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Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system. By

combining longitudinal MRI-based brain morphometry and brain age estimation using

machine learning, we tested the hypothesis that MS patients have higher brain age

relative to chronological age than healthy controls (HC) and that longitudinal rate of brain

aging in MS patients is associated with clinical course and severity. Seventy-six MS

patients [71% females, mean age 34.8 years (range 21–49) at inclusion] were examined

with brain MRI at three time points with a mean total follow up period of 4.4 years

(±0.4 years). We used additional cross-sectional MRI data from 235 HC for case-control

comparison. We applied a machine learning model trained on an independent set of

3,208 HC to estimate individual brain age and to calculate the difference between

estimated and chronological age, termed brain age gap (BAG). We also assessed the

longitudinal change rate in BAG in individuals with MS. MS patients showed significantly

higher BAG (4.4 ± 6.6 years) compared to HC (Cohen’s D = 0.69, p = 4.0 × 10−6).

Longitudinal estimates of BAG in MS patients showed high reliability and suggested an

accelerated rate of brain aging corresponding to an annual increase of 0.41 (SE = 0.15)

years compared to chronological aging (p= 0.008). Multiple regression analyses revealed

higher rate of brain aging in patients with more brain atrophy (Cohen’s D = 0.86,

p = 4.3 × 10−15) and increased white matter lesion load (WMLL) (Cohen’s D = 0.55,

p = 0.015). On average, patients with MS had significantly higher BAG compared to HC.

Progressive brain aging in patients with MS was related to brain atrophy and increased

WMLL. No significant clinical associations were found in our sample, future studies are

warranted on this matter. Brain age estimation is a promising method for evaluation of

subtle brain changes in MS, which is important for predicting clinical outcome and guide

choice of intervention.
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INTRODUCTION

Multiple sclerosis (MS) is an inflammatory, demyelinating
disease of the CNS. The pathophysiology of MS can be
divided into acute inflammation during a relapse and chronic
inflammation thought to continuously perturb neuroaxonal
homeostasis and drive neurodegeneration (1). Development
of robust brain imaging markers that can parse between-
subject heterogeneity of the clinical trajectories, predict future
progression of disability, and monitor the effects of treatment for
MS patients, is a major aim with important clinical implications
(2, 3). Current imaging markers with relevance for MS are
associated with disease activity and progression, and include,
among other features, number or volume of hyperintense
brain lesions visible on T2-weighted MRI images, contrast-
enhancing T1 lesions, increased annual brain volume loss and
T1-hypointense “black holes” (2, 4, 5). Increased rate of total
brain volume loss, which is best captured using longitudinal
designs (6), reflects accelerated neurodegeneration (7), and
regional analyses may boost the correlations between estimated
brain atrophy and disability (2).

However, identifying robust associations between clinical
outcomes and MRI measures has been challenging (8). This
clinico-radiological paradox in MS is likely explained by a
combination of lack of sensitivity and specificity both in
the clinical and imaging domain. Brain age estimation uses
machine learning to train a model that can accurately predict
the individual age from brain imaging data (9–11). Utilizing
sensitive measures of MRI-based brain morphometry, brain age
estimation provides a robust imaging-based biomarker with
potential to yield novel insights into similarities and differences
of disease pathophysiology across brain disorders (11, 12).
Such imaging-based brain age has been shown to be reliable
both within and between MRI scanners, and is a candidate
biomarker of an individual’s brain health and integrity (10–12).
Different approaches to brain age estimation exploit information
from a variety of brain regions (e.g., hippocampus, subcortical,
gray matter, and white matter) or MRI sequences (e.g., T1,
T2, diffusion tensor imaging and functional MRI) to inform
the model (12). An older appearing brain, which is related
to advanced physiological and cognitive aging and mortality
(12, 13), has been found across several brain disorders, and
region specific brain age patterns in patient cohorts have shown
potential differential genetic effects, including genetic pleiotropy
between global brain age and MS (11). To our knowledge, only
two preprint manuscripts (11, 14) and one abstract (15) have
reported brain age estimations in MS, and all reported older
appearing brains in patients with MS compared to HC.

Here, combining cross-sectional and sensitive measures of
MRI-based regional and global brain morphometry in MS and
HC (cross-sectional only), we tested the hypothesis that MS

Abbreviations: BAG, Brain Age Gap; Cereb., Cerebellar; DMT, Disease Modifying

Treatment; EDA, Evidence of Disease Activity; HC, Healthy Controls; ICC,

Intraclass Correlation Coefficient; MS,Multiple Sclerosis; MSSS, Multiple Sclerosis

Severity Scale; NEDA, No Evidence of Disease Activity; Subcort., Subcortical;

WMLL, White Matter Lesion Load.

patients have higher brain age than HC. Next, using longitudinal
MRI data inMS patients we tested the hypothesis that brain aging
accelerates in MS and that the rate of acceleration is associated
with a more severe clinical outcome.

MATERIALS AND METHODS

Participants
We recruited 76MS patients at Oslo University Hospital (16, 17).
All patients were diagnosed with MS between January 2009 and
December 2012 according to the revised McDonald Criteria (18)
and were enrolled in the study on average 14 months (±11.8)
after the date of diagnosis (time point 1). Exclusion criteria
included age < 18 years or > 50 years, uncertain diagnosis,
non-fluency in Norwegian, neurological or psychiatric disease,
drug abuse, head trauma, pregnancy, and previous adverse
gadolinium reaction. Most patients also participated in two
follow-up examinations on average 26months (±11.7, time point
2, n = 60) and 66 months (±13.3, time point 3, n = 62)
after the date of diagnosis. At each visit, all patients completed
a neurological examination by a Neurostatus certified medical
doctor (http://www.neurostatus.com) within the same week as
their MRI scan. Disease-modifying treatments were categorized
into the following groups; 0: no treatment; 1: glatiramer
acetate, interferons, teriflunomide, or dimetylfumarate; and 2:
fingolimod, natalizumab, or alemtuzumab. Many patients (n =

58) were also included in a partly overlapping study with a larger
cross-sectional MS group (n= 254) (11).

The HC group was recruited through newspaper ads or
after a stratified random selection drawn from the Norwegian
National Population Registry to two parallel studies (13, 19).
Exclusion criteria included estimated IQ (intelligence quotient)
<70, history of neurologic or psychiatric disease and current
medication significantly affecting the nervous system (20).

This study was carried out in accordance with the
recommendations of the Regional Committee for Medical
and Health Research Ethics with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the South East Regional Committee for Medical and
Health Research Ethics.

MRI Acquisition
All MS patients were scanned at up to three time points
between January 2012 and August 2017 in a study setting, using
the same 1.5 T scanner (Avanto, Siemens Medical Solutions;
Erlangen, Germany) equipped with a 12-channel head coil.
Structural MRI data were collected using a 3D T1-weighted
MPRAGE (Magnetization Prepared Rapid Gradient Echo)
sequence, with the following parameters: TR (repetition time)/TE
(echo time)/flip angle/voxel size/FOV (field of view)/slices/scan
time/matrix/time to inversion = 2,400 ms/3.61 ms/8◦/1.20
× 1.25 × 1.25 mm/240/160 sagittal slices/7:42 min/192 ×

192/1,000ms. The MRI sequence was kept identical during the
scanning period. FLAIR (Fluid attenuation inversion recovery),
T2 and pre- and post-gadolinium 3D T1 sequences were attained
and used for neuroradiological evaluation (17).
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Fifty-eight of the MS patients were also scanned at Oslo
University Hospital on a 3 T GE 750 Discovery MRI scanner
with a 32-channel head coil at time point 3 between August
2016 and June 2017 during the same week they were scanned
at the 1.5 T scanner for time point 3. HCs were scanned solely
on the 3 T scanner at one time point to provide cross-sectional
data. Structural MRI data were collected using a 3D high-
resolution IR-prepared FSPGR (fast spoiled gradient echo) T1-
weighted sequence (3D BRAVO) with the following parameters:
TR (repetition time)/TE (echo time)/flip angle/voxel size/FOV
(field of view)/slices/scan time = 8.16 ms/3.18 ms/12◦/1 × 1 ×

1 mm/256× 256 mm/188 sagittal slices/4:42 min.

MRI Pre- and Post-processing
Using the T1-weighted scans we performed cortical
reconstruction and volumetric segmentation with FreeSurfer
5.3 (http://surfer.nmr.mgh.harvard.edu/) (21). To extract
reliable volume and thickness estimates, images included in
the longitudinal 1.5 T MRI dataset were processed with the
longitudinal stream in FreeSurfer (22). Specifically an unbiased
within-subject template space and image was created using
robust, inverse consistent registration (23). Several processing
steps, such as skull stripping, Talairach transforms, atlas
registration as well as spherical surface maps and parcellations
were then initialized with common information from the
within-subject template, increasing reliability and power (22).

Manual quality control of the MRI scans from patients
was performed by trained research personnel to identify and
edit segmentation errors where possible (n = 43 MRI scans)
and exclude data of insufficient quality (n = 6 MRI scans).
In addition, eight brain scans were removed due to missing
sequences of the 263 MRI scans from MS patients. Lesion filling
was performed utilizing automatically generated lesion masks
from Cascade (24) with the lesion filling tool (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/lesion_filling) in FSL (25). The lesion masks
were assessed by a trained neuroradiologist and normalized to
MNI space using FLIRT (26), with the corresponding T1 image
as an intermediate. A probabilistic representation of the lesions
across all patients is shown in Supplementary Figure 1.

Brain Age Estimation Model
The training set for brain age estimation included MRI scans
from 3,208 HC >12 years (54% women, mean age 47.5 (±19.8),
age range 12–95) obtained from several publicly available
datasets (Supplementary Figure 2) and processed in the same
MRI pipeline.

We trained one machine learning model for each sex to
predict brain age following a recent implementation (11). The
features were derived from the Human Connectome Project
parcellation of the cortex (27), comprising 180 regions of interest
per hemisphere for thickness, area, and volume, respectively. In
addition, we used subcortical and cerebellar parcellations from
Freesurfer. The full set comprised 1,118 features in total. We
used extreme gradient boosting, “xgboost” package in R (28),
as the main method for our brain age studies as it has been
the lead solution on many machine learning competitions in the
field and due to our data being highly monotonic. We compared

xgboost to shrinkage linear models (https://cran.r-project.org/
package=care) and found converging results, although xgboost
performed slightly better in our data (Supplementary Table 1).
We trained one extreme gradient boosting tree machine learning
model per sex on the training set to predict age using the
28 brain imaging features (learning rate eta = 0.01, optimal
number of rounds determined in a nested cross-validation
loop within the training set, other parameters as default).
A 10-fold cross-validation confirmed good performance and
generalizability in the combined model for females and males
(Supplementary Figure 3, r = 0.91).

Next, for all patients and HC in the test set, we estimated
brain age and calculated the brain age gap (BAG, defined as the
difference between chronological age and imaging-based brain
age). Using linear regressions, we removed any common variance
with age, age2 and sex to account for confounding factors before
submitting the residualized version of BAG to further analyses
(29). When pooling estimates of BAG from the 1.5 T and 3 T
scanners, we adjusted BAG for scanner effect on BAG estimates
by extracting the scanner coefficient from a LME (linear mixed
effects) model. When comparing BAG between patients and
matched HCs we report the actual adjusted difference in BAG
between these two groups.

In addition to the estimation of brain age based on features
from the whole brain, we also performed brain age estimation of
regional subsets of features (11, 13).We used the lobe parcellation
labels from Freesurfer (21) to identify features that overlapped
with a given lobe and performed similar machine learning
procedures sets as described for the whole brain using occipital,
frontal, temporal, cingulate, insula, and subcortical/cerebellar
features alone, respectively.

Statistical Analyses
We used R (R Core Team, Vienna, 2018) for statistical analyses.
All LME models accounted for age, age2, sex, and scanner
(30). We estimated annual change in BAG by dividing the
total change in BAG by the relevant time interval. We utilized
the longest time interval between time points and excluded
MS patients lacking longitudinal data (n = 8). A score of 0
indicates that the rate of brain aging corresponds to chronological
aging, and positive and negative values correspond to accelerated
and decelerated brain aging compared to chronological aging,
respectively. For each brain region we tested the relative rate
of brain aging on a group level by performing one-sample t-
tests on BAG with 0 as test value. We estimated the annual
global brain atrophy by comparing estimated total brain volume
from the Freesurfer output (BrainSegVolNotVent) between time
points. Based on Freesurfer volumetric output, we also compared
the volumetric and normalized measurements (divided by
estimated total intracranial volume) betweenMS patients andHC
(Supplementary Table 2).

To assess reliability of brain age across time we computed the
intraclass correlation coefficient (ICC) using the R package “irr”
(https://CRAN.R-project.org/package=irr). Figures were made
using “ggplot2” (31) and “cowplot” (https://CRAN.R-project.
org/package=cowplot) in R. To control for multiple testing
we adjusted the p-values using false discovery rate (FDR) (32)

Frontiers in Neurology | www.frontiersin.org 3 April 2019 | Volume 10 | Article 450

http://surfer.nmr.mgh.harvard.edu/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/lesion_filling
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/lesion_filling
https://cran.r-project.org/package=care
https://cran.r-project.org/package=care
https://CRAN.R-project.org/package=irr
https://CRAN.R-project.org/package=cowplot
https://CRAN.R-project.org/package=cowplot
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Høgestøl et al. Accelerated Brain Aging in Multiple Sclerosis

procedures implemented in the R package “p.adjust” (http://
stat.ethz.ch/R-manual/R-devel/library/stats/html/p.adjust.
html). The LME models were performed using the R package
“nlme” (https://CRAN.R-project.org/package=nlme).

RESULTS

Participant Demographics and
Characteristics
Table 1 summarizes the demographic and clinical characteristics
of all MS patients. Key demographic variables regarding HC are
summarized in Supplementary Table 2. The majority of the MS
patients were women (71%), 96% had relapsing-remitting MS
and mean age at inclusion was 34.8 years (±7.2). On average
they were examined 1.2, 2.2, and 5.5 years after diagnosis. Most
patients used first line treatment; 65, 48, and 37% at time point
1, 2, and 3, respectively. Second line treatments were used by
13, 23, and 32% of the MS patients at time point 1, 2, and 3,
respectively. At time point 2 and 3, 53 and 44% of the patients
were categorized as having NEDA (No Evidence of Disease
Activity)−3 (no clinical progression, no new lesions observable
in MRI and no new attacks). At time point 2, 43% of the patients
with EDA (Evidence of Disease Activity) had changed their
disease modifying treatment (DMT). At time point 3, 77% of the
patients with EDA had changed their DMT.

Cross-Sectional Case-Control Analyses
(3 T)
At time point 3 (3T data) we found significantly higher BAG for
the MS group compared to matched HC for all brain regions
except the temporal region (Figure 1; Supplementary Table 4).
The most prominent differences in BAG were 4.4 years for global
BAG (Cohen’s D = 0.69) and 6.2 years for subcortical and
cerebellar brain regions (Cohen’s D= 0.72).

At time point 3, 58MS patients underwent one MRI scanning
in the 1.5 T and one in the 3 T scanner with 2 days apart.
Whereas, absolute estimates of brain age varied between
scanners for all brain regions except insula (BAG scanner
difference −6.08 to 10.60 years, see Supplementary Table 3;
Supplementary Figures 4), brain age estimates from the
two scanners were highly correlated for global BAG and
all brain regions (r = 0.67–0.86, p < 0.001), supporting
the reproducibility.

Volumetric data showed no significant differences in
measures of whole brain, gray matter and white matter. When
using normalized measurements (divided by estimated total
intracranial volume), we found significant differences between
normalized whole brain (Cohen’s D = 0.45) and gray matter
(Cohen’s D= 0.46) volumes (Supplementary Table 2).

Longitudinal MS Sample (1.5 T)
The correlations between chronological age and global brain age
were r = 0.71 for time point 1, r = 0.70 for time point 2, and r
= 0.69 for time point 3. After adjusting for scanner effects mean
global BAG was 2.8 (±9.0) for time point 1, 3.3 (±9.4) for time
point 2, and 4.6 (±9.8) for time point 3 in the longitudinal MS
sample (Supplementary Figures 5A,B). Some patients exhibited

TABLE 1 | Demographic and clinical characteristics of the multiple sclerosis

patients.

Time point 1 Time point 2 Time point 3

(a) Demographic

characteristics

n = 76 n = 75 n = 62

Female (%) 54 (71) 54 (72) 44 (71)

Age, mean years (SD) 34.8 (7.2) 35.8 (7.2) 40.0 (7.3)

≥15 years education (%) 53 (70) NA 50 (81)

Disease duration, mean months

(SD)

71.7 (63.0) 79.7 (57.1) 125.1 (60.2)

Age at first symptom, mean years

(SD)

29.3 (6.7)

Months since MS diagnosis, mean

(SD)

14.0 (11.8) 26.3 (11.7) 66.2 (13.3)

Positive OCB status (%) 69 (91)

Disease modifying treatment

None (%) 17 (22) 22 (29) 19 (31)

First line (%) 49 (65) 36 (48) 23 (37)

Second line (%) 10 (13) 17 (23) 20 (32)

(b) Clinical evaluation

Multiple sclerosis classification

RRMS (%) 73 (96) 72 (96) 60 (95)

PPMS (%) 2 (3) 2 (3) 1 (2)

SPMS (%) 1 (1) 1 (1) 2 (3)

Neurological disability

EDSS, median (SD, range) 2.0 (0.9, 0-6) 2.0 (0.9, 0-4) 2.0 (1.3, 0-6)

MSSS (SD) 4.9 (1.9) 4.5 (2.0) 2.6 (1.8)

Number of total attacks, mean

(SD)

1.8 (1.0) 2.0 (1.0) 2.6 (1.3)

Nine hole peg test

Dominant hand, mean seconds

(SD)

20.0 (3.1) NA 20.6 (8.4)

Non-dominant hand, mean

seconds (SD)

20.8 (2.8) NA 21.1 (5.9)

Timed 25 feet walk test, mean

seconds (SD)

4.0 (0.7) 3.9 (0.8) 4.0 (1.1)

(c) NEDA assessment

NEDA-3 (%) 40 (53) 27 (44)

NEDA-4 (%) 17 (30) 18 (32)

OCB, oligoclonal bands; RRMS, relapsing-remitting multiple sclerosis; PPMS, primary

progressive multiple sclerosis; SPMS, secondary progressive multiple sclerosis; EDSS,

expanded disability status scale; MSSS, multiple sclerosis severity scale; NEDA, no

evidence of disease activity.

reduced estimates of brain age over time, likely partly explained
by an effect of MRI noise characteristics (subject motion, MRI
artifacts or any other technical changes between acquisitions),
while in the same period the biological changes were negligible.

We found a significant annual increase in global BAG of
0.41 (SE = 0.15) years (p = 0.008) in patients with MS
(Figure 2; Supplementary Tables 6, 7). No regional measures
showed significantly decreasing or increasing BAG at the group
level (Supplementary Tables 7, 8). Our dataset included a low
number of other MS phenotypes than RRMS, and we did not find
significant correlations between brain atrophy rates or annual
change in global BAG among these.
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FIGURE 1 | Cross-sectional comparison of brain age gap between multiple sclerosis patients and healthy controls. The distribution of brain age gaps across brain

regions based on the cross-sectional 3 T MRI data from matched HC and multiple sclerosis patients at time point 3. We found increased brain age gaps for all brain

regions except from the temporal brain region. Brain age gaps are residualized for age, age2, and sex. Cohen’s D effect sizes for the brain age gap between HC and

multiple sclerosis patients are depicted using the color bar. All BAG estimates are depicted as black circles on the x-axes.

FIGURE 2 | Longitudinal changes in brain age gap across brain regions. The distribution of brain age gaps across brain regions based on the longitudinal 1.5 T MRI

sample. Brain age gaps from the MS sample are compared with the cross-sectional 3 T HC sample and residualized for age, age2, sex, and scanner. The full brain

estimates showed a significant accelerated rate of brain aging compared to chronological aging [annual increase in brain age gap 0.41 (p = 0.008)]. Cohen’s D effect

sizes for the brain age gap between MS and HC are depicted using the color bar. All BAG estimates are depicted as black circles on the x-axes.

We found no significant difference in BAG between
the raw and the lesion filled MRI scans, and the BAG
scores from the two versions were highly correlated BAG
(r = 0.98). Data processed with the longitudinal stream
in FreeSurfer had significantly lower BAG than the cross-
sectionally processed MRI scans (mean difference in BAG
4.9 years, p < 0.001) and lesion filled MRI scans (difference
in BAG 5.1 years, p ≤ 0.001) (Supplementary Figures 6, 7;
Supplementary Tables 4, 5).

ICCs for all brain regions across all time points varied from
0.79 to 0.94 for residualized BAG and 0.78–0.95 for predicted
age. Cerebellar and subcortical brain regions showed highest
reliability with an ICC of 0.94 for BAG and 0.95 for predicted
age (Supplementary Table 9).

Mean annualized estimated change in global brain
volume from all three time points. from Freesurfer was
−0.30% (SD = 0.53%). ICC for global brain volume was
0.97–0.99. Mean annualized change in WMLL was 504

Frontiers in Neurology | www.frontiersin.org 5 April 2019 | Volume 10 | Article 450

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Høgestøl et al. Accelerated Brain Aging in Multiple Sclerosis

mm3 (±28 mm3). ICC for WMLL at time point three
was 0.93–0.99.

Associations Between Global Brain Age
and Clinical Outcomes
Table 2 (BAG) and Table 3 (annual rate of brain aging) show
summary statistics from the multiple regressions testing for
associations with demographic, clinical, and MRI variables in
the longitudinal MS group (Supplementary Tables 10, 11). After
accounting for multiple testing, significant associations were
found between BAG and WMLL (Cohen’s D = −1.23, p= 3.0×
10−4) and global brain atrophy (Cohen’s D = −0.07, p = 0.01),
respectively, indicating higher BAG at baseline with higher
WMLL at time point three and increased brain atrophy over time.
Further, changes in BAG over time was significantly associated
with brain atrophy over time (Cohen’s D = 0.86, p = 4.3 ×

10−15) and change in WMLL (Cohen’s D = 0.55, p = 0.015),
indicating higher rates of brain aging in patients with higher
levels of brain atrophy and more progressive changes in WMLL.
WMLL also showed a significant correlation with BAG for
cerebellar and subcortical regions (Cohen’s D = −1.23, p = 3.2
× 10−3).

DISCUSSION

Using cross-sectional and longitudinal MRI data as basis
for brain age estimation based on machine learning, we
tested the hypotheses that patients with MS on average
show higher brain age than healthy controls, and that the
rate of brain aging is associated with clinical trajectories.
Cross-sectional analysis revealed higher brain age gap
in patients with MS compared to healthy controls, and
longitudinal analysis showed increased rates of brain
aging in patients with higher rates of brain atrophy and
increasing WMLL.

MS patients had on average 4.4 years higher BAG compared
to HC (Cohen’s D = 0.68), in line with preliminary findings
in a partly overlapping cross-sectional sample (11). To our
knowledge, other studies comparable to ours are not yet
available, and further studies are warranted. Global brain age
differences may disguise relevant regional effects. Indeed, for
subcortical and cerebellar brain regions we found a higher
BAG in MS compared with HCs (BAG 6.2 years, Cohen’s
D = 0.72), which was already evident at time point 1
(BAG 5.7 years, Cohen’s D = 0.63). The regional variability
may reflect differential affinity of MS pathology across the
brain, which is also supported by lesion probability maps in
MS (2, 33).

In our longitudinal patient sample, the average annual
rate of brain aging for global BAG exceeded that of
chronological aging by 0.41 years per year (p = 0.008).
Although further studies are needed, this apparent accelerated
aging of the brain may partly be explained by chronic
inflammatory processes that drive neurodegeneration in
MS (1).

As expected, we found relatively robust associations
between brain atrophy and brain aging (r = 0.79, p =

4.3 × 10−15). Of notice, regional brain aging and BAG is
sensitive to subtle brain changes that may not necessarily
be picked up in the global brain atrophy measures.
Indeed, the associations between change in WMLLs and
annual rate of brain aging were significant for occipital,
temporal, and parietal brain regions in addition to the global
estimate (Supplementary Table 10). For BAG we did indeed
only see significant associations with brain volume and
BAG for occipital, frontal, parietal, and cingulate regions
(Supplementary Table 11). This shows that regional brain
age estimation may capture regional specificity of MS
pathology (10–12, 33).

Multiple regression analyses revealed only nominally
significant (p < 0.05, uncorrected) associations between some
clinical, cognitive, and imaging variables and BAG as well
as brain aging for specific brain regions. However, these
associations did not survive correction for multiple testing,
and further studies are needed to assess the robustness of these
observations. A previous study in healthy individuals reported
significant associations between BAG and performance on
specific cognitive tests, including spatial Stroop and symbol
coding, with poorer performance in individuals with an
over-estimated age (13). Preliminary results from a partly
overlapping cross-sectional sample revealed a significant
association between BAG and Expanded Disability Status
Scale (Fisher z = 0.23) (11), indicating that patients with
higher clinical disease burden have older appearing brains.
Further studies are needed to test the generalizability
and robustness of these findings, both in clinical and
healthy samples.

Brain age estimation is a useful framework that allows us
to leverage large scale brain imaging databases for training
robust machine learning models and apply automated
prediction on the individual level. Further, whereas the
approach builds on the vast amount of previous atrophy and
lesion research, it contributes beyond that by downsampling
a lot of information from the entire brain into a single
holistic score in an automated fashion. As an example, in
our data, we found no association between brain atrophy
and change in Multiple Sclerosis Severity Scale (MSSS) (r
= 0.03, p = 0.80), yet our brain age estimation approach
revealed associations with change in MSSS for brain aging
of the cerebellar & subcortical regions (r = 0.36, p = 5.1
× 10−3, not significant after correcting for multiple testing)
(Supplementary Table 12).

Some limitations should be considered when interpreting
the results. First, although the cross-sectional case-control
comparison and the within-patient longitudinal analysis jointly
suggest accelerated brain aging in patients with MS, a
longitudinal sample of HCs would have enabled us to directly
compare the rate of brain aging between patients and controls.
Next, the current brain age model was exclusively based on gross
morphometric features, and extending the range of brain imaging
features, including indices of white matter microstructural
properties and myelin integrity, may increase sensitivity to
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TABLE 2 | Pearson’s correlations between brain age gap and relevant clinical and MRI variables.

Fullbrain Frontal Parietal Cereb. / Subcort.

Clinical variables cor. p cor. p cor. p cor. p

9HPT Non-dominant 0.36 5.8 × 10−3 0.03 0.80 0.16 0.22 0.28 0.030

Change in 9HPT Non-dominant 0.28 0.035 0.05 0.68 0.14 0.31 0.21 0.12

DMT Level 0.01 0.93 0.03 0.80 −0.05 0.70 0.26 0.046

Gender −0.28 0.031 0.05 0.68 −0.18 0.17 −0.04 0.78

MRI variables cor. p cor. p cor. p cor. p

WMLL 0.46 3.0 × 10−4 0.19 0.16 0.24 0.07 0.38 3.2 × 10−3

Change in WMLL 0.30 0.022 0.12 0.34 0.20 0.13 0.34 9.6 × 10−3

Brain volume −0.25 0.06 −0.43 8.8 × 10−4
−0.35 7.3 × 10−3 −0.24 0.07

Brain atrophy −0.33 0.011 −0.31 0.017 −0.37 4.7 × 10−3 −0.13 0.32

ICV −0.01 0.94 −0.29 0.027 −0.20 0.13 −0.02 0.87

Significant associations are highlighted with bold (p < 0.05). Associations which were still significant after adjusting for false discovery rate are underlined. Cereb., cerebellar; Subcort.,

subcortical; 9HPT, nine hole peg test; Cor., correlation; DMT, disease-modifying therapies; WMLL, white matter lesion load; ICV, intracranial volume.

TABLE 3 | Pearson’s correlations between annual rate of brain aging and relevant clinical and MRI variables on time point 3.

Fullbrain Frontal Parietal Cereb. / Subcort.

Clinical variables cor. p cor. p cor. p cor. p

EDSS 0.09 0.49 −0.01 0.95 −0.15 0.25 0.22 0.08

Change in EDSS 0.16 0.23 0.09 0.50 −0.03 0.83 0.29 0.026

MSSS −0.03 0.84 −0.09 0.47 −0.21 0.11 0.17 0.20

Change in MSSS 0.17 0.21 0.10 0.46 0.05 0.68 0.36 5.1 × 10−3

9HPT Non-dominant 0.29 0.028 0.15 0.27 0.01 0.92 0.30 0.021

Change in 9HPT Non-dominant 0.31 0.017 0.20 0.14 0.08 0.53 0.32 0.014

DMT Level −0.28 0.031 −0.22 0.09 −0.17 0.21 −0.08 0.54

MRI variables cor. p cor. p cor. p cor. p

WMLL 0.29 0.026 0.21 0.11 0.19 0.16 0.01 0.96

Change in WMLL 0.30 0.015 0.19 0.12 0.35 4.3 × 10−3 0.00 0.98

Brain volume −0.01 0.93 −0.08 0.54 −0.03 0.83 0.10 0.44

Brain atrophy −0.79 4.3 × 10−15
−0.79 1.6 × 10−15

−0.72 1.1 × 10−11 −0.07 0.57

Significant associations are highlighted with bold (p<0.05). Associations which were still significant after adjusting for false discovery rate are underlined. Cereb., cerebellar; Subcort.,

subcortical; Cor., correlation; EDSS, expanded disability status scale; MSSS, multiple sclerosis severity score; 9HPT, nine hole peg test; DMT, disease-modifying therapies; WMLL, white

matter lesion load.

clinical trajectories in MS. When analyzing clinical associations
with estimates of brain age gap we include clinical tests which
relies heavily on the spine, although morphometric data from
the spine are not included in our brain age estimation model.
Finally, although prospective data is a substantial strength of
our study, our design does not allow for causal inference (e.g.,
related to treatment status). Data from analyses of brain age
compared to disease modifying treatments are provided in
Supplementary Figure 8, and Supplementary Tables 10, 11, 13.
Our current brain age estimation model aimed at identifying
deviations from healthy aging trajectories, future studies could
potentially benefit from establishing unique models based on
disease specific training sets.

In conclusion, using advanced cross-sectional imaging data
and machine learning we report higher brain age in patients
with MS compared to healthy controls. Longitudinal analysis

suggested accelerated brain aging in MS patients with higher
levels of brain atrophy and longitudinal progression of changes
in WMLL. Brain age estimation is a framework that allows
us to downsample the complex brain imaging features into
a single individual “score” using automated machine learning,
enabling us to gain new insights into the complex brain structure.
Jointly, these results corroborate that brain age estimation is
a promising and intuitive tool with potential to establish a
comprehensive measure of brain health which may guide a
personalized treatment approach in MS.
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