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Generalized Regular Fuzzy Irresolute Mappings and Their

Applications

Elangovan Elavarasan

Abstract. In this paper, the notion of generalized regular fuzzy
irresolute, generalized regular fuzzy irresolute open and generalized
regular fuzzy irresolute closed maps in fuzzy topological spaces are
introduced and studied. Moreover, some separation axioms and
r-GRF-separated sets are established. Also, the relations between
generalized regular fuzzy continuous maps and generalized regular
fuzzy irresolute maps are investigated. As a natural follow-up of
the study of r-generalized regular fuzzy open sets, the concept of r-
generalized regular fuzzy connectedness of a fuzzy set is introduced
and studied.

1. Introduction

Kubiak [10] and Šostak [16] introduced the fundamental concept of a
fuzzy topological structure, as an extension of both crisp topology and
fuzzy topology [2], in the sense that not only the objects are fuzzified, but
also the axiomatics. In [15, 17], Šostak gave some rules and showed how
such an extension can be realized. Chattopadhyay et al., [3] have rede-
fined the same concept under the name gradation of openness. A general
approach to the study of topological type structures on fuzzy power sets
was developed in [6–8, 10, 11]. Balasubramanian and Sundaram [1] gave
the concept of generalized fuzzy closed sets in Chang’s fuzzy topology
as an extension of generalized closed sets of Levine [13] in topological
spaces. Kim and Ko [9] introduced the concept of r-generalized fuzzy
closed sets in Sostak’s fuzzy topological spaces. Recently, Vadivel and
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Elavarasan [18] introduced r-generalized regular fuzzy closed sets and
generalized regular fuzzy continuous function in Sostak’s fuzzy topolog-
ical space.

In this paper, the notion of generalized regular fuzzy irresolute, gen-
eralized regular fuzzy irresolute open and generalized regular fuzzy ir-
resolute closed maps in fuzzy topological spaces are introduced and
studied. Moreover, some properties of generalized regular fuzzy irreso-
lute maps and r-FRCO-T1, r-FRCO-T2, r-GRF-T1, r-GRF-T2, r-FRCO-
regular, r-FRCO-normal, strongly GRF-regular, strongly GRF-normal,
r-GRF-separated sets are established. Also, the relations between gen-
eralized regular fuzzy continuous maps and generalized regular fuzzy
irresolute maps are investigated. As a natural follow-up of the study of
r-generalized regular fuzzy open sets, the concept of r-generalized regular
fuzzy connectedness of a fuzzy set is introduced and studied.

2. Preliminaries

Throughout this paper, let X be a nonempty set, I = [0, 1] and
I0 = (0, 1]. For λ ∈ IX , λ(x) = λ for all x ∈ X. For x ∈ X and t ∈ I0,
a fuzzy point xt is defined by

xt(y) =

{
t if y = x,

0 if y ̸= x.

Let Pt(X) be the family of all fuzzy points in X. A fuzzy point xt ∈ λ
iff t < λ(x). All other notations and definitions are standard, for all in
the fuzzy set theory.

Definition 2.1 ([16]). A function τ : IX → I is called a fuzzy topology
on X if it satisfies the following conditions:

(O1) τ(0) = τ(1) = 1,
(O2) τ(

∨
i∈Γ µi) ≥

∧
i∈Γ τ(µi), for any {µi}i∈Γ ⊂ IX ,

(O3) τ(µ1 ∧ µ2) ≥ τ(µ1) ∧ τ(µ2), for any µ1, µ2 ∈ IX .

The pair (X, τ) is called a fuzzy topological space (for short, fts ).
A fuzzy set λ is called an r-fuzzy open (r-FO, for short) if τ(λ) ≥ r. A
fuzzy set λ is called an r-fuzzy closed (r-FC, for short) set iff 1−λ is an
r-FO set.

Theorem 2.2 ([4]). Let (X, τ) be a fts. Then for each λ ∈ IX and
r ∈ I0, we define an operator Cτ : IX × I0 → IX as follows: Cτ (λ, r) =∧
{µ ∈ IX : λ ≤ µ, τ(1 − µ) ≥ r}. For λ, µ ∈ IX and r, s ∈ I0, the

operator Cτ satisfies the following statements:

(C1) Cτ (0, r) = 0,
(C2) λ ≤ Cτ (λ, r),
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(C3) Cτ (λ, r) ∨ Cτ (µ, r) = Cτ (λ ∨ µ, r),
(C4) Cτ (λ, r) ≤ Cτ (λ, s) if r ≤ s,
(C5) Cτ (Cτ (λ, r), r) = Cτ (λ, r).

Theorem 2.3 ([14]). Let (X, τ) be a fts. Then for each λ ∈ IX and
r ∈ I0, we define an operator Iτ : IX × I0 → IX as follows: Iτ (λ, r) =∨
{µ ∈ IX : µ ≤ λ, τ(µ) ≥ r}. For λ, µ ∈ IX and r, s ∈ I0, the operator

Iτ satisfies the following statements:

(I1) Iτ (1, r) = 1,
(I2) Iτ (λ, r) ≤ λ,
(I3) Iτ (λ, r) ∧ Iτ (µ, r) = Iτ (λ ∧ µ, r),
(I4) Iτ (λ, r) ≤ Iτ (λ, s) if s ≤ r,
(I5) Iτ (Iτ (λ, r), r) = Iτ (λ, r).
(I6) Iτ (1− λ, r) = 1− Cτ (λ, r) and Cτ (1− λ, r) = 1− Iτ (λ, r).

Definition 2.4 ([12]). Let (X, τ) be a fts, λ ∈ IX and r ∈ I0. Then

(1) a fuzzy set λ is called r-fuzzy regular open (for short, r-fro) if

λ = Iτ (Cτ (λ, r), r).

(2) a fuzzy set λ is called r-fuzzy regular closed (for short, r-frc) if

λ = Cτ (Iτ (λ, r), r).

(3) a fuzzy set λ is called r-fuzzy regular clopen (for short, r-frco)
set iff λ is r-frc set and r-fro set.

Definition 2.5 ([18]). Let (X, τ) be a fts. For λ, µ ∈ IX and r ∈ I0.

(1) The r-fuzzy regular closure of λ, denoted by RCτ (λ, r), is de-
fined by

RCτ (λ, r) =
∧{

µ ∈ IX |µ ≥ λ, µ is r-frc
}
.

(2) The r-fuzzy regular interiror of λ, denoted by RIτ (λ, r), is de-
fined by

RIτ (λ, r) =
∨{

µ ∈ IX |µ ≤ λ, µ is r-fro
}
.

Definition 2.6 ([18]). Let f : (X, τ) → (Y, σ) be a function and r ∈ I0.
Then f is called:

(1) fuzzy regular continuous (for short, FR-continuous) if f−1(λ) is
an r-fro set in IX for each λ ∈ IY with σ(λ) ≥ r.

(2) fuzzy regular open (for short, FR-open) if f(λ) is an r-fro set
in IY for each λ ∈ IX with τ(λ) ≥ r.

(3) fuzzy regular closed (for short, FR-closed) if f(λ) is an r-frc set
in IY for each λ ∈ IX with τ(1− λ) ≥ r.
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Definition 2.7 ([9]). Let (X, τ) be a fts. For any λ, µ ∈ IX and r ∈ I0
a fuzzy set λ is called an r-generalized fuzzy closed (for short, r-gfc) set
if Cτ (λ, r) ≤ µ, whenever λ ≤ µ and τ(µ) ≥ r.

Definition 2.8 ([18]). Let (X, τ) be a fts. For any λ, µ ∈ IX and
r ∈ I0.

(1) A fuzzy set λ is called an r-generalized regular fuzzy closed
(for short, r-grfc) set if RCτ (λ, r) ≤ µ, whenever λ ≤ µ and
τ(µ) ≥ r.

(2) A fuzzy set λ is called an r-generalized regular fuzzy open (for
short, r-grfo) set if 1− λ is r-grfc.

(3) A fuzzy set λ is called an r-generalized regular fuzzy clopen (for
short, r-grfco) set iff λ is an r-grfc and r-grfo set.

Definition 2.9 ([18]). Let (X, τ) be a fts. For λ, µ ∈ IX and r ∈ I0.

(1) The r-generalized regular fuzzy closure of λ, denoted byGRCτ (λ, r)
is defined by

GRCτ (λ, r) =
∧{

µ ∈ IX | λ ≤ µ, µ is r-grfc
}

(2) The r-generalized regular fuzzy interiror of λ, denoted byGRIτ (λ, r),
and is defined by

GRIτ (λ, r) =
∨{

µ ∈ IX | λ ≥ µ, µ is r-grfo
}
.

Definition 2.10 ([9]). Let (X, τ) and (Y, η) be fts’s. A function
f : (X, τ) → (Y, η) is called generalized fuzzy continuous (for short, gf-
continuous) if f−1(µ) is r-grfc for each µ ∈ IY , r ∈ I0 with η(1−µ) ≥ r.

Definition 2.11 ([18]). Let (X, τ) and (Y, η) be a fts’s. Let f :
(X, τ) → (Y, η) be a function.

(1) f is called generalized regular fuzzy continuous (for short, grf-
continuous) iff f−1(µ) is r-grfc for each µ ∈ IY , r ∈ I0 with
η(1− µ) ≥ r.

(2) f is called generalized regular fuzzy open (for short, grf-open)
iff f(λ) is r-grfo for each λ ∈ IX , r ∈ I0 with τ(λ) ≥ r.

(3) f is called generalized regular fuzzy closed (for short, grf-closed)
iff f(λ) is r-grfc for each λ ∈ IX , r ∈ I0 with τ(1− λ) ≥ r.

Theorem 2.12 ([18]). Let (X, τ) be a fts. For each r ∈ I0 and λ ∈ IX ,
we define the operators GRCτ , GRIτ : IX × I0 → IX as follows:

GRCτ (λ, r) =
∨{

µ ∈ IX | µ ≤ λ, µ is r-grfc
}
,

GRIτ (λ, r) =
∨{

µ ∈ IX | µ ≤ λ, µ is r-grfo
}
,

Then
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(1) GRIτ (1− λ, r) = 1−GRCτ (λ, r).
(2) GRCτ (1− λ, r) = 1−GRIτ (λ, r).
(3) RIτ (λ, r) ≤ GRIτ (λ, r) ≤ λ ≤ RCτ (λ, r) ≤ GRCτ (λ, r).

Theorem 2.13 ([18]). Let (X, τ) be a fts, λ ∈ IX and r ∈ I0.

(1) If λ is an r-frc set, then λ is an r-grfc set.
(2) If λ is an r-fro set, then λ is an r-grfo set.

3. Generalized Regular Fuzzy Irresolute Mappings

Definition 3.1. Let (X, τ) and (Y, η) be fts’s. The mapping f : X → Y
is called:

(1) generalized regular fuzzy irresolute (grf-irresolute, for short) if
f−1(µ) is an r-grfc set, for each r-grfc set µ ∈ IY , r ∈ I0.

(2) generalized regular fuzzy irresolute open (grf-irresolute open,
for short) if f−1(µ) is an r-grfo set, for each r-grfo set µ ∈
IY , r ∈ I0.

(3) generalized regular fuzzy irresolute closed (grf-irresolute closed,
for short) if f−1(µ) is an r-grfc set, for each r-grfc set µ ∈
IY , r ∈ I0.

(4) generalized regular fuzzy irresolute homeomorphism (grfi-
homeomorphism, for short) iff f is bijective and both f and
f−1 are grf-irresolute mappings.

Remark 3.2. For a mapping f : X → Y , the following statements are
valid:

(1) f is grf-continuous ⇒ f is gf-continuous.
(2) f is grf-irresolute ⇒ f is grf-continuous.

The converse of Remark 3.2 is not true in general.

Example 3.3. Let X = Y = {a, b, c} and γ ∈ IX be defined as γ(a) =
0.5, γ(b) = 0.7, γ(c) = 0.9. We define a fuzzy topology τ : IX → I as
follows:

τ(λ) =


1 if λ = 0 or 1,
1
2 if λ = γ,

0 otherwise,

η(λ) =


1 if λ = 0 or 1,
1
2 if λ = γ,

0 otherwise,

For r = 1/3, η(1 − (1 − γ)) ≥ r, 1 − γ is an r-gfc set in (X, τ) but not
r-grfc in (X, τ). Since Cτ (1 − γ, r)(= 1 − γ) ≤ γ, 1 − γ ≤ γ, τ(γ) ≥ r
but RCτ (1 − γ, r)(= 1) ≰ γ, 1 − γ ≤ γ, τ(γ) ≥ r. Thus the identity
function f : (X, τ) → (Y, η) is gf-continuous but not grf-continuous.

Example 3.4. Let X = {a, b, c}, Y = {p, q, r} and λ ∈ IX , δ, µ ∈ IY

be defined as λ(a) = 0.4, λ(b) = 0.5, λ(c) = 0.7; µ(p) = 0.4, µ(q) =
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0.5, µ(r) = 0.6; δ(p) = 0.4, δ(q) = 0.5, δ(r) = 0.7. We define two
smooth topologies τ, η : IX → I as follows.

τ(λ) =


1 if λ = 0 or 1,
1
2 if λ = λ,

0 otherwise,

η(λ) =


1 if λ = 0 or 1,
1
2 if λ = µ,

0 otherwise.

For r = 1/3, η(1 − (1 − µ)) ≥ r, 1 − µ is an r-grfc set in (X, τ). Then
the function f : (X, τ) → (Y, η) is grf-continuous but not grf-irresolute,
since the fuzzy set δ is r-grfc set in (Y, η) but not r-grfc set in (X, τ).

Theorem 3.5. Let (X, τ) and (Y, η) be fts’s. Let f : X → Y be a
mapping. Then the following statements are equivalent:

(1) f is grf-irresolute.
(2) For each r-grfc set µ ∈ IY , f−1(µ) is an r-grfc set.
(3) f(GRCτ (λ, r)) ≤ GRCη(f(λ), r), for each λ ∈ IX and r ∈ I0.
(4) GRCτ (f

−1(µ), r) ≤ f−1(GRCη(µ, r)), for each µ ∈ IY and r ∈
I0.

(5) f−1(GRIη(µ, r)) ≤ GRIτ (f
−1(µ), r), for each µ ∈ IY and r ∈

I0.

Proof. (1)⇒(2) Let µ be an r-grfc set in IY and r ∈ I0. Then 1 − µ is
an r-grfo set. Since f is grf-irresolute, f−1(1− µ) = 1− f−1(µ)
is an r-grfo set in X. Therefore, f−1(µ) is an r-grfc set in X.

(2)⇒(3) Suppose there exist λ ∈ IX and r ∈ I0 such that

f(GRCτ (λ, r)) ≰ GRCη(f(λ), r).

There exist y ∈ Y and t ∈ I0 such that

f(GRCτ (λ, r))(y) > t > GRCη(f(λ), r)(y).

If f−1({y}) = ϕ, it is a contradiction because

f(GRCτ (λ, r))(y) = 0.

If f−1({y}) ̸= ϕ, there exists x ∈ f−1({y}) such that

f(GRCτ (λ, r))(y) ≥ GRCτ (λ, r)(x) > t > GRCη(f(λ), r)(f(x)).(3.1)

Since GRCη(f(λ), r)(f(x)) < t, there exists an r-grfc set µ ∈ IY

with f(λ) ≤ µ such that

GRCη(f(λ), r)(f(x)) ≤ µ(f(x)) < t.

Moreover, f(λ) ≤ µ implies λ ≤ f−1(µ). From (2), f−1(µ) is
r-grfc. Thus, GRCτ (λ, r)(x) ≤ f−1(µ)(x) = µ(f(x)) < t. It is
a contradiction to (3.1).
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(3)⇒(4) For all µ ∈ IY and r ∈ I0, put λ = f−1(µ). From (3), we have

f(GRCτ (f
−1(µ), r)) ≤ GRCη(f(f

−1(µ)), r) ≤ GRCη(µ, r).

It implies

GRCτ (f
−1(µ), r) ≤ f−1(f(GRCτ (f

−1(µ), r))) ≤ f−1(GRCη(µ, r)).

(4)⇒(5) It can be easily seen from Theorem 2.12 (1).
(5)⇒(1) Let µ be an r-grfo set in Y . From Theorem 2.12 (3), µ =

GRIη(µ, r). By (5),

f−1(µ) ≤ GRIτ (f
−1(µ), r).

On the other hand, by Theorem 2.12(2),

f−1(µ) ≥ GRIτ (f
−1(µ), r).

Thus, f−1(µ) = GRIτ (f
−1(µ), r), that is, f−1(µ) is an r-grfo

set.
□

Theorem 3.6. Let (X, τ) and (Y, η) be fts’s. Let f : X → Y be a
bijective mapping. Then, the following statements are equivalent.

(1) f is grf-irresolute.
(2) GRCη(f(λ), r) ≤ f(GRCτ (λ, r)), for each λ ∈ IX and r ∈ I0.

Proof. (1)⇒(2) Let f be a grf-irresolute mapping, λ ∈ IX and r ∈ I0.
Then f−1(GRCη(f(λ), r)) is an r-grfo set in X. By Theorem
3.5 and the fact that f is one-to-one we have

f−1(GRCη(f(λ), r)) ≤ GRCτ (f
−1(f(λ), r)) = GRCτ (λ, r),

Again since f is onto we have

GRIη(f(λ), r) = ff−1(GRIη(f(λ), r)) ≤ f(GRIτ (λ, r)).

(2)⇒(1) Let µ be an r-grfo set in Y . Then by Theorem 2.12(3), µ =
GRIη(µ, r). By (2)

f(GRIτ (f
−1(µ), r)) ≥ GRIη(ff

−1(µ), r) = GRIη(µ, r) = µ.

It implies

GRIτ (f
−1(µ), r) = f−1f(GRIτ (f

−1(µ), r)) ≥ f−1(µ).

Hence, f−1(µ) = GRIτ (f
−1(µ), r), that is, f−1(µ) is an r-grfo

set in X.
□

Theorem 3.7. Let (X, τ) and (Y, η) be fts’s. Let f : X → Y be a
mapping. Then the following statements are equivalent:

(1) f is grf-irresolute open.
(2) f(GRIτ (λ, r)) ≤ GRIη(f(λ), r), for each λ ∈ IX and r ∈ I0.
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(3) GRIτ (f
−1(µ), r) ≤ f−1(GRIη(µ, r)), for each µ ∈ IY and r ∈

I0.
(4) For any µ ∈ IY and any r-grfc set λ ∈ IX with f−1(µ) ≤ λ,

there exists an r-grfc set ρ ∈ IY with µ ≤ ρ such that f−1(ρ) ≤
λ.

Proof. (1)⇒(2) For each λ ∈ IX , since GRIτ (λ, r) ≤ λ from Theorem
2.12(2), we have f(GRIτ (λ, r)) ≤ f(λ). From (1), f(GRIτ (λ, r))
is r-grfo. Hence f(GRIτ (λ, r) ≤ GRIη(f(λ), r).

(2)⇒(3) Let (2) holds. Take λ = f−1(µ), λ ∈ IX and apply part (2),

f(GRIτ (f
−1(µ), r)) ≤ GRIη(f(f

−1(µ)), r) ≤ GRIη(µ, r).

It implies GRIτ (f
−1(µ), r) ≤ f−1(GRIη(µ, r)).

(3)⇒(4) Let λ be an r-grfc subset of X such that f−1(µ) ≤ λ. Since
1− λ ≤ f−1(1− µ) and GRIτ (1− λ, r) = 1− λ,

GRIτ (1− λ, r) = 1− λ ≤ GRIτ (f
−1(1− µ), r).

From (3),

1− λ ≤ GRIτ (f
−1(1− µ), r) ≤ f−1(GRIη(1− µ, r)).

It implies

λ ≥ 1− f−1(GRIη(1− µ, r))

= f−1(1−GRIη(1− µ, r))

= f−1(GRCη(µ, r)).

Hence there exists an r-grfc set GRCη(µ, r) ∈ IY with µ ≤
GRCη(µ, r) such that f−1(GRCη(µ, r)) ≤ λ.

(4)⇒(1) Let ω be an r-grfo subset of X. Put µ = 1−f(ω) and λ = 1−ω
such that λ is r-grfc. We obtain

f−1(µ) = f−1(1− f(ω)) = 1− f−1(f(ω)) ≤ 1− ω = λ.

From (4), there exists an r-grfc set ρ with µ ≤ ρ such that
f−1(ρ) ≤ λ = 1 − ω. It implies ω ≤ 1 − f−1(ρ) = f−1(1 − ρ).
Thus, f(ω) ≤ f(f−1(1− ρ)) ≤ 1− ρ. On the other hand, since
µ ≤ ρ,

f(ω) = 1− µ ≥ 1− ρ.

Hence f(ω) = 1− ρ, that is, f(ω) is an r-grfo set.
□

The following theorem can be proved using the same argument as in
the proof of Theorem 3.7.

Theorem 3.8. Let (X, τ) and (Y, η) be fts’s. Let f : X → Y be a
mapping. Then the following statements are equivalent:
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(1) f is grf-irresolute closed.
(2) f(GRCτ (λ, r)) ≥ GRCη(f(λ), r), for each λ ∈ IX and r ∈ I0.

Theorem 3.9. Let (X, τ) and (Y, η) be fts’s. Let f : X → Y be a
bijective mapping.

(1) f is grf-irresolute closed map iff for each µ ∈ IY and r ∈ I0,
f−1(GRCη(µ, r)) ≤ GRCτ (f

−1(µ), r).
(2) f is a grf-irresolute closed map iff f is grf-irresolute open map.

Proof. (1) (Necessity): Let f be grf-irresolute closed. From Theo-
rem 3.8, we have:

f(GRCτ (λ, r)) ≥ GRCη(f(λ), r).

Let µ ∈ IY and put λ = f−1(µ), we have

f(GRCτ (f
−1(µ), r)) ≥ GRCη(f(f

−1(µ)), r)

= GRCη(µ, r).

This implies

GRCτ (f
−1(µ), r) = f−1

(
f(GRCτ (f

−1(µ), r))
)

≥ f−1(GRCη(µ, r)).

(Sufficiency): On the other hand let the condition is satisfied
and let µ ∈ IX such that µ is r-grfc. Then f(µ) ∈ IY . Applying
the condition we have

GRCτ (f
−1f(µ, r)) ≥ f−1(GRCη(f(µ), r)).

This implies that GRCτ (µ, r) ≥ f−1(GRCη(f(µ), r)). Then,

f(GRCτ (µ, r)) ≥ GRCη(f(µ), r).

So by Theorem 3.8 f is grf-irresolute closed.
(2) Applying Theorem 3.8 and taking the complement we have the

required result.
□

From the above theorems we obtain the following theorem

Theorem 3.10. Let f : (X, τ) → (Y, η) be a bijective mapping from a
fts (X, τ) into a fts (Y, η). For each λ ∈ IX , µ ∈ IY and r ∈ I0, the
following statements are equivalent:

(1) f is grfi-homeomorphism.
(2) f is grf-irresolute and grf-irresolute open.
(3) f is grf-irresolute and grf-irresolute closed.
(4) f(GRIτ (λ, r)) = GRIη(f(λ), r).
(5) f(GRCτ (λ, r)) = GRCη(f(λ), r).
(6) GRIτ (f

−1(µ), r) = f−1(GRIη(µ, r)).
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(7) GRCτ (f
−1(µ), r) = f−1(GRCη(µ, r)).

Proof. (1)⇒(3) Let λ be an r-grfc set in X. Then 1− λ is an r-grfo set
in X. By Definition 3.1 (4), f−1 is grf-irresolute,

(f−1)−1(1− λ) = f(1− λ) = 1− f(λ),

is an r-grfo set in Y . Then f(λ) is an r-grfc set in Y . Thus f
is a grf-irresolute closed function.

(3)⇒(5) It can be easily proved by Theorem 3.5 (3) and Theorem 3.8.
(5)⇒(7) From Theorems 3.5 (4) and 3.9 (1), we get the result.
(7)⇒(1) It follows from Theorem 3.9 (1) and Theorem 3.5.

Taking compliment to above implications we get the other implica-
tions. □

4. Applications

Definition 4.1. A fts (X, τ) is said to be:

(i) r-FRCO-T1 if for each pair of distinct fuzzy points xα and yβ
of X there exist r-frco sets λ and µ containing xα and yβ, re-
spectively such that xα /∈ µ and yβ /∈ λ.

(ii) r-FRCO-T2 if for each pair of distinct fuzzy points xα and yβ of
X there exist disjoint r-frco sets λ and µ in X such that xα ∈ λ
and yβ ∈ µ.

(iii) r-GRF-T1 if for each pair of distinct fuzzy points xα and yβ of
X there exist r-grfo sets λ and µ such that xα ∈ λ, xα /∈ µ and
yβ /∈ λ, yβ ∈ µ.

(iv) r-GRF-T2 (r-GRF-Hausdorff) if for each pair of distinct fuzzy
points xα and yβ of X there exist disjoint r-grfo sets λ and µ
in X such that xα ∈ λ and yβ ∈ µ.

Definition 4.2 ([5]). The mapping f : (X, τ) → (Y, η) is called slightly
generalized regular fuzzy continuous (for short, sgrf-continuous) if for
each λ ∈ IX , µ ∈ IY , r ∈ I0 such that µ is an r-frco set and f(λ) ≤ µ,
there exist an r-grfo set ν ∈ IX such that λ ≤ ν and f(ν) ≤ µ.

Definition 4.3. The mapping f : (X, τ) → (Y, η) is called slightly
generalized regular fuzzy continuous (for short, sgrf-continuous) if for
each fuzzy point xα ∈ X and each r-grfco set λ ∈ IY containing f(xα),
there exists an r-grfo set µ ∈ IX containing xα such that f(µ) ≤ λ.

Theorem 4.4. If f : X → Y is a sgrf-continuous injection and Y is
r-FRCO-T1, then X is r-GRF-T1.

Proof. Suppose that Y is r-FRCO-T1. For any distinct fuzzy points xα
and yβ in X, there exist r-frco sets λ, µ in Y . By Theorem 2.13, clearly
λ and µ are r-grfco sets such that f(xα) ∈ λ, f(yβ) /∈ λ, f(xα) /∈ µ and
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f(yβ) ∈ µ. Since f is sgrf-continuous, f−1(λ) and f−1(µ) are r-grfo sets
in X such that xα ∈ f−1(λ), yβ /∈ f−1(λ), xα /∈ f−1(µ) and yβ ∈ f−1(µ).
This shows that X is r-GRF-T1. □

Theorem 4.5. If f : X → Y is a sgrf-continuous injection and Y is
r-FRCO-T2, then X is GRF-T2.

Proof. For any pair of distinct fuzzy points xα and yβ in X, there exist
disjoint r-frco sets λ and µ in Y . By Theorem 2.13, clearly λ and µ
are r-grfco sets such that f(xα) ∈ λ and f(yβ) ∈ µ. Since f is sgrf-
continuous, f−1(λ) and f−1(µ) are r-grfo sets in X containing xα and
yβ respectively. We have f−1(λ) ∧ f−1(µ) = ϕ. This shows that X is
r-GRF-T2. □

Definition 4.6. A fuzzy space is called r-FRCO-regular (respectively
strongly GRF-regular) if for each r-frco (respectively r-grfc) set η and
each fuzzy point xα /∈ η, there exist disjoint r-FO sets λ and µ such that
η ≤ λ and xα ∈ µ.

Definition 4.7. A fuzzy space is called r-FRCO-normal (respectively
strongly GRF-normal) if for every pair of disjoint r-frco (respectively
r-grfc) set η1 and η2 in X, there exist disjoint r-FO sets λ and µ such
that η1 ≤ λ and η2 ≤ µ.

Theorem 4.8. If f is sgrf-continuous injective fr-open function from a
strongly GRF-regular space X onto a fuzzy space Y , then Y is r-FRCO-
regular.

Proof. Let η be an r-frco set in Y and be yβ /∈ η. Take yβ = f(xα). Since
f is sgrf-continuous, f−1(η) is an r-grfc set. Take γ = f−1(η). We have
xα /∈ γ. Since X is strongly GRF-regular, there exist disjoint r-FO sets λ
and µ such that γ ≤ λ and xλ ∈ µ. We obtain that η = f(γ) ≤ f(λ) and
yβ = f(xα) ∈ f(µ) such that f(λ) and f(µ) are disjoint r-fro sets [since
f is a FR-open function]. This shows that Y is r-FRCO-regular. □

Theorem 4.9. If f is sgrf-continuous injective FR-open function from
a strongly GRF-normal space X onto a fuzzy space Y , then Y is r-
FRCO-normal.

Proof. Let η1 and η2 be disjoint r-frco sets in Y . Since f is sgrf-
continuous, f−1(η1) and f−1(η2) are r-grfc sets. Take λ = f−1(η1)
and µ = f−1(η2). We have λ ∧ µ = 0. Since X is strongly GRF-normal,
there exist disjoint r-FO sets α and β such that λ ≤ α and µ ≤ β. We
obtain that η1 = f(λ) ≤ f(α) and η2 = f(µ) ≤ f(β) such that f(α) and
f(β) are disjoint r-fro sets [since f is a FR-open function]. Thus, Y is
r-FRCO-normal. □
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Definition 4.10. Let (X, τ) be a fts and λ, µ ∈ IX , r ∈ I0. The two
fuzzy sets λ and µ are said to be r-GRF-separated iff λqGRCτ (µ, r) and
µqGRCτ (λ, r).

Definition 4.11. Let (X, τ) be a fts and λ ∈ IX , r ∈ I0. A fuzzy set λ
is said to be an r-GRF-connected if it cannot be expressed as the union
of two r-GRF-separated sets.

Theorem 4.12. Let (X, τ) be a fts and λ, µ ∈ IX , r ∈ I0.

(1) If λ, µ are r-GRF-separated and ν, η are non-null fuzzy sets such
that ν ≤ λ, η ≤ µ, then ν, η are also r-GRF-separated.

(2) If λqµ and either both are r-grfo or both r-grfc, then λ and µ
are r-GRF-separated.

(3) If λ, µ are either both r-grfo or both r-grfc, then λ∧ (1−µ) and
µ ∧ (1− λ) are r-GRF-separated.

Proof. (1) and (2) are obvious.
(3) Let λ and µ be both r-grfo. Since λ∧(1−µ) ≤ 1−µ, GRCτ (λ∧

(1− µ), r) ≤ 1− µ and hence GRCτ

(
λ ∧ (1− µ), r

)
qµ. Then

GRCτ (λ ∧ (1− µ), r)q(µ ∧ (1− λ)).

Again, since

µ ∧ (1− λ) ≤ 1− λ, GRCτ

(
µ ∧ (1− λ), r

)
≤ 1− λ,

and hence GRCτ (µ ∧ (1− λ), r)qλ. Then

GRCτ (µ ∧ (1− λ), r)q(λ ∧ (1− µ)).

Thus λ ∧ (1− µ) and µ ∧ (1− λ) are r-GRF-separated.
Similarly we can prove when λ and µ are r-grfc.

□

Theorem 4.13. Let (X, τ) be a fts and r ∈ I0. The two non-null fuzzy
sets λ and µ are r-GRF-separated iff there exist two r-grfo sets ν, ω such
that λ ≤ ν, µ ≤ ω, λqω and µqν.

Proof. For two r-GRF-separated sets λ and µ, µ ≤ 1−GRCτ (λ, r) = ω
and λ ≤ 1−GRCτ (µ, r) = ν(say), where ω and ν are clearly r-grfo, then
ωqGRCτ (λ, r) and νqGRCτ (µ, r). Thus, λqω and µqν.

Conversely, let ν and ω be r-grfo sets such that λ ≤ ν, µ ≤ ω, λqω
and µqν. Then λ ≤ 1 − ω, µ ≤ 1 − ν. Hence GRCτ (λ, r) ≤ 1 − ω,
GRCτ (µ, r) ≤ 1−ν, which imply that GRCτ (λ, r)qµ and GRCτ (µ, r)qλ.
Thus λ and µ are r-GRF-separated. □

Theorem 4.14. Let (X, τ) be a fts, r ∈ I0 and λ be a non-null r-GRF-
connected set. If λ ≤ µ ≤ GRCτ (λ, r) then µ is also r-GRF-connected.
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Proof. Suppose that µ is not r-GRF-connected. Then there exist r-
GRF-separated sets ω1 and ω2 inX such that µ = ω1∨ω2. Let ν = λ∧ω1

and ω = λ ∧ ω2. Then λ = ν ∨ ω. Since ν ≤ ω1 and ω ≤ ω2, by
Theorem 4.12 (1), ν and ω are r-GRF-separated, contradicting the r-
GRF-connectedness of λ. Thus µ is r-GRF-connected. □
Definition 4.15. A fuzzy set λ in a topological space (X, τ) is said to
be r-GRF-connected if λ cannot be expressed as the union of two r-grfo
sets.

Equivalently, a fuzzy topological space (X, τ) is said to be r-GRF-
connected if 0 and 1 are the only fuzzy sets which are both r-grfo and
r-grfc.

Theorem 4.16. A fuzzy topological space (X, τ) is r-GRF-connected iff
X has no non-zero r-grfo sets λ and µ such that λ ∨ µ = 1.

Proof. (Necessity) Suppose (X, τ) is r-GRF-connected. If X has two
non-zero r-grfo sets λ and µ such that λ ∨ µ = 1, then λ is a proper
r-grfo and r-grfc subset of X. Hence, X is not r-GRF-connected, a
contradiction.

(Sufficiency) If (X, τ) is not r-GRF-connected then it has a proper
fuzzy subset λ of X which is both r-grfo and r-grfc. So µ = 1− λ, is a
r-grfo set of X such that λ ∨ µ = 1, which is a contradiction. □
Theorem 4.17. If f : (X, τ) → (Y, σ) is grf-continuous surjection and
(X, τ) is r-GRF-connected, then (Y, σ) is r-fuzzy connected.

Proof. Let X be a r-GRF-connected space and Y is not r-fuzzy con-
nected. Then, there exists a proper fuzzy set λ of Y such that λ ̸=
0, λ ̸= 1 and λ is both r-FO and r-FC set. Since, f is grf-continuous,
f−1(λ) is both r-grfo and r-grfc set in X such that f−1(λ) ̸= 0 and
f−1(λ) ̸= 1. Hence, X is not r-GRF-connected, a contradiction. □
Theorem 4.18. Let f : X → Y be a grf-irresolute mapping, λ ∈ IX

and r ∈ I0. If λ is r-GRF-connected set in X, then so is f(λ) in Y .

Proof. Suppose that f(λ) is not r-GRF-connected in Y . Then there
exist r-GRF-connected sets µ and ν in Y such that f(λ) = µ∨ ν. Since
µ and ν are r-GRF-separated, by Theorem 4.13, there exists two r-grfo
sets ω1 and ω2 such that µ ≤ ω1, ν ≤ ω2, µqω2 and νqω1. Now, since
f is grf-irresolute, f−1(ω1) and f−1(ω2) are r-grfo sets in X and

λ ≤ f−1f(λ) = f−1(µ ∨ ν) = f−1(µ) ∨ f−1(ν).

For µqω2 and νqω1, we have µ ≤ 1−ω2 and ν ≤ 1−ω1 i.e., f
−1(µ) ≤ 1−

f(ω2) and f−1(ν) ≤ 1−f(ω1). Hence f
−1(µ)qf−1(ω2) and f−1(ν)qf−1(ω1).

By Theorem 4.13, f−1(µ) and f−1(ν) are r-GRF-separated in X. Since
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λ = (λ ∧ f−1(µ)) ∨ (λ ∧ f−1(ν)), and λ ∧ f−1(µ) and λ ∧ f−1(ν) are r-
GRF-separated in X, from Theorem 4.12(1), λ is not r-GRF-connected
set. It is a contradiction. □
Theorem 4.19. If f : (X, τ) → (Y, σ) is grf-irresolute surjection and
X is r-GRF-connected, then Y is so.

Proof. Similar to the proof of the above Theorem 4.18. □
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[15] A.P. Šostak, Two decades of fuzzy topology : Basic ideas, Notion
and results, Russian Math. Sur., 44 (1989), pp. 125-186.
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