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Dense time-series metabolomics data are essential for unraveling the underlying

dynamic properties of metabolism. Here we extend high-resolution-magic angle

spinning (HR-MAS) to enable continuous in vivo monitoring of metabolism by NMR

(CIVM-NMR) and provide analysis tools for these data. First, we reproduced a result

in human chronic lymphoid leukemia cells by using isotope-edited CIVM-NMR to

rapidly and unambiguously demonstrate unidirectional flux in branched-chain amino acid

metabolism. We then collected untargeted CIVM-NMR datasets for Neurospora crassa,

a classic multicellular model organism, and uncovered dynamics between central carbon

metabolism, amino acid metabolism, energy storage molecules, and lipid and cell wall

precursors. Virtually no sample preparation was required to yield a dynamic metabolic

fingerprint over hours to days at ∼4-min temporal resolution with little noise. CIVM-NMR

is simple and readily adapted to different types of cells and microorganisms, offering an

experimental complement to kinetic models of metabolism for diverse biological systems.

Keywords: CIVM-NMR, real-time metabolomics, dynamics, flux, HR-MAS, myeloid leukemia cells, Neurospora

crassa, BCAA

INTRODUCTION

Metabolic time-series data are invaluable for the development and validation of high-quality
models that accurately describe the dynamics of metabolism (Montana et al., 2011; Link et al.,
2014; Sefer et al., 2016). Information about the changing metabolic state of an organism typically
requires extensive time, resources, and sample material. As such, researchers must choose between
variables such as the number of replicates, the experiment duration, and the time resolution for
time-series. Furthermore, traditional metabolomics experimental designs face the challenges of
extraction biases (Sitnikov et al., 2016) and the confounding of biological and analytical variance
(Tabatabaei Anaraki et al., 2018). While many studies employ sample preparation and extraction
approaches effectively, direct or in vivo measurements are fundamentally simpler to obtain and
interpret. Likewise, while carefully designed (Rhoades et al., 2017) and executed studies with large
sample sizes yield powerful insights into the dynamics of biological systems (Sengupta et al., 2016;
Krishnaiah et al., 2017; Cannon et al., 2018), continuous and repeated measurements on the same
living sample are invaluable for monitoring and confirming these dynamics.

Small molecules and their fluxes have been measured in vivo using NMR (Bastawrous et al.,
2018), and methods have recently been developed that begin to address the need for a continuous
time dimension in metabolomics data. For example, long-standing flow NMR techniques allow
monitoring of secretion and uptake of extracellular metabolites for organisms grown in liquid
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culture (Bastawrous et al., 2018). Link et al. recently achieved
high temporal resolution on many metabolites by developing
an automated real-time metabolomics platform that samples
liquid cultures of single cells and directly injects them onto
a time-of-flight mass spectrometer every 15–30 s (Link et al.,
2015). The group have more recently probed the interactions
between biomass synthesis and cell division in E. coli using
this method (Sekar et al., 2018). Koczula et al. conducted in
vivo measurements changes in media composition with 4–8min
resolution for chronic lymphoid leukemia. Sedimentation and
line broadening are major factors that limit standard NMR
measurements of complex samples like cells. Koczula et al. were
able to mitigate sedimentation by immobilizing the single cells in
agarose (Koczula et al., 2016).

Alternatively, HR-MAS enables high-resolution NMR
measurements on mixed-phase samples such as tissues
(Beckonert et al., 2010), or more recently, living organisms
(Righi et al., 2014; Sarou-Kanian et al., 2015; Augustijn et al.,
2016; Mobarhan et al., 2016; Bastawrous et al., 2018) with
minimal line broadening. In this study, we extended HR-MAS
to real-time continuous in vivo measurements of metabolism
in cells. Using isotope editing, CIVM-NMR was able to
reproduce and more directly observe a surprising branched-
chain amino acid (BCAA) flux result reported last year in
human myeloid leukemia cells (Hattori et al., 2017). We found
that CIVM-NMR was not only easier but faster and more
conclusive than traditional approaches for flux measurements
in human cell cultures. We then applied CIVM-NMR to the
multicellular filamentous fungus, N. crassa, in both aerobic
and anaerobic environments. We observed highly reproducible
dynamics in central carbon and amino acid metabolism with
∼4min resolution over 11 h. The continuous nature of these
measurements facilitated metabolite annotation, and semi-
automated peak tracing provided relative quantification of
known and unknown compounds. We developed several new
MATLAB functions and workflows, freely available through
GitHub, for the analysis and visualization of these novel data.
As CIVM-NMR can be applied widely to cells, tissues, and
small multicellular organisms, it enables new opportunities in
fields such as developmental and chronobiology for monitoring
high-resolution metabolic time-series data. Importantly, it will
enable more robust and experimentally-based kinetic metabolic
models for diverse biological systems.

MATERIALS AND METHODS

Human Leukemia Cell Culture and
Preparation for HR-MAS NMR
The human BC-CML cell line K562 was obtained from ATCC,
and cell line authentication testing was performed by ATCC-
standardized STR analysis to verify their identity. After cell
counting andwashing with PBS, K562 cells were resuspended and
labeled in a custom-made Iscove’s modified Dulbecco’s Medium
(IMDM) without BCAAs supplemented with 10% dialyzed FBS,
100 IU/ml penicillin, 100µg/ml streptomycin, and the following
amino and keto acids: For 13C-KIV (keto-isovalerate) tracer

experiments, isoleucine, leucine and valine were supplemented at
170µM. For 13C-valine tracer experiments, isoleucine, leucine,
and KIV were added at 170µM. Cell suspension (54 µl) was
loaded in a clean 4mm diameter zirconia HR-MAS rotor (Bruker
BioSpin), and then either [(U)-13C]-ketoisovalerate or [(U)-
13C]-valine solution in D2O was added to a final concentration
of 170µM. The rotor was sealed with a Kel-F rotor cap
(Bruker BioSpin).

Preparation of Growth Media and Slants
for N. crassa
Ingredients for Vogel’s media (3 % glucose) (glucose, 0.167M;
biotin, 0.614µM; arginine, 1.95mM; Na3 citrate, 9.74mM;
KH2PO4, 36.7mM; NH4NO3, 25.0mM; MgSO4, 0.811mM;
CaCl2, 0.680mM; ZnSO4, 34.8µM; Fe (NH4)2 (SO4)2, 5.10µM;
CuSO4, 2.00µM; MnSO4, 0.592µM; H3BO3, 1.62µM;
Na2MoO4, 0.413µM) were dissolved in ddH2O in a large
glass bottle, mixed by stirring, filter-sterilized (0.22µm Steritop
threaded bottle top filter, 500mL, Millipore EMD), then
aliquoted into clean, sterile 500-mL bottles. Ingredients for
Vogel’s media with agar (same as above, with the addition of
1.5% agar, w/v, and using 1.5% glucose, w/v) were combined in
a beaker. Agar was dissolved by heating in a microwave oven.
The dissolved mixture was aliquoted to 15-mL or 5-mL glass test
tubes, stoppered with cotton, and sterilized by autoclaving.

Vogel’s Media for NMR and Wash Solution
2X Vogel’s media (minus glucose), DSS solution, and D2O were
combined to make a concentrate, which was split into two
aliquots. To prepare Vogel’s media for NMR (1.5% glucose),
filter-sterilized D-glucose solution (0.5 mg/µL) was added to
the smaller aliquot to a final composition of glucose, 83mM;
DSS, 1mM; biotin, 0.614µM; L-arginine, 1.95mM; Na3 citrate,
9.74mM; KH2PO4, 36.7mM; NH4NO3, 25.0mM; MgSO4,
0.811mM; CaCl2, 0.680mM; ZnSO4, 34.8µM; Fe (NH4)2
(SO4)2, 5.10µM; CuSO4, 2.00µM; MnSO4, 0.592µM; H3BO3,
1.62µM; Na2MoO4, 0.413µM in 95 ddH2O/5 D2O (v/v). Wash
solution was prepared by adding ddH2O in place of D-glucose
solution to the larger aliquot.

Preparation and Storage of N. crassa
Conidial Suspension
A frozen bd1858 (A) stock obtained by the Fungal Genetics Stock
Center (McCluskey et al., 2010) was used to inoculate two growth
slants (Vogel’s media agar, 1.6% glucose w/v, 3mL in 15mL
glass test tubes stoppered with sterile cotton plugs). These were
incubated for 2 days at 30◦C, then placed under a benchtop lamp
at 25◦C for 2 days to induce maturation of conidia. Conidia
were collected from both tubes sequentially by suspension in
12mL Vogel’s media (no glucose) and filtration through sterile
cotton. Concentration of the resulting conidial suspension was
found to be 6.47 × 107 cells/mL using a Nexus Cellometer Auto
2000 (Nexelcom Bioscience; Lawrence, MA, USA). The conidial
suspension was kept at 4◦C over the course of the experiments
(4 weeks).
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Growth of N. crassa Mycelia
Vogel’s media (50mL, 3% glucose w/v) in a 250-mL Erlenmeyer
flask was inoculated under aseptic conditions with conidial
suspension to a total concentration of 2.7 × 104 cells/mL (21
µL conidial suspension), and covered with aluminum foil. Liquid
cultures were grown with orbital shaking (∼237 rpm) at room
temperature (∼25◦C) under constant cool white light (7 µmol
L−1 s−1 m−2) for 32 h. At that point mycelia consistently formed
a single, cohesive mass. Mycelia for 13C glucose experiments were
allowed to grow for 48–52 h. The entire culture was transferred to
a 50mL conical tube (Sarstedt; Newton, NC, USA) for transport
to the NMR facility (15–30 min).

Preparation of N. crassa Mycelia
Under aseptic conditions, a section of mycelium from the edge
of the main mycelial mat was cut off using a sterile tube cap and
trimmed to fit the volume of approximately 126 µL using a pre-
marked microcentrifuge tube. Mycelia were handled from this
point using clean, sterile tweezers (cleaned with 70% EtOH on
a lint-free single-ply lab tissue (Kimwipe) and dried in an aseptic
environment). The section of mycelium was then patted dry on
autoclaved filter paper (Whatman Filter Paper #3; GEHealthcare,
USA) atop a layer of folded Kimwipes, and was washed by
placing in a sterile microcentrifuge tube containing 1mL wash
solution and vortexing briefly (∼10 s) until the mycelium had
fully absorbed the media. Washing was repeated with fresh wash
solution for a total of 4 washes. The mycelium was reduced to
∼63 µL (0.9 × volume of rotor + plug), measured in a second
microcentrifuge tube pre-marked to that volume. The mycelium
was pat-dried in a sandwich of sterile filter paper folded into
Kimwipes, pressing firmly three times (until no liquid spots were
visible on the filter paper). The dried mycelium was then weighed
in a separate microcentrifuge tube. The dry mycelium was 9.04–
10.13mg in our experiments (µ = 9.62mg; SD = 0.32mg). We
observed a reduction inmass of∼30% as conidia, loose filaments,
and other debris are removed along with waste products and
glucose during wash steps. In our hands, the prep process took
between 4 and 13min, during which time the organism was
immersed in a low-glucose environment.

Loading N. crassa Mycelia Into the Rotor
The dried, weighed mycelium was then placed in a
microcentrifuge tube containing fresh Vogel’s media for
NMR (500 µL, 1.5% glucose), and vortexed briefly until the
mycelium had fully absorbed the media. The mycelium was
then transferred to a third, pre-marked microcentrifuge tube (63
µL). By adding/removing media, the volume was adjusted to
the 63 µL volume mark. Sterile tweezers were used to transfer
the mycelium to a clean 4mm diameter zirconia rotor (Bruker
BioSpin) cleaned by rinsing with bleach solution, tap water,
70% ethanol, tap water, and ddH2O x 4). The mycelium was
pushed to the bottom, taking caution not to lose liquid. The
remaining liquid in the tube was added to the rotor and one
tweezer prong was used to position the mycelium to remove
larger air bubbles, although small bubbles occurred with no
issues in the NMR. A teflon sealing plug (Bruker BioSpin) was
then inserted to ∼2mm below the edge of the rotor. For the

aerobic condition, a Kel-F rotor cap (Bruker BioSpin) modified
with a 0.016-inch diameter hole drilled using a lathe was lined
on the inside with three layers of rayon breathable microplate
sealing tape (QuickSeal breathable film, Thomas Scientific, USA)
to prevent spore escape. The cap was fully inserted to push the
sealing plug into its final position. The cap was then removed,
and the insides of the cap and plug were inspected to ensure
that no liquid was lost and that an airspace existed between the
plug and the sample. The rotor was then re-capped, the bottom
edge marked with a permanent marker, and dropped into the
bore of the magnet (cap facing up). In our hands, this process
typically takes 15–30min. For the anaerobic condition, media
was added to fill all airspaces and an unmodified cap was used
to prevent gas exchange. For the 13C labeling experiments in
aerobic conditions, an airspace was left and fresh Vogel’s media
for NMR was prepared (minus citrate and glucose). Within
3min before measurements, 13C-labeled glucose (99% labeled;
Cambridge Isotope Laboratories; Tewksbury, MA, USA) was
added to a final concentration of 1.5% (w/v) or 83mM without
adjusting the concentration of other media components.

NMR Parameters
For human ML cell experiments, a hsqcetgpsisp gradient
heteronuclear single quantum coherence spectroscopy (HSQC)
experiment run as a 1D experiment was used with the following
parameters: number of points: 7272; dummy scans; 4 at the
beginning of the run; number of scans: 128/timepoint. O1
offset: 4.699 ppm; O2: 30 ppm; acquisition time 0.3999600 s;
recycle delay: 1.5 s; receiver gain: auto (101); temperature:
298K = 25◦C; spinning speed: 3,100Hz. A standard noesypr1d
protocol (Bruker) was used for N. crassa non-labeled real-time
metabolomics measurements. The following parameters applied
to all samples and timepoints: data points: 42856; dummy scans:
8; number of scans: 64/timepoint; spectral width 19.8395 ppm;
acquisition time 1.7999520 s; recycle delay: 1.5 s.; receiver gain:
auto (101); temperature: 298K = 25◦C [calibrated using a
deuterated methanol standard (Van Geet, 1970)]. The following
parameters were optimized for each sample: O1 offset for water
suppression: 4.695–4.697 ppm. PWL9 water suppression power:
43.87–44.42 dB (µ = 44.23 dB, SD = 0.19 dB). P1 pulse width:
12.49–13.30 µs (µ = 12.78 µs, SD = 0.29 µs). Spinning speed:
6,000Hz. Notably, this variation in pulse width between samples
manifested as a difference in temporal resolution (i.e., longer
pulse widths resulted in time points slightly farther apart). The
effect was measurable (on the order of minutes) over hundreds
of measurements. The average experiment took 4.23 ± 0.004
min (SD).

For measurement of 13C in the labeled glucose experiment,
a hsqcetgpsisp gradient heteronuclear single quantum coherence
spectroscopy (HSQC) experiment run as a 1D experiment was
used with the following parameters: number of points: 4686;
dummy scans: 4; number of scans: 8/timepoint; O1 offset:
4.695 ppm; O2 offset: 75.001 ppm; spectral width 13.0208
ppm; acquisition time 0.2999040 s; recycle delay: 1.5 s; receiver
gain: auto (101); temperature: 298K = 25◦C; spinning speed:
3,500Hz. The 13C experiments were interleaved with noesypr1d
experiments as described above, but with 4 dummy scans and 8

Frontiers in Molecular Biosciences | www.frontiersin.org 3 April 2019 | Volume 6 | Article 26

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Judge et al. Continuous in vivo Metabolism

scans, resulting in a resolution of 2min. All Bruker parameter
files are available with the raw and processed data at http://www.
metabolomicsworkbench.org/.

Automated Data Acquisition and
Post-experiment Sample Preparation
For humanML cells, spectra were collected sequentially using the
multizg command in TopSpin (v4.0.1; Bruker).

For N. crassa samples, the noesypr1d experiment, optimized
for the sample, was imported into IconNMR in TopSpin
(v4.0.1; Bruker). The solvent was set to “D2O_H2O+salt.”
The “iterate” command was used to queue 1024 identical,
sequential noesypr1d experiments (each taking ∼4.6min) on
a 600 MHz Bruker NEO equipped with a 4-mm CMP-MAS
probe. Experiments generally ended after ∼12 h, although some
were allowed to continue as long as 37 h. By spinning N. crassa
at 6 KHz, spinning sidebands (Maricq and Waugh, 1979) were
eliminated in the spectral region of 0–10 ppm. At the end of
each run, the mycelia were transferred from the rotor to a
sterile microcentrifuge tube with clean, sterile tweezers. All liquid
from the rotor was also transferred to the tube. This was either
extracted and assessed for growth immediately or was allowed to
sit on the bench for 1 day.

Survival Assessment
Sterile tweezers were used to tear a piece of mycelium from the
rotor contents; this was used to inoculate a growth slant. All
growth slants were assessed for 24 h or longer post-inoculation
for growth. Photographs were taken using a 16MP digital camera
on an LG G5 cell phone in Manual Mode.

Extraction
The remaining rotor contents were transferred with a pipette to
a microcentrifuge tube containing a mixture of zirconia beads
(1mm, 167 µL or ∼375mg; 0.7mm, 334 µL or ∼1,314mg;
500 µL total) on dry ice. The old tube was rinsed by briefly
vortexing with 800 µL MeOH (80% in ddH2O), which was
added to the beads. This mixture was frozen on dry ice for
up to 3 days. Contents were twice homogenized on dry ice for
180 s @1,800 rpm using a MP FastPrep 96 (MP Biomedical;
USA) adapted for microcentrifuge tubes, adding dry ice each
time. The homogenate was centrifuged at 14k rpm at 4◦C
for 5min (18,220x g; centrifuge 5417C; Eppendorf, USA). The
supernatant was transferred to a separate microcentrifuge tube
and kept on dry ice while the pellets were back-extracted with
500 µL MeOH (80%), homogenized once for 180 s at 1,800
rpm, and centrifuged an additional 5min. Supernatants from
both extractions were combined, then dried to completion in
a CentriVap concentrator/CentriVap cold trap −105◦C system
(Labconco, Kanasas City, MO, USA) for 4–6 h. Pellets for two
samples were combined during resuspension in D2O (DSS,
1/9mM) for each condition. Two replicates from each condition
were thus pooled and pipetted into 1.7mm NMR tubes (Bruker).

Annotation
For each pooled sample representing the anaerobic and the
aerobic conditions, noesypr1d, 13C-HSQC, total correlation

spectroscopy (TOCSY), and 13C-HSQC-TOCSY spectra were
collected on a 600 MHz Bruker magnet equipped with a
5mm cryoprobe and an Avance III HD console at the
University of Georgia NMR facility. 2D data were processed
in NMRPipe (System Version 9.4 Rev 2017.340.17.07 64-bit)
and submitted to COLMARm (Bingol et al., 2016) for putative
compound identification. After manual inspection, metabolites
were assigned a confidence level ranging from 1 to 5, with 5
being the highest. The scale is defined (Walejko et al., 2018)
as follows: (1) putatively characterized compound classes or
annotated compounds, (2) matched to literature and/or 1D
reference data such as HMDB (Wishart et al., 2007) and BMRB
(Ulrich et al., 2008) (3) matched to HSQC, (4) matched to HSQC
and validated by HSQC–TOCSY [COLMARm (Bingol et al.,
2016)], and (5) validated by spiking the authentic compound
into sample. Identifications from extracted 1d spectra were
manually mapped to real-time in vivo noesypr1d data. An
additional score was assigned to each mapped compound: 0
(unannotated), 1 (annotated only), 2 (qualitatively assessed),
or 3 (relatively quantifiable) in the real-time data. This score
depended on number of observed peaks, baseline, peak overlap,
and sensitivity. Both metabolite confidence levels are reported
in Supplementary Table 1. All raw and processed data files
are available at http://www.metabolomicsworkbench.org/ and
matching can be run on COLMARm (Bingol et al., 2016) directly.

Batch Processing in NMRPipe for in vivo

NMR Data
Parameters were optimized based on agreement between spectra
from several time points for a given sample. A custom bash
script ran NMRPipe (Delaglio et al., 1995) using the optimized
parameters on all spectra for a given sample. This script included
all necessary NMRPipe commands for file conversions and NMR
data processing. In brief, the following were implemented: line
broadening, fast Fourier transform, 0- and 1st-order phasing, end
removal, and baseline correction using automatic polynomial
fitting. All raw data, parameter files and code are available
at http://www.metabolomicsworkbench.org/.

Additional Processing in MATLAB for
in vivo NMR Data
For each sample, custom scripts were written in MATLAB
R2017b (The MathWorks, Inc., Natick, Massachusetts, USA), to
load the processed spectra, ppm vectors, and measurement start
times from.ft and Bruker acqus files. Spectra were then referenced
to DSS semi-automatically, stored as a matrix, and saved as
a MATLAB workspace in.mat format. Using custom MATLAB
scripts,.mat files from individual experiments were combined
into a “sampleData” structure. Metadata (e.g., condition, pulse
width, time shift between inoculation and start time) were added
to each sample by manual entry or by automated retrieval
from the Bruker acqus files for each sample. Spectral ends
outside of [−0.5, 10] ppm were removed. The spectral region
containing the water signal [4.7, 5] ppm was replaced by
zeros. Measurements for time points >11 h were removed in
all experiments for consistency. Each spectrum was normalized
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to its DSS peak intensity as a formal step to allow for relative
quantification. Finally, every three spectra were summed starting
from the first timepoint for improved signal-to-noise. The
resulting structure was saved as a.mat file (∼2 Gb). All data
and scripts are available at http://www.metabolomicsworkbench.
org/ and at https://github.com/artedison/Edison_Lab_Shared_
Metabolomics_UGA.

Relative Quantification of
NMR Resonances
A combination of a Gaussian smoothing filter with user-defined
sigma in the ppm and time dimensions and peak picking script
was used to identify peak maxima for a given region of ∼0.5–
1 ppm in a given sample, allowing some noise to be picked.
Agglomerative clustering based on single linkage of Euclidean
distances was then used to cluster the picked points in the
chemical shift (ppm), time, and intensity space. Weights for
each dimension in the clustering, as well as the number of
clusters, were manually optimized for each region and sample.
Clusters were quality-controlled by interactive visual inspection.
If multiple ridge points existed for the same time, the one with
highest intensity was retained. Peak positions at temporal gaps
were estimated using linear interpolation between the two closest
existing ridge points. Ridges on the smoothed data were mapped
to the unsmoothed data for each time point by choosing the
maximum within a small window around the peak position
obtained from the smoothed data. A window size of 10 indices
(∼2.9 × 10−3 ppm) worked for all but a few ridges, whose
optimal mapping windows ranged between 6 and 60 indices
(between 1.7 × 10−3 and 1.7 × 10−2 ppm). All ridges were
visually inspected for good tracing, well-defined peaks, and
minimal overlap by plotting on real spectra. To combine the
trend information from multiple ridges annotated to the same
compound, intensities of constituent ridges were scaled such that
the ridge means across the time points shared by the highest
number of ridges were equal. Lastly, the mean across scaled
ridges at each time point was taken, yielding a single composite
trajectory for each compound. A tutorial on the use of this
workflow is available (Supplementary File 1).

Titration of a Citrate Standard for
Estimation of in-vivo pH Changes
A 10mM solution of citric acid (A104-500; Fisher Scientific,
USA) containing 1mM DSS reference standard was prepared,
and 600 µL were added to a 5mm NMR tube (Norell;
Morganton, NC, USA). The pH of the solution was adjusted in-
tube in ∼0.25 pH increments by addition of 0.5–2 µL volumes
of dilutions of concentrated NaOH and HCl and four rounds
of inversion and vortex mixing. For each pH point, the pH was
measured in-tube using a calibrated accumet AB150 pH meter
(Fisher Scientific, USA), then a 1D noesypr1d spectrum was
collected (DS = 2; NS = 16) on a 600 MHz Bruker magnet
equipped with a 5mm cryoprobe and an Avance III HD console
at the University of Georgia NMR Facility. Data were phased and
referenced to DSS in TopSpin (v3.5pl7; Bruker). Custom Matlab
scripts were used to obtain the most upfield citrate peak position

for each pH. A 3rd-order polynomial was fit to the positions (R2

> 0.99) and used with the ridge belonging to the same peak to
estimate the pH of each culture at each timepoint.

RESULTS

For all of the experiments reported below, we collected 3
independent biological replicates. The extracted traces from
the 3 replicates are displayed. Proper statistical treatments of
these time series data are specific to the multiple uses of the
data. Different options are presented in the Discussion section,
although their application is nuanced and beyond the scope
of this manuscript. All data and analysis scripts are available
on the Metabolomics Workbench and the Edison Lab GitHub
(Sud et al., 2016).

Isotopic CIVM-NMR Measurements
Confirm Unidirectional KIV-to-Valine Flux
in ML Cells
Branched-chain amino transferase-1 (BCAT1) is a reversible
enzyme, but in most cells the reaction degrades BCAAs and
makes branched-chain keto acid (BCKA)s. However, we recently
demonstrated that BCKA transamination by the BCAT1 enzyme
builds up the BCAA pool in myeloid leukemia (ML) cells,
essentially running in the reverse direction (Hattori et al.,
2017). When α-keto-isovalerate (KIV; one of the substrates
of BCAT1) was 13C-labeled, valine (the expected product of
BCAT1) containing 13C accumulated. Labeled KIV was not
observed when 13C-labeled valine was supplied, indicating a
non-canonical, unidirectional flux from KIV to valine (Hattori
et al., 2017). In that study, metabolic fingerprints were acquired
via a traditional, labor- and material-intensive sampling scheme
involving months of sample preparation and several dozen
samples. One reason for the large number of samples in this or
similar studies is the biological and technical variation due to
sample preparation steps; these factors make it more challenging
to compare time-series data without large numbers of replicates.
We sought to replicate the result of the original Hattori et al.
study using real-time in vivometabolomics.

First, we cultured myeloid leukemia cells as previously
described (Hattori et al., 2017), then pelleted and resuspended
them in IMDM media without KIV or valine. Working quickly,
we loaded the cells into an HR-MAS rotor and added either
13C-labeled KIV or 13C-labeled valine to make a total volume
of ∼60 µL, capped the sample, and inserted the rotor into the
magnet. We recorded 1D HSQC spectra every 4.2min while
spinning at 3,500Hz at the magic angle (54.7◦) (Beckonert
et al., 2010) for three independent replicates of each compound
(Supplementary Figure 1). A hole in the rotor cap allowed for
gas exchange (Mobarhan et al., 2016).

By monitoring the intensity of the methyl peaks of both
KIV and valine, we observed that 13C-labeled KIV decreased
in intensity and fell close to the limit of detection within
about 60min (Figure 1A). The 13C-labeled valine peak grew
with an inversely proportional trajectory, providing real-time,
in vivo evidence of KIV-to-valine conversion. As the reaction
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FIGURE 1 | Targeted isotopic CIVM-NMR measurement of metabolic flux in

human myeloid leukemia cells. (A) 13C-labeled keto-isovalerate (KIV) was

converted to valine. (B) 13C-labeled valine was not converted to KIV,

confirming unidirectional flux in ML cells. (C,D) Relative concentrations over

time of 13C-labeled KIV (orange) and 13C-labeled valine (purple) compared to

baseline noise (gray), obtained by taking the raw maximum spectral intensity

within each region of the representative experiments in (A,B), respectively.

Different lines show the data from 3 independent replicates of

each experiment.

rate depended on the concentration of the cells in the rotor,
cell density was adjusted to accommodate measurement of the
rapid reaction and provide greater detail about reaction kinetics.
As reported previously, labeled KIV was not observed when
13C-labeled valine was supplied (Figure 1B), showing that the
reaction equilibrium heavily favors the production of valine in
these cells.

Untargeted CIVM-NMR Measurements of
N. crassa Metabolism
Given the utility of CIVM-NMR for the targeted monitoring
of known reactions in mammalian cells, we applied it to the
continuous measurement of the metabolic dynamics of the
filamentous fungus N. crassa over 11 h in both aerobic and
anaerobic environments. N. crassa is an obligate aerobe but
will live under low-oxygen conditions (Slayman, 1965; Slayman
and Slayman, 1968; Slayman et al., 1973). We grew N. crassa
tissue in a nutrient-rich liquid medium (Figure 2A). After
32 h, a piece of tissue with a volume of ∼50 µL was taken
from the main mycelial mass, rinsed, and put into a 4-mm
HR-MAS rotor with fresh media. The rotor was sealed with
a cap with a hole filtered with rayon culture tape punches
(“aerobic”; Mobarhan et al., 2016) or no hole (“anaerobic”),
placed in the HR-MAS probe, and spun at 6,000Hz at the
magic angle for the duration of each experiment (Figure 2B).
Each individual scan of a standard noesypr1d experiment took
∼3.97 s. Scans were recorded and summed continuously, and
free induction decays (fids) were written to a file once every 64

scans, establishing our shortest temporal resolution at 4.23min
(Figure 2C). After data acquisition, properly phased and Fourier-
transformed frequency-domain data were again added together
sequentially to increase the signal-to-noise ratio (S/N), resulting
in 12.7-min temporal resolution for all downstream analyses
(Figure 2D). The organism was assessed for survival after each
experiment (ranging between 11 h to 4 days). In every case (n =

9), mycelia did not sediment, were intact, and grew significant
hyphae within hours of being placed on standard nutrient
agar after the experiment (Supplementary Figure 2). Thus, N.
crassa survived the CIVM-NMR experiments and could be used
in downstream experiments or processing steps (Figure 2E).
Custom shell scripts allowed for batch processing of NMR data
(Figure 2D) using NMRPipe (Delaglio et al., 1995). Normalizing
to the stable 1mM DSS reference resonance (0.0 ppm) allowed
for relative comparison of peak intensities across time points
and samples.

To assist with annotation and compound identification,
the organism and media were removed at the end of each
run, bead-homogenized, and extracted in MeOH (80%)
(Figure 2E). Combined supernatants for representative samples
were analyzed using 2D 13C-HSQC and HSQC-TOCSY
NMR experiments, and the data were matched to an NMR
metabolomics database using COLMARm (Bingol et al., 2016).
Resulting putative identifications were manually assigned
confidence scores as described previously (Walejko et al., 2018).
We mapped 34 metabolites with high confidence scores onto the
real-time in vivo spectra of N. crassa (representative annotations,
Figure 2F), including multiple amino acids and metabolites
involved in the TCA cycle, glycolysis, and fermentation
(Figures 3A–C, Supplementary Table 1). Several metabolites
overlapped with those found in a previous NMR study in
N. crassa (Kim et al., 2011). We created MATLAB functions
for visualization of time series data for samples individually
(Figures 2C,D) or as interactive mirror images (Figure 3). We
found that the latter approach facilitated comparison between
samples, revealing several differences in metabolism between
the aerobic and anaerobic conditions (Figure 3) that were
reproduced in replicate samples (Supplementary Figure 3).

The 34 compounds that were mapped to in-vivo data
were assigned a second confidence score for quantifiability.
For 21 highly scoring metabolites (Supplementary Table 1),
we obtained relative quantification (Supplementary Figure 4)
by tracing peaks across time with a ridge-tracing algorithm
(Figures 2D, 4A). With our current algorithm that is limited
to peaks with low overlap, we traced over 170 peaks across all
of our spectra, including ∼150 that are currently un-annotated.
We combined the information from ridges of sufficient
quality when assigned to the same compound (Figures 4B–D),
leveraging the information about compound concentration from
multiple measurements.

Glucose-Dependent Changes in pH
NMR chemical shifts are sensitive to pH and metal ion content
(Tredwell et al., 2016; Ye et al., 2018), typically requiring peak
alignment algorithms that are prone to creating artifacts. The
positions of peaks clearly changed across time in our data
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FIGURE 2 | Sample preparation and analysis for CIVM-NMR experiments. (A) Samples were first grown to a suitable volume or density in standard media and (B)

transferred to the HR-MAS rotor (N. crassa is shown). Gas composition (e.g., air availability) was altered using a filtered hole or no hole in the cap, and the rotor was

spun at the magic angle. NMR data were collected continuously every 4min over the course of hours, then (C) processed and normalized to the DSS reference peak

(0 ppm) to yield full-resolution data. (D) Every three spectra were time-averaged (summed) for improved S/N, and peak intensities were traced across time using ridge

tracing to yield relative quantification of metabolites. (E) Following HR-MAS, the rotor contents were homogenized, methanol-extracted, and used for 2D NMR

analysis for peak annotation by database matching. (F) For annotated metabolites with >1 peak (e.g., citrate), the quantified and annotated trajectories (ridges) for

each peak were scaled and combined into a single representative trajectory. Trajectories for each annotated compound in 3 aerobic experiments are plotted to

compare time series between biological replicates.

(Figures 3B,C, 4A), particularly in the aerobic samples. Because
these changes were monitored continuously, peak identity across
time was unambiguous, eliminating the need for alignment and
facilitating annotation and quantification even as changes in
peak position affected overlap with other peaks. Changes in
peak position for organic acids in our samples were compared
with reported titration curves (Koczula et al., 2016; Tredwell
et al., 2016; Ye et al., 2018), in-house titrations for citrate
(Supplementary Figure 5), and Bruker AssureNMR software
(Bruker Biospin, USA; Supplementary Table 2) to estimate pH
of the sample at each timepoint. Our data indicate that the pH
of the aerobic cultures began at 6.2–6.4, then dropped to 5.2–
5.4 with glucose consumption. Furthermore, this acidification
reversed after glucose depletion at 6–7 h, and pH increased to
5.5–5.7 by the end of our experiments. In the anaerobic samples,
the pH decreased from 6.2–6.3 to 5.7–5.9. Although we did not

perform high-resolution titrations for glutamate, succinate, and
fumarate, their reported shifts were consistent with the trends for
citrate (Supplementary Table 2).

Activation of Central Carbon Metabolism in
Aerobic Conditions
Four TCA cycle metabolites were detected in our experiments
(Figures 3B,C). Fumarate and succinate increased in the aerobic
condition, and both accumulated slightly faster around 6 h
following glucose depletion and remained abundant (Figure 5).
Standard replicate averaging with extracted samples at different
times would average out much of this detail. In contrast,
in low oxygen levels in the anaerobic sample, we observed
a slight reduction in succinate compared to a much greater
reduction in fumarate. Succinate levels in the aerobic condition
are comparable to those in the anaerobic condition, while
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FIGURE 3 | CIVM-NMR measurements of N. crassa metabolism under aerobic and anaerobic conditions. 1H NMR data for one aerobic replicate (top) and one

anaerobic replicate (bottom) plotted interactively as a “mirror plot” for direct comparison between conditions by peak height and position at a given time. To improve

the S/N, data were analyzed at 12.7min resolution. Annotations are shown for select peaks of interest for (A) the entire spectrum, and expansions of (B) the aromatic

region and (C) the aliphatic region. Several peaks change position and intensity over the course of the experiments. UDP-NAG, UDP-N-Acetyl Glucosamine; UDP-Glc,

UDP-Glucose; G-1-P, Glucose-1-Phosphate.

fumarate accumulates much more in the aerobic condition
(Figure 5). Finally, citrate was abundant in the aerobic condition
and followed a complex trend, while malate was observed in
endpoint extracts (Supplementary Figure 6A). Similar trends
with lower rates were observed in the anaerobic samples,
except for differences in citrate and glucose-1-phosphate (G-1-P)
(Figure 5).

Interplay Between Amino Acid, Central
Carbon, and Nitrogen Metabolism
The dynamics of glutamate were different between aerobic
and anaerobic conditions, with a much greater increase of
this key amino acid in aerobic conditions (Figure 5). Glutamate
accumulates while synthesis of glutamine is repressed inN. crassa
in nitrogen-sufficient conditions (Kanamori et al., 1982). We
could not annotate glutamine with confidence because of overlap
(Supplementary Table 1B). However, resonances consistent
with glutamine increased after∼3 h (Supplementary Figure 6B),
indicating potential nitrogen insufficiency in the aerobic culture.

Arginine levels correspond to those of glutamate in the aerobic
condition (Supplementary Figure 4).

Trends for alanine (Figure 5) and an unknown in the aliphatic
region (Figures 3C, 4A) were very similar to that of ethanol
and lactate (Figure 5), indicating that their metabolic fluxes
are closely dependent on intermediates or energy produced by
glycolysis and fermentation. This hypothesis is supported by the
fact that alanine is synthesized from glutamate and pyruvate by
alanine transaminase (Kanamori et al., 1982; Radford, 2004).
Glutamate levels increased and were unaffected by glucose,
but alanine first accumulated and then decreased upon glucose
depletion (Figure 5).

Complex Trends Reveal Dynamics
Between Energy Storage and Cell Wall
Synthesis Pathways
CIVM-NMR data revealed significant changes that preceded
glucose depletion at∼6 h for compounds such as citrate, choline,
adenosine, and valine, which all had similar trends in the
aerobic condition (Figure 5). Citrate decreased at the start of all
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FIGURE 4 | Ridge tracing produces concentration dynamics of metabolites. (A) Multiple traced ridges for a single aerobic replicate. Peak maxima at each time point

were located using a peak-picking algorithm that includes an adjustable Gaussian filter. Maxima were connected to form ridges along the time dimension using a

single linkage hierarchical agglomerative clustering based on Euclidean distances between the points in chemical shift, time, and intensity space. Metabolites typically

have several characteristic NMR peaks, e.g., the 4 orange ridges in citrate (A). A simple time-wise average represented by the black line in (B) only gives the average

intensity over time but loses valuable information on actual dynamic trends. To more accurately extract trends for a particular metabolite, we first integrate each peak

in that metabolite over time to obtain its mean value. Then, each peak trajectory is scaled by ratio of the highest mean to its own mean, yielding the 4 orange lines in

(C). The mean of these trajectories is shown in black in (C) and represents the relative concentration over time for that metabolite in that replicate. The 3 aerobic (red)

and 3 anaerobic (blue) replicates for citrate are shown in (D).

experiments. Under aerobic conditions it began to accumulate
again around 2.5 h and surpassed initial levels, while in anaerobic
conditions it decreased at an exponential rate to a very low
amount (Figure 5). Glucose-1-phosphate (G-1-P) is converted
to UDP-glucose by the enzyme UTP-glucose-1-phosphate
uridylytransferase. UDP-glucose, in turn, is a precursor in N.
crassa cell wall and glycogen biosynthesis. Levels of G-1-P
increased in the aerobic samples until around 3 h then decreased,
while UDP-Glucose was also observed but not quantified due to
low concentrations. G-1-P accumulated to comparable levels in
both conditions, but it remained observable for the duration of
the experiments in the anaerobic samples. The primary chitin cell
wall building block UDP-N-acetylglucosamine (UDP-GlcNAc)
(Milewski et al., 2006) increased in only the aerobic cultures
(Figure 3, Supplementary Figure 6C), although overlap and low
intensity prevented quantification.

Glucose Flux Exposes Dynamics Between
Glycogen, Glucose, and Fermentation
In the experiments reported above (Figures 3, 5), glucose
and trehalose were consumed within the first 6 h, while

ethanol and lactate were produced under aerobic conditions.
To confirm flux from glucose through these pathways, we
conducted an interleaved time-series measurement of both 1H
1D and 13C-HSQC 1D data after feeding uniformly labeled 13C-
glucose to starved N. crassa (Supplementary Figure 7). These
measurements were very informative, as we could not only track
the flux of 13C over time but also record a combination of
both 13C-labeled and unlabeled metabolites in the 1H 1D data.
Furthermore, the 13C metabolites were still coupled in the 1H
1D dataset, causing predictable and symmetric peak splitting
patterns that allowed us to easily distinguish protons attached to
12C and 13C.

The normalized intensities from 3 independent replicates
of both isotopes (13C or 12C) of both glucose and ethanol
clearly show that the intensities of both compounds are largely
mirroring each other, but the trends are different between
isotopes. The same compounds from a single replicate were
scaled for detailed comparison, and we superimposed a dashed
line showing predicted glycogen levels (Figure 6B), which were
not measured in this study. Figure 6C is an overview of the major
pathways (glycogen, glycolysis, fermentation, and TCA, etc.) that
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FIGURE 5 | Integration of central metabolic pathways. Arrows correspond to one or more reactions, and nodes correspond to metabolites (Dreyfuss et al., 2013;

Kanehisa et al., 2016). Nodes are filled for observed metabolites. Plots show the means of scaled peak/ridge intensities for a given compound in a given replicate over

traceable times, where red and blue trajectories represent aerobic and anaerobic conditions, respectively. Arrows indicate typical reaction directions. The glyoxylate

cycle is shown as a shunt through glyoxylate embedded in the TCA cycle.

are implicated in this experiment. The different colors of thick
lines indicate proposed fluxes under starved or fed conditions.

DISCUSSION

Overall Benefits and Practicalities of
Continuous Metabolic Measurements
CIVM-NMR is an approach to monitor metabolic dynamics
in cells and whole microorganisms. An uninterrupted, high-
resolution time series of NMR data allows observation of rapid

and reproducible metabolic events. In contrast, using traditional
studies with different replicates for each time point, the biological
and technical variation often obscure details of dynamics. The
lack of extraction removes a major source of technical variation
found in typical MS and NMR metabolomics workflows, and
CIVM-NMR is fast and simple to implement once conditions
are optimized. For example, the original results on BCAA flux in
myeloid leukemia cells from Hattori et al. took months of sample
prep and data collection but were reproduced here with real-time
resolution (Figure 1) in a few days. We did not need to adapt
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FIGURE 6 | Simultaneous monitoring of carbon isotopes reveals convergence of major glucose fluxes from different origins. (A) Relative concentrations for Glucose

(Glc) and Ethanol (EtOH) containing 12C and 13C in N. crassa cultures fed with 13C-labeled glucose (t = 0 h) after 2 h of starvation. Protons covalently attached to 12C

and 13C were differentiated in noesypr1d experiments by 13C-induced splitting. Three independent replicates are shown. One replicate was only recorded for 11 h.

(B) Relative concentrations scaled by the maximum of each trajectory of one replicate highlight the relationships between trends. A hypothesized glycogen trajectory

is plotted as a black dotted line. (C) Hypothesized fluxes through glycolysis, glycogen metabolism, and fermentation under starved (brown arrows) and fed (blue

arrows) conditions.

the culture media (Link et al., 2015) or embed the cells (Koczula
et al., 2016) to get these results. Additionally, the combined
rate of uptake and conversion of valine could be measured with
precision, where measurements at only a few time points were
taken previously.

In comparison to mass spectrometry-based methods, NMR
has relatively low sensitivity. However, it is quantitative and
reproducible, and conventional NMR cryoprobes allow routine

1H detection of compounds at concentrations as low as about
5µM. HR-MAS probes that are utilized in CIVM-NMR are
less sensitive, but the temporal dimension of CIVM-NMR data
allows for more confident assignment of peaks by monitoring
their continuous change. By taking advantage of this unique
property of CIVM-NMR data, we detected peaks as low
as ∼24–62µM 1H (Supplementary Figure 8). This sensitivity
is ideal for observation of the major sources, sinks, and

Frontiers in Molecular Biosciences | www.frontiersin.org 11 April 2019 | Volume 6 | Article 26

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Judge et al. Continuous in vivo Metabolism

bottlenecks of metabolism in an organism or cells (e.g., for
metabolic engineering). For instance, absolute quantification of
103 metabolites in E. coli by LC-MS/MS revealed intracellular
concentrations ranging from 0.13µM to 96mM. Of these, 61
were found in concentrations of 100µM or higher (Bennett
et al., 2009), placing them well within the detection limits
of CIVM-NMR.

Only 20–70 µL of sample is needed with no sample
preparation to yield an entire time series of abundantmetabolites,
and the sample can be used in downstream in vivo or chemical
analyses following NMR data collection. These factors make
CIVM-NMR ideal for scarce samples that would not otherwise be
possible to study by time-series metabolomics (Sefer et al., 2016).
With an internal rotor radius of 1.4mm spinning at 6,000Hz,
our samples experienced up to 200,000x g of acceleration. As
sedimentation was not observed, it is possible that a low relative
density of N. crassa mycelia compared to the media may have
resulted in a lower effective radius of rotation. While some
samples, including the leukemia cells in Figure 1, are less stable
at high spinning rates, microorganisms such as E. coli and S.
cerevisiae can grow under different amounts of hypergravity, even
with cellular and organellar sedimentation (Deguchi et al., 2011).
Furthermore, methods have been developed to obtain HR-MAS
data with slow spinning (Mobarhan et al., 2017), which could
allowmonitoring in∼1,500x g or less. The lack of perfusion and a
limited sample volume are both factors that need to be considered
with regard to nutrient depletion and waste accumulation.

Data Analysis and Modeling
Identification of spectral features and deconvolution of overlap
are challenging in CIVM-NMR, as with any NMR or LC-
MS metabolomics study. However, temporal continuity clearly
provides information that is helpful in addressing these
problems. For instance, individual multiplet structures are
preserved with changes in chemical shift, even across times
during which there is substantial overlap with other peaks.
Using this information, we can confirm the presence of both
compounds at those time points. This same information will
be useful for spectral deconvolution methods yielding relative
or absolute concentrations, a major goal in NMR metabolomics
data analysis.

Replicates of dense, continuously repeated measurements on
the same sample offer other benefits, such as separation of
inter-and intra-sample noise (Sefer et al., 2016) that would
be eliminated by taking time-wise averages or employing
standard error analysis. Statistical treatment of CIVM-NMR data
should leverage these advantages and should be approached
from different perspectives depending on the goals of the
analysis. Here, we demonstrated the utility of plotting relative
concentrations in a pathway context for interpretation of broad
metabolic trends. These trajectories could also be clustered under
functional data analysis (FDA) or frequency domain analysis,
which are more systematic mechanisms for identifying patterns
among metabolites through time. Additionally, statistical tests
can be formulated through these approaches to compare
metabolic status between conditions (Leng and Müller, 2005;
Febrero-Bande and de la Fuente, 2012; Aghabozorgi et al.,
2015). A more comprehensive metabolic analysis can also

be done in a kinetic modeling framework using ensemble
modeling. By explicitly modeling reactions, enzyme parameters
can be statistically analyzed; these parameters are inaccessible for
implicit methods mentioned above. Lastly, a kinetic modeling
framework will not only yield meaningful confidence intervals
for these trajectories, but it will also produce testable predictions
based on existing data (Yu et al., 2007).

Our data underscore the need for accurate and
experimentally-based kinetic models of metabolism. We
achieved temporal resolution as high as 1min in the 13C
labeled experiments presented here by using fewer scans before
saving fids. While this comes with a cost in signal-to-noise
ratio, we can recover signal-to-noise by employing moving
averages. If noesypr1d experiments are not interleaved, 22-s
resolution is easily achieved. Thus, CIVM-NMR provides a
unique opportunity for probing rapid flux changes and allosteric
regulation (Link et al., 2013) with kinetic models (Link et al.,
2014, 2015) for abundant metabolites. Each replicate can be
formulated as a single, complete model with different initial
conditions, which is more appropriate for kinetic modeling
applications than a time series of averages. Previous real-time
methods have equal or greater temporal resolution at the expense
of disadvantages such as being destructive (Link et al., 2014),
limitation to cell suspensions (Link et al., 2014; Koczula et al.,
2016), primarily measuring the media (Koczula et al., 2016;
Sengupta et al., 2016), measuring broad classes of metabolites
(Kang et al., 2012; Shalabaeva et al., 2017), or having combined
biological and technical variance. CIVM-NMR minimizes noise
by eliminating sampling and extraction variance. Batch effects
for each replicate are eliminated since all experimental and
NMR parameters are consistent across timepoints. Analytical
drift is eliminated because the detector never contacts the
samples, and the sample is not perturbed by measurement. These
factors in turn facilitate optimization of modeling parameters
(Ghasemi et al., 2011).

Cell Viability
HR-MAS NMR experiments apply strong centrifugal forces and
do not allow for easy media exchange during growth. A perfectly
reasonable question is whether cells are viable during and after
the experiment, as opposed to simply a collection of enzymes
that can still function. In some cases, cells will be too delicate to
analyze, even at low spinning speeds. However, for the relatively
delicate human leukemia cells used for Figure 1, we had strong
agreement of flux from KIV to valine in both the prior studies
using separate extracted samples (Hattori et al., 2017) and the
CIVM-NMR real-time measurements reported here. However,
to get these to work we needed to lower the spinning speed to
3,500Hz and only measure for 1–2 h.

For N. crassa, there are several lines of evidence that support
the claim that the organism was viable during and following
the experiment:

1) N. crassa taken from the HR-MAS experiments can

inoculate a standard lab culture, with the expected circadian
growth patterns (Supplementary Figure 2). This would not
occur if all the cells were dead, but it could happen with only a
fraction of the cells were alive.
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2) Glycolysis, glycogen degradation, and fermentation all are

coordinated (Figure 6). Our 13C-glucose labeling experiments
provide extensive evidence for cell viability. For these
experiments, N. crassa was starved and had only a small
amount of EtOH available in the media as a carbon source.
These conditions activate glycogen degradation, which is
exergonic and releases G-1-P and glucose directly in an
approximate 9:1 ratio (Voet and Voet, 2011). Glycogen
synthesis occurs during high rates of growth in N. crassa, and
wanes during slow growth (Brody and Tatum, 1967; de Paula
et al., 2002; Virgilio et al., 2017). When we added 13C-glucose
in aerobic conditions, we observed a surprising buildup of 12C-
glucose without a corresponding decrease in any other 12C
peaks, suggesting that glucose may have been released from
glycogen stores.

This accumulation may be expected under glycogen
degradation because the conversion of glucose to G-6-
P by hexokinase competes with the conversion of G-
1-P to G-6-P by phosphoglucomutase on several fronts.
First, the hexokinase reaction is a classic case of product
inhibition (Voet and Voet, 2011), and relies on ATP (Dreyfuss
et al., 2013), which is presumably in high demand under
starvation. The phosphoglucomutase reaction, on the other
hand, produces the hexokinase product/inhibitor G-6-P, it
only consumes G-1-P, and it is not inhibited by buildup
of glycolytic intermediates. Next, glycogen degradation only
produces one molecule of glucose on average for every nine
molecules of G-1-P. As the stoichiometries of the hexokinase
and phosphoglucomutase reactions are equivalent, glycogen
degradation results in much higher flux through G-1-P. This
flux would enhance G-6-P inhibition of the former reaction, as
well as consume more ATP further along in glycolysis. Finally,
higher levels of 13C glucose inside the cell would outcompete
the lower levels of 12C glucose derived from glycogen; these
would then be consumed at lower overall rates proportional
this competition.

If 12C and 13C glucose formed a common pool above
glycolysis, the combination of the effects above had to be
quite strong to allow the production of 12C glucose to
overcome consumption by hexokinase. 12C glucose continued
to accumulate for about 5 h post-feeding, indicative of a lag
time to downregulate glycogen degradation. Both 13C and 12C
glucose then fell below limits of detection contemporaneously
within each replicate. This suggests that both isotopes of
glucose made up a common pool which was fed by external
13C glucose uptake and 12C glycogen degradation. This, in
turn demonstrates a coordinated cellular process. In Figure 6B
we provide a prediction of glycogen levels that we will test in
future studies.

3) Isotopic species of EtOH and glucose are metabolically

coupled. Figure 6 is also informative from the perspective
of EtOH produced. We can monitor 2 pools of EtOH in
this 13C-glucose experiment. The 13C-labeled EtOH rises
immediately and is largely inversely proportional to the 13C-
glucose consumed. This suggests that the added glucose greatly
exceeds the core metabolic functions of the cell, and the rest
is fermented. 12C-EtOH also inversely mirrors 12C-glucose
levels, showing the functional coupling between these species.

After depletion of both 13C- and 12C-glucose, both isotopes
of EtOH levels begin to decrease, because N. crassa can
utilize EtOH as a carbon source to biosynthesize acetyl-
CoA (Figure 6). We observe small differences in rates of
consumption of the different isotopic forms of EtOH, which
might result from different fractions of 12C/13C EtOH inside
and outside of the cell. The inner pool would be consumed
more rapidly, because the outer pool needs to be transported
into the cell. We need to conduct more experiments to verify
this hypothesis.

4) Functional mitochondria are required to understand
large metabolic differences between aerobic and anaerobic
conditions (Figures 3, 5). Most striking are the different levels
of fumarate produced in each condition (Figure 5). This
can be explained by the fact that conversion from succinate
to fumarate depends on oxygen reduction in the electron
transport chain (Dreyfuss et al., 2013; Kanehisa et al., 2016).
Glyoxylate cycle activity can occur in anaerobic conditions
(Wayne and Lin, 1982; Rude et al., 2002) and yields succinate
andmalate without fumarate as an intermediate.N. crassa does
not survive on citrate as a sole carbon source (Wolfinbarger
and Kay, 1973), and to our knowledge extracellular citrate
utilization has not been reported for N. crassa. However,
citrate levels were observed well below the initial amount
present in the media alone (9.74mM) in both conditions,
strongly indicating that external citrate was consumed in both
experiments. Isotopic labeling experiments will more directly
test this hypothesis. Furthermore, the aerobic conditions show
much larger shifts in pH over the course of the experiment
(Figure 3). Maintenance of characteristic differences in pH
is well-accepted between organelles, the cytoplasm, and the
extracellular milieu (Magnuson and Lasure, 2004; Casey et al.,
2010; Bencina, 2013). Filamentous fungi including N. crassa
(Vrabl et al., 2012) secrete large amounts of organic acids such
as citrate, fumarate, and succinate, to acidify their extracellular
environment (Magnuson and Lasure, 2004; Kubicek et al.,
2010; Dörsam et al., 2017), and the two latter acids are taken up
by carbon-limited N. crassa, with maximal uptake occurring
around pH 5.5.

5) Glutamate stores are maintained. Glutamate is produced
from arginine degradation (Voet and Voet, 2011); for instance,
arginine has been reported as an abundant amino acid in
extracted samples of actively growing N. crassa cultures
(Kanamori et al., 1982; Kim et al., 2011) and is thought to
be catabolized to glutamate during conidiation (Kim et al.,
2011). Arginine and glutamate both accumulate more in
our aerobic samples (Supplementary Figure 4), indicating a
potential sufficiency. Alanine is derived from glutamate when
glucose was depleted in the aerobic conditions, alanine levels
began to decrease but glutamate levels continued to increase.
Alanine is derived from glutamate and pyruvate, and therefore
we conclude that alanine synthesis was limited by a lack of
pyruvate from the glucose depletion. Glutamate levels are
maintained during starvation (Voet and Voet, 2011), and
Kanamori et al. (1982) suggested that alanine serves as a
storage for pyruvate and nitrogen via glutamate in favorable
conditions (Kanamori et al., 1982). Therefore, the observed
decrease in alanine suggests that it was utilized for pyruvate
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and glutamate when glucose concentrations were low in
the aerobic condition (Figure 5). Our data therefore support
glutamate as a hub between central carbon and amino acid
pathways and confirms the maintenance of glutamate stores
even under starvation.

6) Pyruvate and acetyl-CoA both serve as crossroads between

major energy metabolites and lipids. Although we did not
observe pyruvate and acetyl-CoA directly, most accumulating
metabolites in pathways emanating from pyruvate exhibited
strikingly similar trends (Figure 5), suggesting flux through
pyruvate. Curiously, citrate and choline did not follow this
pattern, indicating activity from pathways that consume
and replenish their pools. However, the rates of change of
these metabolites were clearly opposed in both aerobic and
anaerobic samples. This opposition suggests that flux from
acetyl-CoA was being channeled differentially between citrate
and choline synthesis and demonstrates a carbon and energy
exchange between central metabolism and lipid precursors
(Markham et al., 1993). Prior work has indicated that under
low oxygen or glucose depletion N. crassa cells become
vacuolated (Slayman et al., 1994; Slayman and Potapova,
2006). The synthesis of membranes for the vacuoles and their
membranes under anaerobic conditions would explain the
rise in choline. A concordant decrease in G-1-P at ∼3 h may
indicate a shift of carbon flux to glycolysis from glycogen,
caused by sensing of extracellular glucose levels (Wang et al.,
2017) or limitations of glycogen capacity. Glucose conversion
to G-6-P (Glucose 6-phosphate) is the first step of glycolysis
(Voet and Voet, 2011), which was clearly active in the first
stages of our aerobic condition (Figure 5). High levels of
G-6-P drives its conversion by phosphoglucomutase to G-
1-P (Voet and Voet, 2011), which is converted by UDP-
glucose pyrophosphorylase and UTP hydrolysis to the direct
glycogen precursor UDP-glucose (Voet and Voet, 2011). The
latter is the rate-limiting step in glycogen synthesis, which
is an endergonic process. If G-6-P levels were high and
flux were shunted to glycogen, high levels of G-1-P would
be expected.

7) Cell wall synthesis, glucose, and oxygen are coordinated.

UDP-GlcNAc is synthesized via the unidirectional Leloir
pathway (Milewski et al., 2006), and the only known
uses for UDP-GlcNAc in N. crassa are chitin/cell wall
biosynthesis and UDP-GalNAc production (Edson and
Brody, 1976; Milewski et al., 2006). Filamentous fungi
such as N. crassa produce chitinases (Patil et al., 2000) and
could utilize these for autolysis under stress conditions.
However, if an increase in UDP-GlcNAc indicated cell
wall degradation (i.e., due to stress or autolysis), those
resonances would be expected to increase in the anaerobic
condition; however, they were barely detected (Figure 3,
Supplementary Figure 6C). Curiously, a recent study
suggested that N. crassa utilizes alternative chitin catabolism
pathways that would not result in increased GlcNAc-derived
UDP-GlcNAc (Gaderer et al., 2017). Considering the
above dynamics, we conclude that resources were allocated

between energy storage and cell wall synthesis pathways in
glucose-rich conditions.

CIVM-NMR is complementary to a number of other omic assays,
such as transcriptional profiling (DeRisi et al., 1997), protein-
DNA interactions assays (Ren et al., 2000), protein profiling by
ICAT (Gygi et al., 1999), and protein-protein interaction assays
(Walhout et al., 2000). The technique provides a phenotypic
readout of the most dynamic components of the system in real
time. In conjunction with methods at the transcript or protein
level, CIVM-NMR closes the gap in the iterative process of
prediction and measurement and enables integrated approach
to identifying genetic networks (Battogtokh et al., 2002; Yu
et al., 2007) and model-guided discovery (McGee and Buzzard,
2018). In this way, CIVM-NMR significantly adds to the goal of
systems biology by allowing full data integration from genes to
metabolites (Ideker et al., 2001).
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