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Some Fixed Point Results for the Generalized F -suzuki Type

Contractions in b-metric Spaces

Sumit Chandok1, Huaping Huang2∗, and Stojan Radenović3

Abstract. Compared with the previous work, the aim of this pa-
per is to introduce the more general concept of the generalized
F -Suzuki type contraction mappings in b-metric spaces, and to es-
tablish some fixed point theorems in the setting of b-metric spaces.
Our main results unify, complement and generalize the previous
works in the existing literature.

1. Introduction and Preliminaries

Before the start of this article, let us denote the letters N, R and R+

as the set of all natural numbers, the set of all real numbers and the
set of all nonnegative real numbers, respectively. We denote Ψ as the
set of all functions ψ : [0,∞) → [0,∞) such that ψ is continuous and
ψ−1(0) = 0.

Recently, Wardowski [13] introduced a new type of contractive map-
pings called F -contraction and proved a fixed point theorem as a gener-
alization of the Banach contraction principle as follows:

Definition 1.1 ([13]). Let F : R+ → R be a mapping satisfying

(F1) F is strictly increasing, i.e. for all α, β ∈ R+, α < β implies
that F (α) < F (β);

(F2) For any sequence {αn} of positive numbers, lim
n→∞

αn = 0 and

lim
n→∞

F (αn) = −∞ are equivalent;

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0.
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For some examples satisfying Definition 1.1, the reader may refer to
[14] and [13].

Definition 1.2 ([13]). Let (X, d) be a metric space. A map T : X → X
is said to be F -contraction on X if there exist F in Definition 1.1 and
τ > 0 such that

x, y ∈ X with d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

Theorem 1.3. Let (X, d) be a complete metric space and T : X → X
an F -contraction. Then T has a unique fixed point x∗ ∈ X and, for
every x0 ∈ X a sequence {Tnx0}n∈N is convergent to x∗.

Many researchers have focused on F -contractions and obtained some
results in the field (see [1–3, 5, 8, 10–12] and their references cited
therein). Motivated by [13], throughout this paper, we introduce the
concept of the generalized F -Suzuki contractions and obtain some rele-
vant fixed point results in the setting of b-metric spaces.

To begin with, we shall give a definition and a lemma which will be
used in the sequel.

Definition 1.4 ([4, 6]). Let X be a (nonempty) set and s ≥ 1 a given
real number. A function d : X × X → [0,+∞) is called a b-metric if
and only if, for all x, y, z ∈ X, the following conditions are satisfied:

(b1) d (x, y) = 0 if and only if x = y;
(b2) d (x, y) = d (y, x);
(b3) d (x, z) ≤ s [d (x, y) + d (y, z)].

The pair (X, d) is called a b-metric space.

It should be noted that, the class of b-metric spaces is effectively larger
than that of metric spaces, since a b-metric is a metric when s = 1. The
following example shows that in general a b-metric need not necessarily
be a metric (see also [7, 9]).

Example 1.5. Let (X, ρ) be a metric space, and d (x, y) = (ρ (x, y))p,
where p > 1 is a real number. Then d is a b-metric with coefficient
s = 2p−1, but d is not a metric on X.

Otherwise, for more concepts such as b-convergence, b-completeness
and b-Cauchy sequence in b-metric spaces, we refer the reader to [7, 9]
and the references mentioned therein.

Lemma 1.6 ([9], Lemma 3.1). Let {yn} be a sequence in the b-metric
space (X, d) with s ≥ 1, such that

(1.1) d (yn+1, yn+2) ≤ λd (yn, yn+1) ,

for some λ ∈ [0, 1s ) and each n = 1, 2, . . .. Then {yn} is a b-Cauchy
sequence in (X, d).
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2. Main Results

In the following, let us denote F as the collection of all mappings
F : R+ → R satisfying

(F1) F is strictly increasing;
(F2) F is continuous on (0,∞).

Definition 2.1. Let (X, d) be a b-metric space with coefficient s ≥ 1.
A map T : X → X is said to be a generalized F -Suzuki contraction if
there exists F ∈ F such that, for all x, y ∈ X with x ̸= y,
(2.1)
1

2s
d(x, Tx) < d(x, y) ⇒ F (sεd(Tx, Ty)) ≤ F (MT (x, y))− ψ(MT (x, y)),

where ψ ∈ Ψ and ε > 1 is a constant and

MT (x, y) = max

{
d(x, y), d(T 2x, y),

d(Tx, y) + d(x, Ty)

2s
,

d(T 2x, x) + d(T 2x, Ty)

2s
, d(T 2x, Ty) + d(T 2x, Tx),

d(T 2x, Ty) + d(Tx, x), d(Tx, y) + d(y, Ty)

}
.

Remark 2.2. Compared with Definition 2.1 of [11], Definition 2.1 has
more general character, since if ε = 5, then Definition 2.1 is reduced to
Definition 2.1 of [11]. That is to say, Definition 2.1 is a large generaliza-
tion of Definition 2.1 of [11].

Theorem 2.3. Let (X, d) be a b-complete b-metric space with coefficient
s > 1 and T : X → X be a generalized F -Suzuki contraction. Then T
has a unique fixed point x∗ ∈ X and, for every x0 ∈ X the iterative
sequence {Tnx0}n∈N b-converges to x∗.

Proof. Take x0 ∈ X and let xn+1 = Txn for all n ∈ N. If there exists
n0 ∈ N such that d(xn0 , Txn0) = 0, then x = xn0 becomes a fixed point
of T , which completes the proof. So, in the rest of the proof, we always
assume that 0 < d(xn, Txn), for all n ∈ N. Hence, we have

1

2s
d(xn, Txn) < d(xn, Txn) = d(xn, xn+1), for all n ∈ N.

Then by (2.1) we have

F (sεd(Txn, Txn+1)) ≤ F (MT (xn, xn+1))− ψ(MT (xn, xn+1)).
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Since

max {d(xn, xn+1), d(xn+2, xn+1)}
≤MT (xn, xn+1)

= max

{
d(xn, xn+1), d(xn+2, xn+1),

d(xn, xn+2)

2s
,
d(xn+2, xn)

2s
,

d(xn+2, xn+1), d(xn+1, xn), d(xn+1, xn+2)

}

≤ max

{
d(xn, xn+1), d(xn+2, xn+1),

s[d(xn, xn+1) + d(xn+1, xn+2)]

2s

}
≤ max {d(xn, xn+1), d(xn+2, xn+1)} ,

we get

MT (xn, xn+1) = max{d(xn, xn+1), d(xn+2, xn+1)}.
Then

F (sεd(xn+1, xn+2)) = F (sεd(Txn, Txn+1))(2.2)

≤ F (max{d(xn, xn+1), d(xn+2, xn+1)})
− ψ(max{d(xn, xn+1), d(xn+2, xn+1)})
≤ F (max{d(xn, xn+1), d(xn+2, xn+1)}) .

By the monotonicity of F , it follows immediately from (2.2) that

sεd(xn+1, xn+2) ≤ max{d(xn, xn+1), d(xn+2, xn+1)}.(2.3)

If
d(xn, xn+1) < d(xn+2, xn+1),

then (2.3) gives

sεd(xn+1, xn+2) ≤ d(xn+2, xn+1),

which implies that d(xn+1, xn+2) = 0, a contradiction. If

d(xn, xn+1) ≥ d(xn+2, xn+1),

then (2.3) gives that

d(xn+1, xn+2) ≤
1

sε
d(xn, xn+1).

Hence, by using Lemma 1.6, {xn} is a b-Cauchy sequence. As (X, d)
is b-complete, then {xn} b-converges to some point x∗ ∈ X. Therefore,
limn→∞ d(xn, x

∗) = 0.
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We claim that, for every n ∈ N,

1

2s
d(xn, Txn) < d(xn, x

∗),(2.4)

or

1

2s
d(Txn, T

2xn) < d(Txn, x
∗).(2.5)

Indeed, suppose, on the contrary, that there exists m ∈ N such that

1

2s
d(xm, Txm) ≥ d(xm, x

∗),
1

2s
d(Txm, T

2xm) ≥ d(Txm, x
∗).(2.6)

Then

2sd(xm, x
∗) ≤ d(xm, Txm) ≤ s [d(xm, x

∗) + d(x∗, Txm)] ,

which implies that d(xm, x
∗) ≤ d(x∗, Txm). As a result, we have

d(Txm, T
2xm) ≤ 1

sε
d(xm, Txm)(2.7)

≤ 1

sε
· [sd(xm, x∗) + sd(x∗, Txm)]

≤ 1

sε
· 2sd(x∗, Txm).

It follows from (2.6) and (2.7) that

d(Txm, T
2xm) ≤ 1

sε
d(Txm, T

2xm).

This is a contradiction unless d(Txm, T
2xm) = 0. Consequently, (2.4)

or (2.5) hold.
If (2.4) is true, then

F (sεd(xn+1, Tx
∗)) = F (sεd(Txn, Tx

∗))(2.2)

≤ F (MT (xn, x
∗))− ψ(MT (xn, x)).
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Since

d(x∗, Tx∗) ≤MT (xn, x
∗)

= max

{
d(xn, x

∗), d(xn+2, x
∗),

d(xn+1, x
∗) + d(xn, Tx

∗)

2s
,

d(xn+2, xn) + d(xn+2, Tx
∗)

2s
, d(xn+2, Tx

∗) + d(xn+2, xn+1),

d(xn+2, Tx
∗) + d(xn+1, xn), d(xn+1, x

∗) + d(x∗, Tx∗)

}

≤ max

{
d(xn, x

∗), d(xn+2, x
∗),

d(xn+1, x
∗) + d(xn, Tx

∗)

2s
,

s[d(xn+2, xn+1) + d(xn+1, xn)] + d(xn+2, Tx
∗)

2s
,

d(xn+2, Tx
∗) + d(xn+2, xn+1), d(xn+2, Tx

∗) + d(xn+1, xn),

d(xn+1, x
∗) + d(x∗, Tx∗)

}
,

taking limit from both sides of the above inequality, we get

lim
n→∞

MT (xn, x
∗) = d(x∗, Tx∗).

Thus by (2.2) and the continuity of ψ, it is easy to see that

F (sεd(x∗, Tx∗)) ≤ F (d(x∗, Tx∗))− ψ(d(x∗, Tx∗)) ≤ F (d(x∗, Tx∗)),

which yields that x∗ = Tx∗.
If (2.5) is true, using a similar method as the above, we have x∗ = Tx∗.
Now we show that T has only one fixed point. Indeed, if y∗ ∈ X is

another fixed point of T , then

0 =
1

2s
d(x∗, Tx∗) < d(x∗, y∗),

and from (2.2), we obtain

F (sεd(x∗, y∗)) = F (sεd(Tx∗, T y∗))

≤ F (MT (x
∗, y∗))− ψ(MT (x

∗, y∗))

= F (d(y∗, x∗))− ψ(d(y∗, x∗))

≤ F (d(y∗, x∗)).

This gives d(y∗, x∗) = 0. Hence y∗ = x∗. This completes the proof. □
Remark 2.4. Compared with Theorem 2.2 of [11], Theorem 2.3 has a
sharp superiority. Indeed, because of the arbitrary value of the constant
ε > 1, it evidently contains the special case ε = 5. Accordingly, our
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Theorem 2.3 greatly generalizes Theorem 2.2 from [11]. Otherwise, our
proof of Theorem 2.3 is simpler than the one of Theorem 2.2 from [11]
since the former avoids the discontinuity problems of b-metric while the
latter deals with it too complicate.

The following three theorems can be obtained easily by repeating the
steps in the proof of Theorem 2.3 and therefore we omit their proofs.

Theorem 2.5. Let (X, d) be a b-complete b-metric space with coefficient
s > 1 and T : X → X be a map such that, for every x, y ∈ X,

1

2s
d(x, Tx) < d(x, y) ⇒ F (sεd(Tx, Ty)) ≤ F (MT (x, y)),

where F ∈ F and ε > 1 is a constant. Then T has a unique fixed
point x∗ ∈ X, and for every x0 ∈ X the iterative sequence {Tnx0}n∈N
b-converges to x∗.

Theorem 2.6. Let (X, d) be a b-complete b-metric space with coefficient
s > 1 and T : X → X be a map such that, for every x, y ∈ X

1

2s
d(x, Tx) < d(x, y) ⇒ F (d(Tx, Ty)) ≤ F (MT (x, y))− ψ(N(x, y)),

where F ∈ F, ψ ∈ Ψ and

N(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty), d(T 2x, y), d(T 2x, Ty),

d(T 2x, Tx),
d(Tx, y) + d(x, Ty)

2
,
d(T 2x, x) + d(T 2x, Ty)

2

}
.

Then T has a unique fixed point x∗ ∈ X, and for every x0 ∈ X the
iterative sequence {Tnx0}n∈N b-converges to x∗.

Theorem 2.7. Let (X, d) be a b-complete b-metric space with coefficient
s > 1 and T : X → X be a map such that, for every x, y ∈ X

1

2s
d(x, Tx) < d(x, y) ⇒ F (d(Tx, Ty)) ≤ F (MT (x, y))− ψ(d(x, y)),

where F ∈ F and ψ ∈ Ψ. Then T has a unique fixed point x∗ ∈ X, and
for every x0 ∈ X, the iterative sequence {Tnx0}n∈N b-converges to x∗.

Remark 2.8. Since a b-metric space is a metric space when s = 1,
then we easily obtain the corresponding results in the setting of metric
spaces.
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References

1. M. Abbas, M. Berzig, T. Nazir, and E. Karapınar, Iterative ap-
proximation of fixed points for presic type F -contraction operators,
Uni. Pol. Bucharest Sci. Bul. A-Appl. Math. Phy., 78 (2) (2016),
pp. 147-160.

2. H.H. Alsulami, E. Karapınar, and H. Piri, Fixed points of gener-
alized F-Suzuki type contraction in complete b-metric spaces, Dis.
Dyn. Nat. Soc., Volume 2015, Article ID 969726, 8 pages.

3. H.H. Alsulami, E. Karapınar, and H. Piri, Fixed points of modified
F -contractive mappings in complete metric-like spaces, J. Funct.
Spaces, Volume 2015, Article ID 270971, 9 pages.

4. I.A. Bakhtin, The contraction principle in quasimetric spaces,
Funct. Anal., 30 (1989), pp. 26-37.
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