H., et al. (2017). Blood-based biomarkers in Alzheimer disease:
current state of the science and a novel collaborative paradigm for advancing
from discovery to clinic. Alzheimers Dement. 13, 45–58. doi: 10.1016/j.jalz.2016.
09.014

Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, A. C., Harvey,
D. J., et al. (2010). Alzheimer’s disease neuroimaging initiative (ADNI): clinical
characterization. Neurology 74, 201–209.

Plassman, B. L., Langa, K. M., Fisher, G. G., Heeringa, S. G., Weir, D. R., Ofstedal,
M. B., et al. (2007). Prevalence of dementia in the United States: the aging,
demographics, and memory study. Neuroepidemiology 29, 125–132. doi: 10.
1159/000109998

Reitan, R. M., and Wolfson, D. (1985). The Halstead—Reitan Neuropsychological
Test Battery. 2nd Edn, Tucson, AZ: Neuropsychology Press.

Rentz, D. M., Locascio, J. J., Becker, J. A., Moran, E. K., Eng, E., Buckner, R. L.,
et al. (2010). Cognition, reserve, and amyloid deposition in normal aging. Ann.
Neurol. 67, 353–364. doi: 10.1002/ana.21904

Rey, A. (1964). The Clinical Examination in Psychology. Paris: Presses
Universitaires de France.

Rubin, E. H., Storandt, M., Miller, J. P., Kinscherf, D. A., Grant, E. A., Morris, J. C.,
et al. (1998). A prospective study of cognitive function and onset of dementia in
cognitively healthy elders. Arch. Neurol. 55, 395–401. doi: 10.1001/archneur.55.
3.395

Salvatore, C., Cerasa, A., Battista, P., Gilardi, M. C., Quattrone, A., and Castiglioni,
I. (2015). Magnetic resonance imaging biomarkers for the early diagnosis of
Alzheimer’s disease: a machine learning approach. Front. Neurosci. 9:307. doi:
10.3389/fnins.2015.00307

Schindler, S. E., Jasielec, M. S., Weng, H., Hassenstab, J. J., Grober,
E., McCue, L. M., et al. (2017). Neuropsychological measures that
detect early impairment and decline in preclinical Alzheimer disease.

Frontiers in Aging Neuroscience | www.frontiersin.org 9 April 2019 | Volume 11 | Article 95

https://doi.org/10.1212/WNL.0b013e318246d67a
https://doi.org/10.1212/WNL.0b013e318246d67a
https://doi.org/10.1016/s1474-4422(07)70178-3
https://doi.org/10.1093/cercor/bhr271
https://doi.org/10.1080/01688639108405109
https://doi.org/10.3389/fnagi.2017.00114
https://doi.org/10.3233/JAD-140705
https://doi.org/10.1017/S1355617708080375
https://doi.org/10.1016/S1474-4422(12)70291-0
https://doi.org/10.1016/S1474-4422(12)70291-0
https://doi.org/10.1001/jama.2015.4668
https://doi.org/10.1016/j.neuroimage.2009.01.057
https://doi.org/10.1016/j.neuroimage.2009.01.057
https://doi.org/10.3233/jad-170991
https://doi.org/10.2967/jnumed.112.109009
https://doi.org/10.1002/ana.23650
https://doi.org/10.1002/ana.23650
https://doi.org/10.1016/j.neurobiolaging.2017.06.005
https://doi.org/10.1016/j.neurobiolaging.2017.06.005
https://doi.org/10.3233/JAD-170286
https://doi.org/10.1016/j.jagp.2016.02.056
https://doi.org/10.2217/bmm.09.65
https://doi.org/10.1016/j.jalz.2016.06.2365
https://doi.org/10.1016/j.jalz.2016.06.2365
https://doi.org/10.1016/j.neuroimage.2014.10.002
https://doi.org/10.1016/j.jalz.2017.01.018
https://doi.org/10.1016/j.jalz.2017.01.018
https://doi.org/10.1002/ana.21843
https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://doi.org/10.1016/j.jalz.2016.09.014
https://doi.org/10.1016/j.jalz.2016.09.014
https://doi.org/10.1159/000109998
https://doi.org/10.1159/000109998
https://doi.org/10.1002/ana.21904
https://doi.org/10.1001/archneur.55.3.395
https://doi.org/10.1001/archneur.55.3.395
https://doi.org/10.3389/fnins.2015.00307
https://doi.org/10.3389/fnins.2015.00307
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-11-00095 April 26, 2019 Time: 16:19 # 10

Ko et al. Cognitive Profiling Related to Aβ

Neurobiol. Aging 56, 25–32. doi: 10.1016/j.neurobiolaging.2017.
04.004

Shon, J., Lee, D., Seo, E., Sohn, B., Kim, J., Park, S., et al. (2013).
Functional neuroanatomical correlates of the executive clock drawing
task (CLOX) performance in Alzheimer’s disease: a FDG-PET
study. Neuroscience 246, 271–280. doi: 10.1016/j.neuroscience.2013.
05.008

Sperling, R. A., Johnson, K. A., Doraiswamy, P. M., Reiman, E. M., Fleisher,
A. S., Sabbagh, M. N., et al. (2013). Amyloid deposition detected with
florbetapir F 18 (18F-AV-45) is related to lower episodic memory performance
in clinically normal older individuals. Neurobiol. Aging 34, 822–831. doi:
10.1016/j.neurobiolaging.2012.06.014

Sperling, R. A., LaViolette, P. S., O’Keefe, K., O’Brien, J., Rentz, D. M., Pihlajamaki,
M., et al. (2009). Amyloid deposition is associated with impaired default
network function in older persons without dementia. Neuron 63, 178–188.
doi: 10.1016/j.neuron.2009.07.003

Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet
Neurol. 11, 1006–1012. doi: 10.1016/S1474-4422(12)70191-6

Tikhonov, A. N. (1943). On the stability of inverse problems. Dokl Akad Nauk SSSR
39, 195–198.

Wechsler, D. (1984). WMS-R: Wechsler Memory Scale-Revised: Manual. Agra:
Psychological Corporation.

Zou, H. (2006). The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101,
1418–1429. doi: 10.1198/016214506000000735

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Ko, Ihm and Kim for the Alzheimer’s Disease Neuroimaging
Initiative. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 10 April 2019 | Volume 11 | Article 95

https://doi.org/10.1016/j.neurobiolaging.2017.04.004
https://doi.org/10.1016/j.neurobiolaging.2017.04.004
https://doi.org/10.1016/j.neuroscience.2013.05.008
https://doi.org/10.1016/j.neuroscience.2013.05.008
https://doi.org/10.1016/j.neurobiolaging.2012.06.014
https://doi.org/10.1016/j.neurobiolaging.2012.06.014
https://doi.org/10.1016/j.neuron.2009.07.003
https://doi.org/10.1016/S1474-4422(12)70191-6
https://doi.org/10.1198/016214506000000735
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

	Cognitive Profiling Related to Cerebral Amyloid Beta Burden Using Machine Learning Approaches
	Introduction
	Materials and Methods
	Ethics Statement
	Participants
	Amyloid PET Data
	Neuropsychological Assessment
	Statistical Analyses

	Results
	Subject Characteristics
	Adaptive LASSO Results

	Discussion
	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References


