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Coherent Frames

Ataollah Askari Hemmat1, Ahmad Safapour2, and Zohreh Yazdani Fard3∗

Abstract. Frames which can be generated by the action of some
operators (e.g. translation, dilation, modulation, ...) on a single
element f in a Hilbert space, called coherent frames. In this paper,
we introduce a class of continuous frames in a Hilbert spaceH which
is indexed by some locally compact group G, equipped with its left
Haar measure. These frames are obtained as the orbits of a single
element of Hilbert space H under some unitary representation π
of G on H. It is interesting that most of important frames are
coherent. We also investigate canonical dual and combinations of
this frames.

1. Introduction

In 1946 Gabor [12] introduced a method for reconstructing signals
which led eventually to the theory of wavelets. Later in 1952 Duffin
and Schaeffer [10] introduced frame theory for Hilbert spaces to study
some problems in nonharmonic Fourier series. Frames reintroduced in
1986 by Daubechies, Grossmann and Meyer [9]. Nowadays frames have
become an alternative to orthonormal basis for reconstructing elements
of a Hilbert space. Frames have been used in characterization of function
spaces and other fields such as signal and image processing [6], filter bank
theory [5] and wireless communications [15].

The concept of generalization of frames to a family indexed by some
measure space was proposed by Kaiser [16] and independently by Ali,
Antoine and Gazeau [1]. Kaiser used the terminology generalized frames.
Also, in mathematical physics these frames are referred to as coherent
states.
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A frame {fi}i such that all elements fi appear by the action of some
operators (e.g. translation, dilation, modulation, ...) on a single ele-
ment f in the Hilbert space, called coherent frame. Grächening [13]
investigated coherent frames of the form {π(xj)g}j∈J , where π is a uni-
tary square integrable representation of a locally compact group G on
a Hilbert space H. Balazs and Stoven [4] introduced θ-pseudo-coherent
frames of the form {θ(λ)h}λ∈Λ for Hilbert Space H, where Λ is a dis-
crete set, θ(λ) is a bounded operator from H into H and there exist
ϕ : Λ× Λ → C and µ : Λ× Λ → Λ which satisfy:

(i) for all λ ∈ Λ the mapping λ′ 7→ µ(λ, λ′) is a bijection from Λ
onto Λ,

(ii) θ(λ)∗θ(λ′) = ϕ(λ, λ′)θ(µ(λ, λ′)),

(iii) θ(λ)θ(µ(λ, λ′)) = ϕ(λ, λ′)θ(λ′).

In this paper, we consider a continuous frame {fg}g∈G indexed by a
locally compact group G, equipped with the left Haar measure µ for
which all the elements fg appear by the action of G on a single element
f ∈ H via a unitary representation of G on H and study canonical dual
and combinations of this frames.

2. Basic Frame Theory

In this section we introduce some definitions and basic facts about
frames theory that are borrowed and adopted from [8].

A continuous frame for a Hilbert space H is a family {fm}m∈M in-
dexed by a measure space (M, µ) such that

• for all f ∈ H, m 7→ ⟨f, fm⟩ is a measurable function on M;
• there exist constants A,B > 0 such that for each f ∈ H

(2.1) A ∥f∥2 ≤
∫
M

|⟨f, fm⟩|2 dµ(m) ≤ B ∥f∥2 .

A and B are lower and upper frame bounds. The frame {fm}m∈M is
called a tight frame if (2.1) holds for some A = B and a normalized tight
frame if (2.1) holds for some A = B = 1. A uniform frame is a frame in
which all the elements have equal norms.

The discrete frames correspond to a counting measure space on a
countable space.

If there is another frame {gm}m∈M ⊂ H satisfying

f =

∫
M
⟨f, fm⟩gm, ∀f ∈ H,

then {gm}m∈M is said to be a dual of {fm}m∈M.
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The continuous frame operator S : H → H is weakly defined by

⟨Sf, g⟩ =
∫
M
⟨f, fm⟩⟨fm, g⟩dµ(m), ∀f, g ∈ H.

The operator S is bounded, positive and invertible.
If {fm}m∈M is a continuous frame, then

{
S−1fm

}
m∈M is the canonical

dual frame and every f ∈ H can be reconstructed as

f = S−1Sf =

∫
M
⟨f, fm⟩S−1fm dµ(m).

The operator S is a multiple of the identity if and only if {fm}m∈M
is a tight frame.

3. Coherent Frames

Let G be a locally compact group with the left Haar measure µ. A
unitary representation π of G on a Hilbert space H is a strongly con-
tinuous group homomorphism from G into the group of unitary op-
erators on H, which means that π satisfies the properties π(gg′) =
π(g)π(g′), π(g)∗ = π

(
g−1

)
= π(g)−1, and lim

n→∞
gn = g andfor each x ∈ H

we have lim
n→∞

π(gn)x = π(g)x (see e.g. [11], Section 3.1).

Definition 3.1. Let G be a locally compact group. A coherent frame
for a Hilbert space H is a continuous frame {π(g)ϕ}g∈G, where π is a
unitary representation of G on H and ϕ ∈ H.

Obviously, coherent frames are uniform. Before we develop the theory
for coherent frames, we mention some examples of coherent frames.

Example 3.2. Let Gaff = {(b, a) | b, a ∈ R, a ̸= 0} = R ⋊ R∗ be the
group of affine transformations on R, ax + b group, with the natural
action x 7→ ax + b and group low (b, a)(b′, a′) = (b + ab′, aa′). The
unit element is (0, 1) and the inverse of (b, a) is

(
−a−1b, a−1

)
. On Gaff ,

1
a2

dadb is a left Haar measure where da db is the Lebesgue measure. If

ψ ∈ L2(R) is admissible, i.e.,

Cψ :=

∫ +∞

−∞

∣∣∣ψ̂(γ)∣∣∣2
|γ|

dγ <∞,
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then the family
{
ψb,a

}
(b,a)∈Gaff

= {π(b, a)ψ}(b,a)∈Gaff
is a tight coherent

frame with frame bound Cψ for L2(R), where π is a unitary representa-
tion of Gaff on L2(R) defined by

(π(b, a)f) (x) = (TbDaf)(x)

=
1√
|a|
f

(
x− b

a

)
, f ∈ L2(R), x ∈ R.

Actually, the continuous wavelet transform of a function f ∈ L2(R) with
respect to the admissible function ψ ∈ L2(R) is defined by

Wψ(f)(b, a) =
⟨
f, ψb,a

⟩
=

∫
R
f(x)

1√
|a|
ψ

(
x− b

a

)
dx.

Let f, g ∈ L2(R). Then∫
R

∫
R
Wψ(f)(b, a)Wψ(g)(b, a)

1

a2
da db = Cψ⟨f, g⟩.

For details, see the Proposition 11.1.1 and Corollary 11.1.2 in [8].

Example 3.3. Let G = R2 equipped with the Lebesgue measure da db.
If g ∈ L2(R)−{0}, then the family

{
ga,b

}
(a,b)∈G = {π(a, b)g}(a,b)∈G is a

tight coherent frame, where π is a unitary representation of G on L2(R)
defined by

(π(a, b)g) (x) = (EbTag)(x)

= g(x− a)e2πixb, x ∈ R.

Actually, the short-time Fourier transform of a function f ∈ L2(R) with
respect to the window function g ∈ L2(R)− {0} is given by

Ψg(f)(y, γ) = ⟨f,EγTyg⟩

=

∫
R
f(x)g(x− y)e−2πixγ dx, y, γ ∈ R.

Let f1, f2, g1, g2 ∈ L2(R). Then∫
R

∫
R
Ψg1(f1)(a, b)Ψg2(f2)(a, b) dbda = ⟨f1, f2⟩⟨g1, g2⟩.

For details, see the Proposition 8.1.2 in [8].

Example 3.4. The unit 2-sphere, S2, centered at the origin is defined as
the following subset of R3 : S2 =

{
ω = (x, y, z) ∈ R3 | x2 + y2 + z2 = 1

}
.

In polar coordinates, we write ω = (θ, φ), where θ ∈ [0, π] and φ ∈ [0, 2π)
are azimuthal and polar angles, respectively and x = sin θ cosφ, y =
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sin θ cosφ, z = cos θ. dµ(ω) = sin θ dθ dφ is the usual rotation invariant
measure on S2. Affine transformations on S2 are of two types:

(1) Motions are given by elements of the rotation group SO(3),
(2) Dilations by a scale factor a ∈ R+

∗ which acts on a point ω =

(θ, φ) by Da(θ, φ) = (θa, φ) with tan θa
2 = a tan θ

2 .

Let X be the group of affine transformations on S2. X embeds into the
Lorentz group SO0(3, 1) via the Iwasawa decomposition SO0(3, 1) =

SO(3).R+
∗ .C. Thus X ≃ SO0(3,1)

C . For any η ∈ L2(S2, dµ) such that∫ 2π

0
η(θ, φ) dφ ̸= 0,

∫
S2

η(θ, φ)

1 + cosθ
dµ(θ, φ) = 0,

the family {ρ(x)η}x∈X is a coherent frame for L2(S2, dµ), where ρ is a
unitary representation of X on L2(S2, dµ) defined by

[ρ(x)f ](ω) =
2af

(
(γa)−1ω

)
(a2 − 1) cos θ + (a2 + 1)

, x = (γ, a) ∈ X, ω = (θ, φ) ∈ S2.

For details, see Proposition 3.4 in [2].

Now, we show that the canonical dual of a coherent frame is also a
coherent frame. Balazs and Stoven showed the same result for discrete
coherent frames(see Proposition 5.2 in [4]).

Lemma 3.5. Let {π(g)ϕ}g∈G be a coherent frame with frame operator

S. Then S commutes with π(g) for every g ∈ G.

Proof. Let x, y ∈ H and g′ ∈ G.⟨
Sπ

(
g′
)
x, y

⟩
=

∫
G

⟨
π
(
g′
)
x, π(g)ϕ

⟩
⟨π(g)ϕ, y⟩dµ(g)

=

∫
G

⟨
x, π

(
g′−1g

)
ϕ
⟩ ⟨
π
(
g′−1g

)
ϕ, π

(
g′−1

)
y
⟩
dµ(g)

=

∫
G
⟨x, π(g)ϕ⟩

⟨
π(g)ϕ, π

(
g′−1

)
y
⟩
dµ(g)

=
⟨
Sx, π

(
g′−1

)
y
⟩

= ⟨π
(
g′
)
Sx, y⟩.

Then Sπ(g′) = π(g′)S, for every g′ ∈ G. □

Proposition 3.6. Let {π(g)ϕ}g∈G be a coherent frame for H. Then the
canonical dual has the form {π(g)ψ}g∈G for some ψ ∈ H.

Proof. Let S be the frame operator of {π(g)ϕ}g∈G. Then Sπ(g) = π(g)S
for all g ∈ G which implies that S−1π(g) = π(g)S−1 for all g ∈ G.
Putting ψ = S−1ϕ implies S−1π(g) = π(g)ψ for all g ∈ G. Therefore, the
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canonical dual frame of {π(g)ϕ}g∈G is
{
S−1π(g)ϕ

}
g∈G = {π(g)ψ}g∈G.

□

Corollary 3.7. The canonical dual of a coherent frame is also a coher-
ent frame.

Recall that the frame operator S for a coherent frame is a positive
invertible operator, and therefore has a positive and invertible square

root operator S
1
2 . The following proposition shows that every coherent

frame can be associated to a normalized tight coherent frame.

Proposition 3.8. Let {π(g)ϕ}g∈G be a coherent frame for H with frame

operator S. Then
{
S− 1

2π(g)ϕ
}
g∈G

is a coherent normalized tight frame

for H.

Proof. The family
{
S− 1

2π(g)ϕ
}
g∈G

is a normalized tight continuous

frame for H by Theorem 2.2 in [3]. For all g ∈ G, S commutes with π(g)

and so S− 1
2 commutes with each π(g). Let ψ = S− 1

2ϕ. Then{
S− 1

2π(g)ϕ
}
g∈G

= {π(g)ψ}g∈G ,

is a normalized tight coherent frame. □

In the rest of this paper, we show that coherent frames can be com-
bined as follows:

• the direct sum of disjoint coherent frames is a coherent frame.
• the tensor product of coherent frames is a coherent frame.

For each i = 1, . . . , n, let Hi be a Hilbert space. The direct sum of
Hilbert spaces H1, . . . ,Hn is the Hilbert space H1⊕ · · · ⊕Hn with inner
product⟨ x1

...
xn

 ,

 y1
...
yn

⟩
=

n∑
i=1

⟨xi, yi⟩, xi, yi ∈ Hi, i = 1, . . . , n.

If Ti : Hi → Hi, i = 1, . . . , n, are linear operators on Hi, the direct sum
of operators Ti is a linear operator T1⊕· · ·⊕Tn on H1⊕· · ·⊕Hn defined
by

(T1 ⊕ · · · ⊕ Tn)

 x1
...
xn

 =

 T1x1
...

Tnxn

 , xi ∈ Hi, i = 1, . . . , n.
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Definition 3.9. Let {ϕm}m∈M and {ψm}m∈M be continuous frames for
Hilbert spaces H and K, respectively. Two continuous frames {ϕm}m∈M
and {ψm}m∈M are called disjoint if for all x ∈ H and for all y ∈ K we
have ∫

M
⟨x, ϕm⟩H⟨ψm, y⟩K dµ(m) = 0.

Theorem 3.10. Let Φ = {π(g)ϕ}g∈G and Ψ = {ρ(g)ψ}g∈G be disjoint
coherent frames for Hilbert spaces H and K, respectively. Then the direct
sum

Φ⊕Ψ =

{(
π(g)ϕ

ρ(g)ψ

)}
g∈G

,

is a coherent frame for direct sum Hilbert space H⊕K with frame oper-
ator

SΦ⊕Ψ =

(
SΦ
SΨ

)
.

Proof. Let x ∈ H and t ∈ K;

I =

∫
G

∣∣∣∣⟨(xt
)
,

(
π(g)ϕ

ρ(g)ψ

)⟩∣∣∣∣2 dµ(g)

=

∫
G

⟨(
x

t

)
,

(
π(g)ϕ

ρ(g)ψ

)⟩⟨(
π(g)ϕ

ρ(g)ψ

)
,

(
x

t

)⟩
dµ(g)

=

∫
G
⟨x, π(g)ϕ⟩⟨π(g)ϕ, x⟩dµ(g) +

∫
G
⟨x, π(g)ϕ⟩⟨ρ(g)ψ, t⟩dµ(g)

+

∫
G
⟨t, ρ(g)ψ⟩⟨π(g)ϕ, x⟩dµ(g) +

∫
G
⟨t, ρ(g)ψ⟩⟨ρ(g)ψ, t⟩dµ(g).

Since Φ and Ψ are disjoint, then

I =

∫
G
|⟨x, π(g)ϕ⟩|2 dµ(g) +

∫
G
|⟨t, ρ(g)ψ⟩|2 dµ(g),

and therefore Φ⊕Ψ is a continuous frame. On the other hand,

Φ⊕Ψ =

{(
π(g)ϕ

ρ(g)ψ

)}
g∈G

=

{
(π ⊕ ρ)(g)

(
ϕ

ψ

)}
g∈G

,

where π ⊕ ρ, is a unitary representation of G on H⊕K.
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Now, let x, y ∈ H and t, u ∈ K. Then, we have⟨
SΦ⊕Ψ

(
x

t

)
,

(
y

u

)⟩
=

∫
G

⟨(
x

t

)
,

(
π(g)ϕ

ρ(g)ψ

)⟩⟨(
π(g)ϕ

ρ(g)ψ

)
,

(
y

u

)⟩
dµ(g)

=

∫
G

⟨⟨(
x

t

)
,

(
π(g)ϕ

ρ(g)ψ

)⟩(
π(g)ϕ

ρ(g)ψ

)
,

(
y

u

)⟩
dµ(g)

=

∫
G

⟨(
(⟨x, π(g)ϕ⟩+ ⟨t, ρ(g)ψ⟩)π(g)ϕ
(⟨x, π(g)ϕ⟩+ ⟨t, ρ(g)ψ⟩)ρ(g)ψ

)
,

(
y

u

)⟩
dµ(g)

=

∫
G
⟨x, π(g)ϕ⟩⟨π(g)ϕ, y⟩dµ(g) +

∫
G
⟨t, ρ(g)ψ⟩⟨π(g)ϕ, y⟩dµ(g)

+

∫
G
⟨x, π(g)ϕ⟩⟨ρ(g)ψ, u⟩dµ(g) +

∫
G
⟨t, ρ(g)ψ⟩⟨ρ(g)ψ, u⟩dµ(g)

= ⟨SΦx, y⟩+ ⟨SΨt, u⟩

=

⟨(
SΦ
SΨ

)(
x

t

)
,

(
y

u

)⟩
.

□
Corollary 3.11. Let Φi = {πi(g)ϕ}g∈G, i = 1, . . . , n, be mutually dis-
joint coherent frames for Hilbert spaces Hi, i = 1, . . . , n, respectively.
Then the direct sum Φ1 ⊕ · · · ⊕ Φn is a coherent frame for direct sum
Hilbert space H1 ⊕ · · · ⊕ Hn with frame operator

SΦ1⊕···⊕Φn = SΦ1 ⊕ · · · ⊕ SΦn .

Let H and K be two Hilbert spaces. The tensor product of H and K
is the set H⊗K of all antilinear maps T : K → H such that∑

j

∥Tuj∥2 <∞,

for some, and hence every orthonormal basis {uj}j of K.

Moreover, for every T ∈ H ⊗K, we set

∥|T∥|2 =
∑
j

∥Tuj∥2.

By Theorem 7.12 in [11], H ⊗ K is a Hilbert space with the norm ∥|.∥|
and associated inner product

⟨Q,T ⟩ =
∑
j

⟨Quj , Tuj⟩,

where {uj}j is any orthonormal basis of K.
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If x ∈ H and t ∈ K, the map u 7→ ⟨t, u⟩x (u ∈ K) belongs to H⊗K;
we denote it by x⊗ t.

If x, y ∈ H and t, u ∈ K, then by [11]

∥|x⊗ t∥| = ∥x∥∥t∥,
⟨x⊗ t, y ⊗ u⟩ = ⟨x, y⟩⟨t, u⟩.

Theorem 3.12. Let H1, . . . ,Hn be Hilbert spaces and F1 =
{
f1m

}
m∈M1

;

. . . ; Fn = {fnm}m∈Mn
be continuous frames for Hilbert spaces H1, . . . ,Hn

with frame bounds A1, B1; . . . ;An, Bn, respectively. Then

F1 ⊗ · · · ⊗ Fn =
{
f1m1

⊗ · · · ⊗ fnmn
: f jmj

∈ Fj , 1 ≤ j ≤ n
}
,

is a continuous frame for Hilbert tensor product space H1 ⊗ · · · ⊗ Hn

with frame bounds A1A2 · · ·An, B1B2 · · ·Bn. In particular, if F1, . . . , Fn
are normalized tight continuous frames, then it is a normalized tight
continuous frame.

By using the associativity of tensor product (Proposition 2.6.5 in [17])
and by induction it is enough to prove the theorem for n = 2.

Theorem 3.13. Let F = {fm}m∈M and G = {gm′}m′∈M′ be contin-
uous frames for Hilbert spaces H and K with frame bounds A,B;C,D,
respectively. Then the tensor product F ⊗G = {fm⊗ gm′}m∈M,m′∈M′ is
a continuous frame for Hilbert tensor product space H ⊗ K with frame
bounds AC,BD. Moreover F⊗G is a normalized tight continuous frame
if F and G are.

Proof. Let x ∈ H and t ∈ K;∫
M

∫
M′

|⟨x⊗ t, fm ⊗ gm′⟩|2 dµdµ′

=

∫
M

∫
M′

⟨x⊗ t, fm ⊗ gm′⟩⟨fm ⊗ gm′ , x⊗ t⟩dµdµ′

=

∫
M

∫
M′

⟨x, fm⟩⟨t, gm′⟩⟨fm, x⟩⟨gm′ , t⟩dµdµ′

=

∫
M

|⟨x, fm⟩|2 dµ
∫
M′

|⟨t, gm′⟩|2 dµ′.

Then F ⊗ G is a continuous frame for Hilbert tensor product space
H⊗K. □

Corollary 3.14. Let Φ = {π(g)ϕ}g∈G and Ψ = {ρ(g′)ψ}g′∈G′ be coher-
ent frames for Hilbert spaces H and K, respectively. The tensor product
Φ⊗Ψ = {π(g)ϕ⊗ρ(g′)ψ}g∈G,g′∈G′ is a coherent frame for Hilbert tensor
product space H⊗K.
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Proof. By Theorem 3.13, Φ ⊗ Ψ is a continuous frame. On the other
hand,

Φ⊗Ψ = {π(g)ϕ⊗ ρ(g′)ψ}g∈G,g′∈G′

=
{(

(π ⊗ ρ)(g, g′)
)
(ϕ⊗ ψ)

}
(g,g′)∈G×G′ ,

where π ⊗ ρ is a unitary representation of G×G′ on H⊗K. □
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