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Abstract. In this paper, we introduce admissible vectors of co-
variant representations of a dynamical system which are extensions
of the usual ones, and compare them with each other. Also, we
give some sufficient conditions for a vector to be admissible vector
of a covariant pair of a dynamical system. In addition, we show the
existence of Parseval frames for some special subspaces of L2(G)
related to a uniform lattice of G.

1. Introduction

The extended coefficients of a square integrable unitary representa-
tion of a locally compact group, called wavelet or voice transform [3],
are important tools for initiate new Banach spaces [6]. Each of these
transforms are corresponding to a vector called admissible vector. The
notions voice transform and admissible vector are very useful in study
of frames and wavelets [7]. On the other hand, dynamical system is a
concept with a long history which has connections with many branches
of mathematical analysis. Corresponding to each dynamical system, a
crossed product C∗-algebra is defined whose representations are in one-
to-one correspondence with covariant representations of the associated
dynamical system [8, Proposition 2.40]. In this paper we initiate the
notion of admissible vector for a covariant pair of representatins corre-
sponding to the action of a locally compact group G on a C∗-algebra
A, and compare this concept with the classical one. Also, we give some
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sufficient conditions for a vector to be admissible vector for a covariant
pair of a dynamical system. In addition, we prove the existence of Par-
seval frames for some special subspaces of L2(G) related to a uniform
lattice of G.

2. Preliminaries

In this paper G is a locally compact group with a (left) Haar measure
m. For each 1 ≤ p < ∞, we denote Lp(G) := Lp(G,m). For a Hilbert
space H, the space of all bounded linear operators from H to H is de-
noted by B(H). The space of all unitary operators in B(H) is denoted by
U(H). Any continuous homomorphism U : G → U(H), in which U(H)
is endowed with the strong operator topology, is called a unitary repre-
sentation of G on H (for more details see [1]). For each x ∈ G we denote
Ux := U(x). The left regular representation τ : G → U(L2(G,m)) is
defined by τxf(y) := f(x−1y), where f ∈ L2(G,m) and x, y ∈ G.

Definition 2.1. Let U be a unitary representaion of G on H. A vector
η ∈ H is called admissible if there exists a positive constant number B
such that for each ξ ∈ H,∫

G
|⟨ξ, Uxη⟩|2 dm(x) ≤ B∥ξ∥2.

Let U be a unitary representaion of G on H and η ∈ H be an ad-
missible vector for U . The mapping Vη : H → L2(G,m) is defined by
Vη(ξ)(x) := ⟨ξ, Uxη⟩. In the case that Vη is an isometry, it is called a
voice or generalized continuous wavelet transform.

Remark 2.2. If η ∈ H is an admissible vector for representation U of
G, then easily one can prove that f ∗ (Vηξ) = Vη(U(f)(ξ)) for all ξ ∈ H
and f ∈ L1(G), where

U(f) :=

∫
G
f(x)Ux dm(x).

In this paper A is a C∗-algebra and the space of all ∗-automorphisms
of A is denoted by Aut(A).

Definition 2.3. Let G be a locally compact group and A be a C∗-
algebra. Any continuous homomorphism α : G → Aut(A) is called an
action of G on A. In this case, the triple (A,G, α) is called a dynamical
system.

If α is an action of G on A, for each x ∈ G we denote αx := α(x). So,
for each a ∈ A the mapping x 7→ αx(a) from G to A is continuous.

(C, G, Id) and (A, {e}, Id) are trivial examples of dynamical systems.
See [8] for more examples.
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Definition 2.4. Let (A,G, α) be a dynamical system. Let π be a repre-
sentation of A on a Hilbert space H and U be a unitary representation
of G on the same Hilbert space H. The pair (π, U) is called a covariant
representation of (A,G, α) if for all x ∈ G and a ∈ A,

π(αx(a))Ux = Uxπ(a).

Example 2.5. Let G act on C0(G) via

Lx(f)(y) := f(x−1y),

where x, y ∈ G and f ∈ C0(G). Also, assume that the representation
π : C0(G) → B(L2(G)) is defined by

π(f)g := fg,

where f ∈ C0(G) and g ∈ L2(G). Then, (π, τ) is a covariant pair for the
dynamical system (C0(G), G,L), where τ is the left regular representa-
tion of G [8, Example 2.12].

3. Main Results

In this section, we introduce the main notion of this paper and give
related results.

Definition 3.1. Let (π,U) be a covariant representation of a dynamical
system (A,G, α) on a Hilbert space H. A vector η ∈ H is called an
admissible vector for (π, U), if there exist an element a ∈ A and a
constant positive number B such that for all ξ ∈ H,∫

G
|⟨π(αx(a))ξ, Uxη⟩|2 dm(x) ≤ B∥ξ∥2.

Remark 3.2. Let (π,U) be a covariant pair on H. If η is an admissible
vector for U and there exists an element a in A with π(a) = IdH, then
η is an admissible vector for (π,U).

The above definition generalizes the notion of admissible vectors of
unitary representations of a locally compact group. Precisely, a vector
η ∈ H is an admissible vector for a unitary representation U of G (as
in Definition 2.1) if and only if it is an admissible vector for a covariant
representation of the dynamical system (C, G, Id) (as in Definition 3.1),
where Id is the trivial action of G on C.

Proposition 3.3. Let (π,U) be a covariant representation of a dynami-
cal system (A,G, α) on a Hilbert space H. Then, η ∈ H is an admissible
vector for (π, U) if and only if for some a ∈ A, π(a)η is an admissible
vector for U .
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Proof. For each x ∈ G, a ∈ A and ξ ∈ H we have

⟨π(αx(a
∗))ξ, Uxη⟩ = ⟨ξ, π(αx(a))Uxη⟩ = ⟨ξ, Uxπ(a)η⟩,

and so the proof is complete. □

Let H be a Hilbert space and K ⊆ B(H). The commutant space of K
is defined by

K′ := {T ∈ B(H) : for all S ∈ K, TS = ST}.

If (π,U) is a covariant representation of (A,G, α) on H, a closed
subspace H0 of H is called invariant under (π,U) if for each x ∈ G and
a ∈ A, π(a)(H0) ⊆ H0 and Ux(H0) ⊆ H0 [8, page 47].

Proposition 3.4. Let (π,U) be a covariant pair for a dynamical system
(A,G, α).

(i) If T ∈ π(A)′ ∩ U(G)′ and η is an admissible vector for (π,U),
then Tη is also an admissible vector.

(ii) If H0 is a closed invariant subspace under (π, U) with orthogonal
projection PH0 and η is an admissible vector for (π, U), then
PH0η is an admissible vector for (π, U) resricted to H0.

Proof. (i) Let x ∈ G, a ∈ A and ξ ∈ H. Since T ∈ π(A)′ ∩ U(G)′,
we have

⟨π(αx(a
∗))ξ, UxTη⟩ = ⟨T ∗ξ, Uxπ(a)η⟩.

This implies that Tη is an admissible vector for (π, U).
(ii) If H0 is invariant under (π, U), then H⊥

0 is also invariant under
(π,U). There are η1 ∈ H0 and η2 ∈ H⊥

0 such that η = η1 + η2.
So, for each a ∈ A and ξ ∈ H0 we have

⟨π(αx(a))ξ, Uxη⟩ = ⟨ξ, Uxπ(a)η⟩
= ⟨ξ, Uxπ(a)η1⟩+ ⟨ξ, Uxπ(a)η2⟩
= ⟨ξ, Uxπ(a)PH0η⟩
= ⟨π(αx(a))ξ, UxPH0η⟩.

This completes the proof.
□

Proposition 3.5. Let A be a unital C∗-algebra and (π,U) be a covariant
representation of a dynamical system (A,G, α) on a Hilbert space H. If
η ∈ H is an admissible vector for (π,U), then for each invertible element
b ∈ A, π(b)η is also an admissible vector for (π, U). In particular, for
each x ∈ A and λ ∈ C − σ(x), λη − π(x)η is an admissible vector for
(π,U).
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Proof. By hypothesis, there are B > 0 and a ∈ A such that for each
ξ ∈ H, ∫

G
|⟨π(αx(a))ξ, Uxη⟩|2 dm(x) ≤ B∥ξ∥2.

Hence, for each invertible element b ∈ A we have∫
G

∣∣⟨π(αx((b
∗)−1a))ξ, Uxπ(b)η⟩

∣∣2 dm(x)

=

∫
G

∣∣⟨π(αx((b
∗)−1a))ξ, π(αx(b))Uxη⟩

∣∣2 dm(x)

=

∫
G

∣∣⟨π(αx(b
∗))π(αx((b

∗)−1a))ξ, Uxη⟩
∣∣2 dm(x)

=

∫
G
|⟨π(αx(a)ξ, Uxη⟩|2 dm(x)

≤ B∥ξ∥2,
and the proof is complete. □
Notation 3.6. If (π, U) is a covariant pair on H and η ∈ H is an
admissible vector for (π, U), we denote

Wη := span{Uxπ(a)η : x ∈ G and a ∈ A}.

Example 3.7. Let (C0(G), G,L) be the dynamical system introduced
in Example 2.5 with covariant pair (π, τ). Then, for an admissible vector
φ ∈ L2(G) we have

Wφ = span{τxπ(f)φ : x ∈ G and f ∈ C0(G)}
= span{Lxfτxφ : x ∈ G and f ∈ C0(G)}
= span{gτxφ : x ∈ G and g ∈ C0(G)}.

Lemma 3.8. Let (π, U) be a covariant pair on H with an admissible
vector η. Then, the closed subspace Wη of H is invariant under (π, U).

Proof. Let x, y ∈ G and a, b ∈ A. Then, by Definition 2.4 we have

π(a)Uxπ(b)η = Uxπ(αx−1(a))π(b)η

= Uxπ(αx−1(a)b)η ∈ Wη.

Also,

UxUyπ(a)η = Uxyπ(a)η ∈ Wη.

So, Wη is invariant under (π, U). □
By Proposition 3.4 and Lemma 3.8 we can conclude:

Corollary 3.9. Let η be an admissible vector for a given covariant pair
(π,U). Then, PWηη is an admissible vector for (π, U) restricted to Wη.
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Definition 3.10. Let U be a unitary representation of a locally compact
group G on H. If there are a vector η ∈ H and constant numbers
A,B > 0 such that for every ξ ∈ H,

A∥ξ∥2 ≤
∫
G
|⟨ξ, Uxη⟩|2 dm(x) ≤ B∥ξ∥2,

U is called a frame representation. In the case that A = B, U is called
tight frame. In particular, if A = B = 1, U is called Parseval frame.

Trivially, every frame representation has an admissible vector.
The following result is an immediate conclusion of [4, Proposition

4.25] and Example 3.7.

Corollary 3.11. If (π, τ) is the covariant representation of (C0(G), G,L)
as in Example 2.5, and φ is an admissible vector for (π, τ), then the space

span{gτxφ : x ∈ G and g ∈ C0(G)}

has a Parseval frame.

We recall that a discrete subgroup Γ of G is called a uniform lattice
if the quotient space G/Γ is compact.

Theorem 3.12. Let π be a unitary representation of G on Hπ with an
admissible vector η and H := L2(G) ∗ Vη(η). Let Γ be a uniform lattice
for G such that for each f ∈ H,∑

x∈Γ
|f(x)|2 = ∥f∥22.

Then, η ⊗ Vη(η) is the admissible vector for the induced representation

indG×Γ
G (π).

Proof. By [2, Theorem 2.56], Vηη is an admissible vector for τ |Γ, the
restricted left regular representation τ on Γ. So, by [5, Corollary 5.3],
Vηη ⊗ η is an admissible vector for τ |Γ ⊗ π. Finally, because of [1,
Proposition 7.26] the proof is complete. □
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