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G-dual Frames in Hilbert C∗-module Spaces

Fatemeh Ghobadzadeh1 and Abbas Najati2∗

Abstract. In this paper, we introduce the concept of g-dual frames
for Hilbert C∗-modules, and then the properties and stability results
of g-dual frames are given. A characterization of g-dual frames,
approximately dual frames and dual frames of a given frame is es-
tablished. We also give some examples to show that the charac-
terization of g-dual frames for Riesz bases in Hilbert spaces is not
satisfied in general Hilbert C∗-modules.

1. Introduction

Let A be a C∗-algebra. A left pre Hilbert C∗-module H over A (or
a pre Hilbert A-module) is a linear space which is a left A-module to-
gether with an A-valued inner product ⟨., .⟩ : H×H → A with following
properties:

(i) ⟨x, x⟩ ≥ 0, x ∈ H;
(ii) ⟨x, x⟩ = 0 implies that x = 0;
(iii) ⟨αx+ y, z⟩ = α ⟨x, z⟩+ ⟨y, z⟩, α ∈ C and x, y, z ∈ H;
(iv) ⟨ax, y⟩ = a ⟨x, y⟩, x, y ∈ H and a ∈ A;
(v) ⟨x, y⟩ = ⟨y, x⟩∗, x, y ∈ H.

We set ∥x∥2H = ∥ ⟨x, x⟩ ∥A for each x ∈ H. Then ∥.∥H is a norm on H
and satisfies the following properties:

(i) ∥ax∥H ≤ ∥a∥∥x∥H, a ∈ A and x ∈ H;
(ii) ⟨x, y⟩ ⟨y, x⟩ ≤ ∥y∥2H ⟨x, x⟩, x, y ∈ H;
(iii) ∥ ⟨x, y⟩ ∥ ≤ ∥x∥H∥y∥H, x, y ∈ H;
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(see [13]). A pre-Hilbert A-module H is called a Hilbert A-module (or
a Hilbert C∗-module over A) if it is complete with respect to the norm
∥.∥H. For example, the C∗-algebra A is a Hilbert A-module with the
A-valued inner product of elements a, b ∈ A defined by ⟨a, b⟩ := ab∗.
In this paper, we deal with finitely or countably generated Hilbert C∗-
modules. A Hilbert A-module H is called finitely generated if there
exists a finite set F ⊆ H such that H equals the linear span (over C and
A) of this set. A Hilbert A-module H is called countably generated if
there exists a countable set F ⊆ H such that H equals the norm-closure
of the linear span (over C and A) of this set. For a unital C∗-algebra A
and a countable set I of indices,

ℓ2(A) =

{
{ai}i∈I ⊆ A :

∞∑
i=1

aia
∗
i converges in norm

}
,

is a Hilbert A-module with the inner product

⟨{ai}i, {bi}i⟩ =
∞∑
i=1

aib
∗
i .

The set {ei : i ∈ I} that each ei takes 1A in i and 0A everywhere else,
is a generating set for ℓ2(A) and it is called the standard orthonormal
basis of ℓ2(A).

For Hilbert C∗-modules V and W , a map T : V → W is called
adjointable if there is a map T ∗ :W → V such that

⟨Tx, y⟩ = ⟨x, T ∗y⟩ , x ∈ V, y ∈W.

It is easy to see that every adjointable operator is A-linear and bounded.
The converse is true in Hilbert spaces: every bounded operator is ad-
jointable. But this is no longer true in Hilbert C∗-modules. We denote
by L(V,W ) the set of all adjointable maps from V toW . In fact, L(V,W )
is a Banach space with respect to the operator norm. Moreover, L(V, V )
is a C∗-algebra and we will denote it by L(V ). Note that the theory of
Hilbert C∗-modules is quite different from that of Hilbert spaces. For
more details about Hilbert C∗-modules we refer the reader to [13].

Proposition 1.1 ([16]). Let A be a C∗-algebra. If a, b ∈ A are self-
adjoint and c ∈ A, then a ≤ b implies c∗ac ≤ c∗bc.

Frames in a Hilbert space can be viewed as redundant bases which
are generalization of orthonormal bases. Indeed, frames are a tool for
the construction of series expansions in Hilbert spaces. Frames were
introduced by Duffin and Schaeffer [5] in 1952 for separable Hilbert
spaces to deal with some problems in nonharmonic Fourier analysis.
Hilbert C∗-module frames are generalization of Hilbert space frames.
Frank and Larson [6, 7] extended theory of frames known for (separable)
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Hilbert spaces to similar sets in C∗-algebras and (finitely and countably
generated) Hilbert C∗-modules. However, some properties of frames
in Hilbert spaces hold also for Hilbert C∗-modules and often require
different proofs. Moreover, there are many essential differences between
Hilbert space frames and Hilbert C∗-module frames. It is known that
every Hilbert space admits a frame while it has shown in [14] that not
every Hilbert C*-module admits a frame. By Kasparov Stabilization
Theorem, we infer that every finitely or countably generated Hilbert
C∗-module has a frame (see [6]), so in this paper, we consider Hilbert
C∗-modules which are finitely or countably generated. For more details
on these topics we refer to [8, 10, 14, 17–19].

Throughout the paper H denotes a Hilbert C∗-module, A denotes a
unital C∗-algebra, and I is a finite or countable index set. The notations
Φ,Ψ and Γ are used to denote the sequences {φi}i∈I , {ψi}i∈I and {γi}i∈I
in H, respectively. We now introduce the definition of frames in Hilbert
C∗-modules.

Definition 1.2. A sequence Φ is called a (standard) frame for H if there
exist constants 0 < A ≤ B such that

(1.1) A ⟨h, h⟩ ≤
∑
i∈I

⟨h, φi⟩ ⟨φi, h⟩ ≤ B ⟨h, h⟩ , h ∈ H,

where the sum in the middle of the inequality is convergent in norm.

The constants A,B are called the lower and upper frame bounds,
respectively. IfA = B, the frame Φ is called a tight frame and ifA = B =
1, it is called a normalized tight frame or Parseval frame. A sequence
Φ is called a (standard) Bessel sequence for H if the right inequality in
(1.1) is required.

If Φ is a Bessel sequence for a Hilbert A-module H, then the operator

TΦ : ℓ2(A) → H, TΦ ({ai}i∈I) =
∑
i∈I

aiφi,

is well defined, adjointable and bounded. The operator TΦ is called the
synthesis operator. The adjoint operator of TΦ is given by

UΦ = T ∗
Φ : H → ℓ2(A), UΦ(h) = {⟨h, φi⟩}i∈I ,

and is called the analysis operator. By composing TΦ with its adjoint
T ∗
Φ we obtain the frame operator

SΦ : H → H, SΦ(h) = TΦUΦ(h) =
∑
i∈I

⟨h, φi⟩φi.

The frame operator SΦ is a positive operator and will be invertible if
the Bessel sequence Φ is a frame for H [6].
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Definition 1.3. A frame Φ of nonzero elements in Hilbert A-module H
is called a (standard) Riesz basis if∑

i∈J
aiφi = 0,

for J ⊆ I and ai ∈ A implies aiφi = 0 for each i ∈ J .

Assume that H is a Hilbert C∗-module and Φ is a frame for H. A
sequence Ψ in H is said to be a dual sequence of Φ if

h =
∑
i∈I

⟨h, ψi⟩φi,

holds for all h ∈ H. Since SΦ is invertible, we have

h = SΦS
−1
Φ h =

∑
i∈I

⟨
h, S−1

Φ φi

⟩
φi, h ∈ H.

Then {S−1
Φ (φi)}i∈I is a dual of Φ. This dual is called the canonical dual

frame of Φ and is denoted by Φ̃. We will use the following results in this
paper.

Proposition 1.4 ([10]). Let H be a Hilbert A-module and Φ, Ψ be two
Bessel sequences in H. If

h =
∑
i∈I

⟨h, ψi⟩φi,

holds for all h ∈ H, then both Φ and Ψ are frames of H and

h =
∑
i∈I

⟨h, φi⟩ψi,

holds for all h ∈ H.

Theorem 1.5. [10] Let H be a Hilbert C∗-module and Φ be a frame
for H with analysis operator UΦ. Then the following statements are
equivalent:

(i) Φ has a unique dual frame;
(ii) UΦ is onto and therefore it is invertible;
(iii) TΦ is injective and therefore it is an invertible operator.

If each of the equivalent conditions is satisfied, Φ will be a Riesz basis
for H.

2. g-dual Frames

The concept of g-dual frame for Hilbert spaces was introduced by
Dehghan and Hasankhanifard in [3]. They also presented g-duals for
L2(0,∞) [11]. This concept extended to generalized frames by Dengfeng
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and Yanting [4]. In this section, we introduce g-dual frames for a given
frame in Hilbert C∗-modules and express some results about them.

Definition 2.1. Let Φ be a Bessel sequence for a Hilbert C∗-module
H. A Bessel sequence Ψ in H is called a generalized dual of Φ if TΦUΨ

is invertible.

If we set G = (TΦUΨ)
−1, then we have

h =
∑
i∈I

⟨Gh,ψi⟩φi,

for each h ∈ H. Since TΦUΨ is adjointable, G will be adjointable and
we have

h =
∑
i∈I

⟨h,G∗ψi⟩φi,

for every h ∈ H. Because {G∗ψi}i∈I and {φi}i∈I are Bessel sequences,
by Proposition 1.4, they will be frames. Invertibility of G∗ implies that
Ψ is a frame for H. From now on, we use g-dual frame for generalized
dual sequence. If Ψ is a g-dual frame of Φ, then the operators TΦUΨ

and TΨUΦ are invertible. This implies that Φ is also a g-dual frame of
Ψ. Since TΦUΦ = SΦ is invertible, every frame Φ is a g-dual frame of
itself. If Φd is a dual frame of Φ, we have TΦUΦd = IdH. So every dual
frame of a frame is a g-dual frame of it.

Another concept that is related to this discussion is the approximately
dual frames. Approximately dual frames were introduced by Christensen
and Laugesen [2] for separable Hilbert spaces and were extended to
Hilbert C∗-modules by Mirzaee [15]. Recall that two Bessel sequences Φ
and Ψ of Hilbert C∗-module H are called approximately dual frames if
∥TΦUΨ−IdH∥ < 1 or ∥TΨUΦ−IdH∥ < 1. It is clear that approximately
dual frames are g-dual frames. Before characterizing g-dual frames we
state some results which are similar to results in g-dual frames on Hilbert
spaces. In the following proposition Z(A) = {a ∈ A : ab = ba,∀b ∈ A}
is the center of A.

Proposition 2.2. Let Φ be a frame for a Hilbert A-module H and Ψ be
a g-dual frame of Φ with (TΦUΨ)

−1 = G. If SΦ is the frame operator of
Φ and a ∈ Z(A), then the sequence

Ψa =
{
aψi + (1A − a)

(
G−1

)∗
S−1
Φ φi

}
i∈I

,

is a g-dual frame of Φ with (TΦUΨa)−1 = G.

Proof. Since Ψ is a g-dual frame of Φ, we have

TΦUΨaGh =
∑
i∈I

⟨Gh,ψa
i ⟩φi
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=
∑
i∈I

⟨Gh, aψi⟩φi +
∑
i∈I

⟨
Gh, (1A − a)

(
G−1

)∗
S−1
Φ φi

⟩
φi

=
∑
i∈I

⟨Gh,ψi⟩ a∗φi +
∑
i∈I

⟨
Gh,

(
G−1

)∗
S−1
Φ φi

⟩
(1A − a)∗φi

= a∗
∑
i∈I

⟨Gh,ψi⟩φi + (1A − a∗)
∑
i∈I

⟨
h, S−1

Φ φi

⟩
φi

= a∗h+ (1A − a∗)h = h, h ∈ H.

Also,

GTΦUΨah = G

(∑
i∈I

⟨h, ψa
i ⟩φi

)

= G

(∑
i∈I

⟨h, aψi⟩φi

)

+G

(∑
i∈I

⟨
h, (1A − a)

(
G−1

)∗
S−1
Φ φi

⟩
φi

)

= a∗G

(∑
i∈I

⟨h, ψi⟩φi

)

+ (1A − a∗)G

(∑
i∈I

⟨
G−1h, S−1

Φ φi

⟩
φi

)
= a∗h+ (1A − a∗)h = h, h ∈ H.

Therefore TΦUΨa is invertible and (TΦUΨa)−1 = G. □

The following proposition shows that g-duality is preserved under
adjointable invertible operators.

Proposition 2.3. Let Ψ be a g-dual frame of Φ in a Hilbert C∗-module
H with (TΦUΨ)

−1 = G and E, F be two adjointable invertible oper-
ators on H. Then EΨ is a g-dual frame of FΦ with [TFΦUEΨ]

−1 =
(E∗)−1GF−1.

Proof. Since TFΦ = FTΦ and UEΨ = UΨE
∗, we have

TFΦUEΨ(E
∗)−1GF−1 = FTΦUΨE

∗(E∗)−1GF−1

= FTΦUΨGF
−1

= IdH,

and

(E∗)−1GF−1TFΦUEΨ = (E∗)−1GF−1FTΦUΨE
∗
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= (E∗)−1GTΦUΨE
∗

= IdH.

Hence EΨ and FΦ are g-dual frames. □

We can weighted Bessel sequences and verify g-duality between them.
Consider

ℓ∞(A) =

{
{ai}i∈I ⊆ A : sup

i∈I
∥ai∥ <∞

}
.

Proposition 2.4. Let Φ be a Bessel sequence for a Hilbert A-module H
with a Bessel bound B and m = {mi}i∈I ∈ ℓ∞(A). Then {miφi}i∈I is
a Bessel sequence for H.

Proof. By Proposition 1.1, we have

⟨x, φi⟩m∗
imi ⟨φi, x⟩ ≤ ⟨x, φi⟩ ∥mi∥2 ⟨φi, x⟩ ≤ ⟨x, φi⟩ ∥m∥2∞ ⟨φi, x⟩ ,

for each i ∈ I and each x ∈ H. So we get∑
i∈I

⟨x,miφi⟩ ⟨miφi, x⟩ =
∑
i∈I

⟨x, φi⟩m∗
imi ⟨φi, x⟩

≤ ∥m∥2∞
∑
i∈I

⟨x, φi⟩ ⟨φi, x⟩

≤ ∥m∥2∞B ⟨x, x⟩ ,

for each x ∈ H. □

Proposition 2.5. Let Φ, Ψ and Γ be Bessel sequences in a Hilbert A-
module H and m,m′ ∈ ℓ∞(A). Then mΨ+m′Γ is a g-dual frame of Φ
if and only if TΦUmΨ + TΦUm′Γ is invertible.

Proof. Since m,m′ ∈ ℓ∞(A), it follows from Proposition 2.4 that mΨ+
m′Γ is a Bessel sequence for H, and we have

TΦUmΨ+m′Γ(h) =
∑
i∈I

⟨
h,miψi +m′

iγi
⟩
φi

=
∑
i∈I

⟨h,miψi⟩φi +
∑
i∈I

⟨
h,m′

iγi
⟩
φi

= TΦUmΨ + TΦUm′Γ(h), h ∈ H.

This completes the proof. □

3. Characterization of g-dual Frames, Approximately Dual
Frames and Dual Frames in Hilbert C∗-modules

In this section, we characterize all g-dual frames, approximately dual
frames and dual frames of a given frame Φ in a Hilbert C∗-module H.
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For this we first introduce the following notation:

ranL(H,ℓ2(A))(TΦ) :=
{
Θ ∈ L(H, ℓ2(A)) : TΦΘ = 0

}
.

Proposition 3.1. Let Φ be a frame for a Hilbert C∗-module H. Then
we have

ranL(H,ℓ2(A))(TΦ) =
{
UF − UΦS

−1
Φ TΦUF : F is a Bessel sequence in H

}
.

Proof. First assume that F is a Bessel sequence in H, then we have

TΦUF − TΦUΦS
−1
Φ TΦUF = TΦUF − SΦS

−1
Φ TΦUF

= TΦUF − TΦUF

= 0.

So we get
UF − UΦS

−1
Φ TΦUF ∈ ranL(H,ℓ2(A))(TΦ).

Conversely, let 0 ̸= Θ ∈ ranL(H,ℓ2(A))(TΦ) and Θ∗ be the adjoint
operator of Θ. Then we have

Θ(h) = {⟨Θ(h), ei⟩}i∈I = {⟨h,Θ∗ei⟩}i∈I , h ∈ H,
where {ei}i∈I is the standard orthonormal basis of ℓ2(A). Therefore
Θ is the analysis operator of the Bessel sequence {Θ∗ei}i∈I . If we set
F = {Θ∗ei}i∈I then Θ = UF and

UF − UΦS
−1
Φ TΦUF = UF − 0 = UF = Θ.

If Θ = 0, we set F = Φ. Then the proof is completed. □
Now we characterize all g-dual frames, approximately dual frames and

dual frames of a given frame Φ. We will show that for every adjointable
invertible operator G on H we have a g-dual frame of Φ and for every
adjointable invertible operator G on H with ∥IdH −G∥ < 1 we have an
approximately dual frame of Φ.

Theorem 3.2. Let Φ be a frame for a Hilbert C∗-module H and {ei}i∈I
be the standard orthonormal basis of ℓ2(A). Then all g-dual frames of
Φ are precisely the sequences Φg such that

φg
i = (SΦG

∗)−1φi +Θ∗(ei),

where Θ ∈ ranL(H,ℓ2(A))(TΦ) and G is an invertible adjointable operator

on H. In particular, G−1 = TΦUΦg .

Proof. Suppose Φg is a g-dual frame of Φ with (TΦUΦg)−1 = G. If
we set Θ := UΦg − UΦS

−1
Φ TΦUΦg , then Proposition 3.1 implies that

Θ ∈ ranL(H,ℓ2(A))(TΦ) and

(SΦG
∗)−1φi +Θ∗ei = (G∗)−1S−1

Φ φi +
(
TΦg − TΦgUΦS

−1
Φ TΦ

)
ei

= (G∗)−1S−1
Φ φi + φg

i − TΦgUΦS
−1
Φ φi
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= (G∗)−1S−1
Φ φi + φg

i − (G∗)−1S−1
Φ φi

= φg
i .

Conversely, let Θ ∈ ranL(H,ℓ2(A))(TΦ) and G be an adjointable invertible

operator on H. Suppose that Φg is a sequence in H such that φg
i =

(SΦG
∗)−1φi +Θ∗ei. Then Φg is a Bessel sequence in H and we have

TΦUΦgGh =
∑
i∈I

⟨Gh,φg
i ⟩φi

=
∑
i∈I

⟨
Gh, (G∗)−1S−1

Φ φi

⟩
φi +

∑
i∈I

⟨Gh,Θ∗ei⟩φi

=
∑
i∈I

⟨
h, S−1

Φ φi

⟩
φi + TΦΘGh = h,

and

GTΦUΦgh = G

(∑
i∈I

⟨h, φg
i ⟩φi

)

= G

(∑
i∈I

⟨
h, (G∗)−1S−1

Φ φi

⟩
φi

)
+G

(∑
i∈I

⟨h,Θ∗ei⟩φi

)

= G

(∑
i∈I

⟨
G−1h, S−1

Φ φi

⟩
φi

)
+GTΦΘh = h,

for every h ∈ H. Then (TΦUΦg)−1 = G and Φg is a g-dual frame of
Φ. □

The proofs of the following theorems are similar to the proof of The-
orem 3.2 and we omit them.

Theorem 3.3. Let Φ be a frame for a Hilbert C∗-module H and {ei}i∈I
be the standard orthonormal basis of ℓ2(A). Then all approximately dual
frames of Φ are precisely the sequences of the form

φad
i = G∗S−1

Φ φi +Θ∗ei,

where Θ ∈ ranL(H,ℓ2(A))(TΦ) and G is an adjointable invertible operator
on H such that ∥IdH −G∥ < 1. In this case, G = TΦUΦad.

Theorem 3.4. Let Φ be a frame for a Hilbert C∗-module H and {ei}i∈I
be the standard orthonormal basis of ℓ2(A). Then all dual frames of Φ
are precisely the sequences of the form

φd
i = S−1

Φ φi +Θ∗ei,

where Θ ∈ ranL(H,ℓ2(A))(TΦ).
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Remark 3.5. If G is an adjointable invertible operator on a Hilbert C∗-
module H and Φ is a frame for H, then by Theorem 3.2 we can introduce
a g-dual frame Φg of Φ with (TΦUΦg)−1 = G. If G has an extra condition
∥G − IdH∥ < 1, then we have an approximately dual frame of Φ. If G
is an adjoinable positive and onto operator on H, we can also introduce
a frame that G is the frame operator of it. Indeed, if Φ is a tight frame

of H, then G is the frame operator of the frame G
1
2Φ.

All of these characterizations are exactly the same characterization
that were presented in Hilbert spaces [3, 12], but the characterization of
g-dual frames for Riesz bases in Hilbert spaces is not satisfied in general
Hilbert C∗-modules. In Hilbert spaces every g-dual frame for a Riesz
basis Φ is of the form GΦ where G is an invertible operator and of course
every g-dual frame of a Riesz basis is a Riesz basis [3]. But in a Hilbert
C∗-module there exists a dual frame of a Riesz basis that is not a Riesz
basis (see Example 3.6 in [10]). Since every dual frame of a frame in a
Hilbert C∗-module is a g-dual frame, we have a g-dual frame that is not
a Riesz basis. Because Riesz bases in Hilbert C∗-modules are preserved
under invertible adjointable operators, a g-dual frame of a frame Φ is not
in general of the form GΦ, where G is an invertible adjointable operator.

In Hilbert spaces every two Riesz basis are g-dual frames of each other,
and moreover, if Φ and Ψ are Riesz bases, then (TΦUΨ)

−1 = TΨ̃UΦ̃ [3],
but this is no longer true for Hilbert C∗-modules. We consider the
following examples.

Example 3.6. Let M2×2(C) denote the C∗-algebra of all 2×2 complex
matrices. Then M2×2(C) is a Hilbert C∗-module with the inner product
⟨A,B⟩ = AB∗ for A,B ∈ M2×2(C).
Now we set

Φ =

{(
1 0
−1 0

)
,

(
0 1
0 −1

)}
, Ψ =

{(
1 0
1 0

)
,

(
0 1
0 1

)}
.

Then Φ and Ψ are Riesz bases, but TΦUΨ = 0 and hence it is not
invertible. So Ψ is not a g-dual frame of Φ.

Example 3.7. In the Example 3.6 we set

Φ =

{(
1 0
0 0

)
,

(
0 0
0 1

)}
, Ψ =

{(
1 0
−1 0

)
,

(
0 1
0 −1

)}
.

Then Φ is a Parseval frame and Ψ is a tight frame with bound 2. Also
both Φ and Ψ are Riesz Bases. We have that TΦUΨ is invertible with
(TΦUΨ)

−1 = TΨUΦ. But TΨUΦ is not equal to TΨ̃UΦ̃ = 1
2TΨUΦ.

Proposition 3.8. Let Φ be a Riesz basis for a Hilbert C∗-module H. If
Φ has a unique dual frame, then every g-dual frame Φg of Φ is a Riesz
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basis of the form GΦ where G is an adjointable invertible operator on H
and (TΦUΦg)−1 = TΦ̃gUΦ̃.

Proof. Since Φ has a unique dual frame, by Theorem 1.5, TΦ is invertible.
If Φg is a g-dual frame of Φ, TΦUΦg is invertible and hence UΦg will be
invertible. By Theorem 1.5, Φg is a Riesz basis and we have

TΦUΦgTΦ̃gUΦ̃ = TΦUΦgS−1
Φg TΦgUΦS

−1
Φ

= TΦUΦgU−1
Φg T

−1
Φg TΦgUΦS

−1
Φ

= IdH.

If {ei}i∈I is the standard orthonormal basis of ℓ2(A), then by invertibility
of UΦ and UΦg we have

U−1
Φ ei = φi, U−1

Φg ei = φg
i ,

so

φg
i = U−1

Φg UΦφi.

Now we set G = U−1
Φg UΦ and the proof is completed. □

4. Stability of g-dual Frames

Let Φ and Ψ be Bessel sequences in a Hilbert A-module H and let
m = {mi}i∈I ∈ ℓ∞(A). The operator

Mm,Φ,Ψ : H → H, Mm,Φ,Ψh =
∑
i∈I

mi ⟨h, ψi⟩φi,

is called a Bessel multiplier. If we set m = {1A}, then M{1A},Φ,Ψ =
TΦUΨ. The invertibility ofMm,Φ,Ψ and representation of the inverse were
verified in [1, 9, 20] for Hilbert spaces and for Hilbert C∗-modules. We
explain some of these results for g-dual frames in Hilbert C∗-modules.
We will use the following proposition.

Proposition 4.1 ([9]). Let B be a Banach space and F : B → B be
invertible on B. Suppose that G : B → B is a bounded operator such
that ∥Gb− Fb∥ ≤ v∥b∥ for all b in B, where v ∈ [0, 1

∥F−1∥). Then

(i) G is invertible on B,

G−1 =
∞∑
k=0

[
F−1(F −G)

]k
F−1,

and∥∥∥∥∥G−1 −
n∑

k=0

[F−1(F −G)]kF−1

∥∥∥∥∥ ≤ ∥F−1∥
∞∑

k=n+1

∥F−1(F −G)∥k.
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(ii)

1

v + ∥F∥
∥b∥ ≤ ∥G−1b∥ ≤ 1

( 1
∥F−1∥ − v)

∥b∥, b ∈ B.

Theorem 4.2. Let Φ be a frame for a Hilbert C∗-module H and Ψ be

a sequence in H. If there exists µ ∈ [0,
A2

Φ
BΦ

) such that∑
i∈I

⟨h, ψi − φi⟩ ⟨ψi − φi, h⟩ ≤ µ ⟨h, h⟩ , h ∈ H,

then Ψ is a frame for H, TΦUΨ is invertible on H and

1

BΦ +
√
µBΦ

∥h∥ ≤ ∥(TΦUΨ)
−1h∥ ≤ 1

AΦ −
√
µBΦ

∥h∥,(4.1)

(TΦUΨ)
−1 =

∑
i∈I

[
S−1
Φ (SΦ − TΦUΨ)

]k
S−1
Φ .

By invertibility of TΦUΨ, the sequence Ψ is a g-dual frame of Φ.

Proof. For µ = 0, we have Φ = Ψ and therefore TΦUΨ = SΦ which is

invertible. Let µ > 0. Since µ <
A2

Φ
BΦ

< AΦ, we infer that Ψ is a frame

for H (see Corollary 3.5 in [8]). We also have

∥TΦUΨh− SΦh∥ =
∥∥∥∑

i∈I
⟨h, ψi⟩φi −

∑
i∈I

⟨h, φi⟩φi

∥∥∥
=
∥∥∥∑

i∈I
⟨h, ψi − φi⟩φi

∥∥∥
= ∥TΦUΨ−Φh∥ ≤

√
µBΦ∥h∥, h ∈ H.

Since
√
µBΦ < AΦ ≤ 1

∥S−1
Φ ∥ , by Proposition 4.1, we infer TΦUΨ is invert-

ible and satisfies (4.1). □

Proposition 4.3. Let Φ be a frame for a Hilbert C∗-module H and Ψ
be a sequence in H. Assume that there exists µ ∈ [0, 1

BΦ
) such that∑

i∈I

⟨
h, ψi − φd

i

⟩⟨
ψi − φd

i , h
⟩
≤ µ ⟨h, h⟩ , h ∈ H

for some dual frame Φd of Φ. Then Ψ is a g-dual frame for H and TΦUΨ

is invertible on H with

1

1 +
√
µBΦ

∥h∥ ≤ ∥(TΦUΨ)
−1h∥ ≤ 1

1−
√
µBΦ

∥h∥, ∀h ∈ H.

Furthermore, (TΦUΨ)
−1 =

∑∞
k=0(IdH − TΦUΨ)

k.
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Proof. If µ = 0, then Φd = Ψ and TΦUΨ = IdH is invertible. Assume
that µ > 0. Since Φd is a frame with frame bounds 1

BΦ
, 1
AΦ

and µ < 1
BΦ

,

we get Ψ is a frame for H (see Corollary 3.5 in [8]). Moreover, we have

∥TΦUΨh− h∥ =
∥∥∥∑

i∈I
⟨h, ψi⟩φi −

∑
i∈I

⟨
h, φd

i

⟩
φi

∥∥∥
=
∥∥∥∑

i∈I

⟨
h, ψi − φd

i

⟩
φi

∥∥∥ ≤
√
µBΦ∥h∥,

for each h ∈ H. Now we can apply Proposition 4.1 to complete the
proof. □

We recall that two frames Φ and Ψ in a Hilbert C∗-module H are
called equivalent if there exists an adjointable invertible operator F on
H such that ψi = Fφi for each i ∈ I.

Proposition 4.4. Let Φ and Ψ be equivalent frames in a Hilbert C∗-
module H. Then Ψ is a g-dual frame of Φ and (TΦUΨ)

−1 = TΨ̃UΦ̃.

Proof. By the assumption, there exists an adjointable invertible operator
F onH that ψi = Fφi for every i ∈ I. Then TΨ = FTΦ and UΨ = UΦF

∗.
Therefore

TΦUΨTΨ̃UΦ̃ = TΦUΦF
∗S−1

Ψ FTΦUΦS
−1
Φ

= TΦUΦF
∗(F ∗)−1S−1

Φ F−1F

= IdH,

and

TΨ̃UΦ̃TΦUΨ = S−1
Ψ FTΦUΦS

−1
Φ TΦUΦF

∗

= S−1
Ψ FTΦUΦF

∗ = S−1
Ψ TΨUΨ

= IdH.

□
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