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The Integrating Factor Method in Banach Spaces

Josefina Alvarez1, Carolina Espinoza-Villalva2, and Martha Guzmán-Partida3∗

Abstract. The so called integrating factor method, used to find
solutions of ordinary differential equations of a certain type, is well
known. In this article, we extend it to equations with values in
a Banach space. Besides being of interest in itself, this extension
will give us the opportunity to touch on a few topics that are not
usually found in the relevant literature. Our presentation includes
various illustrations of our results.

1. Introduction

Most of the undergraduate textbooks on ordinary differential equa-
tions, include a section dedicated to the so called integrating factor
method (see, for instance, [3, p. 126]), that produces a formula for
the general solution of ordinary differential equations of the form

(1.1)
dy

dt
= u (t) y + v (t) .

Here, t is in some interval [a, b] of the real line where it is assumed that
the real functions u (t) and v (t) are continuous.

The fundamental idea of the method is to find a function, µ (t), with
the property

(1.2) µ (t)

(
dy

dt
− u (t) y

)
=

d

dt
(µy) .

Let us observe that knowing such a function would allow us to write

d

dt
(µy) = µ (t) v (t) .
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That is to say, the general solution of (1.1) will be the family of an-
tiderivatives of the function µ (t) v (t), each of them divided by µ (t) and
defined where this division makes sense.

It is clear then that knowing a function µ (t) with the property (1.2)
allows us to solve, or integrate, (1.1). This is why µ (t) is called an
integrating factor.

We are left now to figure out how to find such a function. We begin
by writing (1.2) as

µ
dy

dt
− µu (t) y =

dµ

dt
y + µ

dy

dt
,

or
dµ

dt
y = −µu (t) y.

So it would suffice to find a solution of

dµ

dt
= −µu (t) ,

which can be written as

µ (t) = e−
∫
u(t)dt,

where
∫
u (t) dt indicates one of the antiderivatives of the function u (t),

defined on [a, b]. Finally,

(1.3) y (t) = e
∫
u(t)dt

(∫
e−

∫
u(t)dtv (t) dt+ C

)
,

for any real constant C, will be the general solution of (1.1), defined
on [a, b]. It is possible that some of the antiderivatives involved in (1.3)
might not have an explicit form.

Having the presented the method in its usual context, we now wish
to extend it to an equation of the same form, under the following as-
sumptions:

(i) The function u (t) is continuous from [a, b] to L (X), the linear
and continuous operators from a real Banach spaceX into itself,
with its usual structure of real Banach spaces (see, for instance,
[10], Chapter 5). Let us recall that the continuity of a function
with values in a Banach space, is defined in the same way as
in the case of a real function, only replacing the absolute value,
with the norm in the indicated Banach space.

(ii) The function v (t) is continuous from [a, b] to the real Banach
space X mentioned above.

We write the vector equation as

(1.4)
dy

dt
= (u (t)) (y (t)) + v (t) ,
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where the unknown function y (t) must be a continuous function from
some real intervals to X, with a continuous derivative. As in the case
of a real valued function, the derivative is defined as the limit, in the
pertinent Banach space, of the ratio of increments. Let us remark that
for each t, (u (t)) (y (t)) is the action of the operator u (t) on the vector
y (t).

Formally, we could repeat all the steps described in the scalar case,
arriving at the same formula (1.3), which we now write as

(1.5) y (t) =
(
e
∫
u(t)dt

)(∫ (
e−

∫
u(t)dt

)
(v (t)) dt+ C

)
,

where the constant should be any vector in X. We would want the inte-
grating factor e−

∫
u(t)dt to be a continuous function, with one continuous

derivative, defined on the interval [a, b] with values in L (X). So, our
first order of business is to justify each of the operations involved in
(1.5).

Before all else, we need antiderivatives of the functions t → u (t) and
t → −u (t). If the concepts of Calculus still apply to the vector case,
these antiderivatives should be integrals. So, we need to define, in some
sense, the integral of a function with values in a real Banach space.
Since all the functions involved are continuous, it will be unnecessary to
invoke advanced integration methods, such as the Bochner integral (see,
for instance, [6, pp. 78-89]), which is based on the Lebesgue integral.
As, we will see in the next section, an integral à la Cauchy-Riemann will
serve us well.

2. A Cauchy-Riemann Integral With Values in a Real
Banach Space

Let us begin by observing that the function v (t) in (1.4), being con-
tinuous on the compact set [a, b], is uniformly continuous and bounded.
The uniform continuity is proved in the same manner as in the case of
a function with real values (see, for instance, [5, p. 95, Theorem 3.8]),
replacing the absolute value with the norm in the Banach space X. As
for the boundedness, if we follow the proof, for instance in [5, p. 96,
Theorem 3.9], a small modification will make it work in the vector case.
In fact, we already know that v (t) is uniformly continuous. In particu-
lar, there is δ > 0 such that |t− s| < δ implies ∥v (t)− v (s)∥X < 1. We
now subdivide the interval [a, b] in a finite number of non overlapping
intervals, that is to say, having no more than one point in common,

(2.1) [s0, s1] , [s1, s2] , . . . , [sn−1, sn] ,

with s0 = a, sn = b and length < δ. Then, if t ∈ [a, b], we must
have t ∈ [sj−1, sj ] for some j, so ∥v (t)− v (sj)∥X < 1. That is to
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say, ∥v (t)∥X < 1 + ∥v (sj)∥X ≤ 1 + maxj ∥v (sj)∥X , which shows that
the function v (t) is bounded. Of course, these properties hold for any
continuous function from [a, b] into any Banach space.

We are ready now to build the Cauchy-Riemann integral of a contin-
uous function defined on a real interval [a, b] with values on an arbitrary
real Banach space, say X, which, when necessary, will be the space
L (X) of operators. The same method presented in any Calculus book
will give us such an integral. However, as is very well argued, for in-
stance in [1, pp. 330], the nature of the limiting process involved is not
quite straightforward. So, we will take this opportunity to sketch the
construction of the integral in a rigorous manner, using a few topological
tools. Of course, the construction will work mutatis mutandis when the
function takes real values.

We begin with the following definition:

Definition 2.1 ([8], p. 79). A subdivision S of the interval [a, b] is a
finite family of closed non overlapping subintervals covering the interval.
With |I| we denote the length of an interval I in the subdivision. The
mesh of the subdivision, denoted by ∥S∥, is maxI∈S |I|. For instance,
the subintervals in (2.1) are a subdivision with mesh < δ.

We indicate by S the family of all the possible subdivisions of [a, b].
Finally, to each S ∈ S we associate an arbitrary function c : S → [a, b],
such that c (I) ∈ I, which we will call it the tag of S.

For a fixed function f : [a, b] → X, we can now write down the
Riemann sum relative to a subdivision S with tag c as

(2.2) R (S; c) =
∑
I∈S

|I| f (c (I)) .

We will show that, when f is continuous, the sums R (S; c) will con-
verge, in some sense, to a unique vector in X, the sense of this con-
vergence being the so called Moore-Smith convergence, which we now
explain, in a very simplified version adapted from [8]. For a more in
depth discussion, see [2] and the references therein.

Let us recall that a sequence is a function defined on the set of natural
numbers. Since {R (S; c)}S is a function defined on S, with values in
X, to talk about convergence we need to have in S a version of “for all
n ≥ N”. This is done by defining in S a relation, denoted ≥, as follows:

Definition 2.2. Given two subdivisions S, S′ ∈ S, we say that S ≥ S′

if S is a refinement of S′. That is to say, if each subinterval of S is
contained in a subinterval of S′.

This relation is reflexive (S ≥ S), transitive (S ≥ S′ and S′ ≥ S′′

imply S ≥ S′′) and, moreover, it satisfies the following property:
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Given two subdivisions S′, S′′ ∈ S, there is a subdivision S ∈ S such
that S ≥ S′ and S ≥ S′′.

A relation ≥ with these three properties is said to direct the set S.
The pair (S,≥) is then called a directed set, allowing us to think of the
sums {R (S; c)}S as a generalized sequence or net.

Definition 2.3. The net {R (S; c)}S is a Cauchy net in X if, for each
ε > 0, there is Sε ∈ S so that∥∥R (S; c)−R

(
S′; c′

)∥∥
X

< ε,

for all S, S′ ≥ Sε and for all the tags c and c′.
The net {R (S; c)}S converges to A ∈ X if, for each ε > 0, there is

Sε ∈ S so that

∥R (S; c)−A∥X < ε,

for all S ≥ Sε and for all the tags c.

As a direct consequence of this definition, when the vector A exists,
it is uniquely determined.

Theorem 2.4 ([8], p. 193, Theorem 24). In a complete metric space,
that is to say a metric space where every Cauchy sequence converges, it
is also true that every Cauchy net converges.

So, to prove that the net {R (S; c)}S given by (2.2) converges in X,
when the function f is continuous, it will suffice to show that it is Cauchy.

If this is the case, the limit of the net will be denoted by
∫ b
a f (t) dt and

we will say that the integral has been constructed by refinement.

Proposition 2.5. If f : [a, b] → X is continuous, the net {R (S; c)}S is
Cauchy.

Proof. Since we know that f is uniformly continuous, given ε > 0 there
is δ > 0 such that ∥f (t)− f (s)∥X < ε for |t− s| < δ, t, s ∈ [a, b].

Let us fix a subdivision Sδ of [a, b] with ∥Sδ∥ < δ and, to simplify
the notation, let us assume that S is a refinement of Sδ generated by
splitting the first interval of Sδ into two. That is to say, if the intervals
in Sδ have end points a = t0 < t1 < · · · < tn = b, then the intervals in
S have end points a = t0 < z < t1 < · · · < tn = b. We can write

R (Sδ; cδ) =
∑
I∈Sδ

|I| f (cδ (I))

=

n∑
i=1

f (σi) (ti − ti−1) ,
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where σ1, . . . , σn are the values of any tag cδ associated with Sδ. Like-
wise,

R (S; c) =
∑
J∈S

|J | f (c (J))

= f (µ1) (z − t0) + f (µ2) (t1 − z) +

n∑
i=2

f (λi) (ti − ti−1) ,

where µ1, µ2, λ2, . . . , λn are the values of any tag c associated with S.
Then,

R (S; c)−R (Sδ; cδ) = f (µ1) (z − t0) + f (µ2) (t1 − z)

− f (σ1) (z − t0 + t1 − z)

+

n∑
i=2

(f (λi)− f (σi)) (ti − ti−1)

= (f (µ1)− f (σ1)) (z − t0) + (f (µ2)− f (σ1)) (t1 − z)

+

n∑
i=2

(f (λi)− f (σi)) (ti − ti−1) .

Using the uniform continuity of f , we have

∥R (S; c)−R (Sδ; cδ)∥X ≤ ε

[
(z − t0) + (t1 − z) +

n∑
i=2

(ti − ti−1)

]
= ε (b− a) .

If we assume that S′ is another subdivision, also obtained when the
first interval of Sδ is splitted into two, then

R
(
S′; c′

)
−R (Sδ; cδ) = f

(
µ′
1

) (
z′ − t0

)
+ f

(
µ′
2

) (
t1 − z′

)
− f (σ1)

(
z′ − t0 + t1 − z′

)
+

n∑
i=2

(
f
(
λ′
i

)
− f (σi)

)
(ti − ti−1)

=
(
f
(
µ′
1

)
− f (σ1)

) (
z′ − t0

)
+
(
f
(
µ′
2

)
− f (σ1)

) (
t1 − z′

)
+

n∑
i=2

(
f
(
λ′
i

)
− f (σi)

)
(ti − ti−1) .
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Thus,∥∥R (S′; c′
)
−R (Sδ; cδ)

∥∥
X

≤ ε

[(
z′ − t0

)
+
(
t1 − z′

)
+

n∑
i=2

(ti − ti−1)

]
= ε (b− a) .

Finally, ∥∥R (S′; c′
)
−R (S; c)

∥∥
X

≤ 2ε (b− a) .

If S and S′ were arbitrary refinements of Sδ, we would need to repeat
the calculations above, as many times as necessary. Although the idea
is simple, the writing becomes involved, so we will say no more.

This completes the proof. □

Rounding up this brief presentation of the integral, we will state now
several properties to be used later. The proof of the first four can be
easily adapted from [6, pp. 63-65, Theorem 3.3.2 and Corollary 1]. As
for the last property, the proof follows step by step the case of a function
with real values (see, for instance, [5, p. 160, Theorem 5.14]), replacing
the absolute value with the norm in X.

Proposition 2.6. Let X be a real Banach space and let f (t) and g (t)
be continuous functions from [a, b] to X. Then,

(i) For all α, β ∈ R∫ b

a
[αf (t) + βg (t)] dt = α

∫ b

a
f (t) dt+ β

∫ b

a
g (t) dt.

(ii) If a < z < b,∫ b

a
f (t) dt =

∫ z

a
f (t) dt+

∫ b

z
f (t) dt.

(iii) ∥∥∥∥∫ b

a
f (t) dt

∥∥∥∥
X

≤ (b− a) sup
a≤t≤b

∥f (t)∥X .

(iv) If T ∈ L (X),

T

(∫ b

a
f (t) dt

)
=

∫ b

a
T (f (t)) dt.

(v) The function

t →
∫ t

a
f (s) ds

is continuous and has a continuous derivative, equal to f (t),
for each t ∈ [a, b].



122 J. ALVAREZ, C. ESPINOZA-VILLALVA, AND M. GUZMÁN-PARTIDA

Property (v) shows that the function t →
∫ t
a f (s) ds is an antideriva-

tive of the function f (t). Furthermore, it is still true in the vector case
that if g1 and g2 are antiderivatives of f , then the difference g1 − g2 is
constant on [a, b] (see [4, p. 160, 8.7.1]).

Our next step in justifying (1.5) as the general solution of (1.4), will
be to study the exponential function.

3. The Exponential Function

Given a function f : [a, b] → L (X), we denote by f j (t) the composi-
tion

(f (t)) ◦ (f (t)) ◦ · · · ◦ (f (t))︸ ︷︷ ︸
j times

,

in the Banach algebra L (X) (see, for instance, [6, p. 51]). It is under-
stood that f j (t) = I, the identity operator in L (X), when j = 0.

The proof of the following lemma uses basic properties of the norm
in L (X) and it will be omitted:

Lemma 3.1. The series
∑
j≥0

fj(t)
j! converges in L (X) for each t ∈ [a, b].

Definition 3.2. For each t ∈ [a, b], the exponential ef(t) is the operator
in L (X) defined as

ef(t) =
∑
j≥0

f j (t)

j!
.

Lemma 3.3. The operator ef(t) is invertible in L (X) with inverse

e−f(t) =
∑
j≥1

(−1)j
f j (t)

j!
.

Proof. We have to prove that

(3.1) e−f(t) ◦ ef(t) = ef(t) ◦ e−f(t) = I.

In fact,
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e−f(t) ◦ ef(t) =

∑
j≥0

(−1)j
f j (t)

j!

 ◦

∑
l≥0

f l (t)

l!


=
∑
k≥0

∑
j+l=k

(−1)j
(
f j (t)

)
◦
(
f l (t)

)
j!l!

=
∑
k≥0

fk (t)

k!

k∑
j=0

(−1)j
k!

j! (k − j)!

=
∑
k≥0

fk (t)

k!
(1 + (−1))k = I,

and the proof of the other part of (3.1) is similar.
This completes the proof. □

Other algebraic properties will have expected from the exponential
are true as well, sometimes under certain assumptions. For instance, if
f (t) and g (t) commute for each t ∈ [a, b], then

ef(t) ◦ eg(t) = ef(t)+g(t).

Lemma 3.4. If the function f : [a, b] → L (X) is continuous, then the

exponential t → ef(t) is continuous as well, from [a, b] to L (X).

Proof. For t, s ∈ [a, b],

ef(t) − ef(s) =
∑
j≥1

f j (t)− f j (s)

j!
.

The identity

f j (t)− f j (s) =

j∑
l=1

(
f j−l (t)

)
◦ (f (t)− f (s)) ◦

(
f l−1 (s)

)
,

can be easily verified by performing the operations indicated in the right
hand side. Since∣∣∣∥f (t)∥L(X) − ∥f (s)∥L(X)

∣∣∣ ≤ ∥f (t)− f (s)∥L(X) ,

the real function t → ∥f (t)∥L(X) is continuous, and bounded, on [a, b].

Thus, there exists M > 0 so that∥∥f j (t)− f j (s)
∥∥
L(X)

≤ jM j−1 ∥f (t)− f (s)∥L(X) ,

and ∥∥∥ef(t) − ef(s)
∥∥∥
L(X)

≤ eM ∥f (t)− f (s)∥L(X) ,
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which shows that the exponential function is continuous, and also uni-
formly continuous, on [a, b].

This completes the proof. □
Proposition 3.5. If the function f : [a, b] → L (X) is differentiable,

then the exponential t → ef(t) is also differentiable from [a, b] to L (X).
Moreover,

(3.2)
d

dt
ef(t) =

∑
j≥1

1

j!

j∑
l=1

(
f j−l (t)

)
◦
(
f ′ (t)

)
◦
(
f l−1 (t)

)
,

which reduces to the usual formula,

(3.3)
d

dt
ef(t) = ef(t) ◦

(
f ′ (t)

)
,

when f (t) and f ′ (t) commute. If this is the case, we can also write

(3.4) ef(t) ◦
(
f ′ (t)

)
=
(
f ′ (t)

)
◦ ef(t).

Proof. If f (t) and f ′ (t) commute for each t ∈ [a, b], it should be clear
that the right hand side of (3.2) reduces to the right hand side of (3.3).
Moreover, the equality (3.4) holds. So, we are left to prove (3.2). We
begin by writing

ef(s) − ef(t)

s− t
=
∑
j≥1

1

j!

j∑
l=1

(
f j−l (s)

)
◦
(
f (s)− f (t)

s− t

)
◦
(
f l−1 (t)

)
.

Next, we claim that we can take the limit in L (X), as s → t, obtaining

d

dt
ef(t) =

∑
j≥1

1

j!

j∑
l=1

(
f j−l (t)

)
◦
(
f ′ (t)

)
◦
(
f l−1 (t)

)
.

To justify the existence of the limit, we reason as follows:
For a fixed t ∈ [a, b] and s ∈ [a, b], we define the function Ft : [a, b] →

L (X) as

Ft (s) =

{
f(s)−f(t)

s−t
f ′ (t)

if s ̸= t,
if s = t.

This function is continuous from [a, b] to L (X). Likewise, if we consider

Gt,j (s) =
1

j!

j∑
l=1

(
f j−l (s)

)
◦ (Ft (s)) ◦

(
f l−1 (t)

)
,

the function Gt,j : [a, b] → L (X) is also continuous.
We claim that the series

∑
j≥1Gt,j (s) converges in L (X), uniformly

with respect to s ∈ [a, b]. To prove this claim, we will invoke the vector
version of the so called Weierstrass criterion (see, for instance, [5, p. 219,
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Theorem 7.2]), asserting that the series will converge in L (X), uniformly
with respect to s in [a, b], if

sup
a≤s≤b

∥Gt,j (s)∥L(X) ≤ Mt,j ,

and the series
∑

j≥1Mt,j converges in R, for a fixed values of t ∈ [a, b].

Since the function Ft (s) is continuous, there is Ct > 0 such that

sup
a≤s≤b

∥Ft (s)∥L(X) ≤ Ct.

Then,

∥Gt,j (s)∥L(X) ≤
Ct

j!

j∑
l=1

∥∥∥f j−l (s)
∥∥∥
L(X)

∥∥∥f l−1 (t)
∥∥∥
L(X)

≤ Ct

(j − 1)!

(
sup

a≤s≤b
∥f (s)∥L(X)

)j−1

,

so, the numbers Mt,j exist. As a consequence, there exists

lim
s→t

∑
j≥1

Gt,j (s) =
∑
j≥1

(
f j−l (t)

)
◦
(
f ′ (t)

)
◦
(
f l−1 (t)

)
.

Finally, since for s ̸= t we have the equality

ef(s) − ef(t)

s− t
=
∑
j≥1

Gt,j (s) ,

we must have

lim
s→t

ef(s) − ef(t)

s− t
= lim

s→t

∑
j≥1

Gt,j (s) .

That is to say, we get (3.2).
This completes the proof. □

Proposition 3.5 implies that, as we take the derivative of the function
y (t) in (1.5), we will be able to use the chain rule, that is to say,

d

dt
e
∫
u(t)dt =

(
e
∫
u(t)dt

)
◦ (u (t)) ,

if u (t) and
∫
u (t) dt commute.

Let us see now a couple of examples illustrating this situation.

Example 3.6. We consider the function u (t) = α (t)T , where α :
[a, b] → R is continuous with a continuous derivative, and T ∈ L (X).
Since

∥u (s)− u (t)∥L(X) = |α (s)− α (t)| ∥T∥L(X) ,
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the function u : [a, b] → L (X) is continuous. Thus, the function

w (t) =

∫ t

a
u (s) ds =

(∫ t

a
α (s) ds

)
T = β (t)T,

is an antiderivative of u. We claim that u (t) and w (t) commute, for
each t ∈ [a, b]. In fact,

(u (t)) ◦ (w (t)) = (α (t)T ) ◦ (β (t)T )

= (α (t)β (t)) (T ◦ T )
= (w (t)) ◦ (u (t)) .

Let us observe that our example includes the constant coefficient case,
when α (t) = 1 for all t ∈ [a, b]. In this case, we can choose as integrating
factor,

µ (t) = e−tu,

for t ∈ [a, b]. The function µ : [a, b] → L (X) is continuous and it has a
derivative. Moreover,

(3.5) µ′ (t) = − (µ (t)) ◦ u,
so, µ′ (t) is continuous .

As for (1.5), we have to consider
∫ t
a (e

−su) (v (s)) ds. The function
to be integrated is continuous from [a, b] to X, so the integral exists.
Moreover,

d

dt

∫ t

a

(
e−su

)
(v (s)) ds =

(
e−tu

)
(v (t)) .

Finally, using (iv) in Proposition 2.6, we can conclude that

(3.6) y (t) =

∫ (
e(t−s)u

)
(v (s)) ds+

(
etu
)
(C) ,

is the general solution of (1.4).
In the same way, we can justify the operations in (1.5), any time that

u (t) and
∫ t
a u (s) ds commute.

Our next example will show that they can not always commute.

Example 3.7. We pick a real and separable Hilbert space H, denoting
{xj}j≥1 as an orthonormal basis (see, for instance, [10, Section 5.17, p.

305]). If t ∈ [0, 1] and

x =
∑
j≥1

αjxj ,

we define

(3.7) (u (t)) (x) =
∑
j≥1

αj

(t+ j)2
xj+1.
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Since ∑
j≥1

α2
j

(t+ j)4
≤
∑

j≥1
α2
j ,

then (3.7) defines, for each t ∈ [0, 1], an operator in L (H) with ∥u (t)∥L(H) ≤
1. This operator is a modification of the left-shift operator Tl (see, for
instance, [10, p. 422, Example 5]), defined as

Tl

∑
j≥1

αjxj

 =
∑
j≥1

αjxj+1.

We claim that the function u : [0, 1] → L (H) given by (3.7), is con-
tinuous. Indeed, if we fix s, t ∈ [0, 1], we can write∣∣∣∣ 1

(s+ j)2
− 1

(t+ j)2

∣∣∣∣ = |s− t| t+ s+ 2j

(s+ j)2 (t+ j)2

≤ 2
j + 1

j4
|s− t| ≤ 4 |s− t| .

So, for a fixed x ∈ H, we have

∥(u (s)) (x)− (u (t)) (x)∥2H =
∑
j≥1

α2
j

(
1

(s+ j)2
− 1

(t+ j)2

)2

≤ 16 (s− t)2 ∥x∥2H .

That is to say,

∥u (s)− u (t)∥L(H) = sup
∥x∥H≤1

∥(u (s)− u (t)) (x)∥H

≤ 4 |s− t| .

So, the function u : [0, 1] → L (H) is continuous.
Let us consider next

(w (t)) (x) = −
∑

j≥1

αj

t+ j
xj+1.

Then,

∥(w (t)) (x)∥2H =
∑
j≥1

α2
j

(t+ j)2
≤
∑
j≥1

α2
j = ∥x∥2H ,

which tells us that w (t) ∈ L (H) for each t ∈ [0, 1]. Moreover, the
function w : [0, 1] → L (H) is continuous as well, the proof is similar to
the way we proved the continuity of u (t). Now, we want to show that
w (t) is an antiderivative of u (t). To this purpose, we fix x ∈ H and
write

(w (s)) (x)− (w (t)) (x)

s− t
− (u (t)) (x)
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=
∑
j≥1

αj

s− t

(
− 1

s+ j
+

1

t+ j
− s− t

(t+ j)2

)
xj+1.

A few algebraic manipulations will show that

1

s− t

(
− 1

s+ j
+

1

t+ j
− s− t

(t+ j)2

)
=

t− s

(s+ j) (t+ j)2
.

As a consequence,∥∥∥∥(w (s)) (x)− (w (t)) (x)

s− t
− (u (t)) (x)

∥∥∥∥2
H

≤ (t− s)2 ∥x∥2H .

That is to say,

lim
s→t

∥∥∥∥w (s)− w (t)

s− t
− u (t)

∥∥∥∥
L(H)

= 0.

We contend that, for a fixed t ∈ [0, 1], the operators u (t) and w (t)
do not commute. In fact,

((w (t)) ◦ (u (t))) (x) = (w (t))

∑
j≥1

βt
jxj

 ,

where

βt
j =

{
0

αj−1

(t+j−1)2

j = 1
j ≥ 2

.

So,

((w (t)) ◦ (u (t))) (x) = −
∑
j≥1

βt
j

t+ j
xj+1

= −
∑
j≥2

αj−1

(t+ j − 1)2 (t+ j)
xj+1

= −
∑
j≥1

αj

(t+ j)2 (t+ j + 1)
xj+2.

However, a similar calculation will show that

((u (t)) ◦ (w (t))) (x) = −
∑
j≥1

αj

(t+ j) (t+ j + 1)2
xj+2.

To conclude our exposition, we will discuss some examples.
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4. Three Illustrations of the Integrating Factor Method

First, we consider the caseX = Rn, the function u (t) being a constant
real matrix with n rows and n columns. In this case, (1.4) is a system of n
ordinary differential equations with constant coefficients, in n unknowns.
As we observed in Example 3.6, the formula (1.5) reduces to (3.6). That
is to say,

(4.1) y (t) =

∫ (
e(t−s)u

)
(v (s)) ds+

(
etu
)
(C) ,

for any C ∈ Rn.
The difficulty with this formula is having to deal with the convergence

of the series defining each exponential and then, describing the entries of
the resulting matrices. However, if the matrix u is diagonalizable, (4.1)
has an explicit form. Let us recall that a matrix u is diagonalizable if
(see, for instance, [9, p. 507]) there is a non singular matrix p and a
diagonal matrix d such that

(4.2) p−1up = d.

There are simple conditions that characterize a diagonalizable matrix
(see, for instance, [9, p. 512]).

From (4.2), we can write

etu = etpdp
−1

=
∑
j≥0

tj

j!

(
pdp−1

)j
.

Let us observe that(
pdp−1

) (
pdp−1

)
= pdp−1pdp−1 = pd2p−1,

and inductively, (
pdp−1

)j
= pdjp−1,

for all j ≥ 1. Then,

etu =
∑
j≥0

tj

j!
pdjp−1 = petdp−1.

Using its series representation, we can see that etd is a diagonal matrix,
which shows that etu is diagonalizable. Then, (4.1) can be written as

y (t) =

∫ (
pe(t−s)dp−1

)
(v (s)) ds+ petdp−1C,

for any C ∈ Rn.
Finally, since d is a diagonal matrix, we do not need to use the series to

define etd. Instead, we can use the eigenvalues λ1, . . . , λn of the matrix u,
counted with their multiplicity. In fact (see, for instance, [9, p. 525]), etd

is the diagonal matrix with the values etλ1 , . . . , etλn along the diagonal.
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As a consequence, these values turn out to be the eigenvalues of etd.
Much can be said about the computational aspects of our calculations,
and about extensions to non diagonalizable matrices (see, for instance,
[9, pp. 528 and 599]).

In our second illustration, the Banach space X is the Hilbert space
l2 = l2 (N) of those real sequences that are square summable, with the
norm associated to its inner product ⟨, ⟩l2 (see, for instance, [10, p. 280,
Example 9]).

We fix an operator u ∈ L
(
l2
)
that we assume to be self adjoint and

compact (see, for instance, [11, pp. 188 and 190]). The spectral theorem
(see, for instance, [11, p. 190, Theorem 6.2]) assures the existence of an
orthonormal basis {fn}n≥1 of l

2 and a sequence of real numbers {λn}n≥1

converging to zero, such that u (fn) = λnfn for each n ∈ N. That is
to say, the basis consists of the eigenvectors of u associated with its
eigenvalues {λn}n≥1. Since(

etu
)
(fn) =

∑
j≥0

tj

j!

(
uj
)
(fn)

=
∑
j≥0

tjλj
n

j!
fn

=
(
etλn

)
(fn) ,

we can see that, for each x ∈ l2,

x =
∑
n≥1

αnfn,

we have (
etu
)
(x) =

∑
n≥1

αne
tλnfn.

The operator etu is not compact because the sequence
{
etλn

}
n≥1

of its

eigenvalues, does not converge to zero as n → ∞ (see, for instance, [11,
p. 190, Theorem 6.2]).

Given the continuous function v : [a, b] → l2 in (4.1), the properties
of the inner product imply that

v (t) =
∑
n≥1

vn (t) fn,

with vn (t) = ⟨v (t) , fn⟩l2 is continuous from [a, b] to R. Moreover, if

C =
∑
n≥1

cnfn
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for any sequence {cn}n≥1 ∈ l2, then we can write (4.1) as

y (t) =
∑
n≥1

(∫
vn (s) e

(t−s)λnds

)
fn +

∑
n≥1

cne
tλnfn.

For our third and last illustration, we assume that the real Banach
space X has a basis {xn}n≥1. That is to say, for each x ∈ X there exists

a unique sequence {αn}n≥1 of real numbers, so that x =
∑

n≥1 αnxn.
As typical examples of this situation, we mention the sequence spaces
lp = lp (N), for 1 ≤ p < ∞, and the space C [a, b] of the real continuous
functions on [a, b] (see, for instance, [7, p. 625]). This reference, [7],
gives an excellent, short presentation on the subject of bases in a Banach
space.

The uniqueness condition on the coefficients {αn}n≥1 implies that,

for each n ≥ 1, the functional ln (x) = αn is well defined and linear.
Moreover (see, for instance, [7, p. 627]), there exists C > 0, actually
independent of n, so that

(4.3) |ln (x)| ≤ C ∥x∥X ,

showing that ln is bounded, or continuous, on X, for all n ≥ 1.
Let us now assume that u ∈ L (X) is the projection onto a non trivial

subspace of X (see, for instance, [10, p. 201]). Then, u2 = u and,
consequently, uj = u for every j ≥ 1. Thus,(

etu
)
(xn) =

∑
j≥0

tj

j!

(
uj
)
(xn)

= xn +
(
et − 1

)
u (xn) ,

and (
etu
)
(x) =

∑
n≥1

αn

(
xn +

(
et − 1

)
u (xn)

)
=
(
I +

(
et − 1

)
u
)
(x) .

Given the continuous function v (t) in (4.1), the estimate (4.3) implies
that

v (t) =
∑
n≥1

ln (v (t))xn =
∑
n≥1

vn (t)xn,

with vn : [a, b] → R is continuous. So, finally, (4.1) can be written as

y (t) =
∑
n≥1

∫
vn (s)

(
xn +

(
et−s − 1

)
u (xn)

)
ds+ C +

(
et − 1

)
u (C) ,

for any C ∈ X.
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