Sahand Communications in Mathematical Analysis (SCMA) Vol. 12 No. 1 (2018), 113-120 http://scma.maragheh.ac.ir DOI: 10.22130/scma.2018.78500.364 CORE

A Certain Class of Character Module Homomorphisms on Normed Algebras

Ali Reza Khoddami

ABSTRACT. For two normed algebras A and B with the character space $\triangle(B) \neq \emptyset$ and a left B-module X, a certain class of bounded linear maps from A into X is introduced. We set $CMH_B(A, X)$ as the set of all non-zero B-character module homomorphisms from A into X. In the case where $\triangle(B) = \{\varphi\}$ then $CMH_B(A, X) \bigcup \{0\}$ is a closed subspace of L(A, X) of all bounded linear operators from A into X. We define an equivalence relation on $CMH_B(A, X)$ and use it to show that $CMH_B(A, X) \bigcup \{0\}$ is a union of closed subspaces of L(A, X). Also some basic results and some hereditary properties are presented. Finally some relations between φ -amenable Banach algebras and character module homomorphisms are examined.

1. INTRODUCTION AND PRELIMINARIES

Let A be a normed algebra. Then a character on A is a bounded linear functional $\varphi : A \longrightarrow \mathbb{C}$ such that $\varphi(ac) = \varphi(a)\varphi(c)$ for all $a, c \in A$. The set of all non-zero characters on the normed algebra A is denoted by $\triangle(A)$. Also $\triangle(A) \bigcup \{0\}$ is called the character space of A.

Let A be a Banach algebra. The second dual of A, which is denoted by A^{**} , is a Banach algebra with respect to the first and the second Arens products \Box and \Diamond respectively, which are defined as follows. For $a, b \in A, f \in A^*$ and $m, n \in A^{**}$,

 $\langle m \Box n, f \rangle = \langle m, n \cdot f \rangle, \quad \langle n \cdot f, a \rangle = \langle n, f \cdot a \rangle, \quad \langle f \cdot a, b \rangle = \langle f, ab \rangle,$

and

$$\langle m \Diamond n, f \rangle = \langle n, f \cdot m \rangle, \quad \langle f \cdot m, a \rangle = \langle m, a \cdot f \rangle, \quad \langle a \cdot f, b \rangle = \langle f, ba \rangle.$$

2010 Mathematics Subject Classification. Primary: 46H05, 46H10; Secondary: 46B28, 46A32.

Key words and phrases. Character space, Character module homomorphism, Arens products, φ -amenability, φ -contractibility.

Received: 31 December 2017, Accepted: 11 April 2018.

A new version of amenability which is related to characters was introduced and investigated by E. Kaniuth and A.T.-M. Lau and J. Pym in [2]. Also M.S. Monfared independently studied this concept in [8].

Let A be a Banach algebra and let $\varphi \in \triangle(A)$. Then A is said to be φ - amenable if there exists an $m \in A^{**}$ such that $\langle m, \varphi \rangle = 1$ and $\langle m, f \cdot a \rangle = \varphi(a) \langle m, f \rangle$ for all $a \in A$ and $f \in A^*$. Any such m is called a φ -mean.

A Banach algebra A is said to be φ - contractible if there exists an $u \in A$ such that $\varphi(u) = 1$ and $au = \varphi(a)u$ for all $a \in A$. The concept of φ -contractibility of Banach algebras was introduced by Z. Hu, M.S. Monfared and T. Traynor [1].

Suppose that V is a non-zero normed vector space and $f \in V^*$ (the dual space of V) is a non-zero element such that $||f|| \leq 1$. Define $a \cdot c = f(a)c$ for all $a, c \in V$. Then, the pair (V, \cdot) which we denote it by V_f is an associative normed algebra. One can easily verify that $\Delta(V_f) = \{f\}$. Some basic properties of V_f such as Arens regularity, amenability, weak amenability, n-weak amenability are investigated in [7]. Also strongly zero-product, strongly Jordan zero-product, strongly Lie zero-product preserving maps on V_f are investigated in [5, 4, 3, 6].

In this article we introduce a certain class of operators from a normed algebra into a left module. Some basic results and also some hereditary properties concerning them are investigated in Sections 2 and 3 respectively. Finally some relations between φ -amenable Banach algebras and character module homomorphisms are examined in Section 4.

2. Main Results

In this section let A and B be two normed algebras and let $\triangle(B) \neq \emptyset$. Also let X be a left B-module. So X^* and X^{**} with the following operations are right and left B-modules respectively.

for all $b \in B, x \in X, g \in X^*, \Phi \in X^{**}$.

Also one can easily verify that X^{**} with the following operations is a left B^{**} -module.

$$\begin{split} \langle n \cdot \Phi, g \rangle &= \langle n, \Phi \cdot g \rangle, \\ \langle \Phi \cdot g, b \rangle &= \langle \Phi, g \cdot b \rangle, \\ \langle g \cdot b, x \rangle &= \langle g, b \cdot x \rangle, \end{split}$$

for all $b \in B, n \in B^{**}, x \in X, g \in X^*, \Phi \in X^{**}$.

Definition 2.1. Let A and B be two normed algebras and let $\triangle(B) \neq \emptyset$. Also let X be a left B-module. We say that a bounded linear map

114

 $T: A \longrightarrow X$ is a *B*-character module homomorphism if there exists a $\varphi \in \triangle(B)$ such that $T^*(g \cdot b) = \varphi(b)T^*(g)$ for all $b \in B$ and $g \in X^*$.

Remark 2.2. Note that in the case X = B, since B is a left B-module, so a bounded linear map $T : A \longrightarrow B$ is a B-character module homomorphism if and only if there exists a $\varphi \in \Delta(B)$ such that $T^*(g \cdot b) = \varphi(b)T^*(g)$ for all $b \in B$ and $g \in B^*$.

Example 2.3. Let V be a non-zero normed vector space and $0 \neq f \in V^*$ such that $||f|| \leq 1$. Also let A be an arbitrary normed algebra. Then every bounded linear map $T : A \longrightarrow V_f$ is a V_f -character module homomorphism. Indeed, for $f \in \Delta(V_f) = \{f\}$ we have,

$$T^*(g \cdot b) = T^*(f(b)g) = f(b)T^*(g), \quad (g \in V_f^*, b \in V_f).$$

Proposition 2.4. Let A and B be two normed algebras and let X be a left B-module. Also let $T : A \longrightarrow X$ be a B-character module homomorphism. Then,

- (i) T(A) is a left B-module such that for some $\varphi \in \Delta(B)$, $b \cdot T(a) = \varphi(b)T(a)$ for all $b \in B$ and $a \in A$.
- (ii) If T is surjective then for some φ ∈ Δ(B), b · x = φ(b)x for all b ∈ B and x ∈ X. Moreover X* · ker(φ) = 0.
- *Proof.* (i) Let $T : A \longrightarrow X$ be a *B*-character module homomorphism. Then there exists a $\varphi \in \Delta(B)$ such that

(2.1)
$$T^*(g \cdot b) = \varphi(b)T^*(g),$$

for all $b \in B$ and $g \in X^*$. So $\langle T^*(g \cdot b), a \rangle = \langle \varphi(b)T^*(g), a \rangle$ for all $a \in A, b \in B$ and $g \in X^*$. It follows that $\langle g, b \cdot T(a) \rangle = \langle g, \varphi(b)T(a) \rangle$ for all $a \in A, b \in B$ and $g \in X^*$. Hence $b \cdot T(a) = \varphi(b)T(a), a \in A, b \in B$.

(ii) The equality b ⋅ x = φ(b)x, b ∈ B, x ∈ X is an immediate consequence of part (i), because T is surjective. Also the surjectivity of T implies the injectivity of T*. So if b ∈ ker(φ) then by (2.1) T*(g ⋅ b) = 0. So g ⋅ b = 0, b ∈ ker(φ), g ∈ X*. It follows that X* ⋅ ker(φ) = 0.

Remark 2.5. Let *B* be a normed algebra with $\varphi \in \triangle(B)$. Also let *X* be a left *B*-module such that $b \cdot x = \varphi(b)x, b \in B, x \in X$. Then for each bounded linear map $T : A \longrightarrow X$ we have,

$$T^*(g \cdot b) = T^*(\varphi(b)g) = \varphi(b)T^*(g), \quad (b \in B, g \in X^*).$$

Corollary 2.6. Let A and B be two normed algebras. Also let $T : A \longrightarrow B$ be a surjective B-character module homomorphism. Then there exists $\varphi \in \Delta(B)$ such that $B = B_{\varphi}$. Moreover $B^*B = B^*$.

Proof. The equality $B = B_{\varphi}$ is an immediate consequence of Proposition 2.4 part (ii). Let $g \in B^*$ and $e \in B$ be an element such that $\varphi(e) = 1$. It follows that $g \cdot e = g$. So $B^* \subseteq B^*B$. Hence $B^*B = B^*$.

3. Hereditary Properties

In this section we present some hereditary properties concerning character module homomorphisms.

Theorem 3.1. Let A and B be two normed algebras and let X be a left B-module. Also let $T : A \longrightarrow X$ be a non-zero bounded linear map. Then T is a B-character module homomorphism if and only if $T^{**} : A^{**} \longrightarrow X^{**}$ is a B^{**} -(also B-)character module homomorphism.

Proof. Let $T : A \longrightarrow X$ be a *B*-character module homomorphism. Then there exists a $\varphi \in \triangle(B)$ such that $T^*(g \cdot b) = \varphi(b)T^*(g)$ for all $b \in B, g \in X^*$. We shall show that $T^{**} : A^{**} \longrightarrow X^{**}$ is a B^{**} -character module homomorphism. A similar argument can be applied to show that T^{**} is a *B*-character module homomorphism.

Let $\Lambda \in X^{***}$ and $n \in B^{**}$. Also let $\{g_{\alpha}\}_{\alpha} \subseteq X^{*}$ and $\{b_{\beta}\}_{\beta} \subseteq B$ be two nets such that $\Lambda = w^{*} - \lim_{\alpha} g_{\alpha}$ and $n = w^{*} - \lim_{\beta} b_{\beta}$. It follows that

$$\Lambda \cdot n = w^* - \lim_{\alpha} w^* - \lim_{\beta} g_{\alpha} \cdot b_{\beta}.$$

Indeed,

$$\begin{split} \lim_{\alpha} \lim_{\beta} \langle g_{\alpha} \cdot b_{\beta}, \Phi \rangle &= \lim_{\alpha} \lim_{\beta} \langle \Phi \cdot g_{\alpha}, b_{\beta} \rangle \\ &= \lim_{\alpha} \langle n, \Phi \cdot g_{\alpha} \rangle = \lim_{\alpha} \langle n \cdot \Phi, g_{\alpha} \rangle \\ &= \langle n \cdot \Phi, \Lambda \rangle = \langle \Lambda, n \cdot \Phi \rangle \\ &= \langle \Lambda \cdot n, \Phi \rangle, \quad (\Phi \in X^{**}). \end{split}$$

As T^{***} is $w^* - w^*$ -continuous so,

$$T^{***}(\Lambda \cdot n) = w^* - \lim_{\alpha} w^* - \lim_{\beta} T^{***}(g_{\alpha} \cdot b_{\beta})$$
$$= w^* - \lim_{\alpha} w^* - \lim_{\beta} T^*(g_{\alpha} \cdot b_{\beta})$$
$$= w^* - \lim_{\alpha} w^* - \lim_{\beta} \varphi(b_{\beta})T^*(g_{\alpha})$$
$$= n(\varphi)T^{***}(\Lambda),$$

for all $n \in B^{**}$ and $\Lambda \in X^{***}$.

Define $\tilde{\varphi} : B^{**} \longrightarrow \mathbb{C}$ by $\tilde{\varphi}(n) = n(\varphi)$. One can easily verify that $\tilde{\varphi} \in \Delta(B^{**})$.

Also

$$T^{***}(\Lambda \cdot n) = \tilde{\varphi}(n)T^{***}(\Lambda), \quad (n \in B^{**}, \Lambda \in X^{***}).$$

For the converse, if $T^{**} : A^{**} \longrightarrow X^{**}$ is a B^{**} -character module homomorphism then there exists $\psi \in \Delta(B^{**})$ such that $T^{***}(\Lambda \cdot n) = \psi(n)T^{***}(\Lambda)$ for all $n \in B^{**}$ and $\Lambda \in X^{***}$. Set $\varphi = \psi|_B$. Clearly φ is a multiplicative linear functional. Also $\varphi \neq 0$. Indeed, the assumption $\varphi = 0$ implies,

$$\psi(n)T^{***}(\Lambda) = T^{***}(\Lambda \cdot n)$$

= $w^* - \lim_{\alpha} w^* - \lim_{\beta} T^{***}(g_{\alpha} \cdot b_{\beta})$
= $w^* - \lim_{\alpha} w^* - \lim_{\beta} \psi(b_{\beta})T^{***}(g_{\alpha})$
= $w^* - \lim_{\alpha} w^* - \lim_{\beta} \varphi(b_{\beta})T^{***}(g_{\alpha}) = 0,$

where, $\{g_{\alpha}\}_{\alpha} \subseteq X^*$ and $\{b_{\beta}\}_{\beta} \subseteq B$ are some nets such that $\Lambda = w^* - \lim_{\alpha} g_{\alpha}$ and $n = w^* - \lim_{\beta} b_{\beta}$.

It follows that $T^{***} = 0$. So T = 0, that is a contradiction. Therefore $\varphi \in \triangle(B)$.

Hence

$$T^{*}(g \cdot b) = T^{***}(g \cdot b) = \psi(b)T^{***}(g) = \varphi(b)T^{*}(g),$$

for all $b \in B, g \in X^*$. So T is a B-character module homomorphism.

Corollary 3.2. Let A and B be two normed algebras and let X be a left B-module. Also let $T : A \longrightarrow X$ be a non-zero bounded linear map. Then T is a B-character module homomorphism if and only if $T^{(2n)} : A^{(2n)} \longrightarrow X^{(2n)}$ is a $B^{(2n)}$ - character module homomorphism.

Proposition 3.3. Let A, B, C be normed algebras and let X be a left B-module. Also let $T : A \longrightarrow X$ be a B-character module homomorphism. Then for each bounded linear map $S : C \longrightarrow A$ the map $T \circ S : C \longrightarrow X$ is a B-character module homomorphism.

Proof. As $T : A \longrightarrow X$ is a *B*-character module homomorphism so there exists $\varphi \in \triangle(B)$ such that $T^*(g \cdot b) = \varphi(b)T^*(g)$ for all $b \in B$ and $g \in X^*$. Hence

$$(T \circ S)^*(g \cdot b) = S^* \circ T^*(g \cdot b) = S^*(T^*(g \cdot b))$$
$$= S^*(\varphi(b)T^*(g)) = \varphi(b)S^*(T^*(g))$$
$$= \varphi(b)S^* \circ T^*(g)$$
$$= \varphi(b)(T \circ S)^*(g),$$

for all $b \in B$ and $g \in X^*$. It follows that $T \circ S$ is a *B*-character module homomorphism.

Let A and B be two normed algebras and let X be a left B-module. Set $CMH_B(A, X)$ as the set of all non-zero B-character module homomorphisms from A into X.

Proposition 3.4. Let A and B be two normed algebras and let $\triangle(B) = \{\varphi\}$. Then $CMH_B(A, X) \bigcup \{0\}$ is a closed subspace of L(A, X) of all bounded linear operators from A into X.

Proof. Clearly $CMH_B(A, X) \bigcup \{0\}$ is a subspace of L(A, X). We shall show that $CMH_B(A, X) \bigcup \{0\}$ is a closed subspace. For this end let

$$T\in L(A,X)\bigcap CMH_B(A,X)\bigcup\{0\}$$

and $T \neq 0$. So there exists a sequence $\{T_n\}_n \subseteq CMH_B(A, X)$ such that $||T_n^* - T^*|| = ||T_n - T|| \longrightarrow 0.$

Hence $T_n^*(g \cdot b) \longrightarrow T^*(g \cdot b)$. As $T_n^*(g \cdot b) = \varphi(b)T_n^*(g)$ we can conclude that $\varphi(b)T^*(g) = T^*(g \cdot b), b \in B, g \in X^*$. So $T \in CMH_B(A, X) \bigcup \{0\}$.

Corollary 3.5. Let A be a normed algebra and let $\triangle(A) = \{\varphi\}$. Then $CMH_A(A, A) \bigcup \{0\}$ is a closed right ideal of L(A, A).

Proof. The proof is an immediate consequence of Proposition 3.3 and Proposition 3.4.

Let A and B be two normed algebras and let X be a left B-module such that $CMH_B(A, X) \neq \emptyset$. If $T \in CMH_B(A, X)$ then there exists a unique element $\varphi_T \in \triangle(B)$ such that $T^*(g \cdot b) = \varphi_T(b)T^*(g)$ for all $b \in B$ and $g \in X^*$. For $T, S \in CMH_B(A, X)$ define $T \sim S$ if and only if $\varphi_T = \varphi_S$. Now we can conclude the following result.

Proposition 3.6. Let A and B be two normed algebras and let X be a left B-module such that $CMH_B(A, X) \neq \emptyset$. Then \sim is an equivalence relation on $CMH_B(A, X)$.

Proof. the proof is straightforward.

Let $T \in CMH_B(A, X)$ and let $[T]_{\sim}$ be the equivalence class of T. Note that in the case when $\Delta(B) = \{\varphi\}$, the set $CMH_B(A, X) \bigcup \{0\}$

is a closed subspace of L(A, X). But it is not the case in general.

The following result reveals that the set $CMH_B(A, X) \bigcup \{0\}$ is the union of closed subspaces of L(A, X).

Proposition 3.7. Let A and B be two normed algebras and let X be a left B-module such that $CMH_B(A, X) \neq \emptyset$. Then $[T]_{\sim} \bigcup \{0\}$ is a closed subspace of L(A, X) for all $T \in CMH_B(A, X)$. Moreover

$$CMH_B(A, X) \bigcup \{0\} = \bigcup_T \left([T]_{\sim} \bigcup \{0\} \right).$$

118

Proof. Clearly $[T]_{\sim} \bigcup \{0\}$ is a subspace of L(A, X). An argument similar to the proof of Proposition 3.4 can be applied to show that $[T]_{\sim} \bigcup \{0\}$ is a closed subspace. As $CMH_B(A, X) = \bigcup_T [T]_{\sim}$ so $CMH_B(A, X) \bigcup \{0\} = \bigcup_T ([T]_{\sim} \bigcup \{0\})$.

4. The Relation Between φ -Amenable Banach Algebras and Character Module Homomorphisms.

In this section we give some relations between φ -amenable, φ -contractible Banach algebras and character module homomorphisms.

Theorem 4.1. Let A be a reflexive φ -amenable Banach algebra. Then $CMH_A(\mathbb{C}, A) \neq \emptyset$.

Proof. As A is reflexive and φ -amenable Banach algebra so there exists $m \in A$ such that $\varphi(m) = 1$ and $f(am) = \varphi(a)f(m)$ for all $a \in A$ and $f \in A^*$. Define $T : \mathbb{C} \longrightarrow A$ by $T(\lambda) = \lambda m, \lambda \in \mathbb{C}$. It follows that $T^*(f) = f(m)$ for all $f \in A^*$. So

$$T^*(f \cdot a) = f \cdot a(m)$$

= f(am)
= $\varphi(a)f(m)$
= $\varphi(a)T^*(f)$

for all $a \in A$ and $f \in A^*$. Hence $T \in CMH_A(\mathbb{C}, A)$ and $CMH_A(\mathbb{C}, A) \neq \emptyset$.

Theorem 4.2. Let A be a Banach algebra and let $\varphi \in \triangle(A)$. Also let $T : \mathbb{C} \longrightarrow A$ be a linear map such that $\varphi(T(1)) \neq 0$ and $T^*(f \cdot a) = \varphi(a)T^*(f)$ for all $a \in A$ and $f \in A^*$. Then A is φ -amenable.

Proof. Let u = T(1). So $T(\lambda) = T(\lambda 1) = \lambda T(1) = \lambda u$ for all $\lambda \in \mathbb{C}$. It follows that $T^*(f) = f(u)$ for all $f \in A^*$. So the assumption $T^*(f \cdot a) = \varphi(a)T^*(f)$ implies that, $f \cdot a(u) = \varphi(a)f(u)$. Hence $f(au) = \varphi(a)f(u)$. Set $m = \frac{u}{\varphi(u)}$. So $\varphi(m) = 1$ and $f(am) = \varphi(a)f(m), a \in A, f \in A^*$. This shows that m is a φ -mean. Hence A is φ -amenable.

Proposition 4.3. Let A be a φ -contractible Banach algebra. Then $CMH_A(\mathbb{C}, A) \neq \emptyset$.

Proof. Let A be a φ -contractible Banach algebra. So there exists $u \in A$ such that $\varphi(u) = 1$ and $au = \varphi(a)u$ for all $a \in A$. Define $T : \mathbb{C} \longrightarrow A$ by $T(\lambda) = \lambda u$. One can easily verify that $T \in CMH_A(\mathbb{C}, A)$. So $CMH_A(\mathbb{C}, A) \neq \emptyset$.

A. R. KHODDAMI

References

- Z. Hu, M.S. Monfared and T. Traynor, On character amenable Banach algebras, Studia Math., 193 (2009), pp. 53-78.
- E. Kaniuth, A.T.-M. Lau and J. Pym, On character amenability of Banach algebras, J. Math. Anal. Appl., 344 (2008), pp. 942-955.
- A.R. Khoddami, On maps preserving strongly zero-products, Chamchuri J. Math., 7 (2015), pp. 16-23.
- 4. A.R. Khoddami, On strongly Jordan zero-product preserving maps, Sahand Commun. Math. Anal., 3 (2016), pp. 53-61.
- A.R. Khoddami, Strongly zero-product preserving maps on normed algebras induced by a bounded linear functional, Khayyam J. Math., 1 (2015), pp. 107-114.
- A.R. Khoddami, The second dual of strongly zero-product preserving maps, Bull. Iran. Math. Soc., 43 (2017), pp. 1781-1790.
- A.R. Khoddami and H.R. Ebrahimi Vishki, The higher duals of a Banach algebra induced by a bounded linear functional, Bull. Math. Anal. Appl., 3 (2011), pp. 118-122.
- M.S. Monfared, *Character amenability of Banach algebras*, Math. Proc. Camb. Phil. Soc., 144 (2008), pp. 697-706.

FACULTY OF MATHEMATICAL SCIENCES, SHAHROOD UNIVERSITY OF TECHNOL-OGY, P. O. BOX 3619995161-316, SHAHROOD, IRAN.

 $E\text{-}mail\ address:\ \texttt{khoddami.alireza@shahroodut.ac.ir}$