Sahand Communications in Mathematical Analysis (SCMA) Vol. 11, No. 1 (2018), 65-79 http://scma.maragheh.ac.ir DOI: 10.22130/scma.2018.74231.310

G-dual Frames in Hilbert C*-module Spaces

Fatemeh Ghobadzadeh¹ and Abbas Najati^{2*}

ABSTRACT. In this paper, we introduce the concept of q-dual frames for Hilbert C^* -modules, and then the properties and stability results of g-dual frames are given. A characterization of g-dual frames, approximately dual frames and dual frames of a given frame is established. We also give some examples to show that the characterization of g-dual frames for Riesz bases in Hilbert spaces is not satisfied in general Hilbert C^* -modules.

1. INTRODUCTION

Let \mathcal{A} be a C^* -algebra. A left pre Hilbert C^* -module \mathcal{H} over \mathcal{A} (or a pre Hilbert \mathcal{A} -module) is a linear space which is a left \mathcal{A} -module together with an \mathcal{A} -valued inner product $\langle ., . \rangle : \mathcal{H} \times \mathcal{H} \to \mathcal{A}$ with following properties:

- (i) $\langle x, x \rangle \ge 0, x \in \mathcal{H};$
- (ii) $\langle x, x \rangle = 0$ implies that x = 0;
- (iii) $\langle \alpha x + y, z \rangle = \alpha \langle x, z \rangle + \langle y, z \rangle, \ \alpha \in \mathbb{C} \text{ and } x, y, z \in \mathcal{H};$
- (iv) $\langle ax, y \rangle = a \langle x, y \rangle, x, y \in \mathcal{H} \text{ and } a \in \mathcal{A};$
- (v) $\langle x, y \rangle = \langle y, x \rangle^*, x, y \in \mathcal{H}.$

We set $||x||_{\mathcal{H}}^2 = ||\langle x, x \rangle||_{\mathcal{A}}$ for each $x \in \mathcal{H}$. Then $||.||_{\mathcal{H}}$ is a norm on \mathcal{H} and satisfies the following properties:

- $\begin{array}{ll} (i) & \|ax\|_{\mathcal{H}} \leq \|a\| \|x\|_{\mathcal{H}}, \, a \in \mathcal{A} \text{ and } x \in \mathcal{H}; \\ (ii) & \langle x, y \rangle \, \langle y, x \rangle \leq \|y\|_{\mathcal{H}}^2 \, \langle x, x \rangle, \, x, y \in \mathcal{H}; \\ (iii) & \| \, \langle x, y \rangle \, \| \leq \|x\|_{\mathcal{H}} \|y\|_{\mathcal{H}}, \, x, y \in \mathcal{H}; \end{array}$

²⁰¹⁰ Mathematics Subject Classification. Primary: 46L08; Secondry: 42C15, 46H25.

Key words and phrases. Frame, g-dual frame, Hilbert C^* -module.

Received: 24 October 2017, Accepted: 19 August 2018.

Corresponding author.

(see [13]). A pre-Hilbert A-module \mathcal{H} is called a Hilbert \mathcal{A} -module (or a Hilbert C^* -module over \mathcal{A}) if it is complete with respect to the norm $\|.\|_{\mathcal{H}}$. For example, the C^* -algebra \mathcal{A} is a Hilbert \mathcal{A} -module with the \mathcal{A} -valued inner product of elements $a, b \in \mathcal{A}$ defined by $\langle a, b \rangle := ab^*$. In this paper, we deal with finitely or countably generated Hilbert C^* modules. A Hilbert \mathcal{A} -module \mathcal{H} is called finitely generated if there exists a finite set $\mathcal{F} \subseteq \mathcal{H}$ such that \mathcal{H} equals the linear span (over \mathbb{C} and \mathcal{A}) of this set. A Hilbert \mathcal{A} -module \mathcal{H} is called countably generated if there exists a countable set $\mathcal{F} \subseteq \mathcal{H}$ such that \mathcal{H} equals the norm-closure of the linear span (over \mathbb{C} and \mathcal{A}) of this set. For a unital C^* -algebra \mathcal{A} and a countable set I of indices,

$$\ell^{2}(\mathcal{A}) = \left\{ \{a_{i}\}_{i \in I} \subseteq \mathcal{A} : \sum_{i=1}^{\infty} a_{i}a_{i}^{*} \text{converges in norm} \right\},\$$

is a Hilbert \mathcal{A} -module with the inner product

$$\langle \{a_i\}_i, \{b_i\}_i \rangle = \sum_{i=1}^{\infty} a_i b_i^*.$$

The set $\{e_i : i \in I\}$ that each e_i takes $1_{\mathcal{A}}$ in i and $0_{\mathcal{A}}$ everywhere else, is a generating set for $\ell^2(\mathcal{A})$ and it is called the standard orthonormal basis of $\ell^2(\mathcal{A})$.

For Hilbert C^* -modules V and W, a map $T : V \to W$ is called adjointable if there is a map $T^* : W \to V$ such that

$$\langle Tx, y \rangle = \langle x, T^*y \rangle, \quad x \in V, y \in W.$$

It is easy to see that every adjointable operator is \mathcal{A} -linear and bounded. The converse is true in Hilbert spaces: every bounded operator is adjointable. But this is no longer true in Hilbert C^* -modules. We denote by $\mathbf{L}(V, W)$ the set of all adjointable maps from V to W. In fact, $\mathbf{L}(V, W)$ is a Banach space with respect to the operator norm. Moreover, $\mathbf{L}(V, V)$ is a C^* -algebra and we will denote it by $\mathbf{L}(V)$. Note that the theory of Hilbert C^* -modules is quite different from that of Hilbert spaces. For more details about Hilbert C^* -modules we refer the reader to [13].

Proposition 1.1 ([16]). Let \mathcal{A} be a C^* -algebra. If $a, b \in \mathcal{A}$ are selfadjoint and $c \in \mathcal{A}$, then $a \leq b$ implies $c^*ac \leq c^*bc$.

Frames in a Hilbert space can be viewed as redundant bases which are generalization of orthonormal bases. Indeed, frames are a tool for the construction of series expansions in Hilbert spaces. Frames were introduced by Duffin and Schaeffer [5] in 1952 for separable Hilbert spaces to deal with some problems in nonharmonic Fourier analysis. Hilbert C^* -module frames are generalization of Hilbert space frames. Frank and Larson [6, 7] extended theory of frames known for (separable) Hilbert spaces to similar sets in C^* -algebras and (finitely and countably generated) Hilbert C^* -modules. However, some properties of frames in Hilbert spaces hold also for Hilbert C^* -modules and often require different proofs. Moreover, there are many essential differences between Hilbert space frames and Hilbert C^* -module frames. It is known that every Hilbert space admits a frame while it has shown in [14] that not every Hilbert C*-module admits a frame. By Kasparov Stabilization Theorem, we infer that every finitely or countably generated Hilbert C^* -module has a frame (see [6]), so in this paper, we consider Hilbert C^* -modules which are finitely or countably generated. For more details on these topics we refer to [8, 10, 14, 17–19].

Throughout the paper \mathcal{H} denotes a Hilbert C^* -module, \mathcal{A} denotes a unital C^* -algebra, and I is a finite or countable index set. The notations Φ, Ψ and Γ are used to denote the sequences $\{\varphi_i\}_{i \in I}, \{\psi_i\}_{i \in I}$ and $\{\gamma_i\}_{i \in I}$ in \mathcal{H} , respectively. We now introduce the definition of frames in Hilbert C^* -modules.

Definition 1.2. A sequence Φ is called a (standard) *frame* for \mathcal{H} if there exist constants $0 < A \leq B$ such that

(1.1)
$$A \langle h, h \rangle \leq \sum_{i \in I} \langle h, \varphi_i \rangle \langle \varphi_i, h \rangle \leq B \langle h, h \rangle, \quad h \in \mathcal{H},$$

where the sum in the middle of the inequality is convergent in norm.

The constants A, B are called the *lower* and *upper frame bounds*, respectively. If A = B, the frame Φ is called a *tight frame* and if A = B =1, it is called a *normalized tight frame* or *Parseval frame*. A sequence Φ is called a (standard) *Bessel sequence* for \mathcal{H} if the right inequality in (1.1) is required.

If Φ is a Bessel sequence for a Hilbert \mathcal{A} -module \mathcal{H} , then the operator

$$T_{\Phi}: \ell^2(\mathcal{A}) \to \mathcal{H}, \qquad T_{\Phi}\left(\{a_i\}_{i \in I}\right) = \sum_{i \in I} a_i \varphi_i,$$

is well defined, adjointable and bounded. The operator T_{Φ} is called the *synthesis operator*. The adjoint operator of T_{Φ} is given by

$$U_{\Phi} = T_{\Phi}^* : \mathcal{H} \to \ell^2(\mathcal{A}), \qquad U_{\Phi}(h) = \{ \langle h, \varphi_i \rangle \}_{i \in I},$$

and is called the *analysis operator*. By composing T_{Φ} with its adjoint T_{Φ}^* we obtain the frame operator

$$S_{\Phi}: \mathcal{H} \to \mathcal{H}, \qquad S_{\Phi}(h) = T_{\Phi}U_{\Phi}(h) = \sum_{i \in I} \langle h, \varphi_i \rangle \varphi_i.$$

The frame operator S_{Φ} is a positive operator and will be invertible if the Bessel sequence Φ is a frame for \mathcal{H} [6]. **Definition 1.3.** A frame Φ of nonzero elements in Hilbert \mathcal{A} -module \mathcal{H} is called a (standard) *Riesz basis* if

$$\sum_{i\in J} a_i \varphi_i = 0,$$

for $J \subseteq I$ and $a_i \in \mathcal{A}$ implies $a_i \varphi_i = 0$ for each $i \in J$.

Assume that \mathcal{H} is a Hilbert C^* -module and Φ is a frame for \mathcal{H} . A sequence Ψ in \mathcal{H} is said to be a dual sequence of Φ if

$$h = \sum_{i \in I} \left\langle h, \psi_i \right\rangle \varphi_i,$$

holds for all $h \in \mathcal{H}$. Since S_{Φ} is invertible, we have

$$h = S_{\Phi} S_{\Phi}^{-1} h = \sum_{i \in I} \left\langle h, S_{\Phi}^{-1} \varphi_i \right\rangle \varphi_i, \quad h \in \mathcal{H}.$$

Then $\{S_{\Phi}^{-1}(\varphi_i)\}_{i \in I}$ is a dual of Φ . This dual is called the *canonical dual* frame of Φ and is denoted by $\tilde{\Phi}$. We will use the following results in this paper.

Proposition 1.4 ([10]). Let \mathcal{H} be a Hilbert \mathcal{A} -module and Φ , Ψ be two Bessel sequences in \mathcal{H} . If

$$h = \sum_{i \in I} \left\langle h, \psi_i \right\rangle \varphi_i,$$

holds for all $h \in H$, then both Φ and Ψ are frames of \mathcal{H} and

$$h = \sum_{i \in I} \left\langle h, \varphi_i \right\rangle \psi_i,$$

holds for all $h \in \mathcal{H}$.

Theorem 1.5. [10] Let \mathcal{H} be a Hilbert C^* -module and Φ be a frame for \mathcal{H} with analysis operator U_{Φ} . Then the following statements are equivalent:

- (i) Φ has a unique dual frame;
- (ii) U_{Φ} is onto and therefore it is invertible;
- (iii) T_{Φ} is injective and therefore it is an invertible operator.

If each of the equivalent conditions is satisfied, Φ will be a Riesz basis for \mathcal{H} .

2. g-dual Frames

The concept of g-dual frame for Hilbert spaces was introduced by Dehghan and Hasankhanifard in [3]. They also presented g-duals for $L^2(0,\infty)$ [11]. This concept extended to generalized frames by Dengfeng

and Yanting [4]. In this section, we introduce g-dual frames for a given frame in Hilbert C^* -modules and express some results about them.

Definition 2.1. Let Φ be a Bessel sequence for a Hilbert C^* -module \mathcal{H} . A Bessel sequence Ψ in \mathcal{H} is called a *generalized dual* of Φ if $T_{\Phi}U_{\Psi}$ is invertible.

If we set $G = (T_{\Phi}U_{\Psi})^{-1}$, then we have

$$h = \sum_{i \in I} \left\langle Gh, \psi_i \right\rangle \varphi_i,$$

for each $h \in \mathcal{H}$. Since $T_{\Phi}U_{\Psi}$ is adjointable, G will be adjointable and we have

$$h = \sum_{i \in I} \left\langle h, G^* \psi_i \right\rangle \varphi_i,$$

for every $h \in \mathcal{H}$. Because $\{G^*\psi_i\}_{i\in I}$ and $\{\varphi_i\}_{i\in I}$ are Bessel sequences, by Proposition 1.4, they will be frames. Invertibility of G^* implies that Ψ is a frame for \mathcal{H} . From now on, we use g-dual frame for generalized dual sequence. If Ψ is a g-dual frame of Φ , then the operators $T_{\Phi}U_{\Psi}$ and $T_{\Psi}U_{\Phi}$ are invertible. This implies that Φ is also a g-dual frame of Ψ . Since $T_{\Phi}U_{\Phi} = S_{\Phi}$ is invertible, every frame Φ is a g-dual frame of itself. If Φ^d is a dual frame of Φ , we have $T_{\Phi}U_{\Phi^d} = Id_{\mathcal{H}}$. So every dual frame of a frame is a g-dual frame of it.

Another concept that is related to this discussion is the approximately dual frames. Approximately dual frames were introduced by Christensen and Laugesen [2] for separable Hilbert spaces and were extended to Hilbert C^* -modules by Mirzaee [15]. Recall that two Bessel sequences Φ and Ψ of Hilbert C^* -module \mathcal{H} are called *approximately dual frames* if $||T_{\Phi}U_{\Psi} - Id_{\mathcal{H}}|| < 1$ or $||T_{\Psi}U_{\Phi} - Id_{\mathcal{H}}|| < 1$. It is clear that approximately dual frames are g-dual frames. Before characterizing g-dual frames we state some results which are similar to results in g-dual frames on Hilbert spaces. In the following proposition $\mathcal{Z}(\mathcal{A}) = \{a \in \mathcal{A} : ab = ba, \forall b \in \mathcal{A}\}$ is the center of \mathcal{A} .

Proposition 2.2. Let Φ be a frame for a Hilbert A-module \mathcal{H} and Ψ be a g-dual frame of Φ with $(T_{\Phi}U_{\Psi})^{-1} = G$. If S_{Φ} is the frame operator of Φ and $a \in \mathcal{Z}(\mathcal{A})$, then the sequence

$$\Psi^{a} = \left\{ a\psi_{i} + (1_{\mathcal{A}} - a) \left(G^{-1} \right)^{*} S_{\Phi}^{-1} \varphi_{i} \right\}_{i \in I},$$

is a g-dual frame of Φ with $(T_{\Phi}U_{\Psi^a})^{-1} = G$.

Proof. Since Ψ is a *g*-dual frame of Φ , we have

$$T_{\Phi}U_{\Psi^{a}}Gh = \sum_{i \in I} \left\langle Gh, \psi_{i}^{a} \right\rangle \varphi_{i}$$

$$= \sum_{i \in I} \langle Gh, a\psi_i \rangle \varphi_i + \sum_{i \in I} \left\langle Gh, (1_{\mathcal{A}} - a) (G^{-1})^* S_{\Phi}^{-1} \varphi_i \right\rangle \varphi_i$$

$$= \sum_{i \in I} \langle Gh, \psi_i \rangle a^* \varphi_i + \sum_{i \in I} \left\langle Gh, (G^{-1})^* S_{\Phi}^{-1} \varphi_i \right\rangle (1_{\mathcal{A}} - a)^* \varphi_i$$

$$= a^* \sum_{i \in I} \left\langle Gh, \psi_i \right\rangle \varphi_i + (1_{\mathcal{A}} - a^*) \sum_{i \in I} \left\langle h, S_{\Phi}^{-1} \varphi_i \right\rangle \varphi_i$$

$$= a^* h + (1_{\mathcal{A}} - a^*) h = h, \quad h \in \mathcal{H}.$$

Also,

$$\begin{aligned} GT_{\Phi}U_{\Psi^{a}}h &= G\left(\sum_{i\in I} \left\langle h, \psi_{i}^{a} \right\rangle \varphi_{i}\right) \\ &= G\left(\sum_{i\in I} \left\langle h, a\psi_{i} \right\rangle \varphi_{i}\right) \\ &+ G\left(\sum_{i\in I} \left\langle h, (1_{\mathcal{A}} - a) \left(G^{-1}\right)^{*} S_{\Phi}^{-1} \varphi_{i} \right\rangle \varphi_{i}\right) \\ &= a^{*}G\left(\sum_{i\in I} \left\langle h, \psi_{i} \right\rangle \varphi_{i}\right) \\ &+ (1_{\mathcal{A}} - a^{*})G\left(\sum_{i\in I} \left\langle G^{-1}h, S_{\Phi}^{-1} \varphi_{i} \right\rangle \varphi_{i}\right) \\ &= a^{*}h + (1_{\mathcal{A}} - a^{*})h = h, \quad h \in \mathcal{H}. \end{aligned}$$

Therefore $T_{\Phi}U_{\Psi^a}$ is invertible and $(T_{\Phi}U_{\Psi^a})^{-1} = G$.

The following proposition shows that g-duality is preserved under adjointable invertible operators.

Proposition 2.3. Let Ψ be a g-dual frame of Φ in a Hilbert C^* -module \mathcal{H} with $(T_{\Phi}U_{\Psi})^{-1} = G$ and E, F be two adjointable invertible operators on \mathcal{H} . Then $E\Psi$ is a g-dual frame of $F\Phi$ with $[T_{F\Phi}U_{E\Psi}]^{-1} = (E^*)^{-1}GF^{-1}$.

Proof. Since $T_{F\Phi} = FT_{\Phi}$ and $U_{E\Psi} = U_{\Psi}E^*$, we have $T_{F\Phi}U_{E\Psi}(E^*)^{-1}GF^{-1} = FT_{\Phi}U_{\Psi}E^*(E^*)^{-1}GF^{-1}$ $= FT_{\Phi}U_{\Psi}GF^{-1}$ $= Id_{\mathcal{H}},$

and

$$(E^*)^{-1}GF^{-1}T_{F\Phi}U_{E\Psi} = (E^*)^{-1}GF^{-1}FT_{\Phi}U_{\Psi}E^*$$

$$= (E^*)^{-1} G T_{\Phi} U_{\Psi} E^*$$
$$= I d_{\mathcal{H}}.$$

Hence $E\Psi$ and $F\Phi$ are g-dual frames.

We can weighted Bessel sequences and verify g-duality between them. Consider

$$\ell^{\infty}(\mathcal{A}) = \left\{ \{a_i\}_{i \in I} \subseteq \mathcal{A} : \sup_{i \in I} ||a_i|| < \infty \right\}.$$

Proposition 2.4. Let Φ be a Bessel sequence for a Hilbert A-module \mathcal{H} with a Bessel bound B and $m = \{m_i\}_{i \in I} \in \ell^{\infty}(\mathcal{A})$. Then $\{m_i \varphi_i\}_{i \in I}$ is a Bessel sequence for \mathcal{H} .

Proof. By Proposition 1.1, we have

$$\langle x, \varphi_i \rangle m_i^* m_i \langle \varphi_i, x \rangle \leq \langle x, \varphi_i \rangle ||m_i||^2 \langle \varphi_i, x \rangle \leq \langle x, \varphi_i \rangle ||m||_{\infty}^2 \langle \varphi_i, x \rangle,$$

for each $i \in I$ and each $x \in \mathcal{H}$. So we get

$$\sum_{i \in I} \langle x, m_i \varphi_i \rangle \langle m_i \varphi_i, x \rangle = \sum_{i \in I} \langle x, \varphi_i \rangle m_i^* m_i \langle \varphi_i, x \rangle$$
$$\leq \|m\|_{\infty}^2 \sum_{i \in I} \langle x, \varphi_i \rangle \langle \varphi_i, x \rangle$$
$$\leq \|m\|_{\infty}^2 B \langle x, x \rangle ,$$

for each $x \in \mathcal{H}$.

Proposition 2.5. Let Φ , Ψ and Γ be Bessel sequences in a Hilbert \mathcal{A} -module \mathcal{H} and $m, m' \in \ell^{\infty}(\mathcal{A})$. Then $m\Psi + m'\Gamma$ is a g-dual frame of Φ if and only if $T_{\Phi}U_{m\Psi} + T_{\Phi}U_{m'\Gamma}$ is invertible.

Proof. Since $m, m' \in \ell^{\infty}(\mathcal{A})$, it follows from Proposition 2.4 that $m\Psi + m'\Gamma$ is a Bessel sequence for \mathcal{H} , and we have

$$T_{\Phi}U_{m\Psi+m'\Gamma}(h) = \sum_{i \in I} \left\langle h, m_i \psi_i + m'_i \gamma_i \right\rangle \varphi_i$$
$$= \sum_{i \in I} \left\langle h, m_i \psi_i \right\rangle \varphi_i + \sum_{i \in I} \left\langle h, m'_i \gamma_i \right\rangle \varphi_i$$
$$= T_{\Phi}U_{m\Psi} + T_{\Phi}U_{m'\Gamma}(h), \quad h \in \mathcal{H}.$$

This completes the proof.

3. Characterization of g-dual Frames, Approximately Dual Frames and Dual Frames in Hilbert C^* -modules

In this section, we characterize all g-dual frames, approximately dual frames and dual frames of a given frame Φ in a Hilbert C^{*}-module \mathcal{H} .

71

For this we first introduce the following notation:

$$\operatorname{ran}_{\mathbf{L}(\mathcal{H},\ell^2(\mathcal{A}))}(T_{\Phi}) := \left\{ \Theta \in \mathbf{L}(\mathcal{H},\ell^2(\mathcal{A})) : T_{\Phi}\Theta = 0 \right\}.$$

Proposition 3.1. Let Φ be a frame for a Hilbert C^* -module \mathcal{H} . Then we have

$$\operatorname{ran}_{\mathbf{L}(\mathcal{H},\ell^{2}(\mathcal{A}))}(T_{\Phi}) = \left\{ U_{F} - U_{\Phi}S_{\Phi}^{-1}T_{\Phi}U_{F} : F \text{ is a Bessel sequence in } \mathcal{H} \right\}.$$

Proof. First assume that F is a Bessel sequence in \mathcal{H} , then we have

$$T_{\Phi}U_F - T_{\Phi}U_{\Phi}S_{\Phi}^{-1}T_{\Phi}U_F = T_{\Phi}U_F - S_{\Phi}S_{\Phi}^{-1}T_{\Phi}U_F$$
$$= T_{\Phi}U_F - T_{\Phi}U_F$$
$$= 0.$$

So we get

$$U_F - U_\Phi S_\Phi^{-1} T_\Phi U_F \in \operatorname{ran}_{\mathbf{L}(\mathcal{H},\ell^2(\mathcal{A}))}(T_\Phi).$$

Conversely, let $0 \neq \Theta \in \operatorname{ran}_{\mathbf{L}(\mathcal{H},\ell^2(\mathcal{A}))}(T_{\Phi})$ and Θ^* be the adjoint operator of Θ . Then we have

$$\Theta(h) = \{ \langle \Theta(h), e_i \rangle \}_{i \in I} = \{ \langle h, \Theta^* e_i \rangle \}_{i \in I}, \quad h \in \mathcal{H},$$

where $\{e_i\}_{i\in I}$ is the standard orthonormal basis of $\ell^2(\mathcal{A})$. Therefore Θ is the analysis operator of the Bessel sequence $\{\Theta^* e_i\}_{i\in I}$. If we set $F = \{\Theta^* e_i\}_{i\in I}$ then $\Theta = U_F$ and

$$U_F - U_\Phi S_\Phi^{-1} T_\Phi U_F = U_F - 0 = U_F = \Theta.$$

If $\Theta = 0$, we set $F = \Phi$. Then the proof is completed.

Now we characterize all g-dual frames, approximately dual frames and dual frames of a given frame Φ . We will show that for every adjointable invertible operator G on \mathcal{H} we have a g-dual frame of Φ and for every adjointable invertible operator G on \mathcal{H} with $||Id_{\mathcal{H}} - G|| < 1$ we have an approximately dual frame of Φ .

Theorem 3.2. Let Φ be a frame for a Hilbert C^* -module \mathcal{H} and $\{e_i\}_{i \in I}$ be the standard orthonormal basis of $\ell^2(\mathcal{A})$. Then all g-dual frames of Φ are precisely the sequences Φ^g such that

$$\varphi_i^g = (S_\Phi G^*)^{-1} \varphi_i + \Theta^*(e_i),$$

where $\Theta \in \operatorname{ran}_{\mathbf{L}(\mathcal{H},\ell^2(\mathcal{A}))}(T_{\Phi})$ and G is an invertible adjointable operator on \mathcal{H} . In particular, $G^{-1} = T_{\Phi}U_{\Phi^g}$.

Proof. Suppose Φ^g is a g-dual frame of Φ with $(T_{\Phi}U_{\Phi^g})^{-1} = G$. If we set $\Theta := U_{\Phi^g} - U_{\Phi}S_{\Phi}^{-1}T_{\Phi}U_{\Phi^g}$, then Proposition 3.1 implies that $\Theta \in \operatorname{ran}_{\mathbf{L}(H,\ell^2(\mathcal{A}))}(T_{\Phi})$ and

$$(S_{\Phi}G^{*})^{-1}\varphi_{i} + \Theta^{*}e_{i} = (G^{*})^{-1}S_{\Phi}^{-1}\varphi_{i} + (T_{\Phi^{g}} - T_{\Phi g}U_{\Phi}S_{\Phi}^{-1}T_{\Phi})e_{i}$$

= $(G^{*})^{-1}S_{\Phi}^{-1}\varphi_{i} + \varphi_{i}^{g} - T_{\Phi^{g}}U_{\Phi}S_{\Phi}^{-1}\varphi_{i}$

$$= (G^*)^{-1} S_{\Phi}^{-1} \varphi_i + \varphi_i^g - (G^*)^{-1} S_{\Phi}^{-1} \varphi_i$$

= φ_i^g .

Conversely, let $\Theta \in \operatorname{ran}_{\mathbf{L}(H,\ell^2(\mathcal{A}))}(T_{\Phi})$ and G be an adjointable invertible operator on \mathcal{H} . Suppose that Φ^g is a sequence in \mathcal{H} such that $\varphi_i^g = (S_{\Phi}G^*)^{-1}\varphi_i + \Theta^*e_i$. Then Φ^g is a Bessel sequence in \mathcal{H} and we have

$$\begin{split} T_{\Phi}U_{\Phi^g}Gh &= \sum_{i \in I} \left\langle Gh, \varphi_i^g \right\rangle \varphi_i \\ &= \sum_{i \in I} \left\langle Gh, (G^*)^{-1} S_{\Phi}^{-1} \varphi_i \right\rangle \varphi_i + \sum_{i \in I} \left\langle Gh, \Theta^* e_i \right\rangle \varphi_i \\ &= \sum_{i \in I} \left\langle h, S_{\Phi}^{-1} \varphi_i \right\rangle \varphi_i + T_{\Phi} \Theta Gh = h, \end{split}$$

and

$$GT_{\Phi}U_{\Phi^g}h = G\left(\sum_{i\in I} \langle h, \varphi_i^g \rangle \varphi_i\right)$$
$$= G\left(\sum_{i\in I} \langle h, (G^*)^{-1}S_{\Phi}^{-1}\varphi_i \rangle \varphi_i\right) + G\left(\sum_{i\in I} \langle h, \Theta^*e_i \rangle \varphi_i\right)$$
$$= G\left(\sum_{i\in I} \langle G^{-1}h, S_{\Phi}^{-1}\varphi_i \rangle \varphi_i\right) + GT_{\Phi}\Theta h = h,$$

for every $h \in \mathcal{H}$. Then $(T_{\Phi}U_{\Phi^g})^{-1} = G$ and Φ^g is a g-dual frame of Φ .

The proofs of the following theorems are similar to the proof of Theorem 3.2 and we omit them.

Theorem 3.3. Let Φ be a frame for a Hilbert C^* -module \mathcal{H} and $\{e_i\}_{i \in I}$ be the standard orthonormal basis of $\ell^2(\mathcal{A})$. Then all approximately dual frames of Φ are precisely the sequences of the form

$$\varphi_i^{ad} = G^* S_{\Phi}^{-1} \varphi_i + \Theta^* e_i,$$

where $\Theta \in \operatorname{ran}_{\mathbf{L}(\mathcal{H},\ell^2(\mathcal{A}))}(T_{\Phi})$ and G is an adjointable invertible operator on \mathcal{H} such that $\|Id_{\mathcal{H}} - G\| < 1$. In this case, $G = T_{\Phi}U_{\Phi^{ad}}$.

Theorem 3.4. Let Φ be a frame for a Hilbert C^* -module \mathcal{H} and $\{e_i\}_{i \in I}$ be the standard orthonormal basis of $\ell^2(\mathcal{A})$. Then all dual frames of Φ are precisely the sequences of the form

$$\varphi_i^d = S_{\Phi}^{-1} \varphi_i + \Theta^* e_i,$$

where $\Theta \in \operatorname{ran}_{\mathbf{L}(\mathcal{H},\ell^2(\mathcal{A}))}(T_{\Phi}).$

Remark 3.5. If G is an adjointable invertible operator on a Hilbert C^{*}module \mathcal{H} and Φ is a frame for \mathcal{H} , then by Theorem 3.2 we can introduce a g-dual frame Φ^g of Φ with $(T_{\Phi}U_{\Phi^g})^{-1} = G$. If G has an extra condition $||G - Id_{\mathcal{H}}|| < 1$, then we have an approximately dual frame of Φ . If G is an adjoinable positive and onto operator on \mathcal{H} , we can also introduce a frame that G is the frame operator of it. Indeed, if Φ is a tight frame of \mathcal{H} , then G is the frame operator of the frame $G^{\frac{1}{2}}\Phi$.

All of these characterizations are exactly the same characterization that were presented in Hilbert spaces [3, 12], but the characterization of g-dual frames for Riesz bases in Hilbert spaces is not satisfied in general Hilbert C^* -modules. In Hilbert spaces every g-dual frame for a Riesz basis Φ is of the form $G\Phi$ where G is an invertible operator and of course every g-dual frame of a Riesz basis is a Riesz basis [3]. But in a Hilbert C^* -module there exists a dual frame of a Riesz basis that is not a Riesz basis (see Example 3.6 in [10]). Since every dual frame of a frame in a Hilbert C^* -module is a g-dual frame, we have a g-dual frame that is not a Riesz basis. Because Riesz bases in Hilbert C^* -modules are preserved under invertible adjointable operators, a g-dual frame of a frame Φ is not in general of the form $G\Phi$, where G is an invertible adjointable operator.

In Hilbert spaces every two Riesz basis are g-dual frames of each other, and moreover, if Φ and Ψ are Riesz bases, then $(T_{\Phi}U_{\Psi})^{-1} = T_{\tilde{\Psi}}U_{\tilde{\Phi}}$ [3], but this is no longer true for Hilbert C^{*}-modules. We consider the following examples.

Example 3.6. Let $\mathbf{M}_{2\times 2}(\mathbb{C})$ denote the C^* -algebra of all 2×2 complex matrices. Then $\mathbf{M}_{2\times 2}(\mathbb{C})$ is a Hilbert C^* -module with the inner product $\langle A, B \rangle = AB^*$ for $A, B \in \mathbf{M}_{2\times 2}(\mathbb{C})$. Now we set

$$\Phi = \left\{ \left(\begin{array}{cc} 1 & 0 \\ -1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & -1 \end{array} \right) \right\}, \qquad \Psi = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right) \right\}.$$

Then Φ and Ψ are Riesz bases, but $T_{\Phi}U_{\Psi} = 0$ and hence it is not invertible. So Ψ is not a *g*-dual frame of Φ .

Example 3.7. In the Example 3.6 we set

$$\Phi = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\}, \qquad \Psi = \left\{ \left(\begin{array}{cc} 1 & 0 \\ -1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & -1 \end{array} \right) \right\}.$$

Then Φ is a Parseval frame and Ψ is a tight frame with bound 2. Also both Φ and Ψ are Riesz Bases. We have that $T_{\Phi}U_{\Psi}$ is invertible with $(T_{\Phi}U_{\Psi})^{-1} = T_{\Psi}U_{\Phi}$. But $T_{\Psi}U_{\Phi}$ is not equal to $T_{\tilde{\Psi}}U_{\tilde{\Phi}} = \frac{1}{2}T_{\Psi}U_{\Phi}$.

Proposition 3.8. Let Φ be a Riesz basis for a Hilbert C^* -module \mathcal{H} . If Φ has a unique dual frame, then every g-dual frame Φ^g of Φ is a Riesz

basis of the form $G\Phi$ where G is an adjointable invertible operator on \mathcal{H} and $(T_{\Phi}U_{\Phi^g})^{-1} = T_{\tilde{\Phi^g}}U_{\tilde{\Phi}}$.

Proof. Since Φ has a unique dual frame, by Theorem 1.5, T_{Φ} is invertible. If Φ^g is a g-dual frame of Φ , $T_{\Phi}U_{\Phi^g}$ is invertible and hence U_{Φ^g} will be invertible. By Theorem 1.5, Φ^g is a Riesz basis and we have

$$T_{\Phi}U_{\Phi^{g}}T_{\tilde{\Phi^{g}}}U_{\tilde{\Phi}} = T_{\Phi}U_{\Phi^{g}}S_{\Phi^{g}}^{-1}T_{\Phi^{g}}U_{\Phi}S_{\Phi}^{-1}$$

= $T_{\Phi}U_{\Phi^{g}}U_{\Phi^{g}}^{-1}T_{\Phi^{g}}^{-1}T_{\Phi^{g}}U_{\Phi}S_{\Phi}^{-1}$
= $Id_{\mathcal{H}}.$

If $\{e_i\}_{i \in I}$ is the standard orthonormal basis of $\ell^2(\mathcal{A})$, then by invertibility of U_{Φ} and $U_{\Phi g}$ we have

$$U_{\Phi}^{-1}e_i = \varphi_i, \qquad U_{\Phi g}^{-1}e_i = \varphi_i^g,$$

 \mathbf{SO}

$$\varphi_i^g = U_{\Phi^g}^{-1} U_{\Phi} \varphi_i.$$

Now we set $G = U_{\Phi g}^{-1} U_{\Phi}$ and the proof is completed.

4. Stability of g-dual Frames

Let Φ and Ψ be Bessel sequences in a Hilbert \mathcal{A} -module \mathcal{H} and let $m = \{m_i\}_{i \in I} \in \ell^{\infty}(\mathcal{A})$. The operator

$$M_{m,\Phi,\Psi}: \mathcal{H} \to \mathcal{H}, \qquad M_{m,\Phi,\Psi}h = \sum_{i \in I} m_i \langle h, \psi_i \rangle \varphi_i,$$

is called a *Bessel multiplier*. If we set $m = \{1_A\}$, then $M_{\{1_A\},\Phi,\Psi} = T_{\Phi}U_{\Psi}$. The invertibility of $M_{m,\Phi,\Psi}$ and representation of the inverse were verified in [1, 9, 20] for Hilbert spaces and for Hilbert C^* -modules. We explain some of these results for g-dual frames in Hilbert C^* -modules. We will use the following proposition.

Proposition 4.1 ([9]). Let **B** be a Banach space and $F : \mathbf{B} \to \mathbf{B}$ be invertible on **B**. Suppose that $G : \mathbf{B} \to \mathbf{B}$ is a bounded operator such that $||Gb - Fb|| \le v||b||$ for all b in **B**, where $v \in [0, \frac{1}{||F^{-1}||})$. Then

(i) G is invertible on **B**,

$$G^{-1} = \sum_{k=0}^{\infty} \left[F^{-1}(F-G) \right]^k F^{-1},$$

and

$$\left\| G^{-1} - \sum_{k=0}^{n} [F^{-1}(F-G)]^{k} F^{-1} \right\| \leq \|F^{-1}\| \sum_{k=n+1}^{\infty} \|F^{-1}(F-G)\|^{k}.$$

(ii)

$$\frac{1}{v + \|F\|} \|b\| \le \|G^{-1}b\| \le \frac{1}{\left(\frac{1}{\|F^{-1}\|} - v\right)} \|b\|, \quad b \in \mathbf{B}.$$

Theorem 4.2. Let Φ be a frame for a Hilbert C^* -module \mathcal{H} and Ψ be a sequence in \mathcal{H} . If there exists $\mu \in [0, \frac{A_{\Phi}^2}{B_{\Phi}})$ such that

$$\sum_{i \in I} \langle h, \psi_i - \varphi_i \rangle \langle \psi_i - \varphi_i, h \rangle \le \mu \langle h, h \rangle, \quad h \in \mathcal{H},$$

then Ψ is a frame for \mathcal{H} , $T_{\Phi}U_{\Psi}$ is invertible on \mathcal{H} and

(4.1)
$$\frac{1}{B_{\Phi} + \sqrt{\mu B_{\Phi}}} \|h\| \le \|(T_{\Phi} U_{\Psi})^{-1} h\| \le \frac{1}{A_{\Phi} - \sqrt{\mu B_{\Phi}}} \|h\|,$$
$$(T_{\Phi} U_{\Psi})^{-1} = \sum_{i \in I} \left[S_{\Phi}^{-1} (S_{\Phi} - T_{\Phi} U_{\Psi})\right]^k S_{\Phi}^{-1}.$$

By invertibility of $T_{\Phi}U_{\Psi}$, the sequence Ψ is a g-dual frame of Φ .

Proof. For $\mu = 0$, we have $\Phi = \Psi$ and therefore $T_{\Phi}U_{\Psi} = S_{\Phi}$ which is invertible. Let $\mu > 0$. Since $\mu < \frac{A_{\Phi}^2}{B_{\Phi}} < A_{\Phi}$, we infer that Ψ is a frame for \mathcal{H} (see Corollary 3.5 in [8]). We also have

$$\|T_{\Phi}U_{\Psi}h - S_{\Phi}h\| = \left\|\sum_{i\in I} \langle h, \psi_i \rangle \varphi_i - \sum_{i\in I} \langle h, \varphi_i \rangle \varphi_i\right\|$$
$$= \left\|\sum_{i\in I} \langle h, \psi_i - \varphi_i \rangle \varphi_i\right\|$$
$$= \|T_{\Phi}U_{\Psi-\Phi}h\| \le \sqrt{\mu B_{\Phi}} \|h\|, \quad h \in \mathcal{H}.$$

Since $\sqrt{\mu B_{\Phi}} < A_{\Phi} \leq \frac{1}{\|S_{\Phi}^{-1}\|}$, by Proposition 4.1, we infer $T_{\Phi}U_{\Psi}$ is invertible and satisfies (4.1).

Proposition 4.3. Let Φ be a frame for a Hilbert C^* -module \mathcal{H} and Ψ be a sequence in \mathcal{H} . Assume that there exists $\mu \in [0, \frac{1}{B_{\Phi}})$ such that

$$\sum_{i \in I} \left\langle h, \psi_i - \varphi_i^d \right\rangle \left\langle \psi_i - \varphi_i^d, h \right\rangle \le \mu \left\langle h, h \right\rangle, \quad h \in \mathcal{H}$$

for some dual frame Φ^d of Φ . Then Ψ is a g-dual frame for \mathcal{H} and $T_{\Phi}U_{\Psi}$ is invertible on \mathcal{H} with

$$\frac{1}{1 + \sqrt{\mu B_{\Phi}}} \|h\| \le \|(T_{\Phi} U_{\Psi})^{-1} h\| \le \frac{1}{1 - \sqrt{\mu B_{\Phi}}} \|h\|, \quad \forall h \in \mathcal{H}.$$

Furthermore, $(T_{\Phi}U_{\Psi})^{-1} = \sum_{k=0}^{\infty} (Id_{\mathcal{H}} - T_{\Phi}U_{\Psi})^k$.

Proof. If $\mu = 0$, then $\Phi^d = \Psi$ and $T_{\Phi}U_{\Psi} = Id_{\mathcal{H}}$ is invertible. Assume that $\mu > 0$. Since Φ^d is a frame with frame bounds $\frac{1}{B_{\Phi}}$, $\frac{1}{A_{\Phi}}$ and $\mu < \frac{1}{B_{\Phi}}$, we get Ψ is a frame for \mathcal{H} (see Corollary 3.5 in [8]). Moreover, we have

$$\|T_{\Phi}U_{\Psi}h - h\| = \left\|\sum_{i \in I} \langle h, \psi_i \rangle \varphi_i - \sum_{i \in I} \left\langle h, \varphi_i^d \right\rangle \varphi_i \right\|$$
$$= \left\|\sum_{i \in I} \left\langle h, \psi_i - \varphi_i^d \right\rangle \varphi_i \right\| \le \sqrt{\mu B_{\Phi}} \|h\|,$$

for each $h \in \mathcal{H}$. Now we can apply Proposition 4.1 to complete the proof.

We recall that two frames Φ and Ψ in a Hilbert C^* -module \mathcal{H} are called *equivalent* if there exists an adjointable invertible operator F on \mathcal{H} such that $\psi_i = F\varphi_i$ for each $i \in I$.

Proposition 4.4. Let Φ and Ψ be equivalent frames in a Hilbert C^* module \mathcal{H} . Then Ψ is a g-dual frame of Φ and $(T_{\Phi}U_{\Psi})^{-1} = T_{\tilde{\Psi}}U_{\tilde{\Phi}}$.

Proof. By the assumption, there exists an adjointable invertible operator F on \mathcal{H} that $\psi_i = F\varphi_i$ for every $i \in I$. Then $T_{\Psi} = FT_{\Phi}$ and $U_{\Psi} = U_{\Phi}F^*$. Therefore

$$T_{\Phi}U_{\Psi}T_{\tilde{\Psi}}U_{\tilde{\Phi}} = T_{\Phi}U_{\Phi}F^*S_{\Psi}^{-1}FT_{\Phi}U_{\Phi}S_{\Phi}^{-1}$$
$$= T_{\Phi}U_{\Phi}F^*(F^*)^{-1}S_{\Phi}^{-1}F^{-1}F$$
$$= Id_{\mathcal{H}},$$

and

$$T_{\tilde{\Psi}}U_{\tilde{\Phi}}T_{\Phi}U_{\Psi} = S_{\Psi}^{-1}FT_{\Phi}U_{\Phi}S_{\Phi}^{-1}T_{\Phi}U_{\Phi}F^*$$
$$= S_{\Psi}^{-1}FT_{\Phi}U_{\Phi}F^* = S_{\Psi}^{-1}T_{\Psi}U_{\Psi}$$
$$= Id_{\mathcal{H}}.$$

Acknowledgment. The authors would like to thank the referees for their useful comments.

References

- P. Balazs and D.T. Stoeva, Representation of the inverse of a frame multiplier, J. Math. Anal. Appl., 422 (2015), pp. 981-994.
- O. Christensen and R.S. Laugesen, Approximately dual frame pairs in Hilbert spaces and applications to Gabor frames, Sampl. Theory Signal Image Process. 9 (2010), pp. 77-89.

- M.A. Dehghan and M.A. Hasankhani Fard, *G-dual frames in Hilbert spaces*, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 75 (2013), pp. 129-140.
- L. Dengfeng and L. Yanting, G-dual frames for generalized frames, Adv. Math., (China), 45 (2016), pp. 919-931.
- R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), pp. 341-366.
- M. Frank and D.R. Larson, Frames in Hilbert C^{*}-modules and C^{*}algebras, J. Operator Theory, 48 (2002), pp. 273-314.
- M. Frank and D.R. Larson, A module frame concept for Hilbert C^{*}-modules, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999), 207–233, Contemp. Math., 247, Amer. Math. Soc., Providence, RI, 1999.
- F. Ghobadzadeh, A. Najati, G.A. Anastassiou, and C. Park, Woven frames in Hilbert C^{*}-module spaces, J. Comput. Anal. Appl., 25 (2018), pp. 1220-1232.
- 9. F. Ghobadzadeh, A. Najati, and E. Osgooei, *Modular frames and invertibility of multipliers in Hilbert C*-modules*, (submitted).
- D. Han, D. Larson, W. Jing, and R.N. Mohapatra, *Riesz bases and their dual modular frames in Hilbert C*-modules*, J. Math. Anal. Appl., 343 (2008), pp. 246-256.
- 11. M.A. Hasankhanifard and M.A. Dehghan, *G*-dual function-valued frames in $L^2(0, \infty)$, Wavel. Linear Algebra, 2 (2015), pp. 39-47.
- H. Javanshiri, Some properties of approximately dual frames in Hilbert spaces, Results Math., 70 (2016), pp. 475-485.
- E.C. Lance, Hilbert C^{*}-modules a toolkit for operator algebraists, London Mathematical Society Lecture Note Series, vol. 210. Cambridge University Press, England, 1995.
- H. Li, A Hilbert C^{*}-module admitting no frames, Bull. London Math. Soc., 42 (2010), pp. 388-394.
- M. Mirzaee Azandaryani, Approximate duals and nearly Parseval frames, Turkish J. Math., 39 (2015), pp. 515-526.
- G.J. Murphy, C^{*}-algebras and operator theory, Academic Press, San Diego, 1990.
- 17. A. Najati, M. Mohammadi Saem, and P. Găvruta, Frames and operators in Hilbert C^{*}-modules, Oper. Matrices, 10 (2016), 73-81.
- M. Rashidi-Kouchi, A. Nazari, and M. Amini, On stability of gframes and g-Riesz bases in Hilbert C^{*}-modules, Int. J. Wavelets Multiresolut. Inf. Process., 12 (2014), pp. 1-16.
- M. Rashidi-Kouchi and A. Rahimi, Controlled frames in Hilbert C^{*}modules, Int. J. Wavelets Multiresolut. Inf. Process., 15 (2017), pp. 1-15.

20. D.T. Stoeva and P. Balazs, *Invertibility of multipliers*, Appl. Comput. Harmon. Anal., 33 (2012), pp. 292-299.

 1 Department of Mathematics and Applications, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran. $E\text{-mail}\ address:\ gobadzadehf@yahoo.com$

 2 Department of Mathematics and Applications, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.

E-mail address: a.nejati@yahoo.com