Sahand Communications in Mathematical Analysis (SCMA) Vol. 14 No. 1 (2019), 55-61

http://scma.maragheh.ac.ir

DOI: 10.22130/scma.2018.72232.291

Admissible Vectors of a Covariant Representation of a Dynamical System

Alireza Bagheri Salec^{1*}, Seyyed Mohammad Tabatabaie², and Javad Saadatmandan³

ABSTRACT. In this paper, we introduce admissible vectors of covariant representations of a dynamical system which are extensions of the usual ones, and compare them with each other. Also, we give some sufficient conditions for a vector to be admissible vector of a covariant pair of a dynamical system. In addition, we show the existence of Parseval frames for some special subspaces of $L^2(G)$ related to a uniform lattice of G.

1. Introduction

The extended coefficients of a square integrable unitary representation of a locally compact group, called wavelet or voice transform [3], are important tools for initiate new Banach spaces [6]. Each of these transforms are corresponding to a vector called admissible vector. The notions voice transform and admissible vector are very useful in study of frames and wavelets [7]. On the other hand, dynamical system is a concept with a long history which has connections with many branches of mathematical analysis. Corresponding to each dynamical system, a crossed product C^* -algebra is defined whose representations are in one-to-one correspondence with covariant representations of the associated dynamical system [8, Proposition 2.40]. In this paper we initiate the notion of admissible vector for a covariant pair of representatins corresponding to the action of a locally compact group G on a C^* -algebra A, and compare this concept with the classical one. Also, we give some

²⁰¹⁰ Mathematics Subject Classification. 22D25, 42C15.

Key words and phrases. Admissible vector, Covariant representation, Dynamical system.

Received: 23 September 2017, Accepted: 09 April 2018.

^{*} Corresponding author.

sufficient conditions for a vector to be admissible vector for a covariant pair of a dynamical system. In addition, we prove the existence of Parseval frames for some special subspaces of $L^2(G)$ related to a uniform lattice of G.

2. Preliminaries

In this paper G is a locally compact group with a (left) Haar measure m. For each $1 \leq p < \infty$, we denote $L^p(G) := L^p(G, m)$. For a Hilbert space \mathcal{H} , the space of all bounded linear operators from \mathcal{H} to \mathcal{H} is denoted by $B(\mathcal{H})$. The space of all unitary operators in $B(\mathcal{H})$ is denoted by $U(\mathcal{H})$. Any continuous homomorphism $U: G \to U(\mathcal{H})$, in which $U(\mathcal{H})$ is endowed with the strong operator topology, is called a unitary representation of G on \mathcal{H} (for more details see [1]). For each $x \in G$ we denote $U_x := U(x)$. The left regular representation $\tau: G \to U(L^2(G, m))$ is defined by $\tau_x f(y) := f(x^{-1}y)$, where $f \in L^2(G, m)$ and $x, y \in G$.

Definition 2.1. Let U be a unitary representation of G on \mathcal{H} . A vector $\eta \in \mathcal{H}$ is called *admissible* if there exists a positive constant number B such that for each $\xi \in \mathcal{H}$,

$$\int_{G} |\langle \xi, U_x \eta \rangle|^2 \ dm(x) \le B \|\xi\|^2.$$

Let U be a unitary representation of G on \mathcal{H} and $\eta \in \mathcal{H}$ be an admissible vector for U. The mapping $V_{\eta}: \mathcal{H} \to L^2(G, m)$ is defined by $V_{\eta}(\xi)(x) := \langle \xi, U_x \eta \rangle$. In the case that V_{η} is an isometry, it is called a voice or generalized continuous wavelet transform.

Remark 2.2. If $\eta \in \mathcal{H}$ is an admissible vector for representation U of G, then easily one can prove that $f * (V_{\eta} \xi) = V_{\eta}(U(f)(\xi))$ for all $\xi \in \mathcal{H}$ and $f \in L^{1}(G)$, where

$$U(f) := \int_G f(x)U_x \, dm(x).$$

In this paper A is a C^* -algebra and the space of all *-automorphisms of A is denoted by Aut(A).

Definition 2.3. Let G be a locally compact group and A be a C^* -algebra. Any continuous homomorphism $\alpha: G \to \operatorname{Aut}(A)$ is called an action of G on A. In this case, the triple (A, G, α) is called a dynamical system.

If α is an action of G on A, for each $x \in G$ we denote $\alpha_x := \alpha(x)$. So, for each $a \in A$ the mapping $x \mapsto \alpha_x(a)$ from G to A is continuous.

 $(\mathbb{C}, G, \mathrm{Id})$ and $(A, \{e\}, \mathrm{Id})$ are trivial examples of dynamical systems. See [8] for more examples. **Definition 2.4.** Let (A, G, α) be a dynamical system. Let π be a representation of A on a Hilbert space \mathcal{H} and U be a unitary representation of G on the same Hilbert space \mathcal{H} . The pair (π, U) is called a *covariant representation* of (A, G, α) if for all $x \in G$ and $a \in A$,

$$\pi(\alpha_x(a)) U_x = U_x \pi(a).$$

Example 2.5. Let G act on $C_0(G)$ via

$$L_x(f)(y) := f(x^{-1}y),$$

where $x, y \in G$ and $f \in C_0(G)$. Also, assume that the representation $\pi: C_0(G) \to B(L^2(G))$ is defined by

$$\pi(f)g := fg,$$

where $f \in C_0(G)$ and $g \in L^2(G)$. Then, (π, τ) is a covariant pair for the dynamical system $(C_0(G), G, L)$, where τ is the left regular representation of G [8, Example 2.12].

3. Main Results

In this section, we introduce the main notion of this paper and give related results.

Definition 3.1. Let (π, U) be a covariant representation of a dynamical system (A, G, α) on a Hilbert space \mathcal{H} . A vector $\eta \in \mathcal{H}$ is called an admissible vector for (π, U) , if there exist an element $a \in A$ and a constant positive number B such that for all $\xi \in \mathcal{H}$,

$$\int_{G} |\langle \pi(\alpha_x(a))\xi, U_x \eta \rangle|^2 dm(x) \le B \|\xi\|^2.$$

Remark 3.2. Let (π, U) be a covariant pair on \mathcal{H} . If η is an admissible vector for U and there exists an element a in A with $\pi(a) = \mathrm{Id}_{\mathcal{H}}$, then η is an admissible vector for (π, U) .

The above definition generalizes the notion of admissible vectors of unitary representations of a locally compact group. Precisely, a vector $\eta \in \mathcal{H}$ is an admissible vector for a unitary representation U of G (as in Definition 2.1) if and only if it is an admissible vector for a covariant representation of the dynamical system $(\mathbb{C}, G, \mathrm{Id})$ (as in Definition 3.1), where Id is the trivial action of G on \mathbb{C} .

Proposition 3.3. Let (π, U) be a covariant representation of a dynamical system (A, G, α) on a Hilbert space \mathcal{H} . Then, $\eta \in \mathcal{H}$ is an admissible vector for (π, U) if and only if for some $a \in A$, $\pi(a)\eta$ is an admissible vector for U.

Proof. For each $x \in G$, $a \in A$ and $\xi \in \mathcal{H}$ we have

$$\langle \pi(\alpha_x(a^*))\xi, U_x \eta \rangle = \langle \xi, \pi(\alpha_x(a))U_x \eta \rangle = \langle \xi, U_x \pi(a)\eta \rangle,$$

and so the proof is complete.

Let \mathcal{H} be a Hilbert space and $\mathcal{K} \subseteq B(\mathcal{H})$. The commutant space of \mathcal{K} is defined by

$$\mathcal{K}' := \{ T \in B(\mathcal{H}) : \text{ for all } S \in \mathcal{K}, TS = ST \}.$$

If (π, U) is a covariant representation of (A, G, α) on \mathcal{H} , a closed subspace \mathcal{H}_0 of \mathcal{H} is called invariant under (π, U) if for each $x \in G$ and $a \in A$, $\pi(a)(\mathcal{H}_0) \subseteq \mathcal{H}_0$ and $U_x(\mathcal{H}_0) \subseteq \mathcal{H}_0$ [8, page 47].

Proposition 3.4. Let (π, U) be a covariant pair for a dynamical system (A, G, α) .

- (i) If $T \in \pi(A)' \cap U(G)'$ and η is an admissible vector for (π, U) , then $T\eta$ is also an admissible vector.
- (ii) If \mathcal{H}_0 is a closed invariant subspace under (π, U) with orthogonal projection $P_{\mathcal{H}_0}$ and η is an admissible vector for (π, U) , then $P_{\mathcal{H}_0}\eta$ is an admissible vector for (π, U) restricted to \mathcal{H}_0 .

Proof. (i) Let $x \in G$, $a \in A$ and $\xi \in \mathcal{H}$. Since $T \in \pi(A)' \cap U(G)'$, we have

$$\langle \pi(\alpha_x(a^*))\xi, U_xT\eta \rangle = \langle T^*\xi, U_x\pi(a)\eta \rangle.$$

This implies that $T\eta$ is an admissible vector for (π, U) .

(ii) If \mathcal{H}_0 is invariant under (π, U) , then \mathcal{H}_0^{\perp} is also invariant under (π, U) . There are $\eta_1 \in \mathcal{H}_0$ and $\eta_2 \in \mathcal{H}_0^{\perp}$ such that $\eta = \eta_1 + \eta_2$. So, for each $a \in A$ and $\xi \in \mathcal{H}_0$ we have

$$\langle \pi(\alpha_x(a))\xi, U_x \eta \rangle = \langle \xi, U_x \pi(a) \eta \rangle$$

$$= \langle \xi, U_x \pi(a) \eta_1 \rangle + \langle \xi, U_x \pi(a) \eta_2 \rangle$$

$$= \langle \xi, U_x \pi(a) P_{\mathcal{H}_0} \eta \rangle$$

$$= \langle \pi(\alpha_x(a))\xi, U_x P_{\mathcal{H}_0} \eta \rangle.$$

This completes the proof.

Proposition 3.5. Let A be a unital C^* -algebra and (π, U) be a covariant representation of a dynamical system (A, G, α) on a Hilbert space \mathcal{H} . If $\eta \in \mathcal{H}$ is an admissible vector for (π, U) , then for each invertible element $b \in A$, $\pi(b)\eta$ is also an admissible vector for (π, U) . In particular, for each $x \in A$ and $\lambda \in \mathbb{C} - \sigma(x)$, $\lambda \eta - \pi(x)\eta$ is an admissible vector for (π, U) .

Proof. By hypothesis, there are B > 0 and $a \in A$ such that for each $\xi \in \mathcal{H}$,

$$\int_{G} |\langle \pi(\alpha_x(a))\xi, U_x \eta \rangle|^2 \ dm(x) \le B \|\xi\|^2.$$

Hence, for each invertible element $b \in A$ we have

$$\int_{G} \left| \langle \pi(\alpha_{x}((b^{*})^{-1}a))\xi, U_{x}\pi(b)\eta \rangle \right|^{2} dm(x)$$

$$= \int_{G} \left| \langle \pi(\alpha_{x}((b^{*})^{-1}a))\xi, \pi(\alpha_{x}(b))U_{x}\eta \rangle \right|^{2} dm(x)$$

$$= \int_{G} \left| \langle \pi(\alpha_{x}(b^{*}))\pi(\alpha_{x}((b^{*})^{-1}a))\xi, U_{x}\eta \rangle \right|^{2} dm(x)$$

$$= \int_{G} \left| \langle \pi(\alpha_{x}(a)\xi, U_{x}\eta) \rangle \right|^{2} dm(x)$$

$$\leq B \|\xi\|^{2},$$

and the proof is complete.

Notation 3.6. If (π, U) is a covariant pair on \mathcal{H} and $\eta \in \mathcal{H}$ is an admissible vector for (π, U) , we denote

$$W_{\eta} := \overline{span} \{ U_x \pi(a) \eta : x \in G \text{ and } a \in A \}.$$

Example 3.7. Let $(C_0(G), G, L)$ be the dynamical system introduced in Example 2.5 with covariant pair (π, τ) . Then, for an admissible vector $\varphi \in L^2(G)$ we have

$$W_{\varphi} = \overline{\operatorname{span}} \{ \tau_x \pi(f) \varphi : x \in G \text{ and } f \in C_0(G) \}$$
$$= \overline{\operatorname{span}} \{ \operatorname{L}_x f \tau_x \varphi : x \in G \text{ and } f \in C_0(G) \}$$
$$= \overline{\operatorname{span}} \{ g \tau_x \varphi : x \in G \text{ and } g \in C_0(G) \}.$$

Lemma 3.8. Let (π, U) be a covariant pair on \mathcal{H} with an admissible vector η . Then, the closed subspace W_{η} of \mathcal{H} is invariant under (π, U) .

Proof. Let $x, y \in G$ and $a, b \in A$. Then, by Definition 2.4 we have

$$\pi(a)U_x\pi(b)\eta = U_x\pi(\alpha_{x^{-1}}(a))\pi(b)\eta$$
$$= U_x\pi(\alpha_{x^{-1}}(a)b)\eta \in W_\eta.$$

Also,

$$U_x U_y \pi(a) \eta = U_{xy} \pi(a) \eta \in W_{\eta}.$$

So, W_{η} is invariant under (π, U) .

By Proposition 3.4 and Lemma 3.8 we can conclude:

Corollary 3.9. Let η be an admissible vector for a given covariant pair (π, U) . Then, $P_{W_n}\eta$ is an admissible vector for (π, U) restricted to W_{η} .

Definition 3.10. Let U be a unitary representation of a locally compact group G on \mathcal{H} . If there are a vector $\eta \in \mathcal{H}$ and constant numbers A, B > 0 such that for every $\xi \in \mathcal{H}$,

$$A\|\xi\|^2 \le \int_C |\langle \xi, U_x \eta \rangle|^2 \ dm(x) \le B\|\xi\|^2,$$

U is called a frame representation. In the case that A = B, U is called tight frame. In particular, if A = B = 1, U is called Parseval frame.

Trivially, every frame representation has an admissible vector.

The following result is an immediate conclusion of [4, Proposition 4.25] and Example 3.7.

Corollary 3.11. If (π, τ) is the covariant representation of $(C_0(G), G, L)$ as in Example 2.5, and φ is an admissible vector for (π, τ) , then the space

$$\overline{span}\{g\tau_x\varphi:x\in G\ and\ g\in C_0(G)\}$$

has a Parseval frame.

We recall that a discrete subgroup Γ of G is called a *uniform lattice* if the quotient space G/Γ is compact.

Theorem 3.12. Let π be a unitary representation of G on \mathcal{H}_{π} with an admissible vector η and $\mathcal{H} := L^2(G) * V_{\eta}(\eta)$. Let Γ be a uniform lattice for G such that for each $f \in \mathcal{H}$,

$$\sum_{x \in \Gamma} |f(x)|^2 = ||f||_2^2.$$

Then, $\eta \otimes V_{\eta}(\eta)$ is the admissible vector for the induced representation $ind_C^{G \times \Gamma}(\pi)$.

Proof. By [2, Theorem 2.56], $V_{\eta}\eta$ is an admissible vector for $\tau|_{\Gamma}$, the restricted left regular representation τ on Γ . So, by [5, Corollary 5.3], $V_{\eta}\eta \otimes \eta$ is an admissible vector for $\tau|_{\Gamma} \otimes \pi$. Finally, because of [1, Proposition 7.26] the proof is complete.

Acknowledgment. We would like to thank the referees of this paper for careful reading and useful comments.

References

- 1. G.B. Folland, A Course in Abstract Harmonic Analysis, CRC Press., London, 1995.
- 2. H. Fuhr, Abstract Harmonic Analysis of Continuous Wavelet Transforms, Springer-Verlag, Berlin, 2005.

- 3. A. Grossmann, J. Morlet, and T. Paul, *Transforms associated to square integrable group representations I*, J. Math. Phys., 26 (1985), pp. 2473-2479.
- 4. P.E.T. Jorgensen, K.D. Merrill and J.A. Packer, *Representations, Wavelets and Frames*, Applied and Numerical Harmonic Analysis, Birkhuser, 2008.
- 5. A. Khosravi and B. Khosravi, Frames and bases in tensor products of Hilbert spaces and Hilbert C*-modules, Proc. Indian Acad. Sci., 117 (2003), pp. 1-12.
- 6. B.H. Sadathoseyni and S.M. Tabatabaie, Coorbit spaces related to locally compact hypergroups, Acta Math. Hungar., 153 (2017), pp. 177-196.
- 7. S.M. Tabatabaie and S. Jokar, A characterization of admissible vectors related to representations on hypergroups, Tbil. Math. J., 10 (2017), pp. 143-151.
- 8. D.P. Williams, Crossed Products of C^* -Algebras, Mathematical surveys and monographs, 2007.

E-mail address: r-bagheri@qom.ac.ir

 $E ext{-}mail\ address: sm.tabatabaie@qom.ac.ir}$

E-mail address: jsaadatmandan@yahoo.com

 $^{^{\}rm 1}$ Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran.

 $^{^{2}}$ Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran.

 $^{^3}$ Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran.