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The Solvability of Concave-Convex Quasilinear Elliptic

Systems Involving p-Laplacian and Critical Sobolev Exponent

Somayeh Khademloo1∗ and Saeed Khanjany Ghazi2

Abstract. In this work, we study the existence of non-trivial mul-
tiple solutions for a class of quasilinear elliptic systems equipped
with concave-convex nonlinearities and critical growth terms in
bounded domains. By using the variational method, especially Ne-
hari manifold and Palais-Smale condition, we prove the existence
and multiplicity results of positive solutions.

1. Introduction and Main Results

The aim of this paper is to establish the existence and multiplicity of
nontrivial positive solutions of the following quasilinear elliptic system:

(1.1)
−∆pu+ a(x)|u|p−2u = λ|u|q−2u+ α

α+β |u|
α−2u|v|β,

−∆pv + a(x)|v|p−2v = µ|v|q−2v + β
α+β |v|

β−2v|u|α,

u = v = 0,

x ∈ Ω,

x ∈ Ω,

x ∈ ∂Ω.

Here Ω⊂RN (N ≥ 2) is a smooth bounded domain, 0 ∈ Ω, α > 1, β > 1,

α + β = p∗, and p∗ =
pN

N − p
is the critical Sobolev exponent. Also

λ, µ > 0, 1 < q < p < N , ∆pu =div
(
|∇u|p−2∇u

)
is the p-Laplacian, and

a(x) is the weight function that is also positive and bounded.
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Many problems in science and engineering are described by semilinear
and quasilinear elliptic equations and systems which usually difficult to
solve, we refer the reader to Ambrosetti et al. [3, 2], Hsu [13, 14], Brown
et al. [10, 11] and Wu [16, 17], and so forth. Although by methods
of nonlinear analysis like variational method, we are able to tackle such
problems. Afrouzi and Rasouli [1] have investigated the following system
with subcritical nonlinearity:
(1.2)

−∆pu+ a(x)|u|p−2u = λ|u|q−2u+ α
α+β c(x)|u|

α−2u|v|β,

−∆pv + a(x)|v|p−2v = µ|v|q−2v + β
α+β c(x)|v|

β−2v|u|α,

u = v = 0,

x ∈ Ω,

x ∈ Ω,

x ∈ ∂Ω.

where p > 2 and 2 < α+ β < p < q < p∗, and the weight c satisfy some
suitable conditions. They have proved that, there exists δ∗ > 0 such
that if the parameters λ, µ > 0, satisfy

0 < λ
p

q−p + µ
p

q−p < δ∗,

then the problem (1.2) has at least two nontrivial positive solutions
(u+0 , v

+
0 ) and (u−0 , v

−
0 ).

Set p = 2, a(x) = 0 and 1 < q < 2 < α + β < 2∗ and also by adding
sign changing functions f, g and h that h ∈ C(Ω), the problem (1.1)
changes to

(1.3)


−∆u = λf(x)|u|q−2u+ α

α+βh(x)|u|
α−2u|v|β,

−∆v = µg(x)|v|q−2v + β
α+βh(x)|v|

β−2v|u|α,

u = v = 0,

x ∈ Ω,

x ∈ Ω,

x ∈ ∂Ω.

Wu in [16] proved that the system (1.3) has two positive solutions with
same conditions as in [1]. Our main results are as follows.

Theorem 1.1. If λ, µ satisfy

0 < λ
p

p−q + µ
p

p−q < Λ1,

then (1.1) has at least one positive solution.

Theorem 1.2. If λ, µ satisfy

0 < λ
p

p−q + µ
p

p−q < Λ2,
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then (1.1) has at least two positive solutions.

We divide this paper into four sections. In the next section, we give
properties of Nehari manifold and set up the variational method. The
proof of Theorem 1.1 is in the third section and in the last section, by
the Palais-Smale condition, we prove Theorem 1.2.

2. Nehari Manifold

Problem (1.1) is posed in the framework of the Sobolev space W =

W 1,p
0 ×W 1,p

0 with the standard norm

∥ z ∥=
(∫

Ω
(|∇u|p + a(x)|u|p) dx+

∫
Ω
(|∇v|p + a(x)|v|p) dx

)1/p

,

for any z = (u, v) ∈ W. An element z is said to be a weak solution of
(1.1) if

∫
Ω

(
|∇u|p−2∇u∇φ1 + a(x)uφ1

)
dx+

∫
Ω

(
|∇v|p−2∇v∇φ2 + a(x)vφ2

)
dx

− λ

∫
Ω
|u|q−2uφ1 − µ

∫
Ω
|v|q−2vφ2dx− α

α+ β

∫
Ω
|u|α−2u|v|βφ1dx

− β

α+ β

∫
Ω
|v|β−2v|u|αφ1dx = 0,

for all (φ1, φ2) ∈ W.
Thus the corresponding energy functional of (1.1) is defined by

Jλ,µ(z) =
1

p
∥ z ∥p −1

q
Kλ,µ(z)−

1

α+ β
L(z),

where Kλ,µ, L : W → R are the functionals defined by

Kλ,µ(z) =

∫
Ω
(λ|u|q + µ|v|q)d(x), L(z) =

∫
Ω
|u|α|v|βdx.

As the energy functional Jλ,µ is not bounded below on W, we consider

the Nehari manifold Nλ,µ =
{
z ∈ W\ {0} |⟨J ′

λ,µ(z), z⟩ = 0
}
. Thus z ∈

Nλ,µ if and only if

(2.1) ⟨J ′
λ,µ(z), z⟩ =∥ z ∥p −Kλ,µ(z)− L(z) = 0.

Note that Nλ,µ contains every nonzero solution of (1.1). Define

ϕλ,µ(z) = ⟨J ′
λ,µ(z), z⟩.



42 S. KHADEMLOO AND S. KHANJANY GHAZI

Then for z ∈ Nλ,µ,

⟨ϕ′
λ,µ(z), z⟩ = p ∥ z ∥p −qKλ,µ(z)− p∗L(z)(2.2)

= (p− q) ∥ z ∥p −(p∗ − q)L(z)

= (p∗ − q)Kλ,µ(z)− (p∗ − p) ∥ z ∥p .

Now, similar to the method used in [15], we split Nλ,µ into three disjoint
parts:

N+
λ,µ =

{
z ∈ Nλ,µ : ⟨ϕ′

λ,µ(z), z⟩ > 0
}
,

N0
λ,µ =

{
z ∈ Nλ,µ : ⟨ϕ′

λ,µ(z), z⟩ = 0
}
,

N−
λ,µ =

{
z ∈ Nλ,µ : ⟨ϕ′

λ,µ(z), z⟩ < 0
}
.

To state our main result, we present some important properties of N+
λ,µ,

N0
λ,µ and N−

λ,µ.

Lemma 2.1. Jλ,µ is coercive and bounded from below on Nλ,µ.

Proof. If z ∈ Nλ,µ, then by (2.1), the Hölder inequality and the Sobolev
embedding theorem we have

Jλ,µ(z) =
p∗ − p

pp∗
∥ z ∥p −p∗ − q

qp∗
Kλ,µ(z)

(2.3)

≥ 1

N
∥ z ∥p −p∗ − q

qp∗
S
− q

p |Ω|
p∗−q
p∗
(
λ

p
p−q + µ

p
p−q

) p−q
p ∥ z ∥q,

where S is the best Sobolev constant for the embedding ofW 1,p
0 in Lp∗(Ω)

defined by

(2.4) S = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω
(|∇u|p + a(x)|u|p) dx(∫

Ω
| u |p∗dx

) p
p∗

.

Since 1 < q < p, we see that Jλ,µ is coercive and bounded below on
Nλ,µ. □

By modifying the proof of Alves et al. [4] (Theorem 5), we have

(2.5) Sα,β =

((
α

β

) β
α+β

+

(
β

α

) α
α+β

)
S,
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where S is the best Sobolev constant defined in (2.3) and

(2.6) Sα,β = inf
u,v∈W 1,p

0 (Ω)\{0}

∥ z ∥p(∫
Ω
|u|α|v|βdx

) p
p∗

.

This is achieved if and only if Ω = RN by the function

Uε(x) = CN

(
ε

1
p

ε+ |x|
p

p−1

)(N−p)/p

, ε > 0.

Lemma 2.2. Suppose that z0 is a local minimizer for Jλ,µ on Nλ,µ and
that z0 ̸∈ Nλ,µ, then z0 is a critical point of the Jλ,µ.

Proof. If z0 is a local minimizer for Jλ,µ on Nλ,µ. Then z0 is a solution of
optimization problem. Since ϕλ,µ(z) = ⟨J ′

λ,µ(z), z⟩, then by the theory
of Lagrange multipliers, there exists γ ∈ R such that

⟨J ′
λ,µ(z0), z0⟩ = γ⟨ϕ′

λ,µ(z0), z0⟩.

Since z0 ∈ Nλ,µ and z0 ̸∈ N0
λ,µ, we get

⟨ϕ′
λ,µ(z0), z0⟩ ̸= 0.

Hence γ = 0 and this completes the proof. □

Lemma 2.3. Set

(2.7) Λ1 =

(
p− q

p∗ − q

) p
p∗−q

(
p∗ − q

p∗ − p
|Ω|

p∗−q
p∗

)− p
p−q

S
N
p
+ q

p−q > 0,

then for (λ, µ) satisfying

0 < λ
p

p−q + µ
p

p−q < Λ1,

we have N0
λ,µ = ∅.

Proof. Suppose opposite, i.e., there exist λ, µ > 0 with

0 < λ
p

p−q + µ
p

p−q < Λ1,

such that N0
λ,µ ̸= ∅. Then for z ∈ N0

λ,µ, by (2.2), we have

∥ z ∥p = p∗ − q

p− q
L(z), ∥ z ∥p = p∗ − q

p∗ − p
Kλ,µ(z).

Then we have

∥ z ∥≥
(

p− q

p∗ − q
S

p∗
p

) 1
p∗−p

,
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and similar to the proof of Lemma 2.1, (see (2.3)) by the Hölder inequal-
ity and the Sobolev embedding theorem, one can get

∥ z ∥≤
(
p∗ − q

p∗ − p
S
− q

p |Ω|
p∗−q
p∗

) 1
p−q (

λ
p

q−p + µ
p

q−p

) 1
p
.

This implies

λ
p

p−q + µ
p

p−q ≥
(

p− q

p∗ − q

) p
p∗−p

(
p∗ − q

p∗ − p
|Ω|

p∗−q
p∗

)− p
p−q

S
N
p
+ q

p−q = Λ1,

that is a contradiction. Therefore, we can conclude that there exists a
positive number Λ1 such that for

0 < λ
p

p−q + µ
p

p−q < Λ1,

we have N0
λ,µ = ∅. □

Let

ΘΛ =
{
(λ, µ) ∈ R2\(0, 0) : 0 < λ

p
p−q + µ

p
p−q < Λ

}
,

and Λ0 =

(
q

p

) p
p−q

Λ1 < Λ1. If (λ, µ) ∈ ΘΛ1 , by Lemma 2.3, we have

Nλ,µ = N+
λ,µ ∪N−

λ,µ. Define

θλ,µ = inf
z∈Nλ,µ

Jλ,µ(z),

θ+λ,µ = inf
z∈N+

λ,µ

Jλ,µ(z),

θ−λ,µ = inf
z∈N−

λ,µ

Jλ,µ(z).

Theorem 2.4. (i) If (λ, µ) ∈ ΘΛ1, then θλ,µ ≤ θ+λ,µ < 0;

(ii) If (λ, µ) ∈ ΘΛ0, then there exists

d0 = d0(λ, µ, p, q,N, S, |Ω|) > 0,

such that θ−λ,µ > d0.

Proof. (i) For z ∈ N+
λ,µ, by (2.2), we have

Kλ,µ(z) >
p∗ − p

p∗ − q
∥ z ∥p,
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and so,

Jλ,µ(z) =

(
1

p
− 1

p∗

)
∥ z ∥p −

(
1

q
− 1

p∗

)
Kλ,µ(z)

<

(
1

p
− 1

p∗

)
∥ z ∥p −

(
1

q
− 1

p∗

)
p∗ − p

p∗ − q
∥ z ∥p

<
p∗ − p

p∗

(
1

p
− 1

q

)
∥ z ∥p < 0.

Thus, from the definition of θλ,µ and θ+λ,µ, we can deduce that

θλ,µ ≤ θ+λ,µ < 0.

(ii) For z ∈ N−
λ,µ, by (2.2) we have

p− q

p∗ − q
∥ z ∥p < L(z). Moreover,

using (2.4), we get L(z) ≤ S
− p∗

p ∥ z ∥p. This implies that

∥ z ∥≥
(

p− q

p∗ − q

) 1
p∗−p

S
N
p2 .

By (2.3), we have

Jλ,µ(z) ≥ ∥ z ∥q
(
p∗ − p

p∗p
∥ z ∥p−q

− p∗ − q

p∗q
S
− q

p |Ω|
p∗−q
p∗ λ

p
p−q + µ

p
p−q

p−q
p

)

≥
(

p− q

p∗ − q

) q
p∗−p

S
qN

p2

(
p∗ − p

p∗p

(
p− q

p∗ − q

) p−q
p∗−p

S
(p−q)N

p2

− p∗ − q

p∗q
S
− q

p |Ω|
p∗−q
p∗ (λ

p
p−q + µ

p
p−q )

p−q
p

)
.

Thus, if (λ, µ) ∈ ΘΛ0 , then for z ∈ N−
λ,µ we have

Jλ,µ(z) > d0 = d0(λ, µ, p, q,N, S, |Ω|) > 0.

□

For each z ∈ W such that L(z) > 0, let

(2.8) tmax =

(
(p− q)∥ z ∥p

(p∗ − q)L(z)

) 1
p∗−p

> 0.

Then the following lemma holds.

Lemma 2.5. Assume that (λ, µ) ∈ ΘΛ1, then for every z ∈ W with
L(z) > 0, one has the following:
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(i) if Kλ,µ(z) ≤ 0, then there exists t− = t−(z) > tmax such that

t−z ∈ N−
λ,µ and

(2.9) Jλ,µ(t
−z) = sup

t≥0
Jλ,µ(tz);

(ii) if Kλ,µ(z) > 0, then there exist

0 < t+ = t+(z) < tmax < t− = t−(z),

such that t±z ∈ N±
λ,µ and

(2.10) Jλ,µ(t
+z) = inf

0≤t≤tmax

Jλ,µ(tz); Jλ,µ(t
−z) = sup

t≥0
Jλ,µ(tz).

Proof. Fix z ∈ W with L(z) > 0. Let

m(t) = tp−q∥ z ∥p − tp
∗−qL(z),

for t ≥ 0. Clearly m(0) = 0 and m(t) → −∞ as t → ∞. Since

m′(t) = (p− q)tp−q−1∥ z ∥p − (p∗ − q)tp
∗−q−1L(z),

there exists a unique tmax > 0 such that m(t) achieves its maximum at
tmax > 0, increasing for t ∈ [0, tmax) and decreasing for t ∈ (tmax,∞).
Clearly, tz ∈ N+

λ,µ(or N
−
λ,µ) if and only if m′(t) > 0( or < 0). Moreover

m(tmax) =

(
(p− q)∥ z ∥p

(p∗ − q)L(z)

) p−q
p∗−p

∥ z ∥p −
(
(p− q)∥ z ∥p

(p∗ − q)L(z)

) p∗−q
p∗−p

L(z)

(2.11)

= ∥ z ∥q
( p− q

p∗ − q

) p−q
p∗−p

−
(

p− q

p∗ − q

) p∗−q
p∗−p

(∥ z ∥p
∗

L(z)

) p−q
p∗−p

≤ ∥ z ∥q
(

p− q

p∗ − q

) p−q
p∗−p

(
p∗ − q

p∗ − q

)(
S

p∗
p

) p−q
p∗−p

.

(i) Kλ,µ(z) ≤ 0, then there exists a unique t− > tmax such that
m(t−) = Kλ,µ(z) and m′(t−) < 0. Now,

(p− q)(t−)p∥ z ∥p − (p∗ − q)(t−)p
∗
L(z) = (t−)q+1m′(t−) < 0,

and

⟨J ′
λ,µ(t

−z), (t−z)⟩ = (t−)q[m(t−)−Kλ,µ(z)] = 0.

Thus, t−z ∈ N−
λ,µ. Since for t > tmax, we have m′(t) < 0 and

m′′(t) < 0, subsequently,

Jλ,µ(t
−z) = sup

t≥0
Jλ,µ(tz).
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(ii) Kλ,µ(z) > 0. For (λ, µ) ∈ ΘΛ1 , by (2.10) we have

m(0) = 0

< Kλ,µ(z)

≤ S
− q

p |Ω|
p∗−q
p∗
(
λ

p
p−q + µ

p
p−q

) p−q
p ∥ z ∥q

≤ ∥ z ∥q
(

p− q

p∗ − q

) p−q
p∗−p

(
p∗ − q

p∗ − q

)(
S

p∗
p

) p−q
p∗−p

,

there exists unique t+ and t− such that 0 < t+ = t+(z) <
tmax < t− = t−(z),

m(t+) = Kλ,µ(z) = m(t−), m′(t+) > 0 > m′(t−).

We have t±z ∈ N±
λ,µ, and

Jλ,µ(t
−z) ≥ Jλ,µ(tz) ≥ Jλ,µ(t

+z),

Jλ,µ(t
+z) ≤ Jλ,µ(tz),

∀t ∈ [t+, t−],

∀t ∈ [0, tmax].

Thus

Jλ,µ(t
+z) = inf0≤t≤tmax Jλ,µ(tz); Jλ,µ(t

−z) = supt≥0 Jλ,µ(tz).

□

3. Proof of Theorem 1.1

At first, we give the following definitions about (PS)c -sequence and
introduce the Brézis-Lieb lemma (see [9]) as a remark.

Definition 3.1. Let c ∈ R, W be a Banach space and J ∈ C1(W,R).
(i) {zn} is a (PS)c-sequence in W for J if J(zn) = c + o(1) and

J ′(zn) = o(1) strongly in W−1 as n → ∞.
(ii) We say that J satisfies the (PS)c condition if any (PS)c-sequence

{zn} in W for J has a convergent subsequence.

Remark 3.2. Let zn ∈ W such that

(i) ∥ zn ∥≤ constant,
(ii) zn → z+0 almost everywhere in Ω, then

(3.1) ∥ z̄n ∥p−→∥ zn ∥p − ∥ z+0 ∥p,

as n → ∞ where z̄n = zn − z+0 .

Proposition 3.3. (i) If (λ, µ) ∈ ΘΛ1, then there exists a (PS)θλ,µ-
sequence {zn} ⊂ Nλ,µ in W for Jλ,µ.
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(ii) If (λ, µ) ∈ ΘΛ0, then there exists a (PS)θ−λ,µ
-sequence {zn} ⊂

N−
λ,µ in W for Jλ,µ.

Proof. The proof is almost the same as that in [15]. □

Now, we prove the existence of a local minimum for Jλ,µ on N+
λ,µ.

Theorem 3.4. If (λ, µ) ∈ ΘΛ1, then Jλ,µ has a minimizer z+0 in N+
λ,µ

and satisfies the following:

(i) Jλ,µ(z
+
0 ) = θ+λ,µ = θλ,µ < 0;

(ii) z+0 is a positive solution of (1.1).

Proof. By Proposition 3.3 (i), there exists a minimizing sequence {zn}
for Jλ,µ on Nλ,µ such that

(3.2) Jλ,µ(zn) = θλ,µ + o(1), J ′
λ,µ(zn) = o(1).

Then, by Lemma 2.1, there exists a subsequence {zn = (un, vn)} and
(z+0 ) = (u+0 , v

+
0 ) ∈ W such that

(3.3)


un ⇀ u+0 , vn ⇀ v+0 weakly in W 1,p

0 (Ω),

un → u+0 , vn → v+0 almost everywhere in Ω,

un → u+0 , vn → v+0 strongly in Ls(Ω) (1 ≤ s < p∗),

as n → ∞. It is easy to see that

(3.4) Kλ,µ(zn) = Kλ,µ(z
+
0 ) + o(1), as n → ∞.

First, we prove that z+0 is a nontrivial solution of (1.1). By (3.1) and
(3.2), we can deduce that z+0 is a weak solution of (1.1). By (2.2)

Jλ,µ(zn) =
p∗ − p

pp∗
∥ zn ∥p − p∗ − q

qp∗
Kλ,µ(zn)

≥ −p∗ − q

qp∗
Kλ,µ(zn),

if n → ∞, one can get

Kλ,µ(z
+
0 ) ≥ − qp∗

p∗ − q
θλ,µ > 0.

Thus, z+0 ∈ Nλ,µ is a nontrivial solution of (1.1). Now, we claim that

zn → z+0 strongly in W and Jλ,µ(z
+
0 ) = θλ,µ. By applying Fatou’s lemma
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and z+0 ∈ Nλ,µ, we have

θλ,µ ≤ Jλ,µ(z
+
0 )

=
1

N
∥ z+0 ∥p − p∗ − q

qp∗
Kλ,µ(z

+
0 )

≤ lim inf
n→∞

(
1

N
∥ zn ∥p − p∗ − q

qp∗
Kλ,µ(zn)

)
≤ lim inf

n→∞
Jλ,µ(zn) = θλ,µ,

This implies that Jλ,µ(z
+
0 ) = θλ,µ and

lim
n→∞

∥ zn ∥p=∥ z+0 ∥p .

Let z̄n = zn − z+0 , then by Remark 3.2 (see (3.1)) we get

∥ z̄n ∥p=∥ zn ∥p − ∥ z+0 ∥p .

Therefore, zn → z+0 strongly in W. Next, we show that z+0 ∈ N+
λ,µ.

Suppose that z+0 ∈ N−
λ,µ, then by Lemma 2.5, there exists unique t+0 and

t−0 such that t±0 z
±
0 ∈ N±

λ,µ and t+0 < t−0 = 1. Since

d

dt
Jλ,µ(t

+
0 z

+
0 ) = 0,

d2

dt2
Jλ(t

+
0 z

+
0 ) > 0,

there exists t+0 < t̄ ≤ t−0 such that Jλ,µ(t
+
0 z

+
0 ) < Jλ,µ(t̄z

+
0 ). Again by

Lemma 2.5 we have

Jλ,µ(t
+
0 z

+
0 ) < Jλ,µ(t̄z

+
0 ) ≤ Jλ,µ(t

−
0 z

+
0 ) = Jλ,µ(z

+
0 ),

which contradicts Jλ,µ(z
+
0 ) = θ+λ,µ. Thus z+0 ∈ N+

λ,µ. Since Jλ,µ(z
+
0 ) =

Jλ,µ(|z+0 |) and |z+0 | ∈ N+
λ,µ, by Lemma 2.2 we deduce that z+0 is a nontriv-

ial nonnegative solution of (1.1). By the maximum principle, it follows
that u+0 > 0, v+0 > 0 in Ω . □

Proof of Theorem 1.1. By Theorem 3.4, we get that for all λ, µ > 0 and

0 < λ
p

p−q + µ
p

p−q < Λ1 (or (λ, µ) ∈ ΘΛ1), (1.1) has a positive solution
z+0 ∈ N+

λ,µ. □

4. Proof of Theorem 1.2

For the existence of a second positive solution of system (1.1), we will
need here a stronger condition. In this section, at the first we will find
the range of c where (PS)c condition holds for Jλ,µ.
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Lemma 4.1. Assume that {zn} ⊂ W is a (PS)c-sequence for Jλ,µ and
zn ⇀ z in W , then z is a critical point of Jλ,µ, and there exists a
C0 = C0(p, q,N, S, |Ω|) > 0 such that

Jλ,µ ≥ −C0

(
λ

p
p−q + µ

p
p−q

)
.

Proof. Let zn = (un, vn) and assume that {zn} be a (PS)c-sequence
for Jλ,µ with zn ⇀ z in W , it is easy to deduce that J ′

λ,µ(z) = 0, so

⟨J ′
λ,µ(z), z⟩ = 0 and by (2.1)∫

Ω
|u|α|v|βdx = ∥ z ∥p −Kλ,µ(z).

Consequently as (2.4),

Jλ,µ(z) =
p∗ − p

pp∗
∥ z ∥p −p∗ − q

qp∗
Kλ,µ(z).

By the Hölder inequality and the Sobolev embedding theorem, we have

Jλ,µ(z) ≥
1

N
∥ z ∥p −p∗ − q

qp∗
S
− q

p |Ω|
p∗−q
p∗

×
[
λ

(∫
Ω
(|∇u|p + a(x)|u|p)dx

)
+ µ

(∫
Ω
(|∇v|p + a(x)|v|p)dx

)] q
p

.

Finally, by the Young inequality, one can get

Jλ,µ(z) ≥
1

N
∥ z ∥p − 1

N
∥ z ∥p −C0

(
λ

p
p−q + µ

p
p−q

)
= C0(λ

p
p−q + µ

p
p−q ),

where C0 = C0(p, q,N, S, |Ω|) > 0 . □

Lemma 4.2. Suppose that {zn} ⊂ W is a (PS)c-sequence for Jλ,µ, then
{zn} is bounded in W .

Proof. Suppose opposite, that ∥ zn ∥→ ∞. Let

(4.1) z∗n = (u∗n, v
∗
n) =

zn
∥ zn ∥

=

(
un

∥ un ∥
,

vn
∥ vn ∥

)
,

z∗n ⇀ z∗ = (u∗, v∗) in W . This implies that u∗n → u∗, v∗n → v∗ strongly
in Ls(Ω) for all 1 ≤ s < p∗ and

(4.2) Kλ,µ(z
∗
n) = Kλ,µ(z

∗) + o(1).

Now, since {zn} ⊂ W is a (PS)c-sequence for Jλ,µ and ∥ zn ∥→ ∞, we
have

(4.3)
∥ z∗n ∥p

p
− ∥ zn ∥q−p

q
Kλ,µ(z

∗
n)−

∥ zn ∥p∗−p

p∗
L(z∗n) = o(1),
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and

(4.4) ∥ z∗n ∥p− ∥ zn ∥q−p Kλ,µ(z
∗
n)− ∥ zn ∥p∗−p L(z∗n) = o(1).

From (4.2) and (4.4), one can get

(4.5) ∥ z∗n ∥p = p(p∗ − q)

q(p∗ − p)
∥ z ∥q−p Kλ,µ(z

∗
n) + o(1).

Since 1 < q < p and ∥ zn ∥→ ∞, (4.5) implies that ∥ z∗n ∥p → ∞, as
n → ∞, which contradict ∥ z∗n ∥p = 1. □

Lemma 4.3. Let

Cλ,µ =
1

N
(Sα,β)

N
p − C0

(
λ

p
p−q + µ

p
p−q

)
,

where C0 is the positive constant given in Lemma 4.1, then Jλ,µ satisfies
the (PS)c condition with c ∈ (−∞, Cλ,µ).

Proof. Let {zn} ⊂ W be a (PS)c-sequence for Jλ,µ with c ∈ (−∞, Cλ,µ).
By Lemma 4.2 we have that {zn} is bounded in W . This implies that
zn ⇀ z up to a subsequence, when z is a critical point of Jλ,µ. Further-
more we may assume

(4.6)

 un ⇀ u, vn ⇀ v
un → u, vn → v
un → u , vn → v

in W 1,p
0 (Ω),

a.e on Ω,
in Ls(Ω) (1 ≤ s < p∗).

Hence we have J ′
λ,µ(z) = 0 and

(4.7) Kλ,µ(zn) = Kλ,µ(z) + o(1).

Let ũn = un − u, ṽn = vn − v, and z̃n = (ũn, ṽn). Then by Remark 3.2
(see (3.1)), we obtain

(4.8) ∥ z̃n ∥p = ∥ zn ∥p − ∥ z ∥p + o(1),

and by an argument of [12], Lemma 2.1

(4.9) L(z̃n) = L(zn)− L(z) + o(1).

Since Jλ,µ(zn) = c+ o(1) and (4.7) and (4.9), we deduce that

(4.10)
1

p
∥ z̃n ∥p − 1

p∗
L(z̃n) = c− Jλ,µ(z) + o(1),

and

∥ z̃n ∥p − L(z̃n) = o(1).

Thus, we may assume that

(4.11) ∥ z̃n ∥p → h, L(z̃n) → h.
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Assume that h > 0; by the definition of Sα,β and (4.11), one can get

Sα,βh
p
p∗ = Sα,β lim

n→∞
L(z̃n)

p
p∗

≤ ∥ z̃n ∥p = h,

which implies that h ≥ (Sα,β)
N
p . By (4.10) and (4.11), we have

c =

(
1

p
− 1

p∗

)
h+ Jλ,µ(z),

then by Lemma 4.1, we get

c ≥ 1

N
(Sα,β)

N
p − C0

(
λ

p
p−q + µ

p
p−q

)
= Cλ,µ,

which is a contradiction. Hence h = 0; that is zn → z strongly in W . □

Next, we will establish the existence of a local minimum for Jλ,µ on

N−
λ,µ to obtain a second positive solution of system (1.1). We point the

following fact as a remark that will use in the next lemma.

Remark 4.4. Let A,B > 0, then we get

sup
t≥0

(
tp

p
A− tα+β

α+ β
B

)
=

1

N
A

(
A

B

)N−p
p

=
1

N
A

(
A

B
p
p∗

)N
p

.

Precisely, setting

f(t) =
tp

p
A− tα+β

α+ β
B,

we have f ′(t) = tp−1A − tα+β−1B, the result obtains by an easy calcu-
lation.

Lemma 4.5. There exist a nonnegative function z ∈ W \ {(0, 0)} and
Λ∗ > 0 such that for (λ, µ) ∈ ΘΛ∗, we have

(4.12) sup
t≥0

Jλ,µ(tz) < cλ,µ,

where cλ,µ is the constant given in Lemma 4.3. In particular, θ−λ,µ < cλ,µ,

for all (λ, µ) ∈ ΘΛ∗.

Proof. Since 0 ∈ Ω, we know that there exists ρ0 > 0 such thatBN (0, 2ρ0) ⊂
Ω. Now, we consider the functional I : W −→ R defined by

I(z) =
1

p
∥ z ∥p − 1

α+ β
L(z),
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for all z ∈ W , and define a cut-off function η(x) ∈ C∞
0 (Ω) such that

η(x) =

{
1 |x| < ρ0,
0 |x| > 2ρ0,

where 0 ≤ η ≤ 1 and |∇η| ≤ C. For ε > 0, let

(4.13) uε(x) =
η(x)

(ε+ |x|
p

p−1 )
N−p

p

.

Step 1. We show that

sup
t≥0

Iλ,µ(tz0) ≤
1

N
S

N
p

α,β +O(ε
N−p

p ).

From [13] (Lemma 4.3), we have(∫
Ω
|uε|p

∗
dx

) p
p∗

= ε
−N−p

p |U |p
Lp∗ (RN )

+O(ε),∫
Ω
|∇uε|pdx = ε

−N−p
p |∇U |p

Lp(RN )
+O(1),∫

Ω
|∇uε|

pdx(∫
Ω
|uε|p

∗
dx

) p
p∗

= S +O
(
ε

N−p
p

)
,(4.14)

where

U(x) =
(
1 + |x|

p
p−1

)−N−p
p ∈ W 1,p

(
RN
)
.

Set u0 = p
√
αuε, v0 = p

√
βuε and z0 ∈ W . Then from Remark 4.4, (2.4)

and (4.14), we conclude that

sup
t≥0

Iλ,µ(tz0) ≤
1

N


(α+ β)

∫
Ω
|∇uε|pdx(

α
α
p β

β
p

∫
Ω
|uε|p

∗
dx

) p
p∗


N
p

≤ 1

N

((
α

β

) β
α+β

+

(
β

α

) α
α+β

)N
p (

S +O
(
ε

N−p
p

))N
p

=
1

N

((
α

β

) β
α+β

+

(
β

α

) α
α+β

)N
p (

S
N
p +O

(
ε

N−p
p

))
=

1

N
(Sα,β)

N
p +O

(
ε

N−p
p

)
.
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Step 2. We claim that if we set ε =
(
λ

p
p−q + µ

p
p−q

) p
N−p

, then there exists

Λ∗ > 0, such that for (λ, µ) ∈ ΘΛ∗we have sup
t≥0

Jλ,µ(tz) < Cλ,µ.

Let C0 be the positive constant given in Lemma 4.1. We can choose
δ1 > 0 such that for all (λ, µ) ∈ Θδ1 , we have

Cλ,µ =
1

N
(Sα,β)

N
p − C0

(
λ

p
p−q + µ

p
p−q

)
> 0.

Using the definition of Jλ,µ and z0, we get

Jλ,µ(tz0) ≤
tp

p
∥ z0 ∥p =

α+ β

p
tp|∇uε|pLp(RN )

, ∀t ≥ 0, λ, µ > 0,

which implies that there exists t0 ∈ (0, 1) satisfying

sup
0≤t≤t0

Jλ,µ(tz0) < Cλ,µ, ∀(λ, µ) ∈ Θδ1 .

Using the definition of Jλ,µ and z0 and by α, β > 1, we have

sup
t≥t0

Jλ,µ(tz0) = sup
t≥t0

(
I(tz0)−

tq

q
Kλ,µ(z0)

)
≤ 1

N
(Sα,β)

N
p + 0

(
ε

N−p
p

)
− t0

q

q

(
α

q
pλ+ β

q
pµ
)∫

BN (0,ρ0)
|uε|qdx

≤ 1

N
(Sα,β)

N
p + 0

(
ε

N−p
p

)
− t0

q

q
(λ+ µ)

∫
BN (0,ρ0)

|uε|qdx.

Let 0 < ε ≤ ρ0
p

p−1 , by (4.13) we have∫
BN (0,ρ0)

|uε|qdx =

∫
BN (0,ρ0)

1(
ε+ |x|

p
p−1

)qN−p
p

dx

≥
∫
BN (0,ρ0)

1(
2ρ

p
p−1

0

)qN−p
p

dx

= C1

= C1(N, p, q, ρ0).

Then for all ε =
(
λ

p
p−q + µ

p
p−q

) p
N−p ∈ (0, ρ0

p
p−1 ), one can get

sup
t≥t0

Jλ,µ(tz0) ≤
1

N
(Sα,β)

N
p + 0

(
λ

p
p−q + µ

p
p−q

)
− t0

q

q
C1(λ+ µ).

Hence, we can choose δ2 > 0 such that for all (λ, µ) ∈ Θδ2 , we have

0
(
λ

p
p−q + µ

p
p−q

)
− t0

q

q
C1(λ+ µ) < C0

(
λ

p
p−q + µ

p
p−q

)
.
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If we set Λ∗ = min
{
δ1, ρ0

N−p
p−1 , δ2

}
and ε =

(
λ

p
p−q + µ

p
p−q

) p
N−p

, then for

(λ, µ) ∈ ΘΛ∗ , we have

(4.15) sup
t≥0

Jλ,µ(tz0) < Cλ,µ.

Step 3. We prove that θ−λ,µ < Cλ,µ for all (λ, µ) ∈ ΘΛ∗ .

By the definition of z0 and uε, we have

L(z0) > 0, Kλ,µ(z0) > 0.

Combining this with Lemma 2.5(ii), from the definition of θ−λ,µ , we

obtain that there exists t0 > 0 such that t0z0 ∈ N−
λ,µ and

θ−λ,µ ≤ Jλ,µ(tz0) ≤ sup
t≥0

Jλ,µ(tz0) < Cλ,µ,

for all (λ, µ) ∈ ΘΛ∗ . □

Theorem 4.6. If (λ, µ) ∈ ΘΛ2, then Jλ,µ has a minimizer z0
− in N−

λ,µ

which satisfies the following

(i) Jλ,µ(z
−
0 ) = θ−λ,µ;

(ii) z−0 is a positive solution of (1.1),

where Λ2 = min {Λ∗,Λ0}, Λ∗ is the same as in Lemma 4.5.

Proof. If (λ, µ) ∈ ΘΛ0 , then by Proposition 3.3, there exists a (PS)θ−λ,µ
-

sequence {zn} ⊂ N−
λ,µ in W for Jλ,µ. From Lemmas 4.3 and 4.5 and

Theorem 2.4 (ii), for (λ, µ) ∈ ΘΛ∗ , Jλ,µ satisfies (PS)θ−λ,µ
condition and

θ−λ,µ ∈ (0, Cλ,µ). By Lemma 2.1 and from coercivity of Jλ,µ on Nλ,µ, we

get that {zn} is bounded in W . Therefore, there exists a subsequence
still denoted by {zn} and a nontrivial solution z−0 ∈ N−

λ,µ such that

zn ⇀ z−0 weakly in W . Finally by the same arguments as in the proof of
Theorem 3.4, for all (λ, µ) ∈ ΘΛ2 , we have that z−0 is a positive solution
of (1.1). □

Proof of Theorem 1.2. By Theorems 3.4 and 4.6, we obtain that for all

λ, µ > 0 and 0 < λ
p

p−q + µ
p

p−q < Λ2 < Λ1 (or (λ, µ) ∈ ΘΛ2), (1.1) has
two positive solutions z+0 , z

−
0 with z±0 ∈ N±

λ,µ. Since N+
λ,µ ∩ N−

λ,µ = ∅,
this implies that z+0 and z−0 are distinct. This completes the proof. □
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