
Sahand Communications in Mathematical Analysis (SCMA) Vol. 12 No. 1 (2018), 131-153

http://scma.maragheh.ac.ir

DOI: 10.22130/scma.2017.28223

On Fuzzy e-open Sets, Fuzzy e-continuity and Fuzzy

e-compactness in Intuitionistic Fuzzy Topological Spaces
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Abstract. The purpose of this paper is to introduce and study
the concepts of fuzzy e-open set, fuzzy e-continuity and fuzzy e-
compactness in intuitionistic fuzzy topological spaces. After giving
the fundamental concepts of intuitionistic fuzzy sets and intuition-
istic fuzzy topological spaces, we present intuitionistic fuzzy e-open
sets and intuitionistic fuzzy e-continuity and other results related
topological concepts. Several preservation properties and some
characterizations concerning intuitionistic fuzzy e-compactness have
been obtained.

1. Introduction

The fuzzy concept has invaded almost all branches of Mathematics
since the introduction of the concept of fuzzy set by Zadeh [16]. Fuzzy
sets have applications in many fields such as information [13] and con-
trol [14]. The theory of fuzzy topological spaces was introduced and
developed by Chang [3] and since then various notions in classical topol-
ogy have been extended to fuzzy topological spaces. The initiations of
e-open sets, e∗-open sets, a-open sets, e-continuity and e-compactness
in topological spaces are due to Ekici [6–10]. In fuzzy topology, e-open
sets were introduced by Seenivasan in 2014 [12]. In this paper we gen-
eralize this notion to intuitionistic fuzzy spaces and also the concepts
of intuitionistic fuzzy e-open sets, intuitionistic fuzzy e-continuity and
intuitionistic fuzzy e-compactness and study their properties in detail.
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Intuitionistic fuzzy e-open set are weaker than intuitionistic fuzzy δ-pre
open set, intuitionistic fuzzy δ-semi open set and stronger then intu-
itionistic fuzzy β-open sets. It may be possible to obtain stronger forms
of the existing results in ordinary topological spaces as well as in fuzzy
topological spaces. Our motivation in this paper, using intuitionistic
fuzzy sets, we put this concepts in the intuitionistic fuzzy setting, then
defining intuitionistic fuzzy e-open set, intuitionistic fuzzy e-continuity
and intuitionistic fuzzy e-compactness are studied. Several preservation
properties and some characterizations concerning intuitionistic fuzzy e-
compactness have been obtained.

2. Preliminaries

First we shall present the fundamental definitions obtained by K.
Atanassov and D. Coker.

Definition 2.1 ([2]). Let X be a nonempty fixed set. An intuition-
istic fuzzy set (IFS, for short) A is an object having the form A =
{⟨x, µA(x), νA(x)⟩ : x ∈ X} where the functions µA : X → I and νA :
X → I denote the degree of membership (namely µA(x)) and the degree
of nonmembership (namely νA(x)) of each element x ∈ X to the set A
respectively, and 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X.

Obviously, every fuzzy set A on a nonempty set X is an IFS having
the form

A = {⟨x, µA(x), 1− µA(x)⟩ : x ∈ X} .
Definition 2.2 ([2]). Let X be a nonempty set and the IFS’s A and B
be in the form

A = {⟨x, µA(x), νA(x)⟩ : x ∈ X} ,
B = {⟨x, µB(x), νB(x)⟩ : x ∈ X} ,

and let A = {Aj : j ∈ J} be an arbitrary family of IFS’s in X, then

(i) A ≤ B iff ∀x ∈ X [µA(x) ≤ µB(x) and νA(x) ≥ νB(x)] ;
(ii) A = {⟨x, νA(x), µA(x)⟩ : x ∈ X};
(iii) ∧Aj =

{⟨
x,∧µAj (x),∨νAj (x)

⟩
: x ∈ X

}
;

(iv) ∨Aj =
{⟨

x,∨µAj (x),∧νAj (x)
⟩
: x ∈ X

}
;

(v) 1∼ = {⟨x, 1, 0⟩ : x ∈ X} and 0∼ = {⟨x, 0, 1⟩ : x ∈ X};
(vi) A = A, 0∼ = 1∼ and 1∼ = 0∼.

Definition 2.3 ([4]). LetX and Y be two nonempty sets and f : X → Y
be a function.

(i) If B = {⟨y, µB(y), νB(y)⟩ : y ∈ X} is an IFS in Y , then the
preimage of B under f denoted and defined by

f−1(B) =
{⟨

f−1(µB)(x), f
−1(νB)(x) : x ∈ X

⟩}
;



ON FUZZY e-OPEN SETS, FUZZY e-CONTINUITY AND FUZZY ... 133

(ii) If A = {⟨x, λA(x), νA(x)⟩ : x ∈ X} is an IFS in X, then the
image of A under f denoted and defined by

f(A) = {⟨y, f(λA)(y), f (νA)(y) : y ∈ Y ⟩} ,
where

f(λA)(y) =

{
supx∈f−1(y) λA(x),

0,
f−1(y) ̸= 0,
otherwise,

and

f (νA)(y) = 1− f(1− νA)(y)

=

{
infx∈f−1(y) νA(x),
1,

f−1(y) ̸= 0,
otherwise.

Corollary 2.4 ([4]). Let A,Aj(j ∈ J) be IFS’s in X, B,Bj(j ∈ J) be
IFS’s in Y and f : X → Y be a function. Then

(i) A1 ≤ A2 ⇒ f(A1) ≤ f(A2);
(ii) B1 ≤ B2 ⇒ f−1(B1) ≤ f−1(B2);
(iii) A ≤ f−1(f(A)) (If f is one-to-one, then A = f−1(f(A));
(iv) f(f−1(B)) ≤ B (If f is onto, then f(f−1(B)) = B);
(v) f−1(1∼) = 1∼ and f−1(0∼) = 0∼;
(vi) f(1∼) = 1∼ if f is onto and f(0∼) = 0∼;

(vii) f−1(B) = f−1(B).

Now, we mention the definition of intuitionistic fuzzy points and also
some basic results related to it.

Definition 2.5 ([5]). Let X be a nonempty set and c ∈ X a fixed
element in X. If a ∈ (0, 1] and b ∈ [0, 1) are two fixed real numbers
such that a + b ≤ 1, then the IFS c(a, b) = ⟨x, ca, 1− c1−b⟩ is called
an intuitionistic fuzzy point (IFP, for short) in X, where α denotes the
degree of membership of c(a, b), and c ∈ X the support of c(a, b).

Definition 2.6 ([5]). Let c(a, b) be an IFP in X and A = ⟨x, µA, νA⟩ an
IFS in X. Suppose further that a, b ∈ (0, 1), c(a, b) is said to be properly
contained in A (c(a, b) ∈ A for short) iff a < µA(c) and b > νA(c).

Definition 2.7 ([5]). (i) An IFP c(a, b) in X is said to be quasi-
coincident with the IFS A = ⟨x, µA, νA⟩, denoted by c(a, b)qA,
iff a > νA(c) or b < µA(c).

(ii) Let A = ⟨x, µA, νA⟩ and B = ⟨x, µB, νB⟩ be two IFS’s in X.
Then, A and B are said to be quasi-coincident, denoted by AqB,
iff there exists an element x ∈ X such that µA(x) > νB(x) or
νA(x) < µB(x).

Proposition 2.8. Let f : X → Y be a function and c(a, b) be an IFP
in X.
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(i) If for IFS B in Y we have f(c(a, b))qB, then c(a, b)qf−1(B).
(ii) If for IFS A in X we have c(a, b)qA, then f(c(a, b))qf(A).

Proof. (i) Let f(c(a, b))qB for IFS B in Y . Then a > νB(f(c)) or
b < µB(f(c)). (equivalently, (f(c)a > νB or 1− f(c)1−b < µB).
This gives that a > f−1(νB)(c) or b < f−1(µB)(c) (equiva-
lently, ca > f−1(νB) or 1 − c1−b < f−1(µB)) which implies
c(a, b)qf−1(B).

(ii) Let c(a, b)qA, for IFS A in X. Then a > νA(c) or b < µA(c).
This implies a > infx∈f−1(f(c)) νA(x) or b < supx∈f−1(f(c)) µA(x)

which gives a > f (νA)(f(c)) or b < f(µA)(f(c)). Thus we have
f(c(a, b))qf(A).

□

Proposition 2.9. Let A be an IFS in IFTS in X and c(a, b) be an IFP
in X. If c(a, b) ∈ A, then c(a, b)qA.

Proof. Let c(a, b) ∈ A, then a < µA(c) and b > νA(c) which implies
c(b, a)qA. □

Here we give the definitions of intuitionistic fuzzy topological space
and some types of intuitionistic fuzzy continuity introduced by Coker
[4]. Also, some of results is of interest.

Definition 2.10 ([4]). An intuitionistic fuzzy topology (IFT, for short)
on a nonempty set X is a family Ψ of IFS’s in X satisfying the following
axioms:

(i) 0∼, 1∼ ∈ Ψ;
(ii) A1 ∧A2 ∈ Ψ for any A1, A2 ∈ Ψ;
(iii) ∨Aj ∈ Ψ for any {Aj : j ∈ J} ⊆ Ψ.

In this case the pair (X,Ψ) is called an intuitionistic fuzzy topological
space (IFTS, for short) and each IFS in Ψ is known as an intuitionistic
fuzzy open set (IFOS, for short) in X.

Definition 2.11 ([4]). The complement A of IFOS A in IFTS(X,Ψ) is
called an intuitionstic fuzzy closed set (IFCS, for short).

Definition 2.12 ([4]). Let (X,Ψ) be an IFTS and A = ⟨x, µA(x), νA(x)⟩
be an IFS in X. Then the fuzzy closure and fuzzy interior of A are
denoted and defined by: cl(A) = ∧{K : K is an IFCS in X and A ≤ K}
and int(A) = ∨{G : G is an IFOS in X and G ≤ A}.

Definition 2.13 ([15]). Let A be IFS in an IFTS (X,Ψ). A is called an

(i) intuitionistic fuzzy regular open set (briefly IFROS) if A =
intcl(A).
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(ii) intuitionistic fuzzy regular closed set (briefly IFRCS) if A =
clint(A).

Definition 2.14. Let (X,Ψ) be an IFTS and A = ⟨x, µA(x), νA(x)⟩ be
a IFS in X. Then the fuzzy δ closure of A are denoted and defined by
clδ(A) = ∧{K : K is an IFRCS in X and A ≤ K} and intδ(A) = ∨{G :
G is an IFROS in X and G ≤ A}.
Definition 2.15. Let (X,Ψ) and (Y, ϕ) be IFTS’s. A function f :
(X,Ψ) → (Y,Φ) is called intuitionistic fuzzy continuous [4] if f−1(B) is
an IFOS for every B ∈ Φ.

Definition 2.16 ([4]). Let X be an IFTS. A family {⟨x, µGi , νGi⟩ |i ∈ I}
of IFOS’s in X satisfying the condition

∪
{⟨x, µGi , νGi⟩ |i ∈ I} = 1∼ is

called an intuitionistic fuzzy open cover of X.

A finite subfamily of an intuitionistic fuzzy open cover {⟨x, µGi , νGi⟩ |i
∈ I} which is also an intuitionistic fuzzy open cover of X is called a finite
subcover of {⟨x, µGi , νGi⟩ |i ∈ I}.

An IFTS X is called intuitionistic fuzzy compact if and only if every
intuitionistic fuzzy open cover has a finite subcover.

Definition 2.17 ([4]). Let A be an IFS in an IFTS X. A family
{⟨x, µGi , νGi⟩|i ∈ I} of IFOS’s in X satisfying the condition A ⊆∪
{⟨x, µGi , νGi⟩ |i ∈ I} is called an intuitionistic fuzzy open cover of

A.

A finite subfamily of an intuitionistic fuzzy open cover {⟨x, µGi , νGi⟩ |i
∈ I} of A which is also an intuitionistic fuzzy open cover of A is called
a finite subcover of {⟨x, µGi , νGi⟩ |i ∈ I}.

An IFS A = ⟨x, µA, νA⟩ in an IFTS X is called intuitionistic fuzzy
compact if and only if every intuitionistic fuzzy open cover of A have a
finite subcover.

3. Intuitionistic Fuzzy e-open Sets

Now we introduce the following definition.

Definition 3.1. Let A be an IFS in an IFTS (X,Ψ). A is called an intu-
itionistic fuzzy δ-semiopen (resp. δ-preopen, β-open) set (IFδSO (resp.
IFδPO, IFβO), for short), if A ≤ cl(intδ(A)) (resp. A ≤ int(clδ(A)),
A ≤ cl(int(cl(A)))). A is called an intuitionistic fuzzy δ-semiclosed (resp.
δ-preclosed, β-closed) set (IFδSC (resp. IFδPC, IFβC) (for short)) if
A ≥ int(clδ(A)) (resp. A ≥ cl(intδ(A)), A ≥ int(cl(int(A)))).

Definition 3.2. Let A be an IFS in an IFTS(X,Ψ). The intuition-
istic fuzzy δ-semi-closure (δ-semi-interior) (resp. δ-pre-closure (δ-pre-
interior)) of A is denoted by sclδ(A) (sintδ(A)) (resp. pclδ(A)(pintδ(A)))
and defined as follows:
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(i) sclδ(A)(pclδ(A)) = ∧{K : K is an IFδSCS (resp. IFδPCS) in
X and A ≤ K},

(ii) sintδ(A)(pintδ(A)) = ∨{G : G is an IFδSOS (resp. IFδPOS) in
X and G ≤ A}.

It is clear that A is an IFδSCS (resp. IFδPCS, IFδSOS, IFδPOS) iff
A = sclδ(A) (resp. A = pclδ(A), A = sintδ(A), A = pintδ(A)).

Theorem 3.3. Let A be an IFS in an IFTS(X,Ψ), then

(i) pclδ(A) ≥ A ∨ cl (intδ(A)) and pintδ(A) ≤ A ∧ int (clδ(A));
(ii) sclδ(A) ≥ A ∨ int (clδ(A)) and sintδ(A) ≤ A ∧ cl (intδ(A)).

Proof. We will prove only the first statement of (i) and the second is
similar. Since pclδ(A) is IFδPCS, we have

cl(intδ(A)) ≤ clintδ(pclδ(A)) ≤ pclδ(A).

Thus A ∨ cl(intδ(A)) ≤ pclδ(A). □
Definition 3.4. Let (X,Ψ) and (Y, ϕ) be IFTS’s. A function f :
(X,Ψ) → (Y,Φ) is called intuitionistic fuzzy δ-semicontinuous (resp.
δ-precontinuous, β-continuous) (IFδsemi-cont. (resp. IFδpre-cont., IFβ-
cont. for short)) if f−1(B) is an IFδSO (resp. IFδPO, IFβOS) for every
B ∈ Φ.

In the sequel, we introduce and study in IFTS’s the concept of fuzzy
e-open (closed) sets which generalized the concepts of IFOS’s (IFCS’s).

Definition 3.5. Let A be an IFS in an IFTS(X,Ψ). A is called

(i) an intuitionistic fuzzy e-open set (IFeOS, for short) in X if
A ≤ clintδ(A) ∨ intclδ(A),

(ii) an intuitionistic fuzzy e-closed set (IFeCS, for short) in X if
A ≥ clintδ(A) ∧ intclδ(A).

(iii) an intuitionistic fuzzy e∗-open set (IFe∗OS, for short) in X if
A ≤ clintclδ(A).

(iv) an intuitionistic fuzzy a-open set (IFaOS, for short) in X if
A ≤ intclintδ(A).

Remark 3.6. From the above definition and some types of IFOS’s, we
have the following diagram:

The converse of the above implications need not be true in general as
shown by the following examples:
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Example 3.7. Let X = {a, b} and

A =

⟨
x,

(
a

0.3
,
b

0.2

)
,

(
a

0.5
,
b

0.5

)⟩
,

B =

⟨
x,

(
a

0.3
,
b

0.5

)
,

(
a

0.7
,
b

0.2

)⟩
.

Then the family Ψ = {0∼, 1∼, A} is an IFT on X. Since B ≤ clintcl(B) =
A and B ≤ clintclδ(B) = A then B is an IFβOS and IFe∗OS in X, but
not IFeOS since B ̸≤ clintδ(B) ∨ intclδ(B) = 0∼ ∨A = A.

Example 3.8. Let X = {a, b} and

A =

⟨
x,

(
a

0.2
,
b

0.1

)
,

(
a

0.7
,
b

0.5

)⟩
,

B =

⟨
x,

(
a

0.3
,
b

0.5

)
,

(
a

0.7
,
b

0.2

)⟩
.

Then the family Ψ = {0∼, 1∼, A} is an IFT on X. Since B ≤ clintδ(B) ∨
intclδ(B) = A∨A = A, B is an IFeOS,and IFβOS but not IFδPOS, and
IFaOS hence B ̸≤ intclδ(B) = A and B ̸≤ intclintδ(B) = A

Example 3.9. Let X = {a, b, c, d} and

A =

⟨
x,

(
a

1
,
b

0
,
c

0.2
,
d

0

)
,

(
a

0
,
b

1
,
c

0.7
,
d

1

)⟩
,

B =

⟨
x,

(
a

0
,
b

1
,
c

0
,
d

0

)
,

(
a

1
,
b

0
,
c

1
,
d

0.1

)⟩
,

C =

⟨
x,

(
a

1
,
b

0
,
c

0
,
d

1

)
,

(
a

0
,
b

0.2
,
c

0
,
d

0

)⟩
.

Then the family Ψ = {0∼, 1∼, A,B,A ∨ B} is an IFT on X. Since C ≤
clintδ(C) ∨ intclδ(C) = 0∼ ∨ 1∼ = 1∼, C is an IFeOS, but not IFδSOS,
hence C ̸≤ clintδ(C) = 0∼.

Example 3.10. Let X = {a, b} and

A =

⟨
x,

(
a

0.5
,
b

0.5

)
,

(
a

0.3
,
b

0.5

)⟩
,

B =

⟨
x,

(
a

0.7
,
b

0.2

)
,

(
a

0.3
,
b

0.2

)⟩
.

Then the family Ψ = {0∼, 1∼, A} is an IFT onX. Since B ≤ clintcl(B) = 1,
then B is an IFβOS in X but not IFe∗OS. Since B ̸≤ clintclδ(B) = 0.

Example 3.11. Refer to Example 3.9, C ≤ intclδ(C) = 1∼, C is an
IFδPOS, but not IFOS.
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Example 3.12. Refer to Example 3.8, B ≤ clintδ(B) = A, B is an
IFδSOS, but not IFOS.

Remark 3.13. (i) It is clear that the union of any family of IFeOS’s
is IFeOS.

(ii) The intersection of two IFeOS’s need not be IFeOS as illustrated
by the following example.

Example 3.14. Refer to Example 3.8, B is an IFeOS and also

C =

⟨
x,

(
a

0.1
,
b

0.2

)
,

(
a

0.1
,
b

0.1

)⟩
,

is an IFeOS, since C ≤ clintδ(C) ∨ intclδ(C) = A ∨A = A. But

B ∧ C =

⟨
x,

(
a

0.1
,
b

0.2

)
,

(
a

0.7
,
b

0.2

)⟩
,

is not IFeOS, since B ∧C ̸≤ clintδ(B ∧C)∨ intclδ(B ∧C) = 0∼ ∨A = A.

Proposition 3.15. Let A be an IFS in an IFTS(X,Ψ).

(i) If A is an IFeOS and intδ(A) = 0∼, then A is an IFδPOS.
(ii) If A is an IFeOS and clδ(A) = 0∼, then A is an IFδSOS.
(iii) If A is an IFeOS and IFδCS, then A is an IFδSOS.
(iv) If A is an IFδSOS and IFδCS, then A is an IFeOS.

Proof. (i) Let A be an IFeOS, that is

A ≤ clintδ(A) ∨ intclδ(A) = 0∼ ∨ intclδ(A) = intclδ(A).

Hence A is an IFδPOS.
(ii) Follows from (i).
(iii) Let A be an IFeOS and IFδCS, that is

A ≤ clintδ(A) ∨ intclδ(A) = clintδ(A) ∨ int(A) = clintδ(A).

Hence A is an IFδSOS.
(iv) Let A be an IFδSOS and IFδCS, that is

A ≤ clintδ(A) ≤ clintδ(A) ∨ intclδ(A).

Hence A is an IFeOS.
□

Theorem 3.16. Let A be an IFS in an IFTS(X,Ψ), A is an IFeOS if
and only if A = pintδ(A) ∨ sintδ(A).

Proof. Let A be an IFeOS. Then A ≤ cl(intδ(A)) ∨ int(clδ(A)). By
Theorem 3.3, we have

pintδ(A) ∨ sintδ(A) = (A ∧ int(clδ(A))) ∨ (A ∧ cl (intδ(A)))

= A ∧ (int(clδ(A)) ∨ cl (intδ(A)))

= A.
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Conversely, if A = pintδ(A) ∨ sintδ(A) then, by Theorem 3.3

A = pintδ(A) ∨ sintδ(A)

= (A ∧ int(clδ(A))) ∨ (A ∧ cl(intδ(A)))

= A ∧ (int(clδ(A)) ∨ cl(intδ(A)))

≤ int (clδ(A)) ∨ cl (intδ(A)) ,

and hence A is an IFeOS. □
Definition 3.17. Let (X,Ψ) be an IFTS and A = ⟨x, µA, νA⟩ be an IFS
in X. Then the intuitionistic fuzzy e-interior and intuitionistic fuzzy e-
closure are defined and denoted by:

cle(A) = ∧{K : K is an IFeCS in X and A ≤ K},
and

inte(A) = ∨{G : G is an IFeOS in X and G ≤ A}.
It is clear that A is an IFeCS (IFeOS) in X iff A = cle(A)(A = inte(A)).

Proposition 3.18. For any IFS A in an IFTS(X,Ψ) we have:

(i) cle(A) = inte(A), inte(A) = cle(A).
(ii) cle(A ∨B) ≥ cle(A) ∨ cle(B), inte(A ∨B) ≥ inte(A) ∨ inte(B).
(iii) cle(A ∧B) ≤ cle(A) ∧ cle(B), inte(A ∧B) ≤ inte(A) ∧ inte(B).

Remark 3.19. The inclusion of the results (ii) and in the above Propo-
sition can not be replaced by equality. In the following example we shall
shown one of them.

Example 3.20. Let X = {a, b, c, d} and

A =

⟨
x,

(
a

1
,
b

0
,
c

0.2
,
d

0

)
,

(
a

0
,
b

1
,
c

0.7
,
d

1

)⟩
,

B =

⟨
x,

(
a

0
,
b

1
,
c

0
,
d

0

)
,

(
a

1
,
b

0
,
c

1
,
d

0.1

)⟩
,

C =

⟨
x,

(
a

1
,
b

0
,
c

0
,
d

1

)
,

(
a

0
,
b

0.2
,
c

0
,
d

0

)⟩
,

D =

⟨
x,

(
a

0
,
b

0.9
,
c

0.3
,
d

1

)
,

(
a

1
,
b

0
,
c

0.2
,
d

0

)⟩
.

Then the family Ψ = {0∼, 1∼, A,B, A ∨ B} is an IFT on X. Notice
that C and D are IFeCS’s in X, then cle(C) = C and cle(D) = D. But
cle(C ∨D) = 1∼ (obviously, C ∨D is not IFeCS). Then

1∼ = cle(C ∨D) ̸≤ cle(C) ∨ cle(D) = C ∨D.

Proposition 3.21. For any IFS A in an IFTS(X,Ψ), we have:

(i) cle(A) ≥ clintδ(A) ∧ intclδ(A).
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(ii) inte(A) ≤ clintδ(A) ∨ intclδ(A).

Proof. (i) cle(A) is an IFeCS and A ≤ cle(A), then

cle(A) ≥ clintδcle(A) ∧ intclδcle(A) ≥ clintδ(A) ∧ intclδ(A).

(ii) Follows from (i) by taking the complementation.
□

Theorem 3.22. Let A be an IFS in an IFTS(X,Ψ), then

cle(A) = pclδ(A) ∧ sclδ(A).

Proof. It is obvious that, cle(A) ≤ pclδ(A) ∧ sclδ(A). Conversely, from
Definition 3.17 we have

cle(A) ≥ cl(intδ(cle(A))) ∧ int(clδ(cle(A))) ≥ cl(intδ(A)) ∧ int(clδ(A)).

Since cle(A) is IFeOS, by Theorem 3.3, we have

pclδ(A) ∧ sclδ(A) = (A ∨ cl(intδ(A))) ∧ (A ∨ int(clδ(A)))

= A ∨ (cl(intδ(A)) ∧ int(clδ(A)))

= A ≤ cle(A).

□

4. Intuitionistic Fuzzy e-continuity

Definition 4.1. A function f : (X,Ψ) → (Y,Φ) is called an

(i) intuitionistic fuzzy e-continuous (IFe-cont., for short) if f−1(B)
is an IFeOS in X, for every B ∈ Φ.

(ii) intuitionistic fuzzy e∗-continuous (IFe∗-cont., for short) if f−1(B)
is an IFe∗OS in X, for every B ∈ Φ.

(iii) intuitionistic fuzzy a-continuous (IFa-cont., for short) if f−1(B)
is an IFaOS in X, for every B ∈ Φ.

From the above definition and some known types of intuitionistic fuzzy
continuity, one can show the following diagram:

Now, the following examples shows that the converses of these implica-
tions are not true in general.
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Example 4.2. Let X = {a, b, c}, Y = {1, 2, 3} and

A =

⟨
x,

(
a

0.3
,
b

0.1
,
c

0.4

)
,

(
a

0.3
,
b

0.4
,
c

0.4

)⟩
,

B =

⟨
x,

(
a

0.3
,
b

0.2
,
c

0.5

)
,

(
a

0.2
,
b

0.2
,
c

0.4

)⟩
,

C =

⟨
y,

(
a

0.4
,
b

0.4
,
c

0.3

)
,

(
a

0.4
,
b

0.5
,
c

0.4

)⟩
.

Now, the family Ψ = {0∼, 1∼, A,B} of IFS’s in X is an IFT on X and the
family Φ = {0∼, 1∼, C} of IFS’s in Y is an IFT on Y . If we define the
function f : X → Y by f(a) = 3, f(b) = 1, f(c) = 2 then

f−1(C) =

⟨
y,

(
a

0.3
,
b

0.4
,
c

0.4

)
,

(
a

0.4
,
b

0.4
,
c

0.5

)⟩
,

f−1(C) ≤ clintcl
(
f−1(C)

)
= A,

f−1(C) ≤ clintclδ
(
f−1(C)

)
= A.

But

f−1(C) ̸≤ clintδ
(
f−1(C)

)
∨ intclδ

(
f−1(C)

)
= 0∼ ∨A = A,

and

f−1(C) ̸≤ intclintδ
(
f−1(C)

)
= 0∼.

Thus f is IFβ-cont. and IFe∗-continuous but not IFe-cont. and IFa-
continous.

Example 4.3. Let X = Y = {a, b} and

A =

⟨
x,

(
a

0.2
,
b

0.1

)
,

(
a

0.7
,
b

0.5

)⟩
,

B =

⟨
x,

(
a

0.3
,
b

0.5

)
,

(
a

0.7
,
b

0.2

)⟩
.

Consider the IFT’s Ψ = {0∼, 1∼, A} and Φ = {0∼, 1∼, B} on X. Then the
identity function f : (X,Ψ) → (Y,Φ) is IFe-continuous, but not IFδp
cont. and IFa-continous (Indeed, B ≤ intclδ(B)∨ clintδ(B) = A∨A =
A, but B ̸≤ intclδ(B) = A and B ̸≤ intclintδ(B) = A).

Example 4.4. Let X = Y = {a, b} and

A =

⟨
x,

(
a

0.5
,
b

0.5

)
,

(
a

0.3
,
b

0.5

)⟩
,

B =

⟨
x,

(
a

0.7
,
b

0.2

)
,

(
a

0.3
,
b

0.2

)⟩
.
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Consider the IFT’s Ψ = {0∼, 1∼, A} and Φ = {0∼, 1∼, B} on X. Then the
identity function f : (X,Ψ) → (Y,Φ) is IFβ-continuous, but not IFe∗-
cont. (Indeed, B ≤ clintcl(B) = 1∼, but B ̸≤ clintclδ(B) = 0∼).

Example 4.5. Let X = Y = {a, b, c, d} and

A =

⟨
x,

(
a

0.1
,
b

0
,
c

0.2
,
d

0

)
,

(
a

0
,
b

1
,
c

0.7
,
d

1

)⟩
,

B =

⟨
x,

(
a

0
,
b

1
,
c

0
,
d

0

)
,

(
a

1
,
b

0
,
c

1
,
d

0.1

)⟩
,

C =

⟨
x,

(
a

1
,
b

1
,
c

0.2
,
d

0

)
,

(
a

0
,
b

0
,
c

0.7
,
d

0.1

)⟩
.

Now, the family Ψ = {0∼, 1∼, A,B,A ∨ B} of IFS’s in X is an IFT on
X and the family Φ = {0∼, 1∼, C} of IFS’s in Y is an IFT on Y . Then
the identity function f : (X,Ψ) → (Y,Φ) is IFe-continuous, but not
IFδS cont. (Indeed, C ≤ intclδ(C) ∨ clintδ(C) = 1∼ ∨ 0∼ = 1∼, but C ̸≤
clintδ(C) = 0∼).

Example 4.6. Refer to Example 4.5, the identity function f : (X,Ψ) →
(Y,Φ) is IFδP-continuous, but not IF cont. (Indeed, C ≤ intclδ(C) = 1∼,
but C is not open in (X,Ψ)).

Example 4.7. Refer to Example 4.3, the identity function f : (X,Ψ) →
(Y,Φ) is IFδS-continuous, but not IF cont. (Indeed, B ≤ clintδ(B) = A,
but B is not open in (X,Ψ)).

Definition 4.8. Let (X,Ψ) be an IFTS on X and c(a, b) an IFP in X.
An IFS N is called ϵe-nbd (ϵeq-nbd) of c(a, b) if there exists an IFeOS
G in X such that c(a, b) ∈ G ≤ N (c(a, b)qG ≤ A).

The family of all ϵe-nbd (ϵeq-nbd) of c(a, b) will be denoted by N e
ϵ

(N eq
ϵ )(c(a, b)).

Theorem 4.9. An IFS A of an IFTS(X,Ψ) is an IFeOS iff for every
IFPc(a, b)qA, A ∈ N eq

ϵ (c(a, b)).

Proof. A = ⟨x, µA, νA⟩ be an IFeOS ofX and c(a, b)qA. Then c(a, b)qA ≤
A. Hence A ∈ N eq

ϵ (c(a, b)).
Conversely, let c(a, b) ∈ A, this implies a < µA(c) and b > νA(c).

Since a, b ∈ (0, 1) and a + b ≤ 1, we have c(a, b)qA and by hypothesis
A ∈ N eq

ϵ (c(b, a)), then there exists an IFeOS G such that c(a, b)qG ≤ A
which implies c(a, b) ∈ G ≤ A. Hence by Remark 3.13 (i), we have that
A is an IFeOS. □
Theorem 4.10. Let f : (X,Ψ) → (Y,Φ) be a function. Then the
following are equivalent:
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(i) f is IFe-continuous.
(ii) for every B ∈ N eq

ϵ (c(a, b)), there exists A ∈ N eq
ϵ (c(a, b)) such

that f(A) ≤ B.

Proof.(i) ⇒(ii) Let c(a, b) be any IFP in X and B ∈ N eq
ϵ (f (c(a, b))).

Then there exists an IFOS G of Y such that f(c(a, b))qG ≤
B. Since f is IFe-continuous, f−1(G) is an IFeOS of X with
c(a, b)qf−1(G) (by Proposition 2.8). Let A = f−1(G) then A ∈
N eq

ϵ (c(a, b)) such that f(A) = ff−1(G) ≤ G ≤ B.
(ii) ⇒ (i) Let B be an IFOS in Y and c(a, b) ∈ f−1(B). This implies

that f(c(a, b)) ∈ B. Thus by Proposition 2.9 f(c(a, b))qB, i.e.,
B ∈ N q

ϵ (f (c(a, b))). So there exists A ∈ N eq
ϵ (c(b, a)) such that

f(A) ≤ B. Then there exists an IFeOS H of X such that
c(a, b)qH ≤ A ≤ f−1(B). This implies that c(a, b) ∈ H ≤
f−1(B). Hence by Remark 3.13 (i), f−1(B) is an IFeOS.

□

Theorem 4.11. Let f : (X,Ψ) → (Y,Φ) be a function. Then the
following are equivalent:

(i) f is an IFe-continuous.
(ii) f−1(B) is an IFeCS in X, for every B ∈ Φ.
(iii) f(cle(A)) ≤ cl(f(A)) for every IFS A in X.
(iv) cle(f

−1(B)) ≤ f−1(cl(B)), for every IFS B in Y .

Proof.(i) ⇒ (ii) Obvious.
(ii) ⇒ (iii) Let A be an IFS in X. Then cl(f(A)) is an IFCS in Y . By (ii),

f−1(cl(f(A))) is an IFeCS in X, and so

f−1(cl(f(A))) = cle
(
f−1 (cl (f(A)))

)
.

Since A ≤ f−1f(A), we have

cle(A) ≤ cle(f
−1f(A))

≤ cle(f
−1(clf(A)))

= f−1(clf(A)).

Hence f(cle(A)) ≤ cl(f(A)).
(iii) ⇒ (iv) Let B be an IFOS in Y . By (iii), we have

f(cle(f
−1(B))) ≤ cl(ff−1(B)).

Hence

cle
(
f−1(B)

)
≤ f−1

(
cl
(
ff−1(B)

))
≤ f−1 (cl(B)) .

(iv) ⇒ (i) Let B be an IFOS in Y . Then B is an IFCS. By (iv), we have

cle
(
f−1(B)

)
≤ f−1

(
cl(B)

)
= f−1

(
B
)
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which implies

f−1(B) ≥ cle
(
f−1(B)

)
= inte (f−1(B)).

Hence f−1(B) is an IFeOS in X.
□

Theorem 4.12. Let f : (X,Ψ) → (Y,Φ) be a function. Then the
following are equivalent:

(i) f is an IFe-continuous.
(ii) clintδ(f

−1(B))∧ intclδ(f
−1(B)) ≤ f−1(cl(B)), for every IFS B

in Y .

Proof.(i) ⇒ (ii) Let B be an IFS in Y . Then cl(B) is an IFCS. By (i)
and using Theorem 4.11, we have f−1(cl(B)) is an IFeCS in X.
Hence

f−1 (cl(B)) ≥ clintδ
(
f−1 (cl(B))

)
∧ intclδ

(
f−1 (cl(B))

)
≥ clintδ

(
f−1(B)

)
∧ intclδ

(
f−1(B)

)
.

(ii) ⇒ (i) Let B be an IFCS in Y . Then by (ii)

clintδ
(
f−1(B)

)
∧ intclδ

(
f−1(B)

)
≤ f−1 (cl(B)) = f−1(B),

which implies f−1(B) is an IFeCS in X.
□

Theorem 4.13. Let (X,Ψ), (Y,Φ) and (Z,Ω) be IFTS’s. If f : X → Y
is IFe-continuous and g : Y → Z is IF-continuous, then g ◦ f is IFe-
continuous.

Proof. Obvious. □

Remark 4.14. The composition of two IFe-continuous functions need
not be IFe-continuous as shown by the following example.
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Example 4.15. Let X = Y = Z = {a, b, c} and

A =

⟨
x,

(
a

0.3
,
b

0.1
,
c

0.4

)
,

(
a

0.3
,
b

0.4
,
c

0.4

)⟩
,

B =

⟨
x,

(
a

0.3
,
b

0.2
,
c

0.5

)
,

(
a

0.2
,
b

0.2
,
c

0.4

)⟩
,

C = ⟨x,
(

a

0.4
,
b

0.3
,
c

0.4

)
,

(
a

0.4
,
b

0.5
,
c

0.5

)
⟩,

D =

⟨
x,

(
a

0.5
,
b

0.5
,
c

0.5

)
,

(
a

0.5
,
b

0.5
,
c

0.5

)⟩
,

E =

⟨
x,

(
a

0.5
,
b

0.5
,
c

0.5

)
,

(
a

0.4
,
b

0.5
,
c

0.5

)⟩
,

F =

⟨
x,

(
a

0.4
,
b

0.3
,
c

0.4

)
,

(
a

0.5
,
b

0.5
,
c

0.5

)⟩
,

G =

⟨
x,

(
a

0.3
,
b

0.4
,
c

0.4

)
,

(
a

0.4
,
b

0.4
,
c

0.5

)⟩
.

Then the family Ψ = {0∼, 1∼, A,B}, Φ = {0∼, 1∼, C,D,E, F} and Ω =
{0∼, 1∼, G} are IFS’s in X respectively. If we define the identity functions
f : X → Y and g : Y → Z, it is clear that f and g is IFe-cont., but g ◦ f
is not IFe-cont..

5. Intuitionistic Fuzzy e-compact Spaces

Definition 5.1. Let X be an IFTS. A family {⟨x, µGi , νGi⟩ |i ∈ I} of
IFeOS’s in X satisfying the condition∪

{⟨x, µGi , νGi⟩ |i ∈ I} = 1∼,

is called an intuitionistic fuzzy e-open cover of X.

A finite subfamily of an intuitionistic fuzzy e-open cover

{⟨x, µGi , νGi⟩ |i ∈ I} ,
which is also an intuitionistic fuzzy e-open cover of X is called a finite
subcover of {⟨x, µGi , νGi⟩ |i ∈ I}.

Definition 5.2. Let X be an IFTS. A family {⟨x, µGi , νGi⟩ |i ∈ I} of
IFeCS’s inX has the finite intersection property if every finite sub-family
{⟨x, µGi , νGi⟩ |i = 1, 2, . . . , n} satisfies the condition

n∩
k=1

{⟨x, µGi , νGi⟩ |i ∈ I} ̸= 0∼.

Definition 5.3. An IFTS X is called intuitionistic fuzzy e-compact if
and only if every intuitionistic fuzzy e-open cover has a finite subcover.
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Example 5.4. Consider the IFTS(X, τ), where X = {a, b},

An =

⟨
x,

(
a
n

n+1

,
b

n+1
n+2

)
,

(
a
1

n+2

,
b
1

n+3

)⟩
and τ = {0∼, 1∼}∪{An : n ∈ N}. Note that

∪
n∈N An is an open cover for

X, but this cover has no finite subcover. Consider

A1 =

⟨
x,

(
a

0.5
,
b

0.6

)
,

(
a

0.3
,

b

0.25

)⟩
,

A2 =

⟨
x,

(
a

0.6
,

b

0.75

)
,

(
a

0.25
,
b

0.2

)⟩
,

A3 =

⟨
x,

(
a

0.75
,
b

0.8

)
,

(
a

0.2
,

b

0.16

)⟩
,

and observe that A1 ∪ A2 ∪ A3 = A3. So, for any finite subcollection
{Ani : i ∈ I, where I is a finite subset of N},

∪
ni∈I Ani = Am ̸= 1∼,

where m = max{ni : ni ∈ I}. Therefore IFTS(X, τ) is not compact.

Theorem 5.5. An IFTS X is intuitionistic fuzzy e-compact if and only
if every family {⟨x, µGi , νGi⟩ |i ∈ I} of IFeCS’s with the finite intersec-
tion property has a nonempty intersection.

Proof. SupposeX is intuitionistic fuzzy e-compact and {⟨x, µGi , νGi⟩ |i ∈
I} is any family of IFeCS’s in X such that∩

{⟨x, µGi , νGi⟩ |i ∈ I} = 0∼.

Therefore
∧
{⟨µGi⟩ |i ∈ I} = 0∼ and

∪
{⟨νGi⟩ |i ∈ I} = 1∼. Then∨

{⟨x, µGi , νGi⟩ |i ∈ I} = 1∼,

so {⟨x, µGi , νGi⟩ |i ∈ I} is a intuitionistic fuzzy e-open cover of X. Since
X is intuitionistic fuzzy e-compact there is a finite subcover

{⟨x, µGi , νGi⟩ |i = 1, 2, . . . , n} .
Then

n∪
k=1

{⟨x, µGi , νGi⟩ |i ∈ I} = 1∼.

Hence ∨{
νGi(x)|i = 1, 2, . . . , n

}
= 1∼,

and ∧
{µGi(x)|i = 1, 2, . . . , n} = 0∼.

Finally
n∩

k=1

{⟨x, µGi , νGi⟩ |i ∈ I} = 0∼.
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We have proved that if X is intuitionistic fuzzy e-compact space, then
given any family {⟨x, µGi , νGi⟩ |i ∈ I} of IFeCS’s whose intersection is
empty, the intersection of some finite subfamily is empty. Conversely, let
X has the finite intersection property. It means that if the intersection of
any family of IFeCS’s is empty, the intersection of each finite subfamily
is empty. Suppose {⟨x, µGi , νGi⟩ |i ∈ I} is any intuitionistic fuzzy e-open
cover of X. Then ∪

{⟨x, µGi , νGi⟩ |i ∈ I} = 1∼.

Therefore,∨
{µGi(x)|i ∈ I} = 1∼,

∧
{νGi(x)|i ∈ I} = 0∼.

Hence ∩
{⟨x, µGi , νGi⟩ |i ∈ I} = 0∼,

so {⟨x, µGi , νGi⟩ |i ∈ I} is a family of IFeCS’s whose intersection is empty.
According to the assumption, we can find finite subfamily

{⟨x, µGi , νGi⟩ |i = 1, 2, . . . , n} ,
such that

n∩
k=1

{⟨x, µGi , νGi⟩ |i ∈ I} = 0∼.

Then
n∪

k=1

{⟨x, µGi , νGi⟩ |i ∈ I} = 1∼,

so {⟨x, µGi , νGi⟩ |i = 1, 2, . . . , n} is a finite subcover of

{⟨x, µGi , νGi⟩ |i ∈ I} .
Therefore, X is intuitionistic fuzzy e-compact. □
Remark 5.6. Since every IFOS is an IFeOS, from the definition above
we may conclude that every intuitionistic fuzzy e-compact IFTS is in-
tuitionistic fuzzy compact.

Theorem 5.7. Let f : X → Y be an intuitionistic fuzzy e-irresolute
mapping from an IFTS X onto IFTS Y . If X is intuitionistic fuzzy
e-compact, then Y is intuitionistic fuzzy e-compact, as well.

Proof. Let {⟨y, µGi , νGi⟩ |i ∈ I} be any intuitionistic fuzzy e-open cover
of Y . Then ∪

{⟨y, µGi , νGi⟩|i ∈ I} = 1∼.

From the relation

f−1
(∪

{⟨y, µGi , νGi⟩|i ∈ I}
)
= 1∼,
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follows that ∪
{⟨y, µGi , νGi⟩ |i ∈ I} = 1∼,

so {f−1({⟨y, µGi , νGi⟩|i ∈ I} is a intuitionistic fuzzy e-open cover of X.
Since X is intuitionistic fuzzy e-compact, there exists a finite subcover

{f−1(⟨x, µGi , νGi⟩)|i = 1, 2, . . . , n}.
Therefore ∪

{f−1(⟨y, µGi , νGi⟩)|i = 1, 2, . . . , n} = 1∼.

Hence

f
(∪

{f−1(⟨y, µGi , νGi⟩)|i = 1, 2, . . . , n}
)
= 1∼,

so ∪
{f(f−1(⟨y, µGi , νGi⟩))|i = 1, 2, . . . , n} = 1∼.

From ∪
{(⟨y, µGi , νGi⟩)|i = 1, 2, . . . , n} = 1∼,

follows that Y is intuitionistic fuzzy e-compact. □
Theorem 5.8. Let f : X → Y be an intuitionistic fuzzy e-continuous
mapping from an IFTS X onto IFTS Y . If X is intuitionistic fuzzy
e-compact, then Y is fuzzy compact.

Proof. It is similar to the proof of the Theorem 5.7. □
Definition 5.9. Let A be an IFS in an IFTS X. A family

{⟨x, µGi , νGi⟩ |i ∈ I} ,
of IFeOS’s in X satisfying the condition A ⊆

∪
{⟨x, µGi , νGi⟩ |i ∈ I} is

called intuitionistic fuzzy e-open cover of A.

A finite subfamily of a intuitionistic fuzzy e-open cover

{⟨x, µGi , νGi⟩ |i ∈ I}
of A which is also a intuitionistic fuzzy e-open cover of A is called a
finite subcover of {⟨x, µGi , νGi⟩ |i ∈ I}.

Definition 5.10. An IFS A = ⟨x, µA, νA⟩ in an IFTS X is called intu-
itionistic fuzzy e-compact if and only if every intuitionistic fuzzy e-open
cover of A has a finite subcover.

Theorem 5.11. An IFS A = ⟨x, µA, νA⟩ in an IFTS X is intuitionistic
fuzzy e-compact if and only if for each family {⟨x, µGi , νGi⟩ |i ∈ I} of
IFeOS’s with properties

µA ≤ ∨{µGi |i ∈ I}, 1− νA ≤ ∨{1− νGi |i ∈ I},
there exists a finite subfamily {⟨x, µGi , νGi⟩ |i = 1, 2, . . . , n} such that

µA = ∨{µGi |i = 1, 2, . . . , n}, 1− νA = ∨{1− νGi |i = 1, 2, . . . , n}.
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Proof. Suppose A = ⟨x, µA, νA⟩ is a intuitionistic fuzzy e-compact set in
IFTS X and {⟨x, µGi , νGi⟩ |i ∈ I} be any family of IFeCS’s in X satisfies
the condition

µA ≤ ∨{µGi |i ∈ I}, 1− νA ≤ ∨{1− νGi |i ∈ I}.

Then 1− νA ≤ 1− ∧{νGi |i ∈ I}, so νA ≥ ∧{νGi |i ∈ I}. Hence

A ⊆
∪

{⟨x, µGi , νGi⟩ |i ∈ I}.

According to the assumption there exists finite subfamily

{⟨x, µGi , νGi⟩ |i = 1, 2, . . . , n},

such that

A ⊆
∪

{⟨x, µGi , νGi⟩ |i = 1, 2, . . . , n}.

It follows that

µA = ∨{µGi |i = 1, 2, . . . , n}, 1− νA = ∨{1− νGi |i = 1, 2, . . . , n}.

Conversely, let A = ⟨x, µGi , νGi⟩ be any IFS in IFTS X and let
{⟨x, µGi , νGi⟩ |i ∈ I} be any family of IFeCS’s in X satisfies the con-
dition

µA ≤ ∨{µGi |i ∈ I}, 1− νA ≤ ∨{1− νGi |i ∈ I}.

From 1− νA ≤ 1− ∧{νGi |i ∈ I} follows that µA ≥ ∧{νGi |i ∈ I}, so

A ⊆
∪

{⟨x, µGi , νGi⟩ |i ∈ I}.

Hence {⟨x, µGi , νGi⟩ |i ∈ I} is a intuitionistic fuzzy e-open cover of IFS
A. According to the assumption there exists finite subfamily

{⟨x, µGi , νGi⟩ |i = 1, 2, . . . , n},

such that

µA = ∨{µGi |i = 1, 2, . . . , n}, 1− νA ≤ ∨{1− νGi |i = 1, 2, . . . , n}.

From

µA ≤ ∨{µGi |i = 1, 2, . . . , n}, νA ≥ ∧{µGi |i = 1, 2, . . . , n},

we obtain that

A ⊆
∪

{⟨x, µGi , νGi⟩ |i = 1, 2, . . . , n}.

Therefore, A is intuitionistic fuzzy e-compact. □

Remark 5.12. From the definition above it is not difficult to conclude
that every intuitionistic fuzzy e-compact IFS in an IFTS is fuzzy com-
pact.
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Theorem 5.13. Let f : X → Y be an intuitionistic fuzzy e-irresolute
mapping from an IFTS X onto IFTS Y . If A is intuitionistic fuzzy
e-compact, then f(A) is intuitionistic fuzzy e-compact.

Proof. Let {⟨y, µGi , νGi⟩ |i ∈ I} be any intuitionistic fuzzy e-open cover
of f(A). Then

f(A) ⊆
∪

{⟨y, µGi , νGi⟩ |i ∈ I}.
From the relation

A ⊆ f−1
(∪

{⟨y, µGi , νGi⟩ |i ∈ I}
)
,

follows that
A ⊆

∪
{f−1(⟨y, µGi , νGi⟩)|i ∈ I},

so {f−1(⟨y, µGi , νGi⟩)|i ∈ I} is an intuitionistic fuzzy e-open cover of A.
Since A is intuitionistic fuzzy e-compact, there exists a finite subcover{
f−1(⟨y, µGi , νGi⟩)|i = 1, 2, . . . , n

}
. Therefore

A ⊆
∪

{f−1(⟨y, µGi , νGi⟩)|i = 1, 2, . . . , n}.

Hence

f(A) ⊆ f
(∪

{f−1(⟨y, µGi , νGi⟩)|i = 1, 2, . . . , n}
)

=
∪{

f(f−1 (⟨y, µGi , νGi⟩)) |i = 1, 2, . . . , n
}

=
∪

{(⟨y, µGi , νGi⟩)|i = 1, 2, . . . , n}

so f(A) is intuitionistic fuzzy e-compact. □
Theorem 5.14. Let f : X → Y be an intuitionistic fuzzy e-continuous
mapping from an IFTS X onto IFTS Y . If A is intuitionistic fuzzy
e-compact, then f(A) is fuzzy compact.

Definition 5.15. An IFTS X is called intuitionistic fuzzy e-Lindelöf
(fuzzy Lindelöf) if and only if every intuitionistic fuzzy e-open (fuzzy
open) cover of X has a countable subcover.

Definition 5.16. An IFS A = ⟨x, µA, νA⟩ in an IFTS X is called intu-
itionistic fuzzy e-Lindelöf (fuzzy Lindelöf) if and only if every intuition-
istic fuzzy e-open (fuzzy open) cover of X has a countable subcover.

Definition 5.17. An IFTS X is called countable intuitionistic fuzzy
e-compact (countably fuzzy compact) if and only if every countable in-
tuitionistic fuzzy e-open (fuzzy open) cover of X has a finite subcover.

Definition 5.18. An IFS A = ⟨x, µA, νA⟩ in an IFTS X is called count-
able intuitionistic fuzzy e-compact (countably fuzzy compact) if and only
if every countable intuitionistic fuzzy e-open (fuzzy open) cover of A has
a finite subcover.
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Remark 5.19. From the definitions above we may conclude that

(i) Every intuitionistic fuzzy e-Lindelöf of IFTS (IFS in IFTS) is
fuzzy Lindelöf;

(ii) Every countably intuitionistic fuzzy e-compact of IFTS (IFS in
IFTS) is countably fuzzy compact;

(iii) Every countably intuitionistic fuzzy e-compact of IFTS (IFS in
IFTS) is intuitionistic fuzzy e-compact.

Theorem 5.20. If an IFTS X is both intuitionistic fuzzy e-Lindelöf and
countably intuitionistic fuzzy e-compact, then it is intuitionistic fuzzy e-
compact.

Theorem 5.21. If an IFS A in an IFTS X is both intuitionistic fuzzy
e-Lindelöf and fuzzy countably intuitionistic fuzzy e-compact, then A is
intuitionistic fuzzy e-compact.

Theorem 5.22. Let X be an intuitionistic fuzzy e-Lindelöf IFTS. Then
X is countably intuitionistic fuzzy e-compact if and only if X is intu-
itionistic fuzzy e-compact.

Proof. In the Remark 5.19 it is mentioned that if X is intuitionistic
fuzzy e-compact, then it is countably intuitionistic fuzzy e-compact.
Conversely, let {⟨x, µGi , νGi⟩ |i ∈ I} be any intuitionistic fuzzy e-open
cover of X. Since X is intuitionistic fuzzy e-Lindelöf, there exists a
countable subcover {⟨x, µGi , νGi⟩ |i = 1, 2, . . .} of {⟨x, µGi , νGi⟩ |i ∈ I}.
Therefore {⟨x, µGi , νGi⟩ |i = 1, 2, . . .} is countably intuitionistic fuzzy e-
open cover of X, so there exists subcover {⟨x, µGi , νGi⟩ |i = 1, 2, . . . , n}
of {⟨x, µGi , νGi⟩ |i = 1, 2, . . .}. Hence X is intuitionistic fuzzy e-compact.

□
Theorem 5.23. Let an IFeOS A be intuitionistic fuzzy e-Lindelöf in an
IFTS. Then A is countably intuitionistic fuzzy e-compact if and only if
A is intuitionistic fuzzy e-compact.

Proof. The proof is similar to the proof of the previous theorem. □
Theorem 5.24. Let f : X → Y be an intuitionistic fuzzy e-irresolute
mapping from an IFTS X onto IFTS Y . If X is intuitionistic fuzzy
e-Lindelöf (countably intuitionistic fuzzy e-compact), then Y is intu-
itionistic fuzzy e-Lindelöf (countably intuitionistic fuzzy e-compact), as
well.

Proof. It is similar to the proof of the Theorem 5.7. □
Theorem 5.25. Let f : X → Y be an intuitionistic fuzzy e-continuous
mapping from an IFTS X onto IFTS Y . If X is intuitionistic fuzzy
e-Lindelöf (countably intuitionistic fuzzy e-compact), then Y is fuzzy
Lindelöf (countably fuzzy compact).
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Proof. It is similar to the proof of the Theorem 5.8. □
Theorem 5.26. Let f : X → Y be an intuitionistic fuzzy e-irresolute
mapping from an IFTS X onto IFTS Y . If A is intuitionistic fuzzy e-
Lindelöf (countably intuitionistic fuzzy e-Lindelöf (countably intuitionis-
tic fuzzy e-compact)), then f(A) is intuitionistic fuzzy e-Lindelöf (count-
ably intuitionistic fuzzy e-compact), as well.

Proof. It is similar to the proof of the Theorem 5.13. □
Theorem 5.27. Let f : X → Y be an intuitionistic fuzzy e-continuous
mapping from an IFTS X onto IFTS Y . If A is intuitionistic fuzzy
e-Lindelöf (countably intuitionistic fuzzy e-compact), then f(A) is fuzzy
Lindelöf (countably fuzzy compact).

Proof. It is similar to the proof of the Theorem 5.14. □

6. Conclusion

The initiations of e - open sets, e - continuity, e - compactness and re-
lated studies in topological spaces are due to [6–10]. This present paper
contains the next steps of fuzzy e-open sets, fuzzy e∗-open sets, fuzzy
a-open sets, fuzzy e-continuity and fuzzy e-compactness in intuitionis-
tic fuzzy topological spaces are studied. After giving the fundamental
concepts of intuitionistic fuzzy sets and intuitionistic fuzzy topologi-
cal spaces, we present intuitionistic fuzzy e-open sets and intuitionistic
fuzzy e-continuity and other results related topological concepts. Several
preservation properties and some characterizations concerning intuition-
istic fuzzy e-compactness have been obtained.
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