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ABSTRACT. In this paper, we introduce the concept of g-dual frames
for Hilbert C*-modules, and then the properties and stability results
of g-dual frames are given. A characterization of g-dual frames,
approximately dual frames and dual frames of a given frame is es-
tablished. We also give some examples to show that the charac-
terization of g-dual frames for Riesz bases in Hilbert spaces is not
satisfied in general Hilbert C*-modules.

1. INTRODUCTION

Let A be a C*-algebra. A left pre Hilbert C*-module H over A (or

a pre Hilbert A-module) is a linear space which is a left A-module to-
gether with an A-valued inner product (.,.) : H x H — A with following
properties:

(i) (x,x) >0, z € H;

(ii) (x,z) = 0 implies that x = 0;

(111 <OZ:E+y,Z> = Oé<l‘,Z> + <y,z>, a € C and T,Y,% € Ha

(iv) (az,y) = a{z,y), z,y € H and a € A;

(V) (z,y) = (y.2)", 2,y € H.
We set ||z]|3, = || (z,z) || for each z € H. Then ||.|3 is a norm on H
and satisfies the following properties:

(3) llazls < llallally, o € A and z € H;
(i6) {z.9) (4. 7) < |Wl}} (z.2), 2.y € H;
Giid) 16, 9) || < eyl 2 € H;

— — — —
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(see [13]). A pre-Hilbert A-module H is called a Hilbert A-module (or
a Hilbert C*-module over A) if it is complete with respect to the norm
|l.|l. For example, the C*-algebra A is a Hilbert .A-module with the
A-valued inner product of elements a,b € A defined by (a,b) := ab*.
In this paper, we deal with finitely or countably generated Hilbert C*-
modules. A Hilbert A-module H is called finitely generated if there
exists a finite set F C H such that H equals the linear span (over C and
A) of this set. A Hilbert A-module # is called countably generated if
there exists a countable set 7 C H such that H equals the norm-closure
of the linear span (over C and A) of this set. For a unital C*-algebra A
and a countable set I of indices,
i=1

2(A) = {{ai}ie] CA: Z a;a;converges in norm} ,
is a Hilbert A-module with the inner product
({aiti, {biki) = Y aib}.
i=1

The set {e; : i € I} that each e; takes 14 in ¢ and 04 everywhere else,
is a generating set for £2(A) and it is called the standard orthonormal
basis of £2(A).

For Hilbert C*-modules V and W, a map T : V — W is called
adjointable if there is a map T : W — V such that

(Tz,y) = (z,T"y), zeViyeW.

It is easy to see that every adjointable operator is A-linear and bounded.
The converse is true in Hilbert spaces: every bounded operator is ad-
jointable. But this is no longer true in Hilbert C*-modules. We denote
by L(V, W) the set of all adjointable maps from V' to W. In fact, L(V, W)
is a Banach space with respect to the operator norm. Moreover, L(V, V)
is a C*-algebra and we will denote it by L(V'). Note that the theory of
Hilbert C*-modules is quite different from that of Hilbert spaces. For
more details about Hilbert C*-modules we refer the reader to [I3].

Proposition 1.1 ([I6]). Let A be a C*-algebra. If a,b € A are self-
adjoint and c € A, then a < b implies c*ac < c*bc.

Frames in a Hilbert space can be viewed as redundant bases which
are generalization of orthonormal bases. Indeed, frames are a tool for
the construction of series expansions in Hilbert spaces. Frames were
introduced by Duffin and Schaeffer [5] in 1952 for separable Hilbert
spaces to deal with some problems in nonharmonic Fourier analysis.
Hilbert C*-module frames are generalization of Hilbert space frames.
Frank and Larson [, [7] extended theory of frames known for (separable)
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Hilbert spaces to similar sets in C*-algebras and (finitely and countably
generated) Hilbert C*-modules. However, some properties of frames
in Hilbert spaces hold also for Hilbert C*-modules and often require
different proofs. Moreover, there are many essential differences between
Hilbert space frames and Hilbert C*-module frames. It is known that
every Hilbert space admits a frame while it has shown in [I4] that not
every Hilbert C*-module admits a frame. By Kasparov Stabilization
Theorem, we infer that every finitely or countably generated Hilbert
C*-module has a frame (see [6]), so in this paper, we consider Hilbert
C*-modules which are finitely or countably generated. For more details
on these topics we refer to [R, [0, 04, [7-19].

Throughout the paper H denotes a Hilbert C*-module, A denotes a
unital C*-algebra, and [ is a finite or countable index set. The notations
®, U and I are used to denote the sequences {¢; }icr, {w:}icr and {7; }icr
in H, respectively. We now introduce the definition of frames in Hilbert
C*-modules.

Definition 1.2. A sequence @ is called a (standard) frame for H if there
exist constants 0 < A < B such that

(1.1) A(h,h)y <Y " (hyi) (pih) < B(h,h), heH,
el

where the sum in the middle of the inequality is convergent in norm.

The constants A, B are called the lower and upper frame bounds,
respectively. If A = B, the frame @ is called a tight frame andif A = B =
1, it is called a normalized tight frame or Parseval frame. A sequence
® is called a (standard) Bessel sequence for H if the right inequality in
(ITM) is required.

If @ is a Bessel sequence for a Hilbert .A-module #H, then the operator

Ty : EQ(A) — H, To {az}zEI Zaz()@z;
iel
is well defined, adjointable and bounded. The operator Ty is called the
synthesis operator. The adjoint operator of Ty is given by
Up=Tg :H — 12(A), Us(h) = {(h, i) }ier,

and is called the analysis operator. By composing Te with its adjoint
Ty we obtain the frame operator

Se:H—>H,  Se(h)=TeUs(h) = (he:) i
el
The frame operator Sg is a positive operator and will be invertible if
the Bessel sequence ® is a frame for H [6].
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Definition 1.3. A frame ® of nonzero elements in Hilbert A-module H
is called a (standard) Riesz basis if

Z a;P; = 07
ieJ
for J C I and a; € A implies a;p; = 0 for each i € J.

Assume that H is a Hilbert C*-module and ® is a frame for H. A
sequence ¥ in H is said to be a dual sequence of @ if

h = Z % Pis

el
holds for all h € H. Since Sg is invertible, we have
h=2SSg'h=> (h,Ss'ei)¢i, heH.
el
Then {Sg " (¢;)}ies is a dual of ®. This dual is called the canonical dual
frame of ® and is denoted by ®. We will use the following results in this
paper.
Proposition 1.4 ([I0]). Let H be a Hilbert A-module and ®, U be two
Bessel sequences in H. If
h = Z ¢’L Piy

el
holds for all h € H, then both ® and ¥V are frames of H and

h="Y" (hoi) i,

icl
holds for all h € H.

Theorem 1.5. [10] Let H be a Hilbert C*-module and ® be a frame
for H with analysis operator Ug. Then the following statements are
equivalent:

(i) ® has a unique dual frame;
(ii) Ug is onto and therefore it is invertible;
(iii) Ty is injective and therefore it is an invertible operator.

If each of the equivalent conditions is satisfied, ® will be a Riesz basis

for H.

2. g-DUAL FRAMES

The concept of g-dual frame for Hilbert spaces was introduced by
Dehghan and Hasankhanifard in [3]. They also presented g-duals for
L?(0,00) [10]. This concept extended to generalized frames by Dengfeng
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and Yanting [4]. In this section, we introduce g-dual frames for a given
frame in Hilbert C*-modules and express some results about them.

Definition 2.1. Let ® be a Bessel sequence for a Hilbert C*-module
H. A Bessel sequence ¥ in H is called a generalized dual of ® if TeUy
is invertible.

If we set G = (TeUy) ™!, then we have
h=2) (Gh4i) i,

el
for each h € H. Since TgUy is adjointable, G will be adjointable and
we have

h = Z (h, G*™ ;) i,

el
for every h € H. Because {G*1;}icr and {p;}ier are Bessel sequences,
by Proposition 4, they will be frames. Invertibility of G* implies that
¥ is a frame for H. From now on, we use g-dual frame for generalized
dual sequence. If ¥ is a g-dual frame of ®, then the operators ToUy
and TyUg are invertible. This implies that & is also a g-dual frame of
V. Since TaUsp = Sg is invertible, every frame & is a g-dual frame of
itself. If ®? is a dual frame of ®, we have TpUgpa = Idy. So every dual
frame of a frame is a g-dual frame of it.

Another concept that is related to this discussion is the approximately
dual frames. Approximately dual frames were introduced by Christensen
and Laugesen [?] for separable Hilbert spaces and were extended to
Hilbert C*-modules by Mirzaee [15]. Recall that two Bessel sequences ®
and ¥ of Hilbert C*-module H are called approximately dual frames if
I TeUy — Idy|| < 1or ||TgUs — Idy|| < 1. It is clear that approximately
dual frames are g-dual frames. Before characterizing g-dual frames we
state some results which are similar to results in g-dual frames on Hilbert
spaces. In the following proposition Z(A) = {a € A : ab = ba,Vb € A}
is the center of A.

Proposition 2.2. Let ® be a frame for a Hilbert A-module H and ¥ be
a g-dual frame of ® with (TeUy)~' = G. If S is the frame operator of
® and a € Z(A), then the sequence

v = {MM +(1a—a)(GTY) 551902'} .
is a g-dual frame of ® with (TeUga)™' = G.
Proof. Since ¥ is a g-dual frame of ®, we have

ToUyeGh =Y _(Gh,¥f) @i
iel
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=" (Ghati) i + > <Gh, (1a—a) (G S;1¢i> o

el el
= Z <Gh7 1/% 901 + Z <Gh S S01> (1A - a)*‘pi
i€l i€l
=a" ) (Gh,i) i+ (La—a’)> (S5 o) @
el el

=a*h+(la—a")h=h, heH.
Also,

GTpUyah =G (Z (o) soi)

i€l

=G (Z (. ayp;) goZ)

i€l

+G <Z <h, (la—a)(G7")" Sq?l%‘> w)

icl

= a*G (Z (h, ;) g0i>

el

+ (14 —a") (Z(G 'h, Syl ¢ )

el
=a*h+(lgy—a*)h=h, hewH.
Therefore TeUge is invertible and (T@U\pa)_l =G. Il

The following proposition shows that g-duality is preserved under
adjointable invertible operators.

Proposition 2.3. Let ¥ be a g-dual frame of ® in a Hilbert C*-module
H with (TeUy)™! = G and E, F be two adjointable invertible oper-
ators on H. Then EV is a g-dual frame of F® with [TreUpy| ! =
(E*)~tGF1.
Proof. Since Tre = F'lg and Ugy = UgE*, we have
TreUpy(E*) 'GF™! = FToUyE*(E*)'GF™!
= FTeUyGF ™!
= Id'H?

and

(E) 'GF 'TreUpy = (E*) 'GF ' FTpUy E*
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= (E") 'GTeUy E*
= Idy.
Hence EV¥ and F'® are g-dual frames. O

We can weighted Bessel sequences and verify g-duality between them.
Consider

(®(A) = {{ai}iel CA: sug) l|lai|| < oo} .
1€

Proposition 2.4. Let ® be a Bessel sequence for a Hilbert A-module H
with a Bessel bound B and m = {m;}ier € (>°(A). Then {m;p;}icr is
a Bessel sequence for H.

Proof. By Proposition [, we have
(@, i) mim; (i, x) < (z, i) [mall* (pi, ) < (2, 01) [ImllZ (i, z)

for each i € I and each z € H. So we get

> wmigi) (migi, ) = > (@, 00) mimi (i, x)

el el
< m|% Z (@, ¢i) (i, x)
i€l
< |lm||2,B (z,z),
for each x € H. O

Proposition 2.5. Let &, ¥ and ' be Bessel sequences in a Hilbert A-
module H and m,m' € {>°(A). Then m¥ + m'T" is a g-dual frame of ®
if and only if TeUpw + ToaUyr is invertible.

Proof. Since m, m’ € £>°(A), it follows from Proposition 24 that m¥ +
m'T is a Bessel sequence for H, and we have

ToUnmnwymr(h) = Z (hy mithi + miyi) i

el
= Z (h, mithi) i + Z (hymiyi) @i
iel iel
= T(DUm\IJ + T@Um/p<h), heH.
This completes the proof. O

3. CHARACTERIZATION OF ¢-DUAL FRAMES, APPROXIMATELY DUAL
FrAMES AND DuAL FRAMES IN HILBERT C*-MODULES

In this section, we characterize all g-dual frames, approximately dual
frames and dual frames of a given frame ® in a Hilbert C*-module H.
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For this we first introduce the following notation:
rany, 3, p2(4)) (To) = {© € L(H,(*(A)) : To© =0} .

Proposition 3.1. Let ® be a frame for a Hilbert C*-module H. Then
we have

ranL(Hja(A))(Tq)) = {UF - U¢,S(£1T¢UF : F' is a Bessel sequence in H} )
Proof. First assume that F' is a Bessel sequence in H, then we have
ToUp — ToUsSy ' ToUr = ToUp — SoSg ToUp
=ToUp — ToUr
=0.
So we get
Up — UpSg ' ToUr € rang,,e2(4))(Ts)-

Conversely, let 0 # © € rangy 2(4))(To) and ©* be the adjoint
operator of ©. Then we have

©(h) = {(O(h),ei) bier = {(h,O%€) ticr, heNH,
where {e;}icr is the standard orthonormal basis of #2(A). Therefore
© is the analysis operator of the Bessel sequence {©*e;};cr. If we set
F = {0O%¢;}ier then © = Up and
Up —UsSy ' ToUp = Up — 0= Up = O.
If © =0, we set F' = ®. Then the proof is completed. O

Now we characterize all g-dual frames, approximately dual frames and
dual frames of a given frame ®. We will show that for every adjointable
invertible operator G on H we have a g-dual frame of ® and for every
adjointable invertible operator G on ‘H with ||Idy — G| < 1 we have an
approximately dual frame of ®.

Theorem 3.2. Let  be a frame for a Hilbert C*-module H and {e;}icr
be the standard orthonormal basis of £*>(A). Then all g-dual frames of
D are precisely the sequences ®9 such that

¢! = (SeG*)Loi + 0% (ey),
where © € rang,yy ;2 4))(Te) and G is an invertible adjointable operator
on H. In particular, G™' = TeUsgps.

Proof. Suppose ®9 is a g-dual frame of ® with (TeUsgs)™! = G. If
we set O = Ugg — U@S$1T¢U<pg, then Proposition BTl implies that
© € rang, g 2(4y)(Te) and

(SeG*) i + O%e; = (G*) 1S5 i + (Tos — TogUsSy ' To) €
= (G*) 'Sy i + ¢! — TooUs Sy i
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= (G 7' S5 e+ ¢! — (G) 1S5 i
Conversely, let © € rang, g s2(4))(Ts) and G be an adjointable invertible

operator on M. Suppose that ®Y is a sequence in H such that ¢! =
(SeG*)~Lp; + O©*e;. Then &9 is a Bessel sequence in H and we have

ToUpsGh =Y (Gh,¢f) ¢;
el
=Y (Gh,(G*) 'S5 e i + > (Gh,©%€;) s
iel iel
= Z (h,Sg'¢i) @i + TeOGh = h,
el

and

GToUpsh = G (Z (h, &) (Pz'>

iel

G (Z (h, (G) 'S5 i) %) +G (Z (h, ©%e;) %)

i€l il

G (Z <G71h, S;ltpi> (,OZ) + GTOh = h,
i€l

for every h € H. Then (TeUgs)™' = G and ®Y is a g-dual frame of
o. O

The proofs of the following theorems are similar to the proof of The-
orem B2 and we omit them.

Theorem 3.3. Let ® be a frame for a Hilbert C*-module H and {e;}icr
be the standard orthonormal basis of £2(A). Then all approzimately dual
frames of ® are precisely the sequences of the form

Pt = G*Sg i + O%e;,

where © € rang,y 2 4))(Te) and G is an adjointable invertible operator
on H such that || Idy — G| < 1. In this case, G = TeUgad.

Theorem 3.4. Let ® be a frame for a Hilbert C*-module H and {e;}icr
be the standard orthonormal basis of £2(A). Then all dual frames of ®
are precisely the sequences of the form

ol = 551801‘ + O%¢;,

where © € rang,yy 2 (4)) (To)-
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Remark 3.5. If G is an adjointable invertible operator on a Hilbert C*-
module H and ® is a frame for H, then by Theorem B2 we can introduce
a g-dual frame ®9 of ® with (TpUgs) ™' = G. If G has an extra condition
|G — Idy|| < 1, then we have an approzimately dual frame of ®. If G
s an adjoinable positive and onto operator on H, we can also introduce
a frame that G is the frame operator of it. Indeed, if ® is a tight frame

of H, then G is the frame operator of the frame G2 .

All of these characterizations are exactly the same characterization
that were presented in Hilbert spaces [3, 2], but the characterization of
g-dual frames for Riesz bases in Hilbert spaces is not satisfied in general
Hilbert C*-modules. In Hilbert spaces every g-dual frame for a Riesz
basis @ is of the form G® where G is an invertible operator and of course
every g-dual frame of a Riesz basis is a Riesz basis [3]. But in a Hilbert
C*-module there exists a dual frame of a Riesz basis that is not a Riesz
basis (see Example 3.6 in [I0]). Since every dual frame of a frame in a
Hilbert C*-module is a g-dual frame, we have a g-dual frame that is not
a Riesz basis. Because Riesz bases in Hilbert C*-modules are preserved
under invertible adjointable operators, a g-dual frame of a frame & is not
in general of the form G®, where G is an invertible adjointable operator.

In Hilbert spaces every two Riesz basis are g-dual frames of each other,
and moreover, if ® and ¥ are Riesz bases, then (ToUy) ™! = T3 Uy [3],
but this is no longer true for Hilbert C*-modules. We consider the
following examples.

Example 3.6. Let Myy2(C) denote the C*-algebra of all 2 x 2 complex
matrices. Then Mayy2(C) is a Hilbert C*-module with the inner product
(A,B) = AB* for A, B € May»(C).

Now we set

e={(2 06 )k {00 )}

Then ® and ¥ are Riesz bases, but TeUy = 0 and hence it is not
invertible. So ¥ is not a g-dual frame of ®.

Example 3.7. In the Example B8 we set

o={(0 o)) {05 0) (0 L))

Then & is a Parseval frame and V¥ is a tight frame with bound 2. Also
both & and ¥ are Riesz Bases. We have that TgUy is invertible with
(TeUy) ™! = TyUs. But TyUs is not equal to Ty Uz = 2Ty Us.

Proposition 3.8. Let ® be a Riesz basis for a Hilbert C*-module H. If
® has a unique dual frame, then every g-dual frame ®9 of ® is a Riesz
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basis of the form G® where G is an adjointable invertible operator on H
and (T@U@g)_l = Tq;gUi).

Proof. Since ® has a unique dual frame, by Theorem [C3, Ty is invertible.
If 9 is a g-dual frame of &, TeUgs is invertible and hence Ugs will be
invertible. By Theorem A, ®9 is a Riesz basis and we have
ToUps Ty, Ug = T@U@qungq)g U@S(gl

= T@U@gUi&T&JT@gU@S;I

= Idy.
If {e;}ic1 is the standard orthonormal basis of £2(.A), then by invertibility
of Up and Ugs we have

Ug'lei = ¢, Ugsei = ¢,

SO

¢! = Ugy Uspi.
Now we set G = Uq:gl Ug and the proof is completed. O

4. STABILITY OF g-DUAL FRAMES

Let ® and ¥ be Bessel sequences in a Hilbert A-module H and let
m = {m;}icr € {>°(A). The operator

Mpow:H—H, M, o wh = Zmz (h, i) @i,
i€l
is called a Bessel multiplier. If we set m = {14}, then My ), o0 =
TeUy. The invertibility of M,, v and representation of the inverse were
verified in [, B, 20] for Hilbert spaces and for Hilbert C*-modules. We
explain some of these results for g-dual frames in Hilbert C*-modules.
We will use the following proposition.

Proposition 4.1 ([9]). Let B be a Banach space and F' : B — B be
inwvertible on B. Suppose that G : B — B is a bounded operator such
that ||Gb — Fb|| < v|[b]| for all b in B, where v € [0, ﬁ) Then

(i) G is invertible on B,
G =N [FYF-a)] F,
k=0
and

G- i[F*l(F —Q)FF!
k=0

<P YD IFTHE - Q)
k=n+1
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1

—— bl < 1G6710) <
v+ [[Fl

Ioll, beB.

1
(7= =)
Theorem 4.2. Let ® be a frame for a Hilbert C*-module H and ¥ be
2
a sequence in H. If there exists pu € [0, g—i) such that

> (b — i) (Wi — @i h) < plhoh), hEH,
i€l

then U is a frame for H, TeUg is invertible on H and

1 1
4.1 ————||h| < |(TeUy) th| < ————||A]],
_ _ k _
(ToUq) ™' = [S5"(Se — ToUs)]" S5
i€l

By invertibility of TeUy, the sequence ¥ is a g-dual frame of ®.

Proof. For = 0, we have ® = ¥ and therefore TgUy = Sp which is
2

invertible. Let > 0. Since p < ?TZ < Ag, we infer that ¥ is a frame

for H (see Corollary 3.5 in [§]). We also have

IToUsh = Suhll = || 3 () i = 3 (ki)
i€l

icl
= H Z (hy i — i) @i
icl

= [ToUv-oh| < V/uBo|h|, heH.

Since v/ uBg < Ag < ﬁ, by Proposition B, we infer TgUy is invert-
o
ible and satisfies (). O

Proposition 4.3. Let ® be a frame for a Hilbert C*-module H and ¥
be a sequence in H. Assume that there exists pu € [0, B%p) such that

Z<h7¢i—¢?> <¢i—¢§l,h> <pu(h,h), heH
iel

for some dual frame ® of ®. Then VU is a g-dual frame for H and ToUy
1s invertible on H with

1 1
) < (TeUg) "B < ————||h||, Vh e H.

Furthermore, (TeUy) ™! = Y 52 (Idy — ToUg)F.
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Proof. If 4 = 0, then ®? = U and TeUy = I dy is 1nvert1ble Assume
that g > 0. Since ®? is a frame with frame bounds B ) A and p < B(I)
we get W is a frame for H (see Corollary 3.5 in [§]). Moreover, we have

| TeUgh — h| = H Z Vi) P Z <h, ‘P(zi> Pi
il
= H Z <h i — %><Pz < /uBo||hll,

for each h € H. Now we can apply Proposition BT to complete the
proof. O

We recall that two frames ® and ¥ in a Hilbert C*-module H are
called equivalent if there exists an adjointable invertible operator F' on
‘H such that i¢; = Fp; for each i € I.

Proposition 4.4. Let ® and ¥ be equivalent frames in a Hilbert C*-
module H. Then ¥ is a g-dual frame of ® and (TeUg)™! = T3Us.

Proof. By the assumption, there exists an adjointable invertible operator
F on H that ¢; = F; for every i € I. Then Ty = FTg and Uy = Ugp F™.
Therefore

ToUsTyUs = ToUs F* Sy FToUs Sy
= ToUe F*(F*) 'Sy F~'F
= Idy,
and
T3UsToUy = Sy FToUp Sy ' ToUs F*
= Sy FToUp F* = Sy ' Ty Uy
= Idy.
O
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