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A Coupled Random Fixed Point Result With Application in

Polish Spaces

Rashwan Ahmed Rashwan1∗ and Hasanen Abuel-Magd Hammad2

Abstract. In this paper, we present a new concept of random
contraction and prove a coupled random fixed point theorem un-
der this condition which generalizes stochastic Banach contraction
principle. Finally, we apply our contraction to obtain a solution
of random nonlinear integral equations and we present a numerical
example.

1. Introduction

Throughout this paper, we will refer to R by the set of all real num-
bers, R+ by the set of all positive real numbers, N by the set of all
natural numbers, (X, d) by a complete metric or polish space with a
metric d and (Ω,Σ) by a measurable space where Σ is a σ−algebra of
Borel subsets of Ω.

There are many extensions of the Banach contraction principle [6],
which states that, let T be a self mapping defined on a complete metric
space (X, d) and satisfy

(1.1) d(Tx, Ty) ≤ kd(x, y), ∀x, y ∈ X and k ∈ (0, 1),

then T has a unique fixed point and for all x◦ ∈ X a sequence {Tnx◦}n∈N
is convergent to this fixed point. Some authors worked in right side of
inequality (1.1) by replacing k with a mapping (see [10, 20]) and others
impressed by the underlying space is more general (see [4, 27]). There
are also many different types of fixed point theorems not mentioned
above extending the Banach’s result.
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Definition 1.1. A metric space (X, d) is said to be a polish space, if it
is satisfied the following conditions:

(i) X is complete,
(ii) X is separable.

In 2006, the concept of coupled fixed point introduced by Bhaskar et
al. [9], for some works on a coupled fixed point in different spaces (see
[1, 5]).

Definition 1.2 ([9]). An element (x, y) ∈ X × X is called a coupled
fixed point of the mapping T : X ×X → X if

(1.2) T (x, y) = x, T (y, x) = y.

In 2012, Wardowski [28] presented a new type of contraction called
F -contraction where F : R+ → R and proved a new fixed point theorem
concerning F−contraction. He gave also some examples to obtain the
variety of a type known in the literature of contractions. A lot of authors
worked in this direction and proved some new fixed point results in
various spaces (see [2, 3, 7, 12, 16]).

Definition 1.3 ([28]). Let F : R+ → R be a mapping satisfying:

(F1) F is strictly increasing i.e., for all a, b ∈ R+ such that a < b,
F (a) < F (b);

(F2) for every sequence {an}n∈N of positive numbers limn→∞ an = 0
iff limn→∞ F (an) = −∞;

(F3) there exists λ ∈ (0, 1) such that lima→0+ aλF (a) = 0.

A mapping T : X → X is called F -contraction if there exists τ > 0 such
that
(1.3)
d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)), ∀x, y ∈ X.

Theorem 1.4 ([28]). Let T be a self mapping on a complete metric space
(X, d) satisfying the condition (1.3). Then T has a unique fixed point
x∗. Moreover, for any x◦ ∈ X, the sequence {Tnx◦}n∈N is convergent to
x∗.

Fixed point theory has a solution of many problems that appear in
approximation theory, game and potential theory, theory of integral and
differential equations and others. The study of random fixed point the-
orems was initiated by the Prague school of probabilistic in 1950’s. The
introduction of randomness leads to several new questions of measurabil-
ity of solutions probabilistic and statistical aspects of random solutions.
Random fixed point theorems for random contraction mappings on sep-
arable complete metric spaces were first proved by Hanš [13] and Špaček
[26].
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In 1972, Bharucha-Reid [8] attracted the attention of several mathe-
maticians and gave wings to this theory. Itoh [14] extended the results
of Špaček and Hanš in multi-valued contractive mappings and obtained
random fixed point theorems with an application to random differential
equations in Banach spaces.

Recently, some authors [19, 21, 24, 25], applied a random fixed point
theorem to prove the existence of a solution in a sparable Banach space
of a random nonlinear integral equations.

Random and coupled fixed point theorems are stochastic generaliza-
tions of classical or deterministic fixed point theorems. Lakshmikan-
tham et al. [17], gave the notion of coupled random fixed points and
proved some theorems in partially ordered metric spaces under this no-
tion. Very recently, some authors generalized this results and obtained
some theorems in different spaces (see [22, 23]).

In this paper, we give a stochastic version for F -contraction (1.3) and
use it to obtain a coupled random fixed point theorem in a polish space.
Also, a solution of random nonlinear integral equations are discussed.
Finally, a numerical example, to verify our result, is given.

2. Some Basics of Valued Random Variables

The following preliminaries appear in [15].
Let (Ω,Σ, µ) be a complete probability measure space with measure

µ and Σ be a σ−algebra of subsets of Ω.

Definition 2.1 ([15]). A mapping x : Ω → X is called:

1. X−valued random variable, if the inverse image under the map-
ping x of every Borel set B of X belongs to Σ, that is, x−1(B) ∈
Σ for all B ∈ Σ.

2. Finitely valued random variable, if it is constant on each of a
finite number of disjoint sets Ai ∈Σ and is equal to 0 on

Ω−

(
n∪

i=1

Ai

)
.

3. Simple random variable if it is finitely valued and

µ{ω : ∥x(ω)∥ > 0} <∞.

4. Strong random variable, if there exists a sequence {xn(ω)} of
simple random variables which converges to x(ω) almost surely,
i.e., there exists a set A0 ∈

∑
with µ(A0) = 0 such that

lim
n→∞

xn(ω) = x(ω), ω ∈ Ω−A0.
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5. Weak random variable, if the function x∗(x(ω)) is a real valued
random variable for each x∗ ∈ X∗, the space X∗ denoting the
dual space of X.

Definition 2.2 ([15]). Let Y be another Banach space.

1. A mapping T : Ω ×X → Y is said to be a random mapping if
T (ω, x) = Y (ω) is a Y−valued random variable for every x ∈ X.

2. A mapping T : Ω ×X → Y is said to be a continuous random
mapping if the set of all ω ∈ Ω for which T (ω, x) is a continuous
function of x has measure one.

3. An equation of the type T (ω, x(ω)) = x(ω), where T : Ω×X →
Y is a random mapping, is called a random fixed point equation.

4. Any mapping x : Ω → X which satisfies the random fixed point
equation T (ω, x(ω)) = x(ω) almost surely is said to be a wide
sense solution of the fixed point equation.

5. Any X−valued random variable x(ω) which satisfies

µ{ω : T (ω, x(ω)) = x(ω)} = 1,

is said to be a random solution of the fixed point equation or a
random fixed point of T .

Definition 2.3. Let X be a polish space, an element (x(ω), y(ω)) for
all x, y ∈ X and ω ∈ Ω is called a coupled random fixed point of a self
random mapping T if

T (ω, (x(ω), y(ω))) = x(ω) and T (ω, (y(ω), x(ω))) = y(ω).

Remark 2.4 ([15]). A random solution is a wide sense solution of the
fixed point equation but the converse is not necessarily true.

3. Some Random Contractive Conditions

In this section, we give some extensions of F -contraction (1.3) in
stochastic version and obtain some known contractive conditions.

Definition 3.1. Consider (X, d) be a polish space and 𝟋 be the family
of functions given by φ : (0,∞) → (−∞,∞) satisfying:

(i) φ is strictly increasing;
(ii) for a sequence (tn) ⊂ (0,∞),

lim
n→∞

tn = 0 ⇔ lim
n→∞

φ(tn) = −∞;

(iii) there exists λ ∈ (0, 1) such that limt→0+ tλφ(t) = 0.

A random mapping T : Ω×X → X is called φ-contraction if there exists
τ > 0 such that

d (T (ω, x), T (ω, y)) > 0(3.1)
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⇒ τ + φ (d(T (ω, x) , T (ω, y))) ≤ φ (d (x(ω), y(ω))) ,

for all x, y ∈ X and ω ∈ Ω.

Remark 3.2. If we consider the φ-contractive condition (3.1), then we
obtain other types of contractions as follows:

▶ Taking φ(t) = ln(t), t > 0. It is clear that φ satisfies (i)-(iii) i.e.,
φ ∈ 𝟋 (for λ ∈ (0, 1)). Each self random mapping T : Ω × X → X
satisfying (3.1) is a φ-contraction such that

(3.2) d (T (ω, x), T (ω, y)) ≤ e−τ (d (x(ω), y(ω))) ,

for all x, y ∈ X and ω ∈ Ω, T (ω, x) ̸= T (ω, y).
▶ If we take φ(t) = ln(t) + t, t > 0. Then φ ∈ 𝟋 and the condition

(3.1) is of the form

(3.3)
d (T (ω, x), T (ω, y))

d (x(ω), y(ω))
ed(T (ω,x),T (ω,y))−d(x(ω),y(ω)) ≤ e−τ ,

for all x, y ∈ X and ω ∈ Ω, T (ω, x) ̸= T (ω, y).
▶ Consider φ(t) = −1√

t
, t > 0 then, φ ∈ 𝟋, (iii) for λ ∈

(
1
2 , 1
)
and

φ-contraction T satisfies

(3.4) d (T (ω, x), T (ω, y)) ≤ 1(
1 + τ

√
d(x(ω), y(ω))

)2d (x(ω), y(ω)) ,
∀x, y ∈ X and ω ∈ Ω, T (ω, x) ̸= T (ω, y).

▶ Putting φ(t) = ln(t2 + t), t > 0 therefore, φ ∈ 𝟋 and for φ-
contraction T, the following condition holds:

(3.5)
d (T (ω, x), T (ω, y)) [d(T (ω, x), T (ω, y)) + 1]

d (x(ω), y(ω)) [d(x(ω), y(ω)) + 1]
≤ e−τ ,

∀x, y ∈ X and ω ∈ Ω, T (ω, x) ̸= T (ω, y).
Note that, all random contractive conditions (3.2)-(3.5) are satisfied

for x, y ∈ X and ω ∈ Ω, such that T (ω, x) = T (ω, y).

Remark 3.3. Consider φ(t) = −1

t
1
p
, p > 1, t > 0, then φ ∈ 𝟋.

Proof. Since φ
′
(t) = 1

p.t
1+ 1

p
> 0 then, φ satisfies (i) and it is clear that

the condition (ii) holds. Finally, since p > 1, 1
p < 1, we take 1

p < λ < 1

and then,

lim
t→0+

tλφ(t) = lim
t→0+

(
−tλ−

1
p

)
= 0.

So φ satisfies (iii). This gives us φ ∈ 𝟋. □
Question. Is it possible to define random contractive condition under

φ(t) = −1

t
1
p
?

Now, we state a stochastic version of Theorem 1.4.
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Theorem 3.4. Let (X, d) be a polish space and T be a self random
mapping on X satisfying the φ-contractive condition (3.1), then T has
a unique random fixed point x∗(ω). Moreover, for any x◦(ω) ∈ Ω × X,
the sequence {Tn(ω, x◦}}n∈N is convergent to x∗(ω).

Proof. We can get the proof easily from [28, Theorem 1.4] by taking Ω
be a singleton in our theorem and X is a complete metric space. □

4. A Coupled Random Fixed Point Result

The following Lemma is useful in our results.

Lemma 4.1. Let (X, d) be a polish space, X×X be a cartesian product

and d̃ is defined by

d̃ ((x, y), (u, v)) = max {d(x, u), d(y, v)} .

Then, the pair (X ×X, d̃) is a polish space

Proof. It’s obvious that the distance d̃ satisfies all conditions of a metric

space and X × X endowed with d̃ is complete, hence (X × X, d̃) is a
complete metric space. Since X is separable, then X ×X is separable
too [18]. Therefore the required is obtained. □

Now, we present the main results of the paper.

Theorem 4.2. Let F : Ω × (X × X) → X be a continuous random
mapping of a polish space (X, d) such that there exist τ > 0 and φ ∈ 𝟋,
satisfying

d (F (ω, (x, y)) , F (ω, (u, v))) > 0,

then,

τ + φ (d (F (ω, (x, y)) , F (ω, (u, v))))(4.1)

≤ φ (max {d (x(ω), u(ω)) , d(y(ω), v(ω))}) ,
for all x, y ∈ X and ω ∈ Ω. So, F has a unique coupled random fixed
point.

Proof. Consider a random mapping F̃ : Ω× (X×X) → (X×X) defined
by

F̃ (ω, (x, y)) = (F (ω, (x, y)), F (ω, (y, x))) .

Next, we check that F̃ satisfies the contractive condition (3.1) appearing
in Theorem 3.4 in a polish space X ×X (see Lemma 4.1).
For x, y, u, v ∈ X and ω ∈ Ω, suppose that

d̃
(
F̃ (ω, (x, y)) , F̃ (ω, (u, v))

)
= d̃ ([F (ω, (x, y)) , F (ω, (y, x))] ,

[F (ω, (u, v)), F (ω, (v, u))])



A COUPLED RANDOM FIXED POINT RESULT WITH APPLICATION ... 105

= max {d (F (ω, (x, y)) , F (ω, (u, v))) ,

d (F (ω, (y, x)) , F (ω, (v, u)))}
> 0.

We can distinguish two cases:
Case 1. If

max {d (F (ω, (x, y)) , F (ω, (u, v))) , d (F (ω, (y, x)) , F (ω, (v, u)))}
= d (F (ω, (x, y)) , F (ω, (u, v))) ,

since
d (F (ω, (x, y)) , F (ω, (u, v))) > 0,

by using the contractive condition (4.1), we have

τ + φ
(
d̃
(
F̃ (ω, (x, y)) , F̃ (ω, (u, v))

))
= τ + φ (d (F (ω, (x, y)) , F (ω, (u, v))))

≤ φ (max {d (x(ω), u(ω)) , d (y(ω), v(ω))})
= φ (max {d (x(ω), y(ω)) , d (u(ω), v(ω))}) .

Case 2. Let

max {d (F (ω, (x, y)) , F (ω, (u, v))) , d(F (ω, (y, x)), F (ω, (v, u)))}
= d (F (ω, (y, x)) , F (ω, (v, u))) .

Since
d (F (ω, (y, x)) , F (ω, (v, u))) > 0,

by using our assumption, we get

τ + φ
(
d̃
(
F̃ (ω, (x, y)) , F̃ (ω, (u, v))

))
= τ + φ (d (F (ω, (y, x)) , F (ω, (v, u))))

≤ φ (max {d (y(ω), v(ω)) , d (x (ω) , u(ω))})
= φ (max {d (x(ω), y(ω)) , d (u(ω), v(ω))}) .

Therefore, in both cases the contractive condition (4.1) holds.

By Theorem 3.4, F̃ has a unique coupled random fixed point (x∗(ω), y∗(ω)) ∈
X ×X, for all ω ∈ Ω.

This means that

(x∗(ω), y∗(ω)) = F̃ (ω, (x∗(ω), y∗(ω)))

= (F (ω, (x∗(ω), y∗(ω))) , F (ω, (y∗(ω), x∗(ω)))) ,

consequently,
F (ω, (x∗(ω), y∗(ω))) = x∗(ω),

and
F (ω, (y∗(ω), x∗(ω))) = y∗(ω).
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This means that (x∗(ω), y∗(ω)) is a coupled random fixed point of the
random mapping F .

For the uniqueness, suppose that (x1(ω), y1(ω)) ∈ X×X, for all ω ∈ Ω
is another coupled random fixed point of F, i.e.,

F (ω, (x1(ω), y1(ω))) = x1(ω),

and

F (ω, (y1(ω), x1(ω))) = y1(ω).

Or equivalently,

(x1(ω), y1(ω)) = F̃ (ω, (x1(ω), y1(ω))) .

By the uniqueness of the random fixed point of F̃ , we obtain

(x1(ω), y1(ω)) = (x∗(ω), y∗(ω)) ,

and this gives us the uniqueness of the coupled random fixed point of
F . □

5. Applications

Before to present an application of our result, we need the following
lemma.

Lemma 5.1. Suppose p > 1, τ > 0 and let φp
τ : [0,∞) → [0,∞) be the

function defined by

φp
τ (t) =

t

(1 + τ p
√
t)p
.

Then

(a) φp
τ (t) is strictly increasing,

(b) φp
τ (0) = 0 and φp

τ is a concave function,
(c) for t, s ∈ [0,∞), |φp

τ (t)− φp
τ (s)| ≤ φp

τ (|t− s|).

Proof. (a) We have

(φp
τ )

′
(t) =

(
1 + τ p

√
t
)p − t.p(1 + τ p

√
t)p−1.τ.1p .t

1
p
−1(

1 + τ p
√
t
)2p

=

(
1 + τ p

√
t
)p−1

[
(1 + τ p

√
t)− τ.t

1
p

]
(
1 + τ p

√
t
)2p

=
1(

1 + τ p
√
t
)p+1 > 0,

and this proves (a).
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(b) It is clear that φp
τ (0) = 0. On the other hand,

(φp
τ )

′′

(t) =
−(p+ 1)

(
1 + τ p

√
t
)p
.τ.1p .t

1
p
−1(

1 + τ p
√
t
)2p+2

=
−
(
p+1
p

)
τ

t
1− 1

p
(
1 + τ p

√
t
)p+2

< 0,

and this proves that φp
τ is a concave function.

(c) Since φp
τ (0) = 0 and φp

τ is a concave, then φp
τ is subadditive,

i.e.,

φp
τ (t+ s) ≤ φp

τ (t) + φp
τ (s).

Taking t, s ∈ [0,∞) and without loss of generality, we can sup-
pose that t > s. By (a), we have

(5.1) |φp
τ (t)− φp

τ (s)| = φp
τ (t)− φp

τ (s).

But,

φp
τ (t) = φp

τ (t− s+ s) ≤ φp
τ (t− s) + φp

τ (s),

(where we have used the subadditivity of φp
τ ) and consequently,

(5.2) φp
τ (t)− φp

τ (s) ≤ φp
τ (t− s) = φp

τ (|t− s|) .

By (5.1) and (5.2), we have

|φp
τ (t)− φp

τ (s)| ≤ φp
τ (|t− s|),

and this completes the proof.
□

Now, we will apply our result to the existence and uniqueness of
solutions of random nonlinear integral equations

(5.3)


x(t;ω) = a(t;ω) +

∫ 1
0

(
ω; t, s, max

0≤τ≤s
{|x(τ ;ω)|} , y(s;ω)

)
ds,

y(t;ω) = a(t;ω) +
∫ 1
0

(
ω; t, s, max

0≤τ≤s
{|y(τ ;ω)|} , x(s;ω)

)
ds,

where,

1. ω ∈ Ω where ω is a supporting set of the probability measure
space (Ω,Σ, µ) ,

2. x (t;ω) and y (t;ω) are unknown vector-valued random variables
for each t ∈ [0, 1],

3. a(t;ω) is the stochastic free term defined for t ∈ [0, 1].
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Random integral equations (5.3) in stochastic version is a similar to
volterra integral type equation.

System (5.3) will be considered under the following assumptions:
(H1) a(t;ω) ∈ C([0, 1], R), where C([0, 1], R) = {x : [0, 1] → R : x is
continuous} and R is a polish space, (note here, we take X = R).
(H2) f : Ω× [0, 1]× [0, 1]×R×R → R is a random continuous function
satisfying

|f(ω; t, s, u(ω), v(ω))− f(ω; t, s, u1(ω), v1(ω))|

≤ max {|u(ω)− u1(ω)| , |v(ω)− v1(ω)|}(
1 + τ p

√
max{|u(ω)− u1(ω)| , |v(ω)− v1(ω)|}

)p ,
for any t, s ∈ [0, 1] and u(ω), v(ω), u1(ω), v1(ω) ∈ Ω × R, where τ > 0
and p > 1.

The following results are important in the sequel (see [11]).
Suppose that x(ω) ∈ C([0, 1], R) and let G(ω, x) = Gx be a measur-

able function defined by

Gx(t) = max
0≤τ≤t

|x(ω; τ)| .

Then Gx(t) ∈ C([0, 1],R). Moreover, for x(ω), y(ω) ∈ C([0, 1], R),

d(Gx, Gy) = sup {|Gx(t)−Gy(t)| : t ∈ [0, 1]}
≤ d (x(ω), y(ω))

= sup {|x(ω; t)− y(ω; t)| : t ∈ [0, 1]} .

Theorem 5.2. Let (Ω,Σ, µ) be a probability measure space and R is a
polish space, then the system (5.3) under assumptions (H1) and (H2) has
a unique random solution (x∗(ω), y∗(ω)) ∈ C([0, 1], R)× C([0, 1], R).

Proof. For x(ω), y(ω) ∈ C([0, 1], R), ω ∈ Ω and t ∈ [0, 1], we define
F (ω, (x, y)) by

F (ω, (x, y)) (t) = a(t;ω) +

∫ 1

0

(
ω; t, s, max

0≤τ≤s
{|x(τ ;ω)|} , y(s;ω)

)
ds.

In virtue of (H1), (H2) and the fact that a random operator G mentioned
above is continuous on C([0, 1], R), it is clear that if x(ω), y(ω) ∈ C([0, 1],
R) then F (ω, (x, y)) ∈ C([0, 1], R). Therefore,

F : Ω× C ([0, 1],R)× C ([0, 1],R) → C = ([0, 1],R) .

Next, we check that F satisfies the contractive condition (4.1).
Suppose that d(F (ω, (x, y)), F (ω, (u, v))) > 0, then, for t ∈ [0, 1], we

have

|F (ω, (x, y))(t)− F (ω, (u, v))(t)|
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=

∣∣∣∣∫ 1

0
f(ω; t, s, max

0≤τ≤s
{|x(τ ;ω)|}, y(s;ω))ds

−
1∫

0

f(ω; t, s, max
0≤τ≤s

{|u(τ ;ω)|}, v(s;ω))ds

∣∣∣∣∣∣
=

∣∣∣∣∫ 1

0
f(ω; t, s,Gx(s), y(s;ω))ds

−
∫ 1

0
f(ω; t, s,Gu(s), v(s;ω))ds

∣∣∣∣
≤
∫ 1

0
|f(ω; t, s,Gx(s), y(s;ω))− f(ω; t, s,Gu(s), v(s;ω))| ds

≤
∫ 1

0

max {|Gx(s)−Gu(s)| , |y(s;ω)− v(s;ω)|}(
1 + τ p

√
max{|Gx(s)−Gu(s)| , |y(s;ω)− v(s;ω)|}

)pds
≤
∫ 1

0

max {d(Gx(s), Gu(s)), d(y(s;ω), v(s;ω))}(
1 + τ p

√
max{d(Gx(s), Gu(s)), d(y(s;ω), v(s;ω))}

)pds
≤
∫ 1

0

max {d(x(ω), u(ω)), d(y(s;ω), v(s;ω))}(
1 + τ p

√
max{d(x(ω), u(ω)), d(y(s;ω), v(s;ω))}

)pds
=

max {d(x(ω), u(ω)), d(y(ω), v(ω))}(
1 + τ p

√
max{d(x(ω), u(ω)), d(y(ω), v(ω))}

)p ,
where we used the nondecreasing character of φp

τ (Lemma 5.1) and the
fact that d(Gx, Gy) ≤ d(x(ω), y(ω)).
Therefore

d (F (ω, (x, y)), F (ω, (u, v))) ≤ max {d (x(ω), u(ω)) , d (y(ω), v(ω))}(
1 + τ p

√
max{d(x(ω), u(ω)), d(y(ω), v(ω))}

)p .
This yields that

p
√
d(F (ω, (x, y)), F (ω, (u, v))) ≤

p
√
max {d(x(ω), u(ω)), d(y(ω), v(ω))}

1 + τ p
√

max{d(x(ω), u(ω)), d(y(ω), v(ω))}
,

or, equivalently,

1 + τ p
√

max{d(x(ω), u(ω)), d(y(ω), v(ω))}
p
√

max {d(x(ω), u(ω)), d(y(ω), v(ω))}
≤ 1

p
√
d(F (ω, (x, y)), F (ω, (u, v)))

,

or,

1
p
√
max {d(x(ω), u(ω)), d(y(ω), v(ω))}

+τ ≤ 1
p
√
d(F (ω, (x, y)), F (ω, (u, v)))

,



110 R. A. RASHWAN AND H. A. HAMMAD

or,

τ− 1
p
√
d(F (ω, (x, y)), F (ω, (u, v)))

≤ − 1
p
√

max {d(x(ω), u(ω)), d(y(ω), v(ω))}
.

This says us that the contractive condition (4.1) is satisfied with φ(t) =
−1
p√t

∈ 𝟋 (Remark 3.3). By Theorem 4.2, there exists a unique coupled

random fixed point of a random mapping F, i.e., there exists a unique
(x∗(ω), y∗(ω)) ∈ C([0, 1], R)× C([0, 1], R) such that, for any t ∈ [0, 1]

x∗(ω; t) = F (ω, (x◦, y◦))(t)

= a(t;ω) +

∫ 1

0
f(ω; t, s, max

0≤τ≤s
{|x∗◦(τ ;ω)|}, y∗◦(s;ω))ds,

y∗(ω; t) = F (ω, (y◦, x◦))(t)

= a(t;ω) +

∫ 1

0
f(ω; t, s, max

0≤τ≤s
{|y∗◦(τ ;ω)|}, x∗◦(s;ω))ds,

and this completes the proof. □
In the sequel, we present a numerical example.

Example 5.3. Let (Ω,Σ) be a measurable space where Σ is a σ−algebra
of Borel subsets of Ω. Consider Ω = [0, 1] and the following coupled
system of random nonlinear integral equations for t ∈ [0, 1] and ω ∈ Ω,
(5.4)

x(t;ω) = et+ω

+
∫ 1

0

t2 + s
1+s + 1

2

max
0≤τ≤s

|x(τ ;ω)|(
1+8 3

√
max

0≤τ≤s
|x(τ ;ω)|

)3 + 1
2

|y(s;ω)|(
1+5 3

√
|y(s;ω)|

)3

ds;
y(t;ω) = et+ω

+
∫ 1

0

t2 + s
1+s + 1

2

max
0≤τ≤s

|y(τ ;ω)|(
1+8 3

√
max

0≤τ≤s
|y(τ ;ω)|

)3 + 1
2

|x(s;ω)|(
1+5 3

√
|x(s;ω)|

)3

ds.
System (5.4) is a particular case of system (5.3), where a(t;ω) = et+ω

and

f (ω; t, s, u(s;ω), v(s;ω))n = t2 +
s

1 + s
+

1

2

|u(s;ω)|(
1 + 8 3

√
|u(s;ω)|

)3
+

1

2

|v(s;ω)|(
1 + 5 3

√
|v(s;ω)|

)3 .
It is clear that (H1) is satisfied.

For (H2), we have

|f (ω; t, s, u(s;ω), v(s;ω))− f (ω; t, s, u1(s;ω), v1(s;ω))|
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≤ 1

2

∣∣∣∣∣∣∣
|u(s;ω)|(

1 + 8 3
√

|u(s;ω)|
)3 − |u1(s;ω)|(

1 + 8 3
√

|u1(s;ω)|
)3
∣∣∣∣∣∣∣

+
1

2

∣∣∣∣∣∣∣
|v(s;ω)|(

1 + 5 3
√
|v(s;ω)|

)3 − |v1(s;ω)|(
1 + 5 3

√
|v1(s;ω)|

)3
∣∣∣∣∣∣∣

=
1

2

∣∣φ3
8 (|u(s;ω)|)− φ3

8 (|u1(s;ω)|)
∣∣

+
1

2

∣∣φ3
5 (|v(s;ω)|)− φ3

5 (|v1(s;ω)|)
∣∣

≤ 1

2
φ3
8 (||u(s;ω)| − |u1(s;ω)||) +

1

2
φ3
5 (||v(s;ω)| − |v1(s;ω)||)

≤ 1

2
φ3
8 (|u(s;ω)− u1(s;ω)|) +

1

2
φ3
5 (|v(s;ω)− v1(s;ω)|)

≤ 1

2
φ3
8 (max {|u(ω)− u1(ω)| , |v(ω)− v1(ω)|})

+
1

2
φ3
5 (max{|u(ω)− u1(ω)| , |v(ω)− v1(ω)|})

≤ 2.
1

2
φ3
5 (max {|u(ω)− u1(ω)| , |v(ω)− v1(ω)|})

=
max{|u(ω)− u1(ω)| , |v(ω)− v1(ω)|}

(1 + 5 3
√
max{|u(ω)− u1(ω)| , |v(ω)− v1(ω)|})3

,

where we have used Lemma 5.1.
Therefore (H2) is hold with τ = 5 and p = 3.
By Theorem 5.2, system (5.4) has a unique solution

(x∗(ω), y∗(ω)) ∈ C([0, 1],R)× C([0, 1],R).
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