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Abstract 
Plastics are a common residue of our activities and, when incorrectly disposed, high 
quantities of this type of products end up in the environment, namely through 
landfilling and dumping into the aquatic compartments. Therefore, water streams 
and basins are contaminated threatening wildlife, which ultimately can entail human 
toxicity by means of the food-chain effect. One of the major concerns relies on 
microplastics which, due to its size and nature, constitute a more difficult to handle 
residue. 
This paper presents an endeavour to control, reduce or even mitigate the presence 
of plastic debris in the environment, with the benefit of converting them into energy 
or other valuable commodities for the actual society. Gasification can be seen as one 
of the most effective techniques for this purpose, featuring a more environmental 
friendly scheme for treating this kind of residues, avoiding their overspread 
throughout Nature, as well as complying with environmental policies. 
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1. Introduction
The economic and social development seen in the last decades are thoroughly linked to the
common use of products and technologies that enable easier ways of living, learning and
working. Plastic and general synthetic goods are between the major humankind allies, being
present in packaging, hygiene products, clothes, household appliances, and also as
components of technological equipment like laptops, cell phones or any other current
gadgets. Depending on the final purpose different plastics are used, which increments their
contribution to the diversity and quantity of waste generated worldwide, hence complicating
its management and safe disposal.
The plastics industry has shown a progressive development for more than 50 years, and is part
of the top 5 most innovative sectors in the EU, reaching a production of 300million tonnes in
2015 (PlasticsEurope 2016; Eerkes-Medrano, Thompson, and Aldridge 2015). That year, the
total plastic demand in Europe was 49 million tonnes, six countries concentrating 70% of the
total demand, as shown in Figure 1. The remaining 30% represented plastic necessities for 24
other countries. In developed countries, a high percentage of plastic waste is recycled or
valorised energetically, EU accomplishing an average 69% share (PlasticsEurope 2016),
nevertheless in developing countries a significant percentage is still landfilled or sent to other
environmental compartments, affecting all the ecosystems (Kadir et al. 2013).
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Figure 1: Plastic demand in Europe for 2015 (PlasticsEurope 2016) 

An ambitious directive has set a “zero plastic to landfill” goal to be reached by 2025, reducing 
the landfill trend-line by 60 million tonnes, saving an equivalent amount of 750 million barrels 
of oil (PlasticsEurope 2016; Brems, Baeyens, and Dewil 2012). Marine pollution has recently 
been emphasised as one of the issues to account for in the Sustainable Development Goals in 
an attempt to secure “blue wealth”. This is an imperious topic as these systems are being 
increasingly explored and marine policies are required, as well as planetary cooperation 
regarding a healthy ocean, that can continue to provide resources for a stable economy and 
general sustainability of the planet (Visbeck et al. 2014). 
Nowadays, besides the issues regarding plastic safe disposal, a concerning matter is the 
occurrence of microplastics in the environment as reported in recent reviews of current trends 
and future perspectives in this matter (Barboza and Gimenez 2015; Shim and Thomposon 
2015). Microplastics are small particles of plastic (diameter ≤ 5mm) which can have two 
different sources: primary, when they enter directly to the environment, mostly as raw 
material from the plastic industry or as micro-components present in cosmetic or hygiene 
products like toothpastes, shampoos, soaps or lotions (Cole et al. 2011); secondary, when they 
appear indirectly in the environment from the degradation of bigger plastic fractions due to 
the action of climatic conditions or physical elements, like sunlight or erosion (Andrady 2011). 
Whether they are directly flushed down sanitary facilities, or their parent compounds are 
unduly thrown to water courses being exposed to aggressive conditions that disintegrate 
them, microplastics become easily available to the existing wildlife, possibly causing death or 
harm through ingestion, entanglement, chemical pollution interactions or trophic transfer (Li, 
Tse, and Fok 2016; Ivar do Sul and Costa 2014; Wright, Thompson, and Galloway 2013; Sigler 
2014). This effect is in an early stage of investigation but some authors have already 
characterized fractions of microplastics in sediments sampled in natural reserves exposing 
their polymer types and also their additive contents (Fries et al. 2013; Lozoya et al. 2016). 
Other works report possible scale-up effects reaching man through seafood (Van 
Cauwenberghe and Janssen 2014) and fishes (Rochman et al. 2015) intake. If fauna and flora 
threatening was not a sufficient reason to draw the attention of the legal authorities, this 
finding should set an alarm due to a possible impending catastrophe, which could reach 
several communities and generations around the world. 
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Two possible approaches to reduce microplastics formation are: to promote and implement 
the production and utilization of biodegradable plastics or to intervene in the waste 
management systems so that they can take in such noxious residues (Pettipas, Bernier, and 
Walker 2016). The first case is still seen as an ambiguous option as, besides starch and 
vegetable oils, some of the ecological formulations also include synthetic polymers (although 
in smaller portions, when compared to traditional plastic products), accounting for a reduced 
degradation time, but not to a total biodegradability (O’Brine and Thompson 2010; Müller, 
Townsend, and Matschullat 2012). More research is needed to achieve better options, and 
legislation that preconize these sustainable alternatives should be enforced so that they can 
gradually replace the existing ones. Meanwhile, waste management systems are being 
assessed under a dual perspective, reducing plastic residues at the source, i.e. before entering 
the environment, or as a clean-up strategy (Rochman 2016). 
This work will focus on the second procedure, highlighting plastics as a valuable feedstock in 
the view of the waste to energy (WtE) methodologies, constituting a very promising means of 
creating highly claimed assets. 

2. Methodology 
A dedicated search for literature was conducted making use of the online resources available 
for the academic community of the Faculty of Engineering of the University of Porto, namely 
scientific databases like Web of Science, Scopus and Inspec, along with specific individual 
editorial webpages, in some cases. Foremost techniques were used in order to limit the 
existing literature and to manage references, further case-by-case assessment of the results 
being performed (Öchsner 2013) in an attempt to resume what has already been done and to 
establish a link between that and the less-explored possibilities that could be taken into 
account in the future. 

3. Discussion 
In this chapter, a brief description of the thermal conversion of residues will be steered, 
contextualizing the waste-to-energy process as well as emphasizing its major contributions to 
a more sustainable waste management system. Also, a possible option to lessen microplastics 
as environmental debris will be suggested, as a combination of the reviewed literature and 
the knowledge of the thermochemical conversion methods. 
3.1. Waste-to-energy 
Among other options such as recycling and composting, energetic valorization is one of the 
possible mechanisms through which waste streams may be treated. Thermochemical 
processes enable the recovery of energy from residues, consisting in a waste-to-energy (WtE) 
technique (Bosmans et al. 2013). The most common thermochemical methods are described 
in Table 1. 
Pyrolysis consists in the thermal degradation of feedstocks at relatively low temperatures, 
affording three different product fractions: liquid, gas and solid. Besides the necessary pre-
treatment this method involves, the obtained fractions require a final treatment to the 
achievement of energetically usable oils, and the simultaneous breakdown of the organic 
contents. Waste pyrolysis can afford several hundred different compounds, most of them 
considered useless or, worse than that contaminants, which can entail additional cleaning 
procedures (Bosmans et al. 2013). Incineration is the waste degradation through oxidation of 
the combustible species, giving rise to energy in the form of heat. This is accomplished in 
different stages, which can be controlled in order to reduce pollutant emissions such as furans 
and dioxins. Besides these compounds, fly and bottom ashes, dust and other residues are 
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produced, gas cleaning equipment being mandatory, according to specific legislation 
(Bosmans et al. 2013). 
Gasification is a thermochemical conversion scheme that converts carbonaceous materials 
into a synthetic gas (syngas), composed of carbon monoxide, hydrogen, methane, carbon 
dioxide and nitrogen (Balat et al. 2009; Basu 2010). Sometimes using catalysts such as 
quartzite sand or Ni-based compounds promotes H2 formation, while reducing methane 
(Ruoppolo et al. 2012) or even endorses smaller activation energies (Chin et al. 2014), enabling 
faster reactions and easier conversions. Catalysts like Ni-based, iron-based, calcined dolomites 
and magnesites, zeolites and olivine act in situ, advocating chemical reactions that alter syngas 
composition and heating value (Pinto et al. 2015). 

Process Pyrolysis Incineration Gasification 
Temperature (⁰C) 380-530 800-1300 500-1800 
Pressure (MPa) 0.1-0.5 > 0.1 > 0.1 
Pre-treatment Necessary Useful Necessary 

Catalyst Not necessary Not necessary Useful 
Table 1: Summary comparison for the major thermochemical conversion processes, 

adapted from Basu (2010) 

As seen in Table 1, gasification depicts higher temperatures allowing a wider range of 
materials to be encompassed, and assuring a cleaner technology once nearly all the sub-
products or contaminants will be precluded. Thus, gasification promotes efficient results for 
several kinds of residues, reducing waste amounts with the benefit of producing important 
assets like heat, electricity, fuels and chemicals (Bosmans et al. 2013; Lupa et al. 2011; Brems, 
Baeyens, and Dewil 2012; Arafat, Jijakli, and Ahsan 2015). It occurs through a sequence of 
interdependent events from drying to pyrolysis, oxidation and reduction being described by a 
set of reactions inside the gasification chamber (Li, Zhang, and Bi 2010; Basu 2010), as shown 
in Figure 2. 
Numerous authors report gasification appliance to different debris, e.g. biomass (Ahmad et 
al. 2016; Brito, Oliveira, and Rodrigues 2014; Fremaux et al. 2015; Kuo and Wu 2015; Ogi et al. 
2013; Sansaniwal et al. 2017; Wang et al. 2015), municipal solid wastes (Arena 2012; Couto et 
al. 2015a; Couto et al. 2015b; Hu et al. 2015; Wang et al. 2012) and even mixtures of diverse 
feedstocks (Lahijani et al. 2013; Kawamoto and Lu 2016; Đurišić-Mladenović, Škrbić, and 
Zabaniotou 2016; Akkache et al. 2016; Ong et al. 2015; Pinto et al. 2014; Zaccariello and 
Mastellone 2015; Zhu et al. 2015). Although there are several types of gasifiers (Arena 2012), 
these may be generally classified in three main categories according to some technical and 
operational features, as defined in Table 2. The choice of each particular gasifier depends on 
multiple factors such as the syngas quality required and the size of the feedstock particles, 
each of them featuring also different operational conditions and restrictions (Guell, Sandquist, 
and Sorum 2013; Arena 2012). In the case of biomass and wastes, fluidized beds are the most 
commonly used gasifiers as they tolerate a wider particle size range, which is crucial for this 
type of residues (Bosmans et al. 2013; van der Drift, van Doorn, and Vermeulen 2001; 
Siedlecki, de Jong, and Verkooijen 2011). 
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Figure 2: Brief description of gasification reactions in the chamber 

 
Gasifier 

Type Sub-type Temperature Flows Remarks Fuel Oxidant 

Fixed Bed 
Updraft 

1000 ⁰C 
downward upward Simple and robust, fuel size 

and moisture content 
restrictions Downdraft downward downward 

Fluidized 
Bed 

Bubbling 
800-850 ⁰C 

upward upward Relatively low cost, ease of 
operation, good scale-up 

potential Circulating upward upward 

Entrained 
Bed --- 1200-1500 ⁰C downward downward 

Higher costs, complex, fuel 
size restrictions, suitable for 

high capacities 
Table 2: General classification for gasifiers according to bed type and reactor flows 

3.2. Microplastics gasification 
As plastics can be disposed of in diverse shapes, sizes and from a multitude of origins (including 
microplastics), the comprehensive character that gasification has to offer confirms this 
technique as a valuable conversion method for these residues, as reported by several authors 
(Al-Salem, Lettieri, and Baeyens 2009; Arena, Zaccariello, and Mastellone 2009; Aznar et al. 
2006; Baloch et al. 2016; Kim et al. 2011), some even suggesting a possible replacement of 
fossil fuels (Straka and Bičáková 2014). 
Apart from the assets achieved from plastics gasification, improved results were obtained for 
mixtures of plastics with other residues, due to their valuable energetic composition that 

Oxidation Reaction 

Volatiles        Char 

CO+1/2O2 ↔ CO2    ∆H = -283kJ/mol                    C+1/2O2 ↔ CO    ∆H = -111kJ/mol 

H2+1/2O2 ↔H2O      ∆H = -242kJ/mol                     C+O2 ↔ CO2    ∆H = -394kJ/mol 

Boudouard Reaction 

C+CO2 ↔2CO      ∆H = -172kJ/mol 

Water-Gas Reaction 

Primary        Secondary 

C+H2O↔CO+H2    ∆H = -131kJ/mol        C+2H2O↔CO2+2H2    ∆H = - 90kJ/mol       

Methanation Reaction 

C+2H2 ↔CH4                     ∆H = -75kJ/mol 

Water-Gas Shift Reaction 

CO2+H2 ↔ CO+H2O      ∆H = -41kJ/mol 

Steam Reforming Reaction 

CH4+H2O ↔ CO+3H2           ∆H = 206kJ/mol 

CnH + nH2O ↔ nCO+
(n+m)

2
H2  

Dry Reforming Reaction 

CH4+CO2 ↔2CO+2H2          ∆H = 247kJ/mol 

  CnHm + nCO2 ↔ 2nCO + m
2

H2  
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contributes to ameliorated process outcomes (Ahmed, Nipattummakul, and Gupta 2011; 
Moghadam et al. 2014; Yang et al. 2015; Alvarez et al. 2014). This was shown by Ahmed, 
Nipattummakul, and Gupta (2011), who observed enhanced syngas yield and composition as 
well as higher energy contents and thermal efficiency for mixed samples of woodchips and 
polyethylene (PE). The comparison of the enriched syngas to the expected composition if 
linear behaviour occurred is represented in Figure 3 and it can be seen that the results of co-
gasification of the mixed samples are superior to the predictable values and also to the 
situations where the plastic residues or the biomass samples were gasified alone (0% PE and 
100% PE, respectively). The explanation may rely on the hydrogen donor capacity of the plastic 
residues, which stabilizes the radicals generated from biomass and also, on the contribution 
of biomass char to the adsorption of volatiles from polyethylene, exalting hydrogen 
production. 

 
Figure 3: Synergistic effect of co-gasification of wood chips and polyethylene on hydrogen (top) 

and energy (bottom) yields, based on Ahmed, Nipattummakul, and Gupta (2011) 

Moghadam et al. (2014) also reported upgraded syngas production and conversion rates when 
polyethylene ratio was raised in mixtures with palm kernel shell. This easier degradation was 
promoted by the higher volatile matter and lower ash contents of PE. Alvarez et al. (2014) 
investigated the addition of plastics to wood sawdust observing increased gaseous contents 
for higher plastic fractions as well. Yang et al. (2015) studied the gasification characteristics of 
rice straw (RS) with three different plastics (PE; polyethylene terephthalate - PET; polyvinyl 
chloride - PVC) and were able to find lower activation energies when compared to the 
weighted summation of the individual activation energies of the plastics and rice straw. 
Figure 4 depicts a comparison of the activation energy obtained for the real samples to the 
projected for the linear addition of the weighted contribution of each fraction, synergistic 
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effects between rice straw and all the plastic residues being registered, as can be seen from 
the lower activation energies achieved for real samples. This effect is more evident for PE than 
for PET or PVC, possibly due to its less bulky environment which enables faster reaction at 
high temperatures. 

 
Figure 4: Synergistic effect of co-gasification of rice straw and different plastic 

residues, based on data from Yang et al. (2015) 

Besides the benefits pointed hitherto, this synergetic effects boost gasification as a prominent 
technology especially in the case of plastic residues, taking advantage of their intrinsic 
properties to acquire upgraded results. 
Referring to microplastics, to the best of the authors’ knowledge there is only one published 
paper reviewing the microwave-induced plasma gasification (MIPG) of synthetic (and organic) 
waste polluting waterbodies (Panicker and Magid 2016). This work suggests the use of MIPG 
to clean rivers, lakes and even the ocean adapting the gasifier station to boats or platforms, 
so that waste is collected and conveyed to the reactor, the produced syngas being used to 
power the plant and the boat itself, among other commercial uses. Although this may seem 
complex or expensive to assemble and implement in a wide-range of countries and specific 
locations, gasification has indirectly shown to be adequate for microplastics as published in a 
manifold of papers that concern regular size-plastic residues, using pre-treatment steps such 
as shredding, pulverizing, sieving, grinding among others. All these actions reduce the particles 
size, which may be considered similar to using microplastics. In fact, reducing feedstock 
dimensions improves mass and heat transfer efficiencies due to larger surface areas and lower 
diffusion resistance coefficients, increasing reaction rates and fuel conversion (Hernández, 
Aranda-Almansa, and Bula 2010; Parthasarathy and Narayanan 2014). Figure 5 displays syngas 
composition and conversion rate for different particle sizes, a general decrease in both 
parameters being observed for bigger particles. 
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Figure 5: Effect of fuel particle size on syngas composition (top) and fuel conversion rate 

(bottom), based on Hernández, Aranda-Almansa, and Bula (2010) 

Gasification reports of plastic residues that suffer a size reduction before the thermal 
conversion are widespread, some co-gasification examples clearly portraying the advantage 
of this step towards a more homogeneous feedstock (Chin et al. 2014; Lahijani et al. 2013; 
Moghadam et al. 2014). 

4. Conclusions 
This work aimed to potentiate gasification (and co-gasification) of (micro)plastics as an 
efficient and environmental-friendly method for treating this type of residues, aiding also to 
avoid their spread throughout the environmental compartments, in accordance to legislation 
and international recommendations. From the exposed, some findings could be highlighted 
helping to establish a logical sequence that can constitute a contribution to the 
aforementioned goal. WtE was presented as a dual-benefit method for turning environment 
more sustainable once it employs waste transforming it into energy and other assets, that 
become available for consumption without falling back on natural resources as fossil fuels do. 
From the major WtE techniques, gasification was shown to be the most suitable for plastic 
residues, namely fluidized beds have been reported as highly efficient reactors, due to their 
ability to comprise a vast range of feedstock dimensions. Several co-gasification reports on 
the interaction between plastic debris and other residues are published, revealing synergistic 
effects that promote enhanced results when compared to the single treatment of each of the 
fuels. Whereas gasification is strongly applied to regular plastic residues (bigger than 
microplastics) with excellent results, it demonstrates to be a favourable approach to the 
gasification of microplastics, as it commonly includes pre-treatment processes to reduce and 
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homogenize feedstock dimensions, relevant evidences being stated in the case of co-
gasification. This is also sustained by the fact that smaller particles endorse more effective 
interactions inside the gasification chamber, once phenomena like heat and mass transfer are 
better accomplished, preconizing higher reaction rates and improved microplastics 
conversion. Thus, gasification of microplastics should be regarded as a possible contributor to 
achieve the so called “blue wealth”, granting environmental and sustainable results in the 
reduction of marine, coastal or land based-polluted areas. Although numerous publications 
address gasification of plastic residues, more research is needed towards the implementation 
of this method in the specific case of microplastics in situ, as real conditions constitute a more 
tangible set of circumstances that can interfere with the global results. Therefore, the 
enforcement of technical measures that can embrace regional, national as well as 
international collaboration is highly required, so that the ocean’s impact on environmental 
degradation can regress as quickly as possible. 
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