provided by Directory of Open Access Journals

Sahand Communications in Mathematical Analysis (SCMA) Vol. 12 No. 1 (2018), 113-120 <http://scma.maragheh.ac.ir> DOI: 10.22130/scma.2018.78500.364

A Certain Class of Character Module Homomorphisms on Normed Algebras

Ali Reza Khoddami

Abstract. For two normed algebras *A* and *B* with the character space $\Delta(B) \neq \emptyset$ and a left *B−*module *X*, a certain class of bounded linear maps from *A* into *X* is introduced. We set $CMH_B(A, X)$ as the set of all non-zero *B−*character module homomorphisms from *A* into *X*. In the case where $\Delta(B) = {\varphi}$ then $CMH_B(A, X) \cup \{0\}$ is a closed subspace of *L*(*A, X*) of all bounded linear operators from *A* into *X*. We define an equivalence relation on $CMH_B(A, X)$ and use it to show that $CMH_B(A, X) \bigcup \{0\}$ is a union of closed subspaces of *L*(*A, X*). Also some basic results and some hereditary properties are presented. Finally some relations between *φ−*amenable Banach algebras and character module homomorphisms are examined.

1. Introduction and Preliminaries

Let *A* be a normed algebra. Then a character on *A* is a bounded linear functional $\varphi : A \longrightarrow \mathbb{C}$ such that $\varphi(ac) = \varphi(a)\varphi(c)$ for all $a, c \in A$. The set of all non-zero characters on the normed algebra *A* is denoted by \triangle (*A*). Also \triangle (*A*)∪{0} is called the character space of *A*.

Let *A* be a Banach algebra. The second dual of *A,* which is denoted by *A∗∗ ,* is a Banach algebra with respect to the first and the second Arens products \square and \diamondsuit respectively, which are defined as follows. For $a, b \in A, f \in A^*$ and $m, n \in A^{**}$,

 $\langle m \Box n, f \rangle = \langle m, n \cdot f \rangle, \quad \langle n \cdot f, a \rangle = \langle n, f \cdot a \rangle, \quad \langle f \cdot a, b \rangle = \langle f, ab \rangle,$

and

$$
\langle m \Diamond n, f \rangle = \langle n, f \cdot m \rangle, \quad \langle f \cdot m, a \rangle = \langle m, a \cdot f \rangle, \quad \langle a \cdot f, b \rangle = \langle f, ba \rangle.
$$

2010 *Mathematics Subject Classification.* Primary: 46H05, 46H10; Secondary: 46B28, 46A32.

Key words and phrases. Character space, Character module homomorphism, Arens products, *φ−*amenability, *φ−*contractibility.

Received: 31 December 2017, Accepted: 11 April 2018.

A new version of amenability which is related to characters was introduced and investigated by E. Kaniuth and A.T.-M. Lau and J. Pym in [[2\]](#page-7-0). Also M.S. Monfared independently studied this concept in [[8\]](#page-7-1).

Let *A* be a Banach algebra and let $\varphi \in \Delta(A)$. Then *A* is said to be φ ^{*−*} amenable if there exists an $m \in A^{**}$ such that $\langle m, \varphi \rangle = 1$ and $\langle m, f \cdot a \rangle = \varphi(a) \langle m, f \rangle$ for all $a \in A$ and $f \in A^*$. Any such *m* is called a *φ−*mean.

A Banach algebra *A* is said to be *φ−* contractible if there exists an $u \in A$ such that $\varphi(u) = 1$ and $au = \varphi(a)u$ for all $a \in A$. The concept of *φ−*contractibility of Banach algebras was introduced by Z. Hu, M.S. Monfared and T. Traynor [[1](#page-7-2)].

Suppose that *V* is a non-zero normed vector space and $f \in V^*$ (the dual space of *V*) is a non-zero element such that $||f|| \leq 1$. Define $a \cdot c = f(a)c$ for all $a, c \in V$. Then, the pair (V, \cdot) which we denote it by V_f is an associative normed algebra. One can easily verify that $\Delta(V_f) = \{f\}$. Some basic properties of V_f such as Arens regularity, amenability, weak amenability, *n−*weak amenability are investigated in [[7\]](#page-7-3). Also strongly zero-product, strongly Jordan zero-product, strongly Lie zero-product preserving maps on V_f are investigated in [[5](#page-7-4), [4](#page-7-5), [3,](#page-7-6) [6\]](#page-7-7).

In this article we introduce a certain class of operators from a normed algebra into a left module. Some basic results and also some hereditary properties concerning them are investigated in Sections [2](#page-1-0) and [3](#page-3-0) respectively. Finally some relations between *φ−*amenable Banach algebras and character module homomorphisms are examined in Section [4](#page-6-0).

2. Main Results

In this section let *A* and *B* be two normed algebras and let $\Delta(B) \neq \emptyset$. Also let *X* be a left *B−*module. So *X∗* and *X∗∗* with the following operations are right and left *B−*modules respectively.

$$
\langle g \cdot b, x \rangle = \langle g, b \cdot x \rangle,
$$

$$
\langle b \cdot \Phi, g \rangle = \langle \Phi, g \cdot b \rangle,
$$

for all $b \in B, x \in X, g \in X^*, \Phi \in X^{**}$.

Also one can easily verify that *X∗∗* with the following operations is a left *B∗∗−*module.

$$
\langle n \cdot \Phi, g \rangle = \langle n, \Phi \cdot g \rangle,
$$

$$
\langle \Phi \cdot g, b \rangle = \langle \Phi, g \cdot b \rangle,
$$

$$
\langle g \cdot b, x \rangle = \langle g, b \cdot x \rangle,
$$

for all $b \in B, n \in B^{**}, x \in X, g \in X^*, \Phi \in X^{**}.$

Definition 2.1. Let *A* and *B* be two normed algebras and let $\Delta(B) \neq \emptyset$. Also let *X* be a left *B−*module. We say that a bounded linear map

T : *A −→ X* is a *B−*character module homomorphism if there exists a $\varphi \in \Delta(B)$ such that $T^*(g \cdot b) = \varphi(b)T^*(g)$ for all $b \in B$ and $g \in X^*$.

Remark 2.2. Note that in the case $X = B$, since *B* is a left *B−*module, so a bounded linear map $T : A \longrightarrow B$ is a *B*−character module homomorphism if and only if there exists a $\varphi \in \Delta(B)$ such that $T^*(g \cdot b) =$ $\varphi(b)T^*(g)$ for all $b \in B$ and $g \in B^*$.

Example 2.3. Let V be a non-zero normed vector space and $0 \neq f \in V^*$ such that $||f|| \leq 1$. Also let *A* be an arbitrary normed algebra. Then every bounded linear map $T : A \longrightarrow V_f$ is a V_f -character module homomorphism. Indeed, for $f \in \Delta(V_f) = \{f\}$ we have,

$$
T^*(g \cdot b) = T^*(f(b)g) = f(b)T^*(g), \quad (g \in V_f^*, b \in V_f).
$$

Proposition 2.4. *Let A and B be two normed algebras and let X be a left B−module. Also let T* : *A −→ X be a B−character module homomorphism. Then,*

- (i) $T(A)$ *is a left B−module such that for some* $\varphi \in \Delta(B)$, *b* · $T(a) = \varphi(b)T(a)$ *for all* $b \in B$ *and* $a \in A$ *.*
- (ii) If *T* is surjective then for some $\varphi \in \Delta(B)$, $b \cdot x = \varphi(b)x$ for all $b \in B$ *and* $x \in X$ *. Moreover* $X^* \cdot \text{ker}(\varphi) = 0$ *.*
- *Proof.* (i) Let $T: A \longrightarrow X$ be a *B*−character module homomorphism. Then there exists a $\varphi \in \Delta(B)$ such that

(2.1)
$$
T^*(g \cdot b) = \varphi(b)T^*(g),
$$

for all $b \in B$ and $g \in X^*$. So $\langle T^*(g \cdot b), a \rangle = \langle \varphi(b) T^*(g), a \rangle$ for all $a \in A, b \in B$ and $g \in X^*$. It follows that $\langle g, b \cdot T(a) \rangle =$ $\langle g, \varphi(b)T(a) \rangle$ for all $a \in A, b \in B$ and $g \in X^*$. Hence $b \cdot T(a) =$ $\varphi(b)T(a), a \in A, b \in B.$

(ii) The equality $b \cdot x = \varphi(b)x, b \in B, x \in X$ is an immediate consequence of part (i) , because T is surjective. Also the surjectivity of *T* implies the injectivity of T^* . So if $b \in \text{ker}(\varphi)$ then by (2.1) (2.1) $T^*(g \cdot b) = 0$. So $g \cdot b = 0$, $b \in \text{ker}(\varphi)$, $g \in X^*$. It follows that $X^* \cdot \ker(\varphi) = 0.$

□

Remark 2.5. Let *B* be a normed algebra with $\varphi \in \Delta(B)$. Also let *X* be a left *B*−module such that $b \cdot x = \varphi(b)x, b \in B, x \in X$. Then for each bounded linear map $T: A \longrightarrow X$ we have,

$$
T^*(g \cdot b) = T^*(\varphi(b)g) = \varphi(b)T^*(g), \quad (b \in B, g \in X^*).
$$

Corollary 2.6. *Let A and B be two normed algebras. Also let T* : *A −→ B be a surjective B−character module homomorphism. Then there exists* $\varphi \in \Delta(B)$ *such that* $B = B_{\varphi}$ *. Moreover* $B^*B = B^*$ *.*

Proof. The equality $B = B_{\varphi}$ is an immediate consequence of Proposition [2.4](#page-2-1) part (ii). Let $g \in B^*$ and $e \in B$ be an element such that $\varphi(e) = 1$. It follows that $g \cdot e = g$. So $B^* \subseteq B^*B$. Hence $B^*B = B^*$. \Box

3. Hereditary Properties

In this section we present some hereditary properties concerning character module homomorphisms.

Theorem 3.1. *Let A and B be two normed algebras and let X be a left B−module. Also let T* : *A −→ X be a non-zero bounded linear map. Then T is a B−character module homomorphism if and only if T ∗∗* : *A∗∗ −→ X∗∗ is a B∗∗−(also B−)character module homomorphism.*

Proof. Let $T: A \longrightarrow X$ be a *B*−character module homomorphism. Then there exists a $\varphi \in \Delta(B)$ such that $T^*(g \cdot b) = \varphi(b)T^*(g)$ for all $b \in B, g \in X^*$. We shall show that $T^{**}: A^{**} \longrightarrow X^{**}$ is a B^{**} -character module homomorphism. A similar argument can be applied to show that *T ∗∗* is a *B−*character module homomorphism.

Let $\Lambda \in X^{***}$ and $n \in B^{**}$. Also let $\{g_{\alpha}\}_\alpha \subseteq X^*$ and $\{b_{\beta}\}_\beta \subseteq B$ be two nets such that $\Lambda = w^* - \lim_{\alpha} g_{\alpha}$ and $n = w^* - \lim_{\beta} b_{\beta}$. It follows that

$$
\Lambda \cdot n = w^* - \lim_{\alpha} w^* - \lim_{\beta} g_{\alpha} \cdot b_{\beta}.
$$

Indeed,

$$
\lim_{\alpha} \lim_{\beta} \langle g_{\alpha} \cdot b_{\beta}, \Phi \rangle = \lim_{\alpha} \lim_{\beta} \langle \Phi \cdot g_{\alpha}, b_{\beta} \rangle
$$

\n
$$
= \lim_{\alpha} \langle n, \Phi \cdot g_{\alpha} \rangle = \lim_{\alpha} \langle n \cdot \Phi, g_{\alpha} \rangle
$$

\n
$$
= \langle n \cdot \Phi, \Lambda \rangle = \langle \Lambda, n \cdot \Phi \rangle
$$

\n
$$
= \langle \Lambda \cdot n, \Phi \rangle, \quad (\Phi \in X^{**}).
$$

As T^{***} is $w^{*} - w^{*}$ –continuous so,

$$
T^{***}(\Lambda \cdot n) = w^* - \lim_{\alpha} w^* - \lim_{\beta} T^{***}(g_{\alpha} \cdot b_{\beta})
$$

= $w^* - \lim_{\alpha} w^* - \lim_{\beta} T^*(g_{\alpha} \cdot b_{\beta})$
= $w^* - \lim_{\alpha} w^* - \lim_{\beta} \varphi(b_{\beta})T^*(g_{\alpha})$
= $n(\varphi)T^{***}(\Lambda),$

for all $n \in B^{**}$ and $\Lambda \in X^{***}$.

Define $\tilde{\varphi}: B^{**} \longrightarrow \mathbb{C}$ by $\tilde{\varphi}(n) = n(\varphi)$. One can easily verify that $\tilde{\varphi} \in \triangle(B^{**}).$

Also

$$
T^{***}(\Lambda \cdot n) = \tilde{\varphi}(n) T^{***}(\Lambda), \quad (n \in B^{**}, \Lambda \in X^{***}).
$$

For the converse, if $T^{**}: A^{**} \longrightarrow X^{**}$ is a B^{**} -character module homomorphism then there exists $\psi \in \Delta(B^{**})$ such that $T^{***}(\Lambda \cdot n)$ = $\psi(n)T^{***}(\Lambda)$ for all $n \in B^{**}$ and $\Lambda \in X^{***}$. Set $\varphi = \psi|_B$. Clearly φ is a multiplicative linear functional. Also $\varphi \neq 0$. Indeed, the assumption $\varphi = 0$ implies,

$$
\psi(n)T^{***}(\Lambda) = T^{***}(\Lambda \cdot n) \n= w^* - \lim_{\alpha} w^* - \lim_{\beta} T^{***}(g_{\alpha} \cdot b_{\beta}) \n= w^* - \lim_{\alpha} w^* - \lim_{\beta} \psi(b_{\beta})T^{***}(g_{\alpha}) \n= w^* - \lim_{\alpha} w^* - \lim_{\beta} \varphi(b_{\beta})T^{***}(g_{\alpha}) = 0,
$$

where, ${g_{\alpha}}_{\alpha} \subseteq X^*$ and ${b_{\beta}}_{\beta} \subseteq B$ are some nets such that $\Lambda = w^* \lim_{\alpha} g_{\alpha}$ and $n = w^* - \lim_{\beta} b_{\beta}$.

It follows that $T^{***} = 0$. So $T = 0$, that is a contradiction. Therefore $\varphi \in \triangle(B)$.

Hence

$$
T^*(g \cdot b) = T^{***}(g \cdot b) = \psi(b)T^{***}(g)
$$

= $\varphi(b)T^*(g)$,

for all $b \in B, g \in X^*$. So *T* is a *B−*character module homomorphism. □

Corollary 3.2. *Let A and B be two normed algebras and let X be a left B−module. Also let T* : *A −→ X be a non-zero bounded linear map. Then T is a B−character module homomorphism if and only if* $T^{(2n)}$: $A^{(2n)} \longrightarrow X^{(2n)}$ *is a* $B^{(2n)}$ *− character module homomorphism.*

Proposition 3.3. *Let A, B, C be normed algebras and let X be a left B−module. Also let T* : *A −→ X be a B−character module homomorphism. Then for each bounded linear map* $S: C \longrightarrow A$ *the map* $T \circ S : C \longrightarrow X$ *is a B−character module homomorphism.*

Proof. As $T : A \longrightarrow X$ is a *B*−character module homomorphism so there exists $\varphi \in \Delta(B)$ such that $T^*(g \cdot b) = \varphi(b)T^*(g)$ for all $b \in B$ and $g \in X^*$. Hence

$$
(T \circ S)^*(g \cdot b) = S^* \circ T^*(g \cdot b) = S^*(T^*(g \cdot b))
$$

= $S^*(\varphi(b)T^*(g)) = \varphi(b)S^*(T^*(g))$
= $\varphi(b)S^* \circ T^*(g)$
= $\varphi(b)(T \circ S)^*(g)$,

for all $b \in B$ and $g \in X^*$. It follows that $T \circ S$ is a B *-*character module homomorphism. □

Let *A* and *B* be two normed algebras and let *X* be a left *B−*module. Set $CMH_B(A, X)$ as the set of all non-zero *B*−character module homomorphisms from *A* into *X*.

Proposition 3.4. Let *A* and *B* be two normed algebras and let $\Delta(B)$ = $\{\varphi\}$ *. Then* $CMH_B(A, X) \cup \{0\}$ *is a closed subspace of* $L(A, X)$ *of all bounded linear operators from A into X.*

Proof. Clearly $CMH_B(A, X) \cup \{0\}$ is a subspace of $L(A, X)$. We shall show that $CMH_B(A, X) \bigcup \{0\}$ is a closed subspace. For this end let

$$
T\in L(A,X)\bigcap \overline{CMH_B(A,X)\bigcup\{0\}}
$$

and $T \neq 0$. So there exists a sequence $\{T_n\}_n \subseteq \mathcal{CMH}_B(A, X)$ such that *∣* $|T_n^* - T^*|$ = $|T_n - T|$ → 0.

Hence $T_n^*(g \cdot b) \longrightarrow T^*(g \cdot b)$. As $T_n^*(g \cdot b) = \varphi(b)T_n^*(g)$ we can conclude that $\varphi(b)T^*(g) = T^*(g \cdot b), b \in B, g \in X^*$. So $T \in CMH_B(A, X) \cup \{0\}.$ □

Corollary 3.5. *Let A be a normed algebra and let* $\Delta(A) = {\varphi}$ *. Then* $CMH_A(A, A) \bigcup \{0\}$ *is a closed right ideal of* $L(A, A)$ *.*

Proof. The proof is an immediate consequence of Proposition [3.3](#page-4-0) and Proposition [3.4](#page-5-0). □

Let *A* and *B* be two normed algebras and let *X* be a left *B−*module such that $CMH_B(A, X) \neq \emptyset$. If $T \in CMH_B(A, X)$ then there exists a unique element $\varphi_T \in \Delta(B)$ such that $T^*(g \cdot b) = \varphi_T(b)T^*(g)$ for all $b \in B$ and $g \in X^*$. For $T, S \in CMH_B(A, X)$ define $T \sim S$ if and only if $\varphi_T = \varphi_S$. Now we can conclude the following result.

Proposition 3.6. *Let A and B be two normed algebras and let X be a left B*−*module such that* $CMH_B(A, X) \neq \emptyset$ *. Then* \sim *is an equivalence relation on* $CMH_B(A, X)$.

Proof. the proof is straightforward. □

Let $T \in \mathcal{CMH}_B(A, X)$ and let $[T]_{\sim}$ be the equivalence class of *T*. Note that in the case when $\Delta(B) = {\varphi}$, the set $CMH_B(A, X) \cup \{0\}$

is a closed subspace of $L(A, X)$. But it is not the case in general.

The following result reveals that the set $CMH_B(A, X) \cup \{0\}$ is the union of closed subspaces of *L*(*A, X*).

Proposition 3.7. *Let A and B be two normed algebras and let X be a left B*−*module such that* $CMH_B(A, X) \neq \emptyset$ *. Then* [*T*]∼ ∪{0*} is a closed subspace of* $L(A, X)$ *for all* $T \in \mathcal{CMH}_B(A, X)$ *. Moreover*

$$
CMH_B(A, X) \bigcup \{0\} = \bigcup_T \Big([T]_\sim \bigcup \{0\} \Big) .
$$

Proof. Clearly $[T]$ ∼ \bigcup {0} is a subspace of *L*(*A, X*). An argument similar to the proof of Proposition [3.4](#page-5-0) can be applied to show that $[T]$ ∼ \cup {0} is a closed subspace. As $CMH_B(A, X) = \bigcup_T [T]_{\sim}$ so $CMH_B(A, X) \cup \{0\} = \bigcup_T [T]_{\sim} \cup \{0\}$. *T* ([*T*]*[∼]* ∪ *{*0*}*). □

4. The Relation Between *φ−*amenable Banach Algebras and Character Module Homomorphisms.

In this section we give some relations between *φ−*amenable, *φ−*contractible Banach algebras and character module homomorphisms.

Theorem 4.1. *Let A be a reflexive φ−amenable Banach algebra. Then* $CMH_A(\mathbb{C}, A) \neq \emptyset$.

Proof. As *A* is reflexive and *φ−*amenable Banach algebra so there exists $m \in A$ such that $\varphi(m) = 1$ and $f(am) = \varphi(a)f(m)$ for all $a \in A$ and $f \in A^*$. Define $T : \mathbb{C} \longrightarrow A$ by $T(\lambda) = \lambda m, \lambda \in \mathbb{C}$. It follows that $T^*(f) = f(m)$ for all $f \in A^*$. So

$$
T^*(f \cdot a) = f \cdot a(m)
$$

= $f(am)$
= $\varphi(a)f(m)$
= $\varphi(a)T^*(f)$,

for all $a \in A$ and $f \in A^*$. Hence $T \in CMH_A(\mathbb{C}, A)$ and $CMH_A(\mathbb{C}, A) \neq$ *<i>Ø*. □

Theorem 4.2. *Let A be a Banach algebra and let* $\varphi \in \Delta(A)$ *. Also let* $T : \mathbb{C} \longrightarrow A$ be a linear map such that $\varphi(T(1)) \neq 0$ and $T^*(f \cdot a) =$ $\varphi(a)T^*(f)$ *for all* $a \in A$ *and* $f \in A^*$. Then *A is* φ *-amenable.*

Proof. Let $u = T(1)$. So $T(\lambda) = T(\lambda 1) = \lambda T(1) = \lambda u$ for all $\lambda \in \mathbb{C}$. It follows that $T^*(f) = f(u)$ for all $f \in A^*$. So the assumption $T^*(f \cdot a) =$ $\varphi(a)T^*(f)$ implies that, $f \cdot a(u) = \varphi(a)f(u)$. Hence $f(au) = \varphi(a)f(u)$. Set $m = \frac{u}{a^2}$ $\frac{u}{\varphi(u)}$. So $\varphi(m) = 1$ and $f(am) = \varphi(a)f(m)$, $a \in A, f \in A^*$. This shows that *m* is a φ *-*mean. Hence *A* is φ -amenable. □

Proposition 4.3. *Let A be a φ−contractible Banach algebra. Then* $CMH_A(\mathbb{C}, A) \neq \emptyset$.

Proof. Let *A* be a φ −contractible Banach algebra. So there exists $u \in A$ such that $\varphi(u) = 1$ and $au = \varphi(a)u$ for all $a \in A$. Define $T: \mathbb{C} \longrightarrow A$ by $T(\lambda) = \lambda u$. One can easily verify that $T \in \mathcal{CMH}_A(\mathbb{C}, A)$. So $CMH_A(\mathbb{C}, A) \neq \emptyset.$

120 A. R. KHODDAMI

REFERENCES

- 1. Z. Hu, M.S. Monfared and T. Traynor, *On character amenable Banach algebras*, Studia Math., 193 (2009), pp. 53-78.
- 2. E. Kaniuth, A.T.-M. Lau and J. Pym, *On character amenability of Banach algebras*, J. Math. Anal. Appl., 344 (2008), pp. 942-955.
- 3. A.R. Khoddami, *On maps preserving strongly zero-products*, Chamchuri J. Math., 7 (2015), pp. 16-23.
- 4. A.R. Khoddami, *On strongly Jordan zero-product preserving maps*, Sahand Commun. Math. Anal., 3 (2016), pp. 53-61.
- 5. A.R. Khoddami, *Strongly zero-product preserving maps on normed algebras induced by a bounded linear functional*, Khayyam J. Math., 1 (2015), pp. 107-114.
- 6. A.R. Khoddami, *The second dual of strongly zero-product preserving maps*, Bull. Iran. Math. Soc., 43 (2017), pp. 1781-1790.
- 7. A.R. Khoddami and H.R. Ebrahimi Vishki, *The higher duals of a Banach algebra induced by a bounded linear functional*, Bull. Math. Anal. Appl., 3 (2011), pp. 118-122.
- 8. M.S. Monfared, *Character amenability of Banach algebras*, Math. Proc. Camb. Phil. Soc., 144 (2008), pp. 697-706.

Faculty of Mathematical Sciences, Shahrood University of Technology, P. O. Box 3619995161-316, Shahrood, Iran.

E-mail address: khoddami.alireza@shahroodut.ac.ir