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The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway 
is a key intracellular mediator of a variety of metabolically relevant hormones and cytokines, 
including the interleukin-6 (IL-6) family of cytokines. The JAK/STAT pathway transmits 
extracellular signals to the nucleus, leading to the transcription of genes involved in multiple 
biological activities. The JAK/STAT pathway has been reported to be required for the 
homeostasis of different tissues and organs. Indeed, when deregulated, it promotes the 
initiation and progression of pathological conditions, including cancer, obesity, diabetes, 
and other metabolic diseases. In skeletal muscle, activation of the JAK/STAT pathway by 
the IL-6 cytokines accounts for opposite effects: on the one hand, it promotes muscle 
hypertrophy, by increasing the proliferation of satellite cells; on the other hand, it contributes 
to muscle wasting. The expression of IL-6 and of key members of the JAK/STAT pathway 
is regulated at the epigenetic level through histone methylation and histone acetylation 
mechanisms. Thus, manipulation of the JAK/STAT signaling pathway by specific inhibitors 
and/or drugs that modulate epigenetics is a promising therapeutic intervention for the 
treatment of numerous diseases. We focus this review on the JAK/STAT pathway functions 
in striated muscle pathophysiology and the potential role of IL-6 as an effector of the cross 
talk between skeletal muscle and other organs.

Keywords: IL-6 cytokine, JAK/STAT pathway, skeletal muscle, organ cross talk, epigenetics

INTRODUCTION

The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway 
is a potent signaling cascade, evolutionarily conserved from flies to humans. It is upstream 
of multiple cellular activities such as proliferation, differentiation, migration, apoptosis, 
and cell communication or complex biological processes including inflammation, immune-
system development, immune response, and cancer (Darnell et  al., 1994; O’Shea et  al., 
2002, 2015; Bousoik and Montazeri Aliabadi, 2018). The JAK/STAT pathway was initially 
identified as responsive to interferon-gamma, although a variety of extracellular polypeptide 
signals and their transmembrane receptors were later found to activate it (Schindler et al., 1992; 
Heinrich et  al., 1998; Aaronson and Horvath, 2002; O’Shea and Plenge, 2012).

In mammals, four members of the JAK proteins (JAK1, JAK2, JAK3, and TYK2) and 
seven members of the STAT family (STAT 1–4, STAT 5A/B, and STAT 6) were identified. 
They all share structurally and functionally conserved domains. JAK/STAT proteins are 
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ubiquitously expressed, and different combinations of them 
respond to specific cytokines or growth factor signals, assuring 
a high degree of specificity with distinct in vivo roles 
(Aaronson and Horvath, 2002; Kisseleva et  al., 2002; 
Rawlings  et  al., 2004). The mechanism of IL-6/JAK/STAT 
signaling cascade allows a direct communication between 
transmembrane receptors and the nucleus and can 
be summarized by the following steps: IL-6, the ligand, binds 
the IL-6r-Gp130 receptor complex and activates the JAK 
tyrosine kinases recruited to the intracellular domains of 
their receptors. Once activated, JAK proteins change 
their  conformation, dimerize, phosphorylate, and activate 
their primary substrates, the STAT proteins. Tyrosine-
phosphorylated STAT proteins homo- or hetero-dimerize and 
translocate to the nucleus, where they interact with coactivators 
and bind to specific regulatory elements in the promoter 
regions of thousands of different target protein-coding genes, 
along with microRNAs and long non-coding RNAs. STAT 
activity is regulated by phosphorylation, acetylation, and 
methylation, promoting STAT dimer stabilization, DNA 
binding, interaction with transcriptional coactivators, and 
target gene expression (Zuang, 2013; Yu et al., 2014; Zimmers 
et al., 2016). A further level of control is provided by negative 
regulators of JAK/STAT signaling that guarantee a cytokine-
inducible feedback inhibition of signals from specific cytokine 
receptors (Greenhalgh and Hilton, 2001; Aaronson and 
Horvath, 2002; Linossi et  al., 2013). JAK/STAT signaling 
operates also in response to IL-6 trans-signaling. Indeed, a 
soluble form of IL-6 receptor (sIL-6R), comprising the 
extracellular portion of the receptor, binds to IL-6, and the 
IL-6–sIL-6R complex is able to bind to and activate gp130 
homodimers in cells which lack the membrane bound IL-6R 
(Kallen, 2002; Scheller et  al., 2006). Thus, the JAK/STAT 
signaling cascade provides a remarkable direct and tuned 
translation of extracellular signals into a transcriptional 
response in a vast range of cells.

Primarily identified as functioning in hematopoietic cells, 
the JAK/STAT signaling cascade has been found to play a 
critical role in different cell types and tissues, including skeletal 
muscle. As skeletal muscle contracts, it secretes several cytokines 
into the circulation and the JAK/STAT pathway mediates the 
signaling of many of the myokines secreted by skeletal muscle 
(Pedersen and Febbraio, 2008; Hoffmann and Weigert, 2017).

Here, we  will review the IL-6/JAK/STAT signaling cascade 
in myogenesis and skeletal muscle pathophysiology, focusing 
on its dichotomic role in myogenic cell proliferation and 
differentiation, as well as in muscle growth and muscle wasting. 
We  will also discuss some examples of cross talk  
between muscle and other tissues. Finally, we  will examine 
IL-6/JAK/STAT activity regulation, emphasizing the 
epigenetic mechanisms.

IL-6/JAK/STAT SIGNALING CASCADE IN 
SKELETAL MUSCLE

It is now widely accepted that through IL-6 family signals, 
the JAK/STAT pathway is required for efficient muscle fiber 
adaptation during development and regeneration. It was proposed 
that different combinations of the JAK/STAT pathway members 
have opposite effects on muscle differentiation and myogenesis. 
Indeed, the JAK1/STAT1/STAT3 axis promotes myoblast 
proliferation, preventing the premature differentiation into 
myotubes. Conversely, JAK2/STAT2/STAT3 induces myogenic 
differentiation, suggesting that other intracellular ligands act 
on JAK/STAT factors, to obtain distinct cellular responses at 
each step during development and myogenesis (Sun et  al., 
2007; Wang et  al., 2008; Jang and Baik, 2013; Muñoz-Cánoves 
et  al., 2013). Several studies demonstrated a role of the JAK/
STAT pathway in regulating the myogenic progression of adult 
satellite cells (MuSCs), a population of cells that play a 
fundamental role in skeletal muscle postnatal growth and repair 
upon injury. MuSCs from IL-6 KO mice showed decreased 
proliferative capacity, both in vivo and in vitro. This impairment 
was caused by a lack of IL-6-mediated activation of STAT3 
signaling. STAT3 induces the transcription of downstream genes 
involved in several biological functions, including myoblast 
proliferation, differentiation, and survival (Serrano et  al., 2008; 
Toth et al., 2011). More recently, it has been shown that STAT3 
knock-down (elicited by transient pharmacological or siRNA 
inhibition) in MuSCs, induced their expansion upon regeneration, 
but inhibited their differentiation, thus impairing muscle 
regeneration. Moreover, repeated intermittent administration 
of a STAT3 inhibitor in mdx mice, determined a sustained 
expansion of MuSC, contributing to an overall improvement 
in skeletal muscle repair (Tierney et  al., 2014). Elsewhere, it 
was described that JAK2 or STAT3 KO in isolated MuSCs 
and pharmacological inhibition in vivo promoted symmetric 
satellite cell division and markedly improved their homing 
and repairing ability when transplanted into regenerating muscle 
(Price et al., 2014). However, different evidences were described 
when STAT3 depletion was investigated specifically by genetic 
deletion in MuSCs of mdx mice. By this approach, a progressive 
reduction of MuSC accompanied with aggravated fibrosis and 
muscle inflammation was observed. Then, a permanent knockout 
of STAT3 and a direct and long-term treatment with STAT3 
inhibitors, which causes a gradual depletion of MuSCs, might 
have adverse effects on MuSCs and regeneration in DMD 
patients (Zhu et  al., 2016), in contrast with other approaches 
such as transient inhibition by chemical inhibitors or siRNA, 
shown elsewhere (Price et  al., 2014; Tierney et  al., 2014). It 
may be  speculated that transient and periodic reduction of 
STAT3  in cellular component of the MuSC niche, such as 
macrophages or fibro/adipogenic progenitors, known for playing 
an essential role in muscle regeneration (Bentzinger et  al., 
2013), is responsible for the beneficial effects observed in 
dystrophic muscle. Alternatively, IL-6 downstream effectors 
other than STAT3 could be  active in MuSC in promoting 
muscle regeneration. Nevertheless, studies demonstrated that 
IL-6-mediated immunological responses may promote additional 

Abbreviations: AT, Adipose tissue; C/EBPδ, CCAAT/enhancer binding protein; 
DMD, Duchenne muscular dystrophy; DNMT, DNA methyltransferase; FAP,  
Fibro-adipogenic progenitors; FoxO,  Forkhead box; IL-6, Interleukin 6; JAK, Janus 
kinase; MAFbx, Muscle atrophy F-box; MuRF, Muscle RING finger; MuSC, Muscle 
satellite cell; sIL-6R, Soluble interleukin 6 receptor; STAT, Signal transducer and 
activator of transcription; UPS, Ubiquitin proteasome system.
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muscle fiber damage under conditions of dystrophin deficiency 
in mdx mice (Pelosi et  al., 2015). Accordingly, IL-6 receptor 
blockade with the anti-IL-6 receptor antibody attenuated muscular 
dystrophy via promoting skeletal muscle regeneration in mdx 
and dystrophin-/utrophin-deficient mice (Pelosi et  al., 2015; 
Wada et  al., 2017).

IL-6/JAK/STAT pathway mediates increased proliferation of 
MuSC in other conditions such as acute exercise. Indeed, in 
a model of increasing mechanical loading, muscle hypertrophy 
resulted attenuated in IL-6 KO mice, due to an impaired MuSC 
proliferation and migration (Serrano et  al., 2008). Moreover, 
mRNA expression for STAT3 target genes that regulate MuSC 
proliferation, migration, and differentiation was reduced (Serrano 
et  al., 2008). Acute resistance exercise and resistance training 
activate the IL-6/STAT1/STAT3 signaling pathway in rat skeletal 
muscle (Begue et  al., 2013) and in human (Trenerry et  al., 
2007, 2011), suggesting a potential role for STAT3  in the 
adaptive growth of skeletal muscle mediated by MuSCs. 
Nevertheless, more recent studies in human muscle biopsies 
and in STAT3 KO murine model concluded that STAT3 localized 
to the MuSCs is not required in load-induced skeletal muscle 
hypertrophy (Amorese and Spangenburg, 2017; Perez-Schindler 
et  al., 2017). The cause of this contradictory evidence may 
be  related to the methods for inducing hypertrophy and to 
the cell types where STAT3 activation occurs. Indeed, STAT3 
activation in immune cells or other cells resident in skeletal 
muscle may also play significant roles in regulating muscle 
responses to exercise training (van de Vyver et  al., 2016).

While sudden and acute induction of the IL-6 cascade 
promotes muscle growth, IL-6 sustained and elevated release 
and STAT3 activation have been associated with muscle atrophy 
occurrence in several catabolic conditions, such as obesity, 
diabetes, and age-induced sarcopenia or cancer (Zimmers et al., 
2016). IL-6 overexpression in transgenic mice caused muscular 
atrophy, though entirely reversed by treatment with the membrane 
IL-6 receptor antibody (Tsujinaka et  al., 1996). Interestingly, 
the negative role of IL-6  in the control of muscle mass was 
initially demonstrated using animal models of inflammation 
and cancer-associated cachexia. Cachexia is a muscle wasting 
syndrome accompanying many acute and chronic diseases, 
including cancer (Fearon et  al., 2012; He et  al., 2013; Argiles 
et al., 2014; Pigna et al., 2016). In cachexia experimental models, 
STAT3 expression is induced and correlates with increased 
expression of skeletal muscle ubiquitin E3 ligases. STAT3 
dominant negative activity blocked the skeletal muscle loss 
downstream of IL-6, partly by inhibiting the activity of the 
ubiquitin proteasome system (UPS), in vitro and in vivo 
(Baltgalvis et  al., 2009; Bonetto et  al., 2011, 2012). Coherently, 
treatment with neutralizing antibodies prevented the increase 
of IL-6 concentration, exerting a protective effect on body 
weight loss in cachectic mice and blocking STAT3 activation 
reduced muscle wasting (Strassmann et  al., 1992; Oldenburg 
et al., 1993; Haddad et al., 2005; Zimmers et al., 2016). Moreover, 
treatment of cachectic mice with pharmacological inhibitors 
of the JAK/STAT pathway components, partially prevented 
muscle mass loss (Gilabert et  al., 2014; Pretto et  al., 2015; 
Silva et  al., 2015). JAK/STAT pathway activation is responsible 

for muscle atrophy by several potential mechanisms. In cachexia 
and chronic kidney disease models, both of which exhibit 
muscle mass loss, STAT3 initiated muscle wasting by stimulating 
CCAAT/enhancer binding protein (C/EBPδ) expression and 
activity, which in turn increased myostatin, MAFbx/Atrogin-1, 
and MuRF-1 expression in myofibers (Zhang et  al., 2013). 
Direct UPS activation can be  mediated by STAT3 or indirectly 
via caspase-3 activation (Silva et  al., 2015) or dependent on 
FoxO transcription factors (Hutchins et  al., 2013; Judge et  al., 
2014). Cachexia has been also associated with posttranslational 
modifications of JAK/STAT3 components, such as increased 
muscle phospho-Y705-STAT3 and increased STAT3 localization 
in myonuclei (Bonetto et  al., 2011). Muscle catabolic profile 
may also be  caused by the reduction in ribosomal protein 
kinase S6K1 phosphorylation and the increase of SOCS3 
transcription, an inhibitor of the JAK/STAT pathway (Haddad 
et  al., 2005). Nevertheless, others found that IL-6 does not 
stimulate muscle loss per se (Baltgalvis et  al., 2008), thus 
supposing that other cytokines activate JAK/STAT, which triggers 
skeletal muscle proteolysis (Zhang et  al., 2013). More recently, 
it was also shown that IL-6 trans-signaling works as a novel 
potent inducer of autophagy in myotubes inducing pathway 
that may be important in cancer cachexia development (Pettersen 
et al., 2017). Furthermore, IL-6 trans-signaling/STAT3 axis was 
identified as a therapeutic target in advanced cancer patients 
presenting cachexia (Miller et  al., 2017).

In the muscle microenvironment, a JAK/STAT pathway 
contribution in catabolic conditions can be considered in relation 
to its role in promoting the expansion of the satellite cell pool 
in vitro and in vivo, impairing differentiation and muscle repair 
(He et  al., 2013; Muñoz-Cánoves et  al., 2013; Price et  al., 
2014; Tierney et  al., 2014; Sala and Sacco, 2016; Zhu et  al., 
2016). Other than activation of STAT3  in MuSCs, secreted 
and elevated IL-6 levels and persistent STAT3 activation were 
observed in atrophic conditions in the fibro/adipogenic 
progenitors (FAPs), a population of cells resident in skeletal 
muscle, fundamental for muscular regeneration and inducible 
source of IL-6 (Joe et  al., 2010; Madaro et  al., 2018). IL-6/
STAT3 signaling inactivation in FAPs counteracted muscle 
atrophy and fibrosis in mouse models of acute denervation 
and amyotrophic lateral sclerosis (ALS) (Gurney et  al., 1994). 
This suggests an alternative IL-6/JAK/STAT-mediated mechanism, 
which induces muscle mass loss and represents a possible 
therapeutic target for neurogenic atrophy diseases (Madaro 
et  al., 2018; Marazzi and Sassoon, 2018).

Altogether, the autocrine and paracrine action of the IL-6/
JAK/STAT pathway on skeletal muscle has opposite effects on 
satellite cells differentiation and proliferation, hence on muscle 
homeostasis. Moreover, it causes both deleterious (pro-atrophy) 
and beneficial (pro-repair and pro-growth) effects on muscle 
fiber size (Figure 1). The balance between these opposite 
outcomes may depend on the fine tuning of the JAK/STAT 
pathway. This effect can be  mediated by the interaction of the 
JAK/STAT molecular effectors with the myofibers or with the 
multiple cell types of the muscle niche. Further studies will 
provide new insights to elucidate the molecular mechanism 
underlying this complex regulation.
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IL-6 AS A MEDIATOR OF THE CROSS 
TALK BETWEEN SKELETAL  
MUSCLE AND OTHER ORGANS

Progressive discovery of new myokines by application of new 
technologies contributed to the definition of the muscle secretome 
and to provide new insights regarding their therapeutic potential 
in the treatment of obesity, metabolic disease, and cancer 
(Whitham and Febbraio, 2016).

IL-6 was the first cytokine to be  proposed as a myokine 
(Pedersen et al., 2003), and the first myokine found to be secreted 
during exercise, playing important roles in regulating the 
metabolism of other organs (Goldstein, 1961). One of the main 
paracrine functions of IL-6 is to lead to an increase in hepatic 
glucose production, which works as an energy source for 
contracting muscles (Febbraio et  al., 2004). Furthermore, during 
exercise, skeletal muscle performs also an “energy sensing” role, 
affecting some metabolic processes and, through IL-6, mediates 
the cross talk with insulin-sensitive tissues. By activation of 
AMP-activated protein kinase (AMPK) and/or PI3-kinase, IL-6 
leads to enhanced glucose uptake, lipolysis and fatty acid oxidation, 
which provide energy from skeletal muscle (Keller et al., 2001; 

Al-Khalili et al., 2006). Moreover, IL-6/JAK/STAT plays also a 
major role in mediating communication between skeletal muscle 
and pancreas, enhancing glucose tolerance by activating glucagon-
like peptide 1 (GLP1) in pancreatic islets. This allows adaption 
to changes in insulin demand, reduction of food intake and 
body weight, though having a role in improving metabolic 
homeostasis in obesity and type 2 diabetes (Bouzakri et al., 
2011; Plomgaard et al., 2012; Ellingsgaard et al., 2015).

A direct cross talk between muscle tissue and adipose tissue 
(AT) occurs in obese mice. In this condition, subcutaneous 
adipose tissue does not contribute to IL-6 secretion during 
exercise, so the increased IL-6 produced following prolonged 
exercise probably derives from skeletal muscle (Eder et  al., 
2009). In fact, obese mice exposed to acute exercise showed 
an IL-6 induction, accompanied by increase in STAT3 
phosphorylation, reduction in M1 macrophages, and 
inflammation in infiltrates in AT (Macpherson et  al., 2015).

Skeletal muscle-derived growth factors and cytokines have 
a critical role in maintaining the cardiovascular system. The 
trophic cascade initiated by skeletal muscle JAK/STAT3 signaling 
increases growth factor levels in multiple tissues, leading to 
elevated circulating HGF and VEGF. Their synergistic actions 

FIGURE 1 | Diagram showing the main paracrine and dichotomic autocrine functions of the IL-6/JAK/STAT3 pathway in the pathophysiology of skeletal muscle. 
Skeletal muscle physiological contraction induces IL-6 release (black arrows), with paracrine effects on other organ metabolism. Upon injury or in DMD, IL-6 is 
released (orange arrows) following the inflammatory response and IL-6/JAK/STAT pathway promotes muscle repair by activating pro-myogenic genes (such as 
MyoD) that allow MuSC differentiation and fusion into new or existing myofibers. In catabolic conditions, IL-6 levels are elevated (red arrows) and induce muscle size 
loss, by activation of different pro-atrophic pathways in myofibers. In neurogenic atrophy, FAPs activate the IL-6/JAK/STAT pathway. In response to acute exercise, 
IL-6 is highly produced (blue arrows) and IL-6/JAK/STAT pathway is activated, inducing pro-proliferation and pro-fusion genes that control contribution of MuSC to 
myofiber growth. In the box, the IL-6/JAK/STAT3 signaling model is shown. IL-6 binds the IL-6r-Gp130 receptor complex and activates the JAK tyrosine kinases. 
Once activated, JAK proteins dimerize, phosphorylate, and activate their primary substrates, the STAT proteins. Phosphorylated STAT proteins dimerize and 
translocate to the nucleus, where they activate different target protein-coding genes.
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further activate the myocardial repair mechanisms orchestrated 
by PI3K-AKT, ERK (Shabbir et  al., 2010). The cardioprotective 
events of the IL-6/JAK/STAT3 apparently contradict its activity 
in promoting skeletal muscle wasting, underlying the multiple 
role of JAK-STAT3 signaling in different tissues.

It is known that the myokines mediate direct communication 
from skeletal muscle to bone. Elevated IL-6 induces bone loss 
in IL-6 KO mice (De Benedetti et  al., 2006) and is a systemic 
mediator of the bone loss in dystrophy. In this context, elevated 
levels of IL-6 produced by inflamed skeletal muscle induce 
osteoclast increase, which can be  reduced by treatment with 
an anti-IL-6 antibody (Rufo et  al., 2011). Interestingly, IL-6, 
by affecting the functions of liver, fat, and intestine, induces 
secretion of hepatokines and adipokines to regulate bone 
formation and bone resorption (Rufo et al., 2011; Guo et al., 2017).

Collectively, these data show that IL-6 produced by contracting 
skeletal muscle plays important roles in regulating metabolism 
in other organs (Figure 1). Hence, lack of physical activity 
appears to affect a whole network of organs such as liver, 
pancreas, fat, and bone. From this perspective, the IL-6/JAK/
STAT pathway is nodal in novel therapeutic approaches for 
the preventive treatment of diseases including cardiovascular 
diseases, type 2 diabetes, cancer, and osteoporosis.

EPIGENETIC CONTROL OF  
IL-6/JAK/STAT PATHWAY

Considering that IL-6 mediates cellular response to stress or 
metabolic changes, it is not surprising that the IL-6 pathway 
is also modulated at the epigenetic level, at least by two main 
mechanisms, i.e., DNA methylation and histone modifications 
(Figure 2A). IL-6 gene transcription itself is directly modulated 
by histone acetylation and methylation in macrophages and 
in cancer cell lines (Lee et  al., 2011; Zhang et  al., 2015; Hu 
et  al., 2016; Serresi et  al., 2016; Chen et  al., 2018). Moreover, 
an association between IL6/JAK/STAT DNA altered methylation 
and depression has been recently described (Ryan et  al., 2017). 
JAK and STAT gene hypomethylation might also exert influences 
on erythroid lineage choice by specifically upregulating 
erythropoiesis transcription factors (Liu et  al., 2017). In B cells 
activating pathway, the lysine-specific histone methyltransferase 
KMT2D affected H3K4 methylation and expression of a specific 
set of JAK-STAT genes (Figure 2B; Ortega-Molina et al., 2015).

Interestingly, IL-6 signaling modulates or cooperates with 
epigenetic mechanisms in regulating chromatin accessibility in 
tumorigenesis and development (Figure 2C). For instance, IL-6 
promotes hypermethylation of the miR142-3p promoter in 
glioblastoma cells and of certain tumor suppressor genes in 
oral squamous cell carcinoma (Gasche et al., 2011; Chiou et al., 
2013). IL-6-induced hypermethylation and gene silencing are 
mediated by DNA methyltransferases (DNMTs). IL-6 contributes 
to tumor growth by increasing DNMT expression and 
epigenetically repressing tumor suppressor genes or several 
microRNA in cancer cell lines (Hodge et  al., 2005; Zhang 
et  al., 2005, 2006; Braconi et  al., 2010; Takeuchi et  al., 2015). 
IL-6 also promotes DNA methylation of the promoter-bound 

STAT3, leading to a decrease in STAT3 DNA binding in human 
colon cancer cells (Yang et  al., 2010), or of the Foxp3 gene, 
thus influencing regulatory T cell development (Lal et al., 2009). 
T cells differentiation is also regulated by STAT3-dependent 
histone trimethylation at target gene loci (Durant et  al., 2010).

STAT proteins have also been implicated in epigenetic switches 
involving somatic cell and metabolic reprogramming, inflammation, 
and transformation. JAK/STAT3 activity plays a fundamental 
role in facilitating DNA demethylation/de novo methylation to 
complete reprogramming of pre-iPSC (Tang et  al., 2012). Both 
STAT3 and STAT5 mediate trans-activation and epigenetic 
remodeling of IL-10 through their interaction with the histone 
acetyltransferase p300  in lupus T cells (Hedrich et  al., 2014). 
Furthermore, STAT proteins can recruit and form a repressor 
complex with either the histone methyltransferases, or with NCoR 
associated with histone deacetylases, repressing the transcription 
of genes or microRNA promoters (Nakajima et al., 2001; Litterst 
et  al., 2003; Wang et  al., 2004; Mandal et  al., 2011; 
Chang et  al., 2015).

To date, no evidence about the epigenetic control of IL-6 
pathway has been reported in skeletal muscle. Identification 
of the epigenetic mechanisms regulating IL-6 gene expression, 
or the expression of the IL-6 pathway downstream effectors, 
as well as STAT protein interaction studies in specific muscle 
cell types or during muscle differentiation and their effects 
on muscle cell biology remain puzzling.

CONCLUSION AND PERSPECTIVES

The IL-6/JAK/STAT signaling cascade plays a dominant role 
in skeletal muscle pathophysiology. IL-6 autocrine, paracrine, 
and endocrine functions assign to its downstream effectors 
pivotal importance in skeletal muscle-wasting-associated diseases 
and other multiple system diseases where muscle acts in 
communication with other organs. Targeting the components 
of the JAK/STAT pathway recently emerged as a strategic 
approach for the treatment of inflammatory diseases and 
human cancer.

This review highlights the opposite outcomes on muscle 
biology caused by the amount of local and systemic release 
of IL-6. Transient release and short-term acute action have 
positive effects, by increasing the source of progenitors for 
regeneration and growth in skeletal muscle. This also affects 
metabolic processes in other organs, since it stimulates glucose 
production. In different circumstances, chronically elevated levels 
of IL-6 have negative consequences, promoting muscle atrophy 
through different mechanisms not completely yet elucidated. 
These antithetical effects can also be  a key to the several 
discrepancies observed with different experimental approaches 
aimed to decipher the IL-6/JAK/STAT role in skeletal muscle 
functions. Moreover, the different cell and tissue compartments 
where IL-6 is produced and acts can account for the conflicting 
effects observed on muscle repair, growth, and wasting. 
Additionally, a role in these dichotomous outcomes can also 
be carried out by the combined action of the IL-6 trans-signaling, 
which is pro-inflammatory and the classic IL-6 signaling via 
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FIGURE 2 | (A) DNA methylation and histone modifications are involved in epigenetic modulations of IL-6/JAK/STAT pathway members. They induce chromatin 
conformational transitions, altering accessibility of the transcriptional machinery (transcriptional active chromatin—blue arrow; transcriptional inactive chromatin – red 
arrow). DNA methylation is a process by which methyl groups are added to the cytosine of the DNA molecule and acts to repress gene transcription. Histone 
acetylation transfers acetyl groups to the histones and increases gene expression. Histone deacetylation removes acetyl groups from histones, allowing the histone 
to wrap more tightly the DNA and preventing transcription. Histone methylation adds methyl groups to the amino acids of the histones. Methylation of histones can 
either increase (i.e., H3K79, H3K4) or decrease (i.e. H3K9, H3K27) gene transcription. (B) Epigenetic modifications of IL-6/JAK/STAT pathway member genes that 
lead to gene repression (red) or gene activation (blue). (C) Epigenetic switches involving IL-6/JAK/STAT pathway members that lead to gene repression (red) or gene 
activation (blue) in tumorigenesis and development.
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the membrane bound IL-6R, which instead is needed for 
regenerative or anti-inflammatory activities of the cytokine 
(Scheller et  al., 2011; Rose-John, 2012; Belizário et  al., 2016).

Development of specific inhibitors or neutralizing antibodies 
against IL-6/JAK/STAT pathway factors may be  proposed for 
diseases that cause muscle wasting, including DMD, cancer 
cachexia, and diabetes. Indeed, many studies demonstrated that 
they could ameliorate muscle wasting in mice (Zhang et  al., 
2013; Pretto et  al., 2015; Silva et  al., 2015). Nevertheless, they 
can act by nonspecific mechanisms and on cells and tissues 
other than myofibers.

In the light of this evidence, any therapeutic approach for 
skeletal muscle-wasting diseases targeting IL-6/JAK/STAT 
pathway should ideally consider the rate and the site of IL-6 
production, in order to promote the benefits and avoid the 
detrimental effects.

Future studies on the mechanisms of action underlying the 
IL-6/JAK/STAT signaling cascade will provide new insights to 
tailor therapeutic strategies for each physiopathological condition. 
Further investigation of epigenetic mechanisms regulating and 

involving IL-6/JAK/STAT signaling cascade may identify 
epigenetics modification of IL-6 and its effectors as biomarkers 
of several diseases. Moreover, the IL-6/JAK/STAT molecular 
factors may represent new targets of the evolving epigenetics 
therapies directed to systemic pathologies and neuromuscular 
diseases, where combinations of epigenetic modulators may 
provide a tool to discriminate among alternative therapeutic effects.
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