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Rational Geraghty Contractive Mappings and Fixed Point

Theorems in Ordered b2-metric Spaces

Roghaye Jalal Shahkoohi1 and Zohreh Bagheri2∗

Abstract. In 2014, Zead Mustafa introduced b2-metric spaces, as
a generalization of both 2-metric and b-metric spaces. Then new
fixed point results for the classes of rational Geraghty contractive
mappings of type I,II and III in the setup of b2-metric spaces are
investigated. Then, we prove some fixed point theorems under var-
ious contractive conditions in partially ordered b2-metric spaces.
These include Geraghty-type conditions, conditions that use com-
parison functions and almost generalized weakly contractive condi-
tions. Berinde in [17–20] initiated the concept of almost contrac-
tions and obtained many interesting fixed point theorems. Results
with similar conditions were obtained, e.g., in [21] and [22]. In the
last section of the paper, we define the notion of almost general-
ized (ψ,φ)s,a-contractive mappings and prove some new results. In

particular, we extend Theorems 2.1, 2.2 and 2.3 of Ćirić et.al. in
[23] to the setting of b2-metric spaces. Also, some examples are
provided to illustrate the results presented herein and several inter-
esting consequences of our theorems are also provided. The findings
of the paper are based on generalization and modification of some
recently reported theorems in the literature.

1. Introduction and Preliminaries

The concept of metric spaces has been generalized in many directions.
The notion of a b-metric space was studied by S.G. Matthews. Many
fixed point results were obtained for single and multivalued mappings
by Czerwik and many other authors in [1, 2].
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On the other hand, the notion of a 2-metric was introduced by Gähler
in [3], having the area of a triangle in R2 as the inspirative example.
Similarly, several fixed point results were obtained for mappings in such
spaces. Note that, unlike to many other generalizations of metric spaces
introduced recently, 2-metric spaces are not topologically equivalent to
metric spaces and there is no easy relationship between the results ob-
tained in 2-metric and metric spaces. In this paper, we introduce a new
type of generalized metric spaces, which we call b2-metric spaces, as a
generalization of both 2-metric and b-metric spaces. Then, we prove
some fixed point theorems under various contractive conditions in par-
tially ordered b2-metric spaces. These include Geraghty-type conditions,
conditions that use comparison functions and almost generalized weakly
contractive conditions.

We illustrate these results by appropriate examples.

2. Mathematical Preliminaries

Definition 2.1 ([1]). Let X be a (nonempty) set and s ≥ 1 be a given
real number. A function d : X ×X → R+ is a b-metric on X if, for all
x, y, z ∈ X, the following conditions hold:

(b1) d(x, y) = 0 if and only if x = y,
(b2) d(x, y) = d(y, x),
(b3) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space.

On the other hand, the notion of a 2-metric was introduced by Gähler
in [3].

Definition 2.2 ([3]). Let X be a non-empty set and let d : X3 → R be
a map satisfying the following conditions:

(1) For every pair of distinct points x, y ∈ X, there exists a point
z ∈ X such that

d(x, y, z) ̸= 0.

(2) If at least two of three points x, y, z are the same, then

d(x, y, z) = 0.

(3) The symmetry:

d(x, y, z) = d(x, z, y) = d(y, x, z) = d(y, z, x) = d(z, x, y) = d(z, y, x),

for all x, y, z ∈ X.
(4) The rectangle inequality:

d(x, y, z) ≤ d(x, y, t) + d(y, z, t) + d(z, x, t),

for all x, y, z, t ∈ X.
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Then d is called a 2-metric on X and (X, d) is called a 2-metric space.

For some fixed point results on 2-metric spaces, the readers may refer
to [5–14].

Very recently, Mustafa et.al. [26] introduced a new structure of gen-
eralized metric spaces, called b2-metric spaces, as a generalization of
2-metric spaces.

Definition 2.3 ([26]). LetX be a non-empty set, s ≥ 1 be a real number
and let d : X3 → R be a map satisfying the following conditions:

(1) For every pair of distinct points x, y ∈ X, there exists a point
z ∈ X such that

d(x, y, z) ̸= 0.

(2) If at least two of three points x, y, z are the same, then

d(x, y, z) = 0.

(3) The symmetry:

d(x, y, z) = d(x, z, y) = d(y, x, z) = d(y, z, x) = d(z, x, y) = d(z, y, x),

for all x, y, z ∈ X.
(4) The rectangle inequality:

d(x, y, z) ≤ s[d(x, y, t) + d(y, z, t) + d(z, x, t)],

for all x, y, z, t ∈ X.

Then d is called a b2-metric on X and (X, d) is called a b2-metric space
with parameter s.

Definition 2.4 ([26]). Let {xn} be a sequence in a b2-metric space
(X, d).

(1) {xn} is said to be b2-convergent to x ∈ X, written as lim
n
xn = x,

if for all a ∈ X, lim
n
d(xn, x, a) = 0.

(2) {xn} is said to be a b2-Cauchy sequence in X if for all a ∈ X,
lim
n
d(xn, xm, a) = 0.

(3) (X, d) is said to be b2-complete if every b2-Cauchy sequence in
(X, d) is a b2-convergent sequence in it.

The following are some easy examples of b2-metric spaces.

Example 2.5 ([26]). Let X = [0,+∞) and d(x, y, z) = [xy + yz + zx]p

if x ̸= y ̸= z ̸= x, and otherwise d(x, y, z) = 0, where p ≥ 1 is a real
number. One can see that (X, d) is a b2-metric space with s = 3p−1.



182 R. SHAHKOOHI AND Z. BAGHERI

Example 2.6 ([26]). Let a mapping d : R3 → [0,+∞) be defined by

d(x, y, z) = min {|x− y|, |y − z|, |z − x|} .
Then d is a 2-metric on R and

dp(x, y, z) = [min {|x− y|, |y − z|, |z − x|}]p ,
is a b2-metric on R with s = 3p−1.

Definition 2.7 ([26]). Let (X, d) and (X ′, d′) be two b2-metric spaces
and let f : X → X ′ be a mapping. Then f is said to be b2-continuous
at a point z ∈ X if for a given ε > 0, there exists δ > 0 such that
x ∈ X and d(z, x, a) < δ for all a ∈ X imply that d′(fz, fx, a) < ε. The
mapping f is b2-continuous on X if it is b2-continuous at all z ∈ X.

Proposition 2.8 ([26]). Let (X, d) and (X ′, d′) be two b2-metric spaces.
Then a mapping f : X → X ′ is b2-continuous at a point x ∈ X if and
only if it is b2-sequentially continuous at x; that is, whenever {xn} is
b2-convergent to x, {fxn} is b2-convergent to f(x).

We will need the following simple lemma about the b2-convergent
sequences in the proof of our main results.

Lemma 2.9 ([26]). Let (X, d) be a b2-metric space and suppose that
{xn} and {yn} are b2-convergent to x and y, respectively. Then we have

1

s2
d(x, y, a) ≤ lim inf

n→∞
d(xn, yn, a) ≤ lim sup

n→∞
d(xn, yn, a) ≤ s2d(x, y, a),

for all a ∈ X. In particular, if yn = y is constant, then

1

s
d(x, y, a) ≤ lim inf

n→∞
d(xn, y, a) ≤ lim sup

n→∞
d(xn, y, a) ≤ sd(x, y, a),

for all a ∈ X.

3. Main Results

3.1. Results Under Rational Geraghty Condition of Type I. In
1973, Geraghty [15] proved a fixed point result, generalizing the Banach
contraction principle. Later several authors proved various results using
the Geraghty-type conditions (See, e.g., [16]). Following [16], for a real
number s ≥ 1, let Fs denote, the class of all functions β : [0,∞) → [0, 1s )
satisfying the following condition:

β(tn) →
1

s
as n→ ∞ implies tn → 0 as n→ ∞.

Definition 3.1. Let (X, d) be a complete 2-metric space. Assume that
f : X → X be a self mapping and α : X×X×X → [0,∞) be a function.
We say that T is a 2− α- admissible mapping if for all a ∈ X

x, y ∈ X, α(x, y, a) ≥ 1 ⇒ α(Tx, Ty, a) ≥ 1.
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The following theorem extend Theorem 1 of [26] and also is the ex-
tension of Theorem 5 of [27].

Theorem 3.2. Let (X, d) be a b2 complete b2-metric space (with param-
eter s > 1), f : X → X be a self mapping and α : X ×X ×X → [0,∞)
be a function such that f is an 2−α- admissible mapping. Suppose that
(3.1)
sα(x, fx, a)α(y, fy, a)d(fx, fy, a) ≤ β(d(x, y, a))M(x, y, a)+LN(x, y, a),

for all elements x, y, a ∈ X, where

M(x, y, a) = max

{
d(x, y, a),

d(x, fx, a)d(y, fy, a)

1 + d(x, y, a)
,
d(x, fx, a)d(y, fy, a)

1 + d(fx, fy, a)

}
,

and

N(x, y, a) = min {d(x, fx, a), d(x, fy, a), d(y, fx, a), d(y, fy, a)} .

Assume that f is b2-continues and if there exist x0 ∈ X such that
α(x0, fx0, a) ≥ 1, then f has a fixed point.

Proof. Let x0 ∈ X such that α(x0, fx0, a) ≥ 1. Define a sequence {xn}
in X by

xn = fnx0 = fxn−1,

for all n ∈ N. Since f is a 2−α-admissible mapping and α(x0, fx0, a) ≥
1, we deduce that α(x1, fx1, a) = α

(
fx0, f

2x0, a
)
≥ 1. By continuing

this process, we get that α (xn, fxn, a) ≥ 1 for all n ∈ N ∪ {0}. Then,

α(xn, fxn, a)α(xn−1, fxn−1, a) ≥ 1,

for all n ∈ N ∪ {0}.
Step I: We will show that limn d(xn, xn+1, a) = 0. By (3.1), we have

sd(xn, xn+1, a) = sd(fxn−1, fxn, a)

(3.2)

≤ sα(xn−1, fxn−1, a)α(xn, fxn, a)d(fxn−1, fxn, a)

≤ β(d(xn−1, xn, a))M(xn−1, xn, a) + LN(xn−1, xn, a)

≤ 1

s
d(xn−1, xn, a)

≤ d(xn−1, xn, a),
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because

M(xn−1, xn, a) = max

{
d(xn−1, xn, a),

d(xn−1, fxn−1, a)d(xn, fxn, a)

1 + d(fxn−1, fxn, a)
,

d(xn−1, fxn−1, a)d(xn, fxn, a)

1 + d(xn−1, xn, a)

}
= max

{
d(xn−1, xn, a),

d(xn−1, xn, a)d(xn, xn+1, a)

1 + d(xn, xn+1, a)
,

d(xn−1, fxn−1, a)d(xn, fxn, a)

1 + d(xn−1, xn, a)

}
≤ max {d(xn−1, xn, a), d(xn, xn+1, a)} ,

and

N(xn−1, xn, a) = min {d(xn−1, fxn, a), d(xn, fxn, a),

d(xn−1, fxn−1, a), d(xn, fxn−1, a)}
= min {d(xn−1, xn+1, a), d(xn, xn+1, a),

d(xn−1, xn, a), d(xn, xn), a)}
= 0.

If

max {d(xn−1, xn, a), d(xn, xn+1, a)} = d(xn, xn+1, a),

then, from(3.2), we have

d(xn, xn+1, a) ≤ β(M(xn, xn+1, a))d(xn, xn+1, a)(3.3)

<
1

s
d(xn, xn+1, a)

< d(xn, xn+1, a),

which is a contradiction. Hence,

max {d(xn−1, xn), d(xn, xn+1, a)} = d(xn−1, xn, a),

and so from (3.2),

(3.4) d(xn, xn+1, a) ≤ β(M(xn−1, xn, a))d(xn−1, xn, a).

Therefore, the sequence {d(xn, xn+1, a)} is decreasing. Then there exists
r ≥ 0 such that limn d(xn, xn+1, a) = r. Suppose that r > 0. Then,
letting n→ ∞, from (3.2) we have

1

s
r ≤ sr ≤ lim

n
β(d(xn−1, xn, a))r ≤ r.

So, we have limn β(d(xn−1, xn, a)) ≥ 1
s and since β ∈ Fs we deduce that

limn d(xn−1, xn, a) = 0 which is a contradiction. Hence, r = 0, that is,

(3.5) lim
n
d(xn, xn+1, a) = 0.
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Step II: Now, we prove that the sequence {xn} is a b2-Cauchy sequence.
Using the rectangle inequality and by (3.1), we have

d(xn, xm, a) ≤ sd(xn, xm, xn+1) + sd(xm, a, xn+1) + sd(a, xn, xn+1)

≤ sd(xn, xn+1, xm) + s2[d(xm, xm+1, a) + d(xn+1, xm+1, a)

+ d(xm, xm+1, xn+1)] + sd(xn, xn+1, a)

≤ sd(xn, xn+1, xm) + s2d(xm, xm+1, a)

+ s2α(xn, fxn, a)α(xm, fxm, a)d(xn+1, xm+1, a)

+ s2d(xm, xm+1, xn+1) + sd(xn, xn+1, a)

≤ sd(xn, xn+1, xm) + s2d(xm, xm+1, a)

+ sβ(d(xn, xm, a))M(xn, xm, a) + LN(xn, xm, a)

+ s2d(xm, xm+1, xn+1) + sd(xn, xn+1, a).

Letting m,n→ ∞ in the above inequality and applying (3.5), we have

lim
m,n→∞

d(xn, xm, a) ≤ s lim
m,n→∞

β(d(xn, xm, a)) lim
m,n→∞

M(xn, xm, a)
(3.6)

+ lim
m,n→∞

LN(xn, xm, a).

Here,

d(xn, xm, a) ≤M(xn, xm, a)

= max

{
d(xn, xm, a),

d(xn, fxn, a)d(xm, fxm, a)

1 + d(fxn, fxm, a)
,

d(xn, fxn, a)d(xm, fxm, a)

1 + d(xn, xm, a)

}
= max

{
d(xn, xm, a),

d(xn, xn+1, a)d(xm, xm+1, a)

1 + d(xn+1, xm+1, a)
,

d(xn, xn+1, a)d(xm, xm+1, a)

1 + d(xn, xm, a)

}
.

Letting m,n→ ∞ in the above inequality, we get

lim
m,n→∞

M(xn, xm, a) = lim
m,n→∞

d(xn, xm, a),(3.7)



186 R. SHAHKOOHI AND Z. BAGHERI

and

lim
m,n→∞

N(xn, xm, a) = min {d(xn, fxn, a), d(xn, fxm, a),

(xm, fxn, a), d(xm, fxm, a)}
= lim

m,n→∞
min{d(xn, xn+1, a), d(xn, xm+1, a),

d(xm, xn+1, a), d(xm, xm+1, a)}
= 0.

Hence, from(3.6) and(3.7), we obtain
(3.8)

lim
m,n→∞

d(xn, xm, a) ≤ s lim
m,n→∞

β(d(xn, xm, a)) lim
m,n→∞

d(xn, xm, a).

Now we claim that, limm,n→∞ d(xn, xm, a) = 0. On the contrary, if
limm,n→∞ d(xn, xm, a) ̸= 0, then we get

1

s
≤ lim

m,n→∞
β(d(xn, xm, a)).

Since β ∈ Fs we deduce that

(3.9) lim
m,n→∞

d(xn, xm, a) = 0,

Which is a contradiction. Consequently, {xn} is a b2-Cauchy sequence
in X. Since (X, d) is b2-complete, the sequence {xn} b2-converges to
some z ∈ X, that is, limn d(xn, z, a) = 0.

Step III: Now, we show that z is a fixed point of f .
Using the rectangle inequality, we get

d(fz, z, a) ≤ sd(fz, fxn, z) + sd(z, a, fxn) + sd(a, fz, fxn).

Letting n→ ∞ and using the continuity of f , we have fz = z. Thus, z
is a fixed point of f . □

Note that the continuity of f in Theorem 3.2 is not necessary and can
be dropped.

Theorem 3.3. Under the hypotheses of Theorem 3.2, without the b2-
continuity assumption on f , assume that if a sequence {xn} is such that
xn → x as n → ∞, one has xn ⪯ x for all n ∈ N, and α(xn, fxn, a) ≥
1 for all n, then α(x, fx, a) ≥ 1. If there exists x0 ∈ X such that
α(x0, fx0, a) ≥ 1, then f has a fixed point

Proof. Repeating the proof of Theorem 3.2, we construct an increasing
sequence {xn} in X such that xn → z ∈ X. Using the assumptions on
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X we have xn ⪯ z. Now, we show that z = fz. By (3.1) and Lemma
2.9,

s

[
1

s
d(z, fz, a)

]
≤ s lim sup

n→∞
d(xn+1, fz, a)

≤ lim sup
n→∞

α(xn, fxn, a)α(z, fz, a)d(xn+1, fz, a)

≤ lim sup
n→∞

β(d(xn, z, a)) lim sup
n→∞

M(xn, z, a)

+ lim sup
n→∞

LN(xn, z, a),

where,

lim
n→∞

M(xn, z, a) = lim
n

max

{
d(xn, z, a),

d(xn, fxn, a)d(z, fz, a)

1 + d(fxn, fz, a)
,

d(xn, fxn, a)d(z, fz, a)

1 + d(xn, z, a)

}
= lim

n
max

{
d(xn, z, a),

d(xn, xn+1, a)d(z, fz, a)

1 + d(fxn, fz, a)
,

d(xn, xn+1, a)d(z, fz, a)

1 + d(xn, z, a)

}
= 0

(see(3.5)) and

lim
n→∞

N(xn, z, a) = lim
n→∞

min {d(xn, fz, a), d(z, fxn, a),

d(xn, fxn, a), d(z, fz, a)}
= lim

n→∞
min {d(xn, fz, a), d(z, xn+1, a),

d(xn, xn+1, a), d(z, fz, a)}
= 0.

Therefore, we deduce that d(z, fz, a) ≤ 0. Since a is arbitrary, we have
z = fz. □

Definition 3.4. Let (X, d) be a b2-metric space. A mapping f : X → X
is called a rational Geraghty contraction of type II if, there exists β ∈ F
such that,
(3.10)
sα(x, fx, a)α(y, fy, a)d(fx, fy, a) ≤ β(M(x, y, a))M(x, y, a)+LN(x, y, a),
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for all elements x, y ∈ X, where

M(x, y, a) = max

{
d(x, y, a),

d(x, fx, a)d(x, fy, a) + d(y, fy, a)d(y, fx, a)

1 + s[d(x, fx, a) + d(y, fy, a) + d(x, y, fy)]
,

d(x, fx, a)d(x, fy, a) + d(y, fy, a)d(y, fx, a)

1 + d(x, fy, a) + d(y, fx, a)

}
,

and

N(x, y, a) = min {d(x, fx, a), d(x, fy, a), d(y, fx, a), d(y, fy, a)} .

Theorem 3.5. Let (X, d) be a b2 complete b2-metric space (with param-
eter s > 1), f : X → X be a self mapping and α : X ×X ×X → [0,∞)
be a function such that f is a 2-α-admissible mapping. Suppose that f
be a rational Geraghty contractive mapping of type II. If
(I) f is continuous, or,
(II) assume that if a sequence {xn} is such that xn → x as n→ ∞ and
α(xn, fxn, a) ≥ 1 for all n, then α(x, fx, a) ≥ 1. If there exist x0 ∈ X
such that α(x0, fx0, a) ≥ 1, then f has a fixed point,

Proof. Let x0 ∈ X such that α(x0, fx0, a) ≥ 1. Define a sequence {xn}
in X by

xn = fnx0 = fxn−1,

for all n ∈ N. Since f is a 2-α-admissible mapping and α(x0, fx0, a) ≥ 1,
we deduce that α(x1, fx1, a) = α(fx0, f

2x0, a) ≥ 1. By continuing this
process, we get that α(xn, fxn, a) ≥ 1 for all n ∈ N ∪ {0}. Then,

α(xn, fxn, a)α(xn−1, fxn−1, a) ≥ 1,

for all n ∈ N ∪ {0}. We will do the proof in the following steps.
Step I: We will show that lim

n→∞
d(xn, xn+1, a) = 0. Since xn ⪯ xn+1,

then for each n ∈ N, by (3.10), we have

sd(xn, xn+1, a) = sd(fxn−1, fxn, a)

(3.11)

≤ sα(xn−1, fxn−1, a)α(xn, fxn, a)d(fxn−1, fxn, a)

≤ β(d(xn−1, xn, a))M(xn−1, xn, a) + LN(xn−1, xn, a)

≤ 1

s
d(xn−1, xn, a)

≤ d(xn−1, xn, a),
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because

M(xn−1, xn, a) = max

{
d(xn−1, xn, a),

d(xn−1, fxn−1, a)d(xn−1, fxn, a) + d(xn, fxn, a)d(xn, fxn−1, a)

1 + s[d(xn−1, fxn−1, a) + d(xn, fxn, a) + d(xn−1, xn, xn+1)]
,

d(xn−1, fxn−1, a)d(xn−1, fxn, a) + d(xn, fxn, a)d(xn, fxn−1, a)

1 + d(xn−1, fxn, a) + d(xn, fxn−1, a)

}
= max

{
d(xn−1, xn, a),

d(xn−1, xn, a)d(xn−1, xn+1, a) + d(xn, xn+1, a)d(xn, xn, a)

1 + s[d(xn−1, xn, a) + d(xn, xn+1, a) + d(xn−1, xn, xn+1)]
,

d(xn−1, xn, a)d(xn−1, xn+1, a) + d(xn, xn+1)d(xn, xn, a)

1 + d(xn−1, xn+1, a) + d(xn, xn, a)

}
= d(xn−1, xn, a).

Since
(3.12)
d(xn−1, xn+1, a) < s[d(xn−1, xn+1, t) + d(xn+1, a, t) + d(a, xn−1, t)],

and

N(xn−1, xn, a) = min {d(xn−1, fxn, a), d(xn, fxn, a),

d(xn−1, fxn−1, a), d(xn, fxn−1, a)}
= min {d(xn−1, xn+1, a), d(xn, xn+1, a),

d(xn−1, xn, a), d(xn, xn), a}
= 0,

from (3.12) and taking t = xn, we have:
(3.13)
d(xn−1, xn+1, a) < s[d(xn−1, xn+1, xn) + d(xn+1, a, xn) + d(a, xn−1, xn)],

Therefore, {d(xn, xn+1, a)} is decreasing. Then there exists r ≥ 0 such
that lim

n→∞
d(xn, xn+1, a) = r. We will prove that r = 0. Suppose on

contrary that r > 0. Then, letting n→ ∞, from (3.2), we have

1

s
r ≤ lim

n→∞
β (d(xn−1, xn, a))r,

which implies that d(xn−1, xn, a) → 0. Hence, r = 0 which is a contra-
diction. So,

(3.14) lim
n→∞

d(xn−1, xn, a) = 0,

holds true.
Step II: Now, we prove that the sequence {xn} is a b2-Cauchy sequence.
Suppose the contrary, i.e., that {xn} is not a b2-Cauchy sequence. Then
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there exists ε > 0 for which we can find two subsequences {xmi} and
{xni} of {xn} such that ni is the smallest index for which

(3.15) ni > mi > i, d(xmi , xni , a) ≥ ε.

This means that

(3.16) d(xmi , xni−1, a) < ε.

As in the proof of Theorem (3.2), we have,

(3.17)
ε

s
≤ lim sup

i→∞
d(xmi+1, xni , a).

From the definition of M(x, y, a) and the above limits, we obtain

lim sup
i→∞

M(xmi , xni−1, a)

= lim sup
i→∞

max

{
d(xmi , xni−1, a),

d(xmi , fxmi , a)d(xmi , fxni−1, a) + d(xni−1, fxni−1, a)d(xni−1, fxmi , a)

1 + s[d(xmi , fxmi , a) + d(xni−1, fxni−1, a) + d(xmi , xni−1, fxni−1)]
,

d(xmi , fxmi , a)d(xmi , fxni−1, a) + d(xni−1, fxni−1, a)d(xni−1, fxmi , a)

1 + d(xmi , fxni−1, a) + d(xni−1, fxmi , a)

}
= lim sup

i→∞
max

{
d(xmi , xni−1, a),

d(xmi , xmi+1, a)d(xmi , xni , a) + d(xni−1, xni , a)d(xni−1, xmi+1, a)

1 + s[d(xmi , xmi+1, a) + d(xni−1, xni , a), d(xmi , xni−1, xni)]
,

d(xmi , xmi+1, a)d(xmi , xni , a) + d(xni−1, xni , a)d(xni−1, xmi+1, a)

1 + d(xmi , xni , a) + d(xni−1, xmi+1, a)

}
≤ ε.

Now, from (3.10)and the above inequalities, we have

ε

s
≤ lim sup

i→∞
d(xmi+1, xni,a)

≤ s lim sup
i→∞

α(xmi , fxmi , a)α(xni , fxni , a)d(xmi+1, xni,a)

≤ lim sup
i→∞

β(M(xmi , xni−1, a)) lim sup
i→∞

M(xmi , xni−1, a)

+ LN(xmi , xni−1, a)

≤ ε lim sup
i→∞

β(M(xmi , xni−1, a)),

which implies that 1
s ≤ lim sup

i→∞
β(M(xmi , xni−1, a)). Now, as β ∈ F we

conclude that {xn} is a b-Cauchy sequence. The b2-Completeness of X
yields that {xn} b2-converges to a point u ∈ X.
Step III : u is a fixed point of f .
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First, let f be continuous. So, we have

u = lim
n→∞

xn+1 = lim
n→∞

fxn = fu.

Now, let (II) holds. Using the assumptions on X we have xn ⪯ u.
Now, we show that u = fu. By Lemma (2.9)

1

s
d(u, fu, a) ≤ lim sup

n→∞
d(xn+1, fu, a)

≤ s lim sup
n→∞

d(xn+1, fu, a)

≤ lim sup
n→∞

sα(xn, fxn, a)α(u, fu, a)d(xn+1, fu, a)

≤ lim sup
n→∞

β(M(xn, u, a)) lim sup
n→∞

M(xn, u, a)

= 0,

because,

lim
n→∞

M(xn, u, a)

= lim
n→∞

max

{
d(xn, u, a),

d(xn, fxn, a)d(xn, fu, a) + d(u, fu, a)d(u, fxn, a)

1 + s[d(xn, fxn, a) + d(u, fu, a) + d(xn, u, fu)]
,

d(xn, fxn, a)d(xn, fu, a) + d(u, fu, a)d(u, fxn, a)

1 + d(xn, fu, a) + d(xn, fu, a)

}
= max {0, 0, 0}
= 0.

Therefore, d(u, fu) = 0, so, u = fu. □

Definition 3.6. Let (X, d) be a b2-metric space. A mapping f : X → X
is called a rational Geraghty contraction of type III if there exists β ∈ F
such that,
(3.18)
sα(x, fx, a)α(y, fy, a)d(fx, fy, a) ≤ β(M(x, y, a))M(x, y, a)+LN(x, y, a),

for all elements x, y, a ∈ X, where

M(x, y, a) = max

{
d(x, y, a),

d(x, fx, a)d(y, fy, a)

1 + s[d(x, y, a) + d(x, fy, a) + d(y, fx, a) + d(x, y, fy)]
,

d(x, fx, a)d(x, y, a)

1 + sd(x, fx, a) + s3[d(y, fx, a) + d(y, fy, a) + d(x, y, fy)]

}
.

and

N(x, y, a) = min {d(x, fx, a), d(x, fy, a), d(y, fx, a), d(y, fy, a)} .
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Theorem 3.7. Let (X, d) be a b2 complete b2-metric space (with param-
eter s > 1), f : X → X be a self mapping and α : X ×X ×X → [0,∞)
be a function such that f is a 2-α- admissible mapping. Suppose that
f be a rational Geraghty contractive mapping of type III. Assume that
either

(I) f is continuous, or,
(II) if a sequence {xn} is such that xn → x as n→ ∞ and α(xn, fxn, a) ≥

1 for all n, then α(x, fx, a) ≥ 1.

If there exist x0 ∈ X such that α(x0, fx0, a) ≥ 1, then f has a fixed
point.

Proof. Let x0 ∈ X such that α(x0, fx0, a) ≥ 1. Define a sequence {xn}
in X by

xn = fnx0 = fxn−1,

for all n ∈ N. Since f is a 2− α-admissible mapping and

α(x0, fx0, a) ≥ 1,

we deduce that α(x1, fx1, a) = α(fx0, f
2x0, a) ≥ 1. By continuing this

process, we get that α(xn, fxn, a) ≥ 1 for all n ∈ N ∪ {0}. Then,

α(xn, fxn, a)α(xn−1, fxn−1, a) ≥ 1,

for all n ∈ N ∪ {0}.

Step I: We will show that lim
n→∞

d(xn, xn+1, a) = 0. By (3.18) we have

d(xn, xn+1, a) = d(fxn−1, fxn, a)(3.19)

≤ β(M(xn−1, xn, a))M(xn−1, xn, a)

≤ β(d(xn−1, xn, a))d(xn−1, xn, a)

<
1

s
d(xn−1, xn, a),

≤ d(xn−1, xn, a),

with suppose

A1 = d(xn−1, xn, a) + d(xn−1, fxn, a) + d(xn, fxn−1, a) + d(xn−1, xn, fxn),

A2 = d(xn, fxn−1, a) + d(xn, fxna) + d(xn−1, xn, fxn),

A3 = d(xn−1, xn, a) + d(xn−1, xn+1, a) + d(xn, xn, a) + d(xn−1, xn, xn+1),

A4 = d(xn, xn, a) + d(xn, xn+1, a) + d(xn−1, xn, xn+1),
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because

M(xn−1, xn, a) = max

{
d(xn−1, xn, a),

d(xn−1, fxn−1, a)d(xn, fxn, a)

1 + sA1
,

d(xn−1, fxn−1, a)d(xn−1, xn, a)

1 + sd(xn−1, fxn−1, a) + s3A2

}
= max

{
d(xn−1, xn, a),

d(xn−1, xn, a)d(xn, xn+1, a)

1 + sA3
,

d(xn−1, xn, a)d(xn−1, xn, a)

1 + sd(xn−1, xn, a) + s3A4

}
,

Therefore, {d(xn, xn+1, a)} is decreasing. By similar arguments as done
in Theorems 3.2 and 3.5, we have,

(3.20) lim
n→∞

d(xn−1, xn, a) = 0.

Step II: Now, we prove that the sequence {xn} is a b2-Cauchy se-
quence. Suppose the contrary, i.e., that {xn} is not a b2-Cauchy se-
quence. Then there exists ε > 0 for which we can find two subsequences
{xmi} and {xni} of {xn} such that ni is the smallest index for which

(3.21) ni > mi > i and d(xmi , xni , a) ≥ ε.

This means that

(3.22) d(xmi , xni−1, a) < ε.

As in the proof of Theorem 3.2, we have

(3.23)
ε

s
≤ lim sup

i→∞
d(xmi+1, xni , a).

From the definition of M(x, y, a) and the above limits,we have

B1 = d(xmi , xni−1, a) + d(xmi , fxni−1, a) + d(xni−1, fxmi , a),

+ d(xmi , xni−1, fxni−1),

B2 = d(xni−1, fxmi , a) + d(xni−1, fxni−1, a) + d(xmi , xni−1, fxni−1),

B3 = d(xmi , xni−1, a) + d(xmi , xni , a) + d(xni−1, xmi+1, a),

+ d(xmi , xni−1, xni),

B4 = d(xni−1, xmi+1, a) + d(xni−1, xni , a) + d(xmi , xni−1, xni),
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we have

lim sup
i→∞

M(xmi , xni−1, a) = lim sup
i→∞

max

{
d(xmi , xni−1, a),

d(xmi , fxmi , a)d(xni−1, fxni−1, a)

1 + sB1
,

d(xmi , fxmi , a)d(xmi , xni−1, a)

1 + sd(xmi , fxmi , a) + s3B2

}
= lim sup

i→∞
M(xmi , xni−1, a)

= lim sup
i→∞

max

{
d(xmi , xni−1, a),

d(xmi , xmi+1, a)d(xni−1, xni , a)

1 + sB3
,

d(xmi , xmi+1, a)d(xmi , xni−1, a)

1 + sd(xmi , xmi+1, a) + s3B4

}
.

Now, from (3.10) and the above inequalities, we have

ε

s
≤ lim sup

i→∞
d(xmi+1, xni,a)

≤ s lim sup
i→∞

α(xmi , fxmi , a)α(xni , fxni , a)d(xmi+1, xni,a)

≤ lim sup
i→∞

β(M(xmi , xni−1, a)) lim sup
i→∞

M(xmi , xni−1, a)

+ LN(xmi , xni−1, a)

≤ ε lim sup
i→∞

β(M(xmi , xni−1, a)),

which implies that 1
s ≤ lim sup

i→∞
β(M(xmi , xni−1, a)). Now, as β ∈ F we

conclude that {xn} is a b-Cauchy sequence. The b2-Completeness of X
yields that {xn} b2-converges to a point u ∈ X.

Step III : u is a fixed point of f .
First, let f is continuous. So, we have

u = lim
n→∞

xn+1 = lim
n→∞

fxn = fu.
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Now, let (II) holds. We show that u = fu. By Lemma 2.9, we have

1

s
d(u, fu, a) ≤ lim sup

n→∞
d(xn+1, fu, a) ≤ s lim sup

n→∞
d(xn+1, fu, a)

≤ lim sup
n→∞

sα(xn, fxn, a)α(u, fu, a)d(xn+1, fu, a)

≤ lim sup
n→∞

β(M(xn, u, a)) lim sup
n→∞

M(xn, u, a)

= 0,

and

lim
n→∞

M(xn, u, a)

= lim
n→∞

max

{
d(xn, u, a),

d(xn, fxn, a)d(u, fu, a)

1 + s[d(xn, u, a) + d(xn, fu, a) + d(u, fxn, a) + d(xn, u, fu)]
,

d(xn, fxn, a)d(xn, u, a)

1 + sd(xn, fxn, a) + s3d(u, fxn, a) + d(u, fu, a) + d(xn, u, fu)

}
= max {0, 0, 0}
= 0.

Therefore, d(u, fu) = 0, so, u = fu. □

3.2. Results Using Comparison Functions. Let Ψ denotes the fam-
ily of all nondecreasing and continuous functions ψ : [0,∞) → [0,∞)
such that limn ψ

n(t) = 0 for all t > 0, where ψn denotes the n-th iterate
of ψ. It is easy to show that, for each ψ ∈ Ψ, the followings are satisfied:

(a) ψ(t) < t for all t > 0;
(b) ψ(0) = 0.

Theorem 3.8. Let (X, d) be a b2-complete b2-metric space, f : X → X
be a self mapping and α : X ×X ×X → [0,∞) be a function such that
f is 2-α- admissible and suppose that

(3.24) sα(x, y, a)d(fx, fy, a) ≤ ψ(M(x, y, a)),

for all elements x, y, a ∈ X and

M(x, y, a) = max

{
d(x, y, a),

d(x, fx, a)d(y, fy, a)

1 + d(x, y, a)
,
d(x, fx, a)d(y, fy, a)

1 + d(fx, fy, a)

}
.

Assume that either

(i) f is continuous, or
(ii) if a sequence {xn} is such that xn → x as n→ ∞ and

α(xn, xn+1, a) ≥ 1, then α(xn, x, a) ≥ 1.
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If there exists x0 ∈ X such that α(x0, fx0, a) ≥ 1, then f has a fixed
point.

Proof. Let x0 ∈ X be such that α(x0, fx0, a) ≥ 1. Define a sequence
{xn} by xn = fnx0 for all n ∈ N. Since f is a 2−α-admissible mapping
and

α(x0, x1, a) = α(x0, fx0, a) ≥ 1,

we deduce that

α(x1, x2, a) = α(fx0, fx1, a) ≥ 1.

Continuing this process, we get that α(xn, xn+1, a) ≥ 1 for all n ∈
N ∪ {0}. Now, we do the proof in three steps.

Step I. We will prove that

lim
n→∞

d(xn, xn+1, a) = 0.

Using condition (3.24) and since α(xn, xn+1, a) ≥ 1 for all n ∈ N ∪ {0},
we obtain

d(xn+1, xn, a) ≤ sα(xn−1, xn, a)d(xn+1, xn, a)

= sα(xn−1, xn, a)d(fxn, fxn−1, a)

≤ ψ(M(xn, xn−1, a)).

Here,

M(xn−1, xn, a) = max

{
d(xn−1, xn, a),

d(xn−1, fxn−1, a)d(xn, fxn, a)

1 + d(fxn−1, fxn, a)
,

d(xn−1, fxn−1, a)d(xn, fxn, a)

1 + d(xn−1, xn, a)

}
= max

{
d(xn−1, xn, a),

d(xn−1, xn, a)d(xn, xn+1, a)

1 + d(xn, xn+1, a)
,

d(xn−1, fxn−1, a)d(xn, fxn, a)

1 + d(xn−1, xn, a)

}
≤ max {d(xn−1, xn, a), d(xn, xn+1, a)} .

Hence,

d(xn, xn+1, a) ≤ sα(xn−1, xn, a)d(xn+1, xn, a) ≤ ψ(d(xn−1, xn, a)).

If max {d(xn−1, xn, a), d(xn, xn+1, a)} = d(xn, xn+1, a), then from (3.11)
we have,

d(xn, xn+1, a) ≤ sd(xn, xn+1, a) ≤ ψd(xn, xn+1, a) < (d(xn, xn+1, a).

and this is a contraction. If max {d(xn−1, xn, a), d(xn, xn+1, a)} = d(xn−1, xn, a),
then we have:

d(xn, xn+1, a) ≤ sd(xn, xn+1, a) ≤ ψd(xn−1, xn, a).
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By induction, we get that

d(a, xn+1, xn) ≤ ψ(d(a, xn, xn−1))

≤ ψ2(d(a, xn−1, xn−2))

...

≤ ψn(d(a, x1, x0)).

As ψ ∈ Ψ, we conclude that

(3.25) lim
n
d(xn, xn+1, a) = 0.

Step II. We will prove that {xn} is a b2-Cauchy sequence. Suppose the
contrary. Then there exists a ∈ X and ε > 0 for which we can find two
subsequences {xmi} and {xni} of {xn} such that ni is the smallest index
for which

(3.26) ni > mi > i, d(xmi , xni , a) ≥ ε.

This means that

(3.27) d(xmi , xni−1, a) < ε.

From (3.26) and using the rectangle inequality, we get

ε ≤ d(xmi , xni , a) ≤ sd(xmi , xni , xmi+1)+sd(xmi+1, xni , a)+sd(xmi+1, xmi , a).

Taking the upper limit as i→ ∞, we get

(3.28)
ε

s
≤ lim sup

i→∞
d(xmi+1, xni , a).

From the definition of M(x, y, a) we have:

M(xmi , xni−1, a) = max

{
d(xmi , xni−1, a),

d(xmi , fxmi , a)d(xni−1, fxni−1, a)

1 + d(fxmi , fxni−1, a)
,

d(xmi , fxmi , a)d(xni−1, fxni−1, a)

1 + d(xmi , xni−1, a)

}
= max

{
d(xmi , xni−1, a),

d(xmi , a, xmi+1)d(xni−1, a, xni)

1 + d(xmi+1, xni , a)
,

d(xmi , xmi+1, a)d(xni−1, xni , a)

1 + d(xmi , xni−1, a)

}
.

lim sup
i→∞

M(xmi , xni−1, a) ≤ ε.

Now, from (3.24) we have

sd(xmi+1, xni , a) = sd(fxmi , fxni−1, a)

≤ sα(d(xmi , xni−1, a))d(fxmi , fxni−1, a)ψ(M(xmi , xni−1, a)).
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Again, if i→ ∞, by (3.28), we obtain

ε = s
(ε
s

)
(3.29)

≤ s lim sup
i→∞

d(xmi+1 , xni , a)

≤ s lim sup
i→∞

α(xmi , xni−1 , a)d(fxmi , fxni−1 , a)

≤ ψ(ε)

< ε,

which is a contradiction. Consequently, {xn} is a b2-Cauchy sequence in
X. Therefore, the sequence {xn} b2-converges to some z ∈ X, that is,
limn d(xn, z, a) = 0 for all a ∈ X.

Step III. Now we show that z is a fixed point of f .
Using the rectangle inequality, we get

d(z, fz, a) ≤ sd(z, fz, fxn) + sd(fxn, fz, a) + sd(fxn, z, a).

Letting n→ ∞ and using the continuity of f , we get

d(z, fz, a) ≤ 0.

Hence, we have fz = z. Thus, z is a fixed point of f . □

Theorem 3.9. Under the hypotheses of Theorem 3.8, without the b2-
continuity assumption on f . Assume for any sequence {xn} in X with
α(xn, xn+1, a) ≥ 1 for all n ∈ N∪{0} and xn → x as n→ +∞, we have
α(xn, x, a) ≥ 1 for all n ∈ N ∪ {0}. Then f has a fixed point.

Proof. Following the proof of Theorem 3.8, we construct an increasing
sequence {xn} in X such that xn → z ∈ X. Now, we show that z = fz.
By (3.24), we have

sd(fz, xn, a) = sd(fz, fxn−1, a)(3.30)

≤ sα(z, xn−1, a)d(fz, fxn−1, a)ψ(M(z, xn−1, a)),

where

M(z, xn−1, a) = max

{
d(z, xn−1, a),

d(z, fz, a)d(xn−1, fxn−1, a)

1 + d(fz, fxn−1, a)
,

d(z, fz, a)d(xn−1, fxn−1, a)

1 + d(z, xn−1, a)

}
.

Letting n→ ∞ in the above relation, we get

(3.31) lim sup
n→∞

M(z, xn−1, a) = 0.
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Again, taking the upper limit as n→ ∞ in (3.30) and using Lemma 2.9
and (3.31) we get

s

[
1

s
d(z, fz, a)

]
≤ s lim sup

n→∞
d(xn, fz, a)

≤ s lim sup
n→∞

α(xn−1, z, a)d(xn, fz, a)

≤ lim sup
n→∞

ψ(M(z, xn−1, a))

= 0.

So we get d(z, fz, a) = 0, i.e., fz = z. □

Corollary 3.10. Let (X, d) be a b2-complete b2-metric space, f : X →
X be a self mapping and α : X × X × X → [0,∞) be a function such
that f is 2-α- admissible and suppose that

sα(x, y, a)d(fx, fy, a) ≤ rM(x, y, a),

where 0 ≤ r < 1 and

M(x, y, a) = max

{
d(x, y, a),

d(x, fx, a)d(y, fy, a)

1 + d(x, y, a)
,
d(x, fx, a)d(y, fy, a)

1 + d(fx, fy, a)

}
.

Assume that for all elements x, y, a ∈ X. either

(i) f is continuous, or
(ii) if a sequence {xn} is such that xn → x as n→ ∞ and

α(xn, xn+1, a) ≥ 1, then α(xn, x, a) ≥ 1.

If there exists x0 ∈ X such that α(x0, fx0, a) ≥ 1, then f has a fixed
point.

Remark 3.11. In Theorems 3.8 and 3.9, we can replace M(x, y, a) by
the following:

M(x, y, a) =max

{
d(x, y, a),

d(x, fx, a)d(x, fy, a) + d(y, fy, a)d(y, fx, a)

1 + s[d(x, fx, a) + d(y, fy, a) + d(x, y, fy)]
,

d(x, fx, a)d(x, fy, a) + d(y, fy, a)d(y, fx, a)

1 + d(x, fy, a) + d(y, fx, a)

}
,

or,

M(x, y, a) = max

{
d(x, y, a),

d(x, fx, a)d(y, fy, a)

1 + s[d(x, y, a) + d(x, fy, a) + d(y, fx, a) + d(x, y, fy)
,

d(x, fy, a)d(x, y, a)

1 + sd(x, fx, a) + s3[d(y, fx, a) + d(y, fy, a) + d(x, y, fy)]

}
.
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Corollary 3.12 ([28]). Let (X,⪯) be a partially ordered set and suppose
that there exists a b2-metric d on X such that (X, d) is a complete b2-
metric space. Let f : X → X be an increasing mapping with respect to
⪯ such that there exists an element x0 ∈ X with x0 ⪯ f(x0). Suppose
that

sd(fx, fy, a) ≤ β(d(x, y, a))M(x, y, a),(3.32)

where

M(x, y, a) = max

{
d(x, y, a),

d(x, fx, a)d(y, fy, a)

1 + d(x, y, a)
,
d(x, fx, a)d(y, fy, a)

1 + d(fx, fy, a)

}
.

Assume that either

(i) f is continuous, or
(ii) if a sequence {xn} is a nondecreasing sequence such that xn → x

as n→ ∞, then x ⪯ fx.

Then f has a fixed point.

Proof. Define the mapping α : X ×X ×X → [0,∞) as follows

α(x, y, a) =

{
1 if x ⪯ y or y ⪯ x
0 if otherwise.

So, we have

sα(x, fx, a)α(y, fy, a)d(fx, fy, a) ≤ β(d(x, y, a))M(x, y, a),(3.33)

for all x, y ∈ X. Since x0 ⪯ f(x0), by the definition of α, we have
α(x0, fx0, a) ≥ 1. Now, we show that f is 2-α-admissible. If α(x, y, a) ≥
1, then we conclude that x ⪯ y or y ⪯ x. Since f is nondecreasing,
so we deduce fx ⪯ fy or fy ⪯ fx. By the definition of α, we get
α(fx, fy, a) ≥ 1. So, f is 2-α admissible. Now, if condition (ii) hold,
since {xn} is a nondecreasing sequence, we have α(xn, fxn, a) ≥ 1 as
n → ∞, then x ⪯ fx, so α(x, fx, a) ≥ 1. So, all conditions of Theorem
3.2 are hold and f has a fixed point. □

Now, we take β(t) = r, Where 0 ≤ r < 1
s , then we have the following

corollary.

Corollary 3.13 ([28]). Let (X,⪯) be a partially ordered set and suppose
that there exists a b2-metric d on X such that (X, d) is a b2-complete b2-
metric space. Let f : X → X be an increasing mapping with respect to
⪯ such that there exists an element x0 ∈ X with x0 ⪯ f(x0). Suppose
that

sd(fx, fy, a) ≤ rM(x, y, a),(3.34)

where

M(x, y, a) = max

{
d(x, y, a),

d(x, fx, a)d(y, fy, a)

1 + d(x, y, a)
,
d(x, fx, a)d(y, fy, a)

1 + d(fx, fy, a)

}
.
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Assume that either

(i) f is continuous, or
(ii) if a sequence {xn} is a nondecreasing sequence such that xn → x

as n→ ∞, then x ⪯ fx.

Then f has a fixed point.

Corollary 3.14 ([28]). Let (X,⪯) be a partially ordered set and suppose
that there exists a b2-metric d on X such that (X, d) is a b2-complete b2-
metric space. Let f : X → X be an increasing mapping with respect to
⪯ such that there exists an element x0 ∈ X with x0 ⪯ f(x0). Suppose
that

sd(fx, fy, a) ≤ αd(x, y, a) + β
d(x, fx, a)d(y, fy, a)

1 + d(x, y, a)
+ γ

d(x, fx, a)d(y, fy, a)

1 + d(fx, fy, a)
,

for all x, y, a ∈ X, where α, β, γ ≥ 0 and 0 ≤ α + β + γ < 1
s . Assume

that either

(i) f is continuous, or
(ii) if a sequence {xn} is a nondecreasing sequence such that xn → x

as n→ ∞, then x ⪯ fx.

Then f has a fixed point.

Corollary 3.15 ([28]). Let (X,⪯) be a partially ordered set and suppose
that there exists a b-metric d on X such that (X, d) is a b2-complete b2-
metric space. Let f : X → X be an increasing mapping with respect to
⪯ such that there exists an element x0 ∈ X with x0 ⪯ f(x0). Suppose
that

sd(fx, fy, a) ≤ ψ(M(x, y, a)),(3.35)

where

M(x, y, a) = max

{
d(x, y, a),

d(x, fx, a)d(y, fy, a)

1 + d(x, y, a)
,
d(x, fx, a)d(y, fy, a)

1 + d(fx, fy, a)

}
.

Assume that either

(i) f is continuous, or
(ii) if a sequence {xn} is a nondecreasing sequence such that xn → x

as n→ ∞, then x ⪯ fx.

Then f has a fixed point.

3.3. Results for Almost Generalized Weakly Contractive Map-
pings. Berinde in [17–20] initiated the concept of almost contractions
and obtained many interesting fixed point theorems. Results with sim-
ilar conditions were obtained, e.g., in [21] and [22]. In this section, we
define the notion of almost generalized (ψ,φ)s,a-contractive mappings
and prove some new results. In particular, we extend Theorems 2.1, 2.2
and 2.3 of Ćirić et.al. in [23] to the setting of b2-metric spaces.
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The concept of an altering distance function which is introduced in
[24] by Khan et.al.

Definition 3.16 ([24]). A function φ : [0,+∞) → [0,+∞) is called an
altering distance function, if the following properties hold:

(i) φ is continuous and non-decreasing.
(ii) φ(t) = 0 if and only if t = 0.

Let (X, d) be a b2-metric space and let f : X → X be a mapping. For
x, y, a ∈ X, set

M(x, y, a) = max

{
d(x, y, a),

d(x, fx, a)d(y, fy, a)

1 + d(fx, fy, a)
,
d(x, fx, a)d(y, fy, a)

1 + d(x, y, a)

}
,

and

Na(x, y) = min {d(x, fx, a), d(x, fy, a), d(y, fx, a), d(y, fy, a)} .

Definition 3.17. Let (X, d) be a b2-metric space. We say that a map-
ping f : X → X is an almost generalized (ψ,φ)s,a-contractive mapping
if there exist L ≥ 0 and two altering distance functions ψ and φ such
that

(3.36) ψ(sd(fx, fy, a)) ≤ ψ(Ma(x, y))− φ(Ma(x, y)) + Lψ(Na(x, y)),

for all x, y, a ∈ X.

Now, let us to prove our new results.

Theorem 3.18. Let (X,⪯) be a partially ordered set and suppose that
there exists a b2-metric d on X such that (X, d) is a b2-complete b2-
metric space. Let f : X → X be a continuous mapping, non-decreasing
with respect to ⪯. Suppose that f satisfies condition (3.36), for all el-
ements x, y, a ∈ X, where x, y are comparable. If there exists x0 ∈ X
such that x0 ⪯ fx0, then f has a fixed point.

Proof. Starting with the given x0, define a sequence {xn} in X such that
xn+1 = fxn, for all n ≥ 0. Since x0 ⪯ fx0 = x1 and f is non-decreasing,
we have x1 = fx0 ⪯ x2 = fx1, and by induction

x0 ⪯ x1 ⪯ · · · ⪯ xn ⪯ xn+1 ⪯ · · · .
If xn = xn+1, for some n ∈ N, then xn = fxn and hence xn is a fixed
point of f . So, we may assume that xn ̸= xn+1, for all n ∈ N. By (3.36),
we have

ψ(d(xn, xn+1, a)) ≤ ψ(sd(xn, xn+1, a))

(3.37)

= ψ(sd(fxn−1, fxn, a))

≤ ψ(Ma(xn−1, xn))− φ(Ma(xn−1, xn)) + Lψ(Na(xn−1, xn)),
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where

M(xn−1, xn, a) = max

{
d(xn−1, xn, a),

d(xn−1, fxn−1, a)d(xn, fxn, a)

1 + d(fxn−1, fxn, a)
,

d(xn−1, fxn−1, a)d(xn, fxn, a)

1 + d(xn−1, xn, a)

}
= max

{
d(xn−1, xn, a),

d(xn−1, xn, a)d(xn, xn+1, a)

1 + d(xn, xn+1, a)
,

d(xn−1, fxn−1, a)d(xn, fxn, a)

1 + d(xn−1, xn, a)

}
≤ max {d(xn−1, xn, a), d(xn, xn+1, a)} .

If max {d(xn−1, xn, a), d(xn, xn+1, a)} = d(xn, xn+1, a), and

Na(xn−1, xn) = min {d(xn−1, fxn−1, a), d(xn−1, fxn, a),
(3.38)

d(xn, fxn−1, a), d(xn, fxn, a)}
= min {d(xn−1, xn, a), d(xn−1, xn+1, a), 0, d(xn, xn+1, a)}
= 0,

then from (3.37)-(3.38) and the properties of ψ and φ, we get

ψ(d(xn, xn+1, a)) ≤ ψ

(
max

{
d(xn−1, xn, a),

d(xn−1, fxn−1, a)d(xn, fxn, a)

1 + d(xn−1, xn, a)

})(3.39)

− φ

(
max

{
d(xn−1, xn, a),

d(xn−1, fxn−1, a)d(xn, fxn, a)

1 + d(fxn−1, fxn, a)
,

d(xn−1, fxn−1, a)d(xn, fxn, a)

1 + d(xn−1, xn, a)

})
,

since

max

{
d(xn−1, xn, a),

d(xn−1, fxn−1, a)d(xn, fxn, a)

1 + d(fxn−1, fxn, a)
,
d(xn−1, fxn−1, a)d(xn, fxn, a)

1 + d(xn−1, xn, a)

}
< max {d(xn−1, xn, a), d(xn, xn+1, a)} .

Then by (3.39) we have if

max {d(xn−1, xn, a), d(xn, xn+1, a)} = d(xn, xn+1, a),

then

ψ(d(xn, xn+1, a)) < ψ(d(xn, xn+1, a)),

and this is a contradiction.
if max {d(xn−1, xn, a), d(xn, xn+1, a)} = d(xn−1, xn, a), then

ψ(d(xn, xn+1, a)) < ψ(d(xn−1, xn, a)),
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Thus, {d(xn, xn+1, a) : n ∈ N ∪ {0}} is a non-increasing sequence of
positive numbers. Hence, there exists r ≥ 0 such that

lim
n
d(xn, xn+1, a) = r.

Letting n→ ∞ in (3.39), we get

ψ(r) ≤ ψ

(
max

(
r,

r.r

1 + r
,
r.r

1 + r

))
− φ

(
max

{
r,

r.r

1 + r
,
r.r

1 + r

})
≤ ψ(r).

Therefore,

φ

(
max

{
r,

r.r

1 + r
,
r.r

1 + r

})
= 0,

and hence r = 0. Thus, we have

(3.40) lim
n
d(xn, xn+1, a) = 0,

for each a ∈ X.
Next, we show that {xn} is a b2-Cauchy sequence in X. For this

purpose, we use the relation (2.12), page 5 of [5] which is as follows:

(3.41) d(xi, xj , xk) = 0,

for all i, j, k ∈ N (note that this can be obtained as {d(xn, xn+1, a)
: n ∈ N ∪ {0}} be a non-increasing sequence of positive numbers).

Suppose the contrary, that is, {xn} is not a b2-Cauchy sequence. Then
there exist a ∈ X and ε > 0 for which we can find two subsequences
{xmi} and {xni} of {xn} such that ni is the smallest index for which

(3.42) ni > mi > i, d(xmi , xni , a) ≥ ε.

This means that

(3.43) d(xmi , xni−1, a) < ε.

Using (3.43) and taking the upper limit as i→ ∞, we get

(3.44) lim sup
n→∞

d(xmi , xni−1, a) ≤ ε.

On the other hand, we have

d(xmi , xni , a)

≤ sd(xmi , xni , xmi+1) + sd(xni , a, xmi+1) + sd(a, xmi , xmi+1).

Using (3.40), (3.42) and taking the upper limit as i→ ∞, we get

(3.45)
ε

s
≤ lim sup

n→∞
d(xmi+1, xni , a).

Again, using the rectangular inequality, we have

d(xmi+1, xni−1, a)

≤ sd(xmi+1, xni−1, xmi) + sd(xni−1, a, xmi) + sd(a, xmi+1, xmi),
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and

d(xmi , xni , a) ≤ sd(xmi , xni , xni−1)+sd(xni , a, xni−1)+sd(a, xmi , xni−1).

Taking the upper limit as i → ∞ in the first inequality in the above,
and using (3.40) and (3.44), we get

(3.46) lim sup
n→∞

d(xmi+1, xni−1, a) ≤ εs.

Similarly, taking the upper limit as i → ∞ in the second inequality in
the above, and using (3.40) and (3.43), we get

(3.47) lim sup
n→∞

d(xmi , xni , a) ≤ εs.

From (3.36), we have

ψ(sd(xmi+1, xni , a)) = ψ(sd(fxmi , fxni−1, a))(3.48)

≤ ψ(Ma(xmi , xni−1))− φ(Ma(xmi , xni−1))

+ Lψ(Na(xmi , xni−1)),

where

Ma(xmi , xni−1) = max

{
d(xmi , xni−1, a),

d(xmi , fxmi , a)d(xni−1, fxni−1, a)

1 + d(xmi
, xni−1)

,

(3.49)

d(xmi , fxmi , a)d(xni−1, fxni−1, a)

1 + d(fxmi , fxni−1)

}
= max

{
d(xmi , xni−1, a),

d(xmi , xmi+1, a)d(xni−1, xni , a)

1 + d(xmi , xni−1)
,

d(xmi , xmi+1, a)d(xni−1, xni , a)

1 + d(xmi+1, xni)

}
,

and

Na(xmi , xni−1) = min {d(xmi , fxmi , a), d(xmi , fxni−1, a) ,

d(xni−1, fxmi , a), d(xni−1, fxni−1, a)}
= min {d(xmi , xmi+1, a), d(xmi , xni , a),

d(xni−1, xmi+1, a), d(xni−1, xni , a)}
= 0.

(3.50)

Taking the upper limit as i → ∞ in (3.49) and (3.50) and using (3.40),
(3.44), (3.46) and (3.47), we get

lim sup
n→∞

Ma(xmi−1, xni−1) = max

{
lim sup
n→∞

d(xmi , xni−1, a), 0, 0

}
≤ ε.

(3.51)
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So, we have So, we have

(3.52) lim sup
n→∞

Ma(xmi−1, xni−1) ≤ ε,

and

(3.53) lim sup
n→∞

Na(xmi , xni−1) = 0.

Now, taking the upper limit as i → ∞ in (3.48) and using (3.45),
(3.52) and (3.53) we have

ψ

(
s · ε
s

)
≤ ψ

(
s lim sup

n→∞
d(xmi+1, xni , a)

)
≤ ψ

(
lim sup
n→∞

Ma(xmi , xni−1)

)
− lim inf

n→∞
φ(Ma(xmi , xni−1))

≤ ψ(ε)− φ
(
lim inf
n→∞

)Ma(xmi , xni−1)
)
,

which further implies that

φ
(
lim inf
n→∞

Ma(xmi , xni−1)
)
= 0,

so lim inf
n→∞

Ma(xmi , xni−1) = 0, which is a contradiction to (3.42). Thus,

{xn+1 = fxn} is a b2-Cauchy sequence in X.
As X is a b2-complete space, there exists u ∈ X such that xn → u as

n→ ∞, that is,

lim
n
xn+1 = lim

n
fxn = u.

Now, suppose that f is continuous. Using the rectangle inequality, we
get

d(u, fu, a) ≤ sd(u, fu, fxn) + sd(fu, a, fxn) + sd(a, u, fxn).

Letting n→ ∞, we get

d(u, fu, a) ≤ s lim
n
d(u, fu, fxn)+s lim

n
d(fu, a, fxn)+s lim

n→∞
d(a, u, fxn) = 0.

So, we have fu = u. Thus, u is a fixed point of f . Note that the
continuity of f in Theorem 3.18 is not necessary and can be dropped. □

Theorem 3.19. Under the hypotheses of Theorem 3.18, without the
continuity assumption on f . Assume that whenever {xn} is a non-
decreasing sequence in X such that xn → x ∈ X, one has xn ⪯ x,
for all n ∈ N. Then f has a fixed point in X.

Proof. Following similar arguments to those given in the proof of The-
orem 3.18, we construct an increasing sequence {xn} in X such that
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xn → u, for some u ∈ X. Using the assumptions on X, we have that
xn ⪯ u, for all n ∈ N. Now, we show that fu = u. By (3.36), we have

ψ(sd(xn+1, fu, a)) = ψ(sd(fxn, fu, a))
(3.54)

≤ ψ(Ma(xn, u))− φ(Ma(xn, u)) + Lψ(Na(xn, u)),

where

Ma(xn, u) = max

{
d(xn, u, a),

d(xn, fxn, a)d(u, fu, a)

1 + d(xn, u, a)
,
d(xn, fxn, a)d(u, fu, a)

1 + d(fxn, fu, a)

}
= max

{
d(xn, u, a),

d(xn, xn+1, a), d(u, fu, a)

1 + d(xn, u, a)
,
d(xn, xn+1, a)d(u, fu, a)

1 + d(xn+1, fu, a)

}
,

and

Na(xn, u) = min {d(xn, fxn, a), d(xn, fu, a), d(u, fxn, a), d(u, fu, a)}
(3.55)

= min {d(xn, xn+1, a), d(xn, fu, a), d(u, xn+1, a), d(u, fu, a)} ,
and

Na(xn, u) → 0,Ma(xn, u) → 0.

Again, taking the upper limit as i→ ∞ in (3.54) and using Lemma 2.9
and (3.55), we get

ψ(d(u, fu, a) = ψ(s · 1
s
d(u, fu, a))

≤ ψ
(
s lim sup

n→∞
d(xn+1, fu, a)

)
≤ ψ

(
lim sup
n→∞

Ma(xn, u)
)
− lim inf

n→∞
φ(Ma(xn, u)).

Therefore, ψ(d(u, fu, a) = 0 then (d(u, fu, a) = 0. Thus, letting n→ ∞,
we get

d(u, fu, a) ≤ s lim
n
d(u, fu, fxn) + s lim

n
d(fu, a, fxn) + s lim

n→∞
d(a, u, fxn)

= 0.

So, we have fu = u. Thus, u is a fixed point of f . □
Corollary 3.20. Let (X,⪯) be a partially ordered set and suppose that
there exists a b2-metric d on X such that (X, d) is a b2-complete b2-
metric space. Let f : X → X be a non-decreasing continuous mapping
with respect to ⪯. Suppose that there exist k ∈ [0, 1) and L ≥ 0 such
that

d(fx, fy, a) ≤ k

s
max

{
d(x, y, a),

d(x, fx, a)d(y, fy, a)

1 + d(x, y, a)
,
d(x, fx, a)d(y, fy, a)

1 + d(fx, fy, a)

}
+
L

s
min {d(x, fx, a), d(y, fx, a)} ,
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for all elements x, y, a ∈ X where x, y are comparable. If there exists
x0 ∈ X such that x0 ⪯ fx0, then f has a fixed point.

Proof. The result follows from Theorem 3.18 by taking ψ(t) = t and
φ(t) = (1− k)t, for all t ∈ [0,+∞). □

Corollary 3.21. Under the hypotheses of Corollary 3.20, without the
continuity assumption of f . Assume that for any non-decreasing se-
quence {xn} in X such that xn → x ∈ X we have xn ⪯ x, for all n ∈ N.
Then, f has a fixed point in X.

4. Example

Example 4.1. Let X = [0,+∞) and d(x, y, z) = [xy + yz + zx]2 if
x ̸= y ̸= z ̸= x, and otherwise d(x, y, z) = 0. Where s > 3. d is
a b2-metric on X . Consider the mapping f : X → X defined by
f(x) = 1

4 ln(x+ 1) and the function ψ ∈ Ψ given by ψ(t) = 1
4 t, t ≥ 0. It

is easy to see that f is increasing and 0 ≤ f(0) = 0. For all comparable
elements x, y ∈ X, using the mean value theorem, we have,

d(fx, fy, a) =

[
1

4
ln(x+ 1)

1

4
ln(y + 1) +

1

4
ln(y + 1)a+

1

4
ln(x+ 1)a

]2
≤ 1

4
[xy + ya+ ax]2

≤ 1

4
d(x, y, a)

= ψ(d(x, y, a))

≤ ψ(M(x, y, a)),

so, using Theorem 3.8, f has a fixed point.

Example 4.2. Let X = [0,+∞) and d(x, y, z) = [xy + yz + zx]2 if
x ̸= y ̸= z ̸= x, and otherwise d(x, y, z) = 0. Where s > 3. d is
a b2-metric on X . Consider the mapping f : X → X defined by

f(x) = 1
16xe

−x2
and the function β given by β(t) = 1

4 . Define the
mapping α : X ×X ×X → [0,∞) as follow

α(x, y, a) =

{
1 if x ⪯ y or y ⪯ x,
0 if otherwise.

Since x0 ⪯ f(x0), by the definition of α, we have α(x0, fx0, a) ≥ 1 for all
a ∈ X. Now, we show that f is 2− α-admissible. If α(x, y, a) ≥ 1, then
we conclude that x ⪯ y or y ⪯ x. Since f is non-decreasing, so we deduce
fx ⪯ fy or fy ⪯ fx. By the definition of α, we get α(fx, fy, a) ≥ 1. So,
f is 2−α admissible. Now, since f is continues therefore, all conditions
of Corollary 3.20 hold and f has a fixed point, it is easy to see that f
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is increasing and 0 ≤ f(0) = 0. For all comparable elements x, y ∈ X,
using the mean value theorem, we have,

d(fx, fy, a) =

[
1

16
xe−x2 1

16
ye−y2 +

1

16
y2e−y2a+

1

16
xe−x2

a

]2
≤ 1

16
[xy + ya+ ax]2

≤ 1

8
d(x, y, a)

≤ 1

4
d(x, y, a)

= β(d(x, y, a))d(x, y, a)

≤ β(d(x, y, a))M(x, y, a).

So, from Theorem 3.2, f has a fixed point.

Example 4.3. Let X = {(α, 0) : α ∈ [0,+∞)} ∪ {(0, 2)} ⊂ R2 and
let d(x, y, z) denotes the square of the area of the triangle with vertices
x, y, z ∈ X. E.g.,

d((α, 0), (β, 0), (0, 2)) = (α− β)2.

It is easy to check that d is a b2-metric with parameter s = 2. Introduce
an order ⪯ in X by

(α, 0) ⪯ (β, 0) ⇔ α ≥ β,

with all other pairs of distinct points in X which are incomparable.
Consider the mapping f : X → X given by

f(α, 0) =
(α
3
, 0
)

for α ∈ [0,+∞) and f(0, 2) = (0, 2),

and the function β ∈ F2 given as

β(t) =
1 + t

2 + 4t
for t ∈ [0,+∞).

Then f is an increasing mapping with (α, 0) ⪯ f(α, 0) for each α ≥ 0.
Finally, in order to check the contractive condition, only the case when
x = (α, 0), y = (β, 0), a = (0, 2) is nontrivial. Let d(x, y, a) = (α − β)2
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and

sd(fx, fy, a) = 2d
((

1
3α, 0

)
,
(
1
3β, 0

)
, (0, 2)

)
= 2 · 1

9
(α− β)2

≤ 1

4
(α− β)2

≤ β(d(x, y, a))d(x, y, a)

≤ β(d(x, y, a))M(x, y, a).

All the conditions of above Theorem are satisfied and f has two fixed
points, (0, 0) and (0, 2). But if we define: d1(x, y) =

√
d(x, y, a), then

(X, d1) is a b2-metric space and f is not satisfied in contractive condi-
tions. Only the case when x = (α, 0), y = (β, 0), a = (0, 2) is nontrivial,
since d1(fx, fy) = (13)|α− β| and d1(x, y) = |α− β|.
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16. D. -Dukić, Z. Kadelburg, and S. Radenović, Fixed points of
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23. Lj. Ćirić, M. Abbas, R. Saadati, and N. Hussain, Common fixed
points of almost generalized contractive mappings in ordered metric
spaces, Applied Math. Comput., 217 (2011), pp. 5784-5789.

24. M.S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by alter-
ing distancces between the points, Bull. Aust. Math. Soc., 30 (1984),
pp. 1-9.

25. Sh. Fathollahi, N. Hussain, and L.A. Khan, Fixed point results for
modified weak and rational α-ψ-contractions in ordered 2-metric
spaces, Fixed Point Theory Appl., 2014.

26. Z. Mustafa, V. Parvaneh, J.R. Roshan, and Z. Kadelburg, b2-
Metric spaces and some fixed point theorems, Fixed Point Theory
Appl, 2014.



212 R. SHAHKOOHI AND Z. BAGHERI

27. R.J. Shahkoohi and A. Razani, Some fixed point theorems for ra-
tional Geraghty contractive mappings in ordered b-metric spaces, J.
Inequal. Appl., 2014, 2014:373.

28. F.Zabihi and A.Razani, Fixed point theorems for Hybrid Rational
Geraghty contractive mappings in ordered b-metric spaces, Journal
of Applied Mathematics, (2014), Article ID 929821, 9 pages.

1Department of Mathematics, Aliabad katoul Branch, Islamic Azad
University, Aliabad katoul, Iran.

E-mail address: rog.jalal@gmail.com

2Department of Mathematics, Azadshahr Branch, Islamic Azad Univer-
sity, Azadshahr, Iran.

E-mail address: zohrehbagheri@yahoo.com


	1. Introduction and Preliminaries
	2. Mathematical Preliminaries
	3. Main Results
	3.1. Results Under Rational Geraghty Condition of Type I
	3.2. Results Using Comparison Functions
	3.3. Results for Almost Generalized Weakly Contractive Mappings

	4. Example
	References

