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In the present review, we focus on the phenomenon of chromothripsis, a new type of
complex chromosomal rearrangements. We discuss the challenges of chromothripsis
detection and its distinction from other chromoanagenesis events. Along with already
known causes and mechanisms, we introduce aberrant epigenetic regulation as
a possible pathway to chromothripsis. We address the issue of chromothripsis
characteristics in cancers and benign tumours, as well as chromothripsis inheritance
in cases of its occurrence in germ cells, zygotes and early embryos. Summarising
the presented data on different phenotypic effect of chromothripsis, we assume that
its consequences are most likely determined not by the chromosome shattering and
reassembly themselves, but by the genome regions involved in the rearrangement.

Keywords: chromothripsis, complex chromosomal rearrangements, epigenetics, cancer, benign tumour,
chromosome pulverisation, constitutional chromothripsis

INTRODUCTION

Complex chromosomal rearrangements have been found since introduction of cytogenetic
techniques. At present, due to development of new molecular-cytogenetic and molecular methods,
the nature of CCRs became apparent making possible their classification.

The first documented CCR case was a translocation affecting three chromosomes in a child with
mental retardation and associated dysmorphic features (Nuzzo et al., 1968). In 1970, a team of
Lund University researchers discovered another translocation involving three, or possibly, four
chromosomes and characterised it as a “complex translocation” and “complex rearrangement”
(Fredga and Hall, 1970). Subsequently, complex chromosomal translocations were given the
definition that currently extends to the term “CCRs”: complex chromosomal translocations involve
more than a reciprocal exchange of segments between two chromosomes resulting in multiple
derivative chromosomes (Pai et al., 1980). As molecular genetic techniques gained popularity,
our understanding of the nature and origins of structural chromosomal abnormalities increased.
As a result, the initial definition of CCRs is frequently updated in terms of the number of
breakpoints and number of involved chromosomes. At present, CCRs are understood to be

Abbreviations: aCGH, array comparative genomic hybridisation; CC, constitutional chromothripsis; CCR, complex
chromosomal rearrangement; DSB, DNA double-strand break; FISH, fluorescent in situ hybridisation; NHEJ, non-
homologous end joining; SKY, spectral karyotyping; SNP array, single nucleotide polymorphism array.
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structural chromosomal abnormalities that arise as a result of
three or more breakpoints in one or more chromosomes, with
the exception of inter- and intrachromosomal insertions (Madan,
2013; McGowan-Jordan et al., 2016).

In January 2011, Stephens et al. (2011) published a
paper on CCRs in chronic lymphocytic leukaemia. Using
paired-end DNA sequencing, they revealed 42 rearrangements
affecting chromosome 4 and several rearrangements affecting
chromosomes 1, 12, and 15 in the tumour cells of one
patient. The detected rearrangements were characterised not
only by numerous breakpoints in a relatively short genome
region but also by multiple deletions in the almost complete
absence of duplications. Subsequently, when studying similar
genome alterations in a small-cell lung cancer cell line (SCLC-
21H), the authors observed the formation of double minutes
from fragments of derivative chromosome 8 (Stephens et al.,
2011). Notably, the rearranged chromosomes and the double
minutes comprised material from only one of the homologous
chromosomes, the other remaining intact. The authors suggested
the term “chromothripsis” to describe this phenomenon (from
the Greek “chromos” – “chromosome” – and “thripsis” –
“shattering” into small fragments) (Stephens et al., 2011).

Importantly, apart from chromothripsis, over the last 7 years
two more CCR types have been described: chromoanasynthesis
and chromoplexy. The three types of aberrations are covered
by the umbrella term “chromoanagenesis” (from the Greek
“anagenesis” – “rebirth”), which indicates a structural
chromosome reorganisation (Holland and Cleveland, 2012).
It is believed, however, that chromothripsis differs from other
chromoanagenesis phenomena by the mechanisms of its
occurrence and the nature of genetic alterations (Poot, 2018).

CHROMOTHRIPSIS AND OTHER TYPES
OF CHROMOANAGENESIS

The results of whole genome sequencing, followed by mapping
reads against a reference genome, lead us to believe that
chromothripsis is based on the process of chromosome shattering
triggered by double-strand DNA breaks (Stephens et al., 2011).
The repair of double-strand breaks in a cell may occur through
either a homologous recombination or NHEJ (reviewed in
Ceccaldi et al., 2016). NHEJ is believed to be the primary
repair mechanism in chromothripsis cases (Stephens et al.,
2011). Once the DNA has been repaired through NHEJ,
the reassembled chromosome may have errors in the order
and orientation of segments. Fragments that do not ligate
together with a centromere may be lost during subsequent
cell divisions resulting in deletions (Figure 1; MacKinnon and
Campbell, 2013). When double-strand breaks occur in two or
more chromosomes, chromosome fragments may fuse, forming
derivative chromosomes.

In theory, such CCRs may result from either chromosome
pulverisation or sequential, independent rearrangements. The
Monte-Carlo simulation method, which includes repeated
random sampling and is traditionally used in stochastic process
research, has established that the chromosome pulverisation

model, which implies an absence of duplications, more accurately
matches the genome alterations observed in chromothripsis.
These data have given rise to an assumption that chromothripsis
is the result of a single catastrophic event (Stephens et al., 2011).

The discovery of chromothripsis in the tumour cells of
patients with chronic lymphocytic leukaemia was followed by a
description of constitutional chromosomal rearrangements that
are comparable with chromothripsis by number of breakpoints
and breakpoint clustering but have different copy-number
profiles. Microarray results have revealed that the karyotype of
17 patients with various developmental problems featured not
only deletions but also multiple duplications and triplications,
which could not have arisen as a result of NHEJ (Liu
et al., 2011). This enabled the authors to hypothesise that
such copy number alterations may result from replication
and repair errors caused by DNA microhomology (MMBIR,
microhomology-mediated break-induced replication; MMIR,
microhomology/microsatellite-induced replication) (Payen et al.,
2008; Hastings et al., 2009). Since chromothripsis does not fully
reflect the characteristics of the observed genome alterations,
the authors suggested replacing the term “chromothripsis”
with “chromoanasynthesis,” which stands for chromosome
reconstitution or chromosome reassortment (Liu et al., 2011).

In their review article on the hypothetical mechanisms
and consequences of chromoanagenesis, Holland and
Cleveland (2012) contrast the terms “chromoanasynthesis” and
“chromothripsis.” According to the authors, chromoanasynthesis
and chromothripsis are two independent phenomena
with different underlying mechanisms. However, multiple
chromosomal aberrations, which are observed in both, are
most likely the result of a single catastrophic event, and not a
successive series of rearrangements.

By contrast, chromoplexy, the third example of
chromoanagenesis, is the result of an accumulation of
chromosome rearrangements. The term “chromoplexy”
(from the Greek “pleko” – “to weave”) was introduced
in 2013 to indicate complex rearrangements of prostate
cancer genomes (Baca et al., 2013). To analyse the results of
whole-genome sequencing and microarray-based comparative
genomic hybridisation (aCGH), the researchers developed
the ChainFinder algorithm, which identifies the chained
rearrangements that resulted in the CCRs. They demonstrated
that, in the majority of samples (50 out of 57), multiple
deletions and translocations occurred successively, which is
uncharacteristic of either chromothripsis or chromoanasynthesis.
Chromoplexy is also characterised by fewer breakpoints and
a larger number of rearranged chromosomes (up to eight)
compared to chromothripsis (Baca et al., 2013). Importantly, the
breakpoints are presumably localised in open chromatin regions
(Berger et al., 2011). Therefore, the high transcription level of
certain loci may serve as a chromoplexy trigger.

Recent study showed a novel potential mechanism
of chromoanagenesis: DNA polymerase θ-dependent
alternative homologous end joining (Masset et al., 2016).
Thus, chromoanagenesis may be induced by a variety of
mechanisms that lead to CCRs. In contrast to chromoplexy and
chromoanasynthesis, chromothripsis is characterised by a larger
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FIGURE 1 | Triggers, mechanisms, and consequences of chromothripsis. Chromothripsis may arise in any cell, including somatic cells, germline cells, zygotes, and
blastomeres of preimplantation embryos, thus, determining the fate of an affected organ or the whole organism. Chromothripsis is induced by exogenous and/or
endogenous factors which trigger chromosome shattering and sequential reassembly of fragments through micronuclei formation, breakage-fusion-bridge cycles,
aberrant epigenetic regulation, abortive apoptosis, and other yet unknown mechanisms.

number of breakpoints and a random order and orientation
of chromosome segments after reassembly. Chromothripsis
features a high frequency of deletions in the almost complete
absence of duplications in localised genome regions. However,
chromothripsis identification among the multitude of CCRs
is challenged by a lack of distinct limitations on the number
of breakpoints and other features. The authors suggest six
criteria to distinguish chromothripsis from other CCRs
(Korbel and Campbell, 2013):

1. Clustering of breakpoints;
2. Oscillation of copy number states between one and two

which is consistent with mono- or disomy;
3. A prevalence of regions with interspersed loss and

retention of heterozygosity;
4. A prevalence of rearrangements affecting a single

haplotype, i.e., one of two homologous chromosomes;

5. Randomness of DNA fragment joins and order, and;
6. Ability to “walk” the derivative chromosome by

joining breakpoints.

The authors used statistical algorithms to justify some of
the criteria, but they did not report the minimal number of
breakpoints, and admitted the possibility of partial tri- and
tetrasomies (Korbel and Campbell, 2013).

Initially, CCRs with over 50 breakpoints were classified as
chromothripsis (Stephens et al., 2011). However, this criterion
was not always fulfiled in subsequent works. In a number of cases,
rearrangements with 20 (Molenaar et al., 2012), 10 (Northcott
et al., 2012; Rausch et al., 2012), or fewer (Chiang et al., 2012)
breakpoints were treated as chromothripsis. Kinsella et al. (2014)
drew attention to this issue in 2014. Using statistical simulation,
they demonstrated that chromothripsis-like rearrangements may
result from sequential rearrangement. Importantly, these results
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do not debunk the traditional hypothesis of the origins of
chromothripsis but only emphasise the need for further research.

METHODS OF CHROMOTHRIPSIS
DETECTION

It has been possible to describe the features of chromothripsis
due to mate-pair sequencing and paired-end sequencing. These
methods work for structural variant detection and CCRs, as well
as genome assembly and de novo sequencing (Miller et al., 2010).
In the case of a CCR, mate-pair and paired-end sequencing with
subsequent verification by Sanger sequencing not only determine
the precise localisation of breakpoints, but also gains data on
nucleic acid sequences at breakpoint junctions (Gao and Smith,
2017). In spite of their high cost and challenging methodology,
mate-pair sequencing and paired-end sequencing are widely used
in chromothripsis studies.

Another efficient method of detecting and studying
chromothripsis is microarray-based comparative genomic
hybridisation (array CGH, aCGH), which is frequently referred
to as “virtual karyotyping” or “chromosomal microarray
analysis.” Copy number analysis allows detection of deletions,
duplications, and other aberrations as well as identification of
their precise genome localisation and size. The resolution of
this method is sufficient to detect submicroscopic aberrations.
For higher resolution and information capacity, aCGH is
combined with a single nucleotide polymorphism (SNP) array
(Keren, 2014). As a method, aCGH is not without considerable
limitations: it cannot detect balanced structural chromosomal
aberrations or determine the order and orientation of derivative
chromosome segments (Balajee and Hande, 2018).

For detection and localisation of a specific DNA or RNA
sequence on a chromosome or in a cell, fluorescence in situ
hybridisation (FISH) is frequently used. In chromothripsis
studies, various FISH techniques are used, each of them
addressing specific aspects in the identification of the derivative
chromosome structure. SKY and multicolour FISH (M-FISH),
with the use of whole chromosome probes conjugated with
different fluorochromes, enables identification of chromosomes
involved in a rearrangement. The multicolour-banding FISH
technique (MCB-FISH) is a segment-specific variant of
chromosome banding that allows one to determine the structure
of an aberrant chromosome (Balajee and Hande, 2018). To
map breakpoints on the chromosomes, locus-specific probes
with known cytogenetic localisation may be used for FISH.
A combination of SKY and in situ hybridisation with fluorescent
locus-specific probes is used to determine the precise structure
not only of derivative chromosomes but also of double minutes
(Stephens et al., 2011).

In patients with hereditary diseases, chromothripsis may be
detected by a conventional karyotyping of metaphases from
peripheral lymphocytes. This technique allows identification of
numerical and structural chromosomal abnormalities including
translocations and inversions, which are frequently observed
in CCR cases. However, the complex nature of CCRs makes
their interpretation by conventional karyotyping alone difficult.

Therefore, to precisely determine the structure of rearrangements
in chromothripsis, it is necessary to use a complex approach
that includes classical chromosome banding, visualisation of the
aberrations on metaphase chromosomes by FISH and molecular
genetic techniques.

CAUSES AND MECHANISMS OF
CHROMOTHRIPSIS

The first assumptions regarding the mechanisms of
chromothripsis were made by Stephens et al. (2011). The authors
argue that DNA junction sequences and their localisation in the
genome attests to chromosome pulverisation during mitosis at
the stage of their highest condensation, not at the interphase
stage. Today, several presumed causes of chromothripsis are
listed (Meyerson and Pellman, 2011; Forment et al., 2012; Jones
and Jallepalli, 2012; Maher and Wilson, 2012).

DNA Damage in Micronuclei
The most accepted hypothesis of chromothripsis occurrence is
chromosome pulverisation in micronuclei. Chromosomes and
their acentric fragments that lag during segregation in mitosis
may be incorporated in a nuclear envelope outside of the
main nucleus, which leads to the formation of micronuclei
(Leibowitz et al., 2015). Certain features of the micronuclear
envelope facilitate the access of cytoplasmic nucleases to the
DNA (Géraud et al., 1989; Terradas et al., 2016). Micronuclei are
characterised by abnormalities in chromatin condensation, which
may lead to chromosome breaks (Terzoudi et al., 2015; Zhang
et al., 2015). Experimental studies have shown the possibility of
chromosome fragmentation and the formation of double minutes
in micronuclei (Crasta et al., 2012; Hatch and Hetzer, 2015;
Terradas et al., 2016). Using SKY, the authors determined that
the majority of metaphases from cells with micronuclei feature
multiple small fragments from one or two chromosomes (Crasta
et al., 2012). The experiment on chromosome Y centromere
inactivation also shed light on certain details of chromothripsis
in micronuclei (Ly et al., 2017). The missegregated chromosome
Y was included in a micronucleus and fragmented as a result of
premature chromatin condensation. After the DNA breaks were
repaired through NHEJ, the re-ligated chromosome Y showed
typical characteristics of chromothripsis. It has been established
that chromothripsis in micronuclei results from chromosome
missegregation, their fragmentation, and the repair of breaks that
occur during three cell cycles (Ly et al., 2017).

Aborted Programmed Cell Death
The abortion of apoptosis is regarded as one of the causes of
chromothripsis (Tubio and Estivill, 2011; Tang et al., 2012). The
first data on the association of chromothripsis with mutations
of TP53, which encodes p53 protein – the key apoptosis
regulator – were obtained in 2012. Chromothripsis was detected
in Sonic Hedgehog (SHH) medulloblastoma cells in a patient
with hereditary Li-Fraumeni syndrome (a germline mutation of
TP53) (Rausch et al., 2012). In acute and chronic lymphocytic
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leukaemia, TP53 mutations may co-occur with chromothripsis in
tumour cells (Pei et al., 2012).

In 2015, the occurrence of chromothripsis in TP53-/- cells
after doxorubicin treatment on a cell-based model system was
confirmed (Mardin et al., 2015). Observing a higher frequency
of chromothripsis in hyperploid medulloblastomas, as compared
to diploid ones, the authors established an association between
cell hyperploidisation and chromothripsis. In this regard, it has
been suggested that hyperploidisation may serve as a risk factor
for chromothripsis (Mardin et al., 2015).

Telomere Shortening and Formation of
Dicentric Chromosomes
Highly localised rearrangements in chromothripsis can also
be explained by breakage-fusion-bridge cycles in dicentric
chromosomes, which arise from DNA damage or telomere
fusion caused, in turn, by telomere shortening or loss (Stephens
et al., 2011; Sorzano et al., 2013). When dicentric chromosomes
segregate during mitosis, chromatin bridges are formed and
undergo subsequent rupturing (McClintock, 1939). Having
induced the formation of an envelope with an aberrant
structure, the chromatin bridge is destroyed by cytoplasmic 3′-
exonuclease TREX1 (Maciejowski et al., 2015; Maciejowski and
de Lange, 2017). This may result not only in multiple losses and
inversions of chromosome segments but also in the formation
of double minutes. Breakage-fusion-bridge cycles may co-occur
with fragment amplification, as demonstrated on regions of
chromosome 21 (iAMP21) in a dicentric chromosome formed
as a result of a Robertsonian translocation of chromosomes 15
and 21 (Li et al., 2014). The risk of iAMP21 acute lymphoblastic
leukaemia in carriers of rob (15;21) is assessed to be∼2700 times
higher than in the population (Li et al., 2014). The presence of
breakage-fusion-bridge cycles in cells with chromothripsis has
also been demonstrated in studies of cancer genome alterations
(Nones et al., 2014; Maciejowski et al., 2015; Ernst et al.,
2016). These cycles, however, may be a part of neochromosome
evolution and therefore, considering that neochromosomes arise
through chromothripsis, may be the consequence, not the cause,
of the phenomenon (Garsed et al., 2014).

Chromosome Pulverisation Caused by
Exogenous Factors
Chromosome pulverisation is an extreme example of DNA
fragmentation. Multiple double-strand breaks in the DNA may
result from exposure to a range of DNA-damaging agents
including drugs, therapeutic or environmental ionising radiation,
oxidative stress and virus infections.

Despite the initial suggestion that ionising radiation may
induce chromothripsis, experimental proof was not obtained
until several years later. In their experiments, Morishita et al.
(2016) used a focused vertical microbeam system designed to
irradiate a spot within the nuclei – the Single Particle Irradiation
system to Cell (SPICE) – on oral squamous-cell carcinoma cells.
The authors then established irradiated monoclonal sublines
from them and analysed genome abnormalities using SKY
and SNP array. One of the 46 monoclonal sublines showed

chromothripsis-like complex chromosomal alterations with 14
breakpoints. The involvement of 10 chromosomes in the
rearrangement is explained by the exposure of the interphase
nuclei to a powerful particle beam. The authors presume
that cell irradiation during mitosis may induce chromosome
missegregation and, as a result, lead to micronuclei formation
(Morishita et al., 2016).

Another potential cause of chromothripsis is chromosome
pulverisation in viral infections. A connexion has been
established between chromosome pulverisation and
fragmentation and infection of cell cultures with measles,
herpes zoster, herpes simplex, and adenovirus types 4, 12, and 18
(Benyesh-Melnick et al., 1964; Nichols et al., 1965; O’Neill and
Miles, 1970; Peat and Stanley, 1986). In addition, herpes simplex
may induce cell polyploidisation, which is also a risk factor
for chromothripsis (Chenet-Monte et al., 1986; Mardin et al.,
2015). Tumour cells infected with the Epstein-Barr virus have an
increased level of both transmissible and unstable chromosomal
abnormalities (dicentric chromosomes, chromatid fragments,
ring chromosomes, double minutes, satellite associations of
acrocentric chromosomes, and chromatin breaks) (Kamranvar
et al., 2007). However, only one of the studies (Schütze et al.,
2016) confirms the association of chromothripsis with viral
infections. In human foreskin keratinocytes culture infected
with human papillomavirus, chromothripsis-like complex
chromosomal alterations within chromosome 8 occurred after
passage 30, were detected at passage 40, and resulted in a gain of
MYC. Concurrently, immortalisation of the cell line in vitro with
non-transformed phenotype was observed (Schütze et al., 2016).

While the listed causes of chromothripsis appear to be the
most likely, it is necessary to consider other possible contributing
factors such as mutations in DNA repair genes or abnormal
chromatin condensation.

Aberrant Epigenetic Patterns as a Cause
of Chromosome Damage
Chromothripsis is characterised by a high frequency of deletions,
translocations and inversions (Stephens et al., 2011). These
chromosomal aberrations result from multiple double-strand
breaks (DSBs) possibly occurring during M or G1 phase. DSBs are
most probably repaired by error-prone NHEJ or microhomology-
mediated end joining (MMEJ) mechanisms (Jones and Jallepalli,
2012). In most cases, very short or no microhomology in the
chromothripsis breakpoint junctions can be found (Stephens
et al., 2011; Chiang et al., 2012; Kloosterman et al., 2012; Malhotra
et al., 2013; Weckselblatt et al., 2015; Aristidou et al., 2018;
Slamova et al., 2018). However, in a few cases of CC, DSBs were
found in high-copy repeats (Nazaryan et al., 2014; Nazaryan-
Petersen et al., 2016).

The chromatin conformation is of importance for occurrence
of spontaneous DSBs. The transition from closed to open
chromatin, which is necessary for transcription, makes DNA
vulnerable to damage (Kuo, 1981; Falk et al., 2008; Meschini
et al., 2015). Chromatin looping facilitates DNA cleavage
by nucleases, including endogenous ones originating from
transposable elements (Maniotis et al., 2005). In the study on
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the events involved in the occurrence of stably segregating
CC, DNA cleavage by catalytically active L1-endonuclease
and translocations between distally located DNA regions were
explained by Alu-mediated chromatin looping (Nazaryan-
Petersen et al., 2016). Enhanced activation of transposable
elements is associated with a response to environmental change
and as well as with syndromes caused by MeCP2 (methyl-CpG
binding protein 2; involved in transcription regulation) and
ATM (ataxia telangiectasia, mutated; involved in DNA repair
machinery) mutations (Bundo et al., 2014).

A key role in the regulation of chromatin structure belongs
to epigenetic mechanisms: DNA methylation, histone variants,
and non-coding RNAs (Geiman and Robertson, 2002; Li, 2014).
Both tumorigenesis and cell differentiation including embryonic
and germline cells are characterised by extensive epigenetic
changes (Yamaguchi et al., 2013; Efimova et al., 2015, 2017,
2018; Avgustinova and Benitah, 2016; Atlasi and Stunnenberg,
2017; Pendina et al., 2018). Epigenetic machinery provides fast
response to environmental change through gene-specific and/or
genome-wide alterations of DNA methylation with subsequent
change in expression patterns of genes coding proteins and
regulatory RNAs (Wang et al., 2017; West, 2017). Abnormal DNA
methylation also may compromise genome integrity. In vivo
increase of chromosome aberrations has been documented in
tissues with reduced global DNA methylation caused by ionising
radiation (Lee et al., 2015), oxidative stress (Tunc and Tremellen,
2009), or deregulated DNMTs (Gaudet et al., 2003). In blood cells
of ICF patients having DNMT3a mutation, hypomethylation of
1q, 9q, 16q heterochromatin regions is associated with abnormal
chromatin looping, telomeric associations, anaphase bridges,
lagging chromosomes, chromosome breakage and micronuclei
formation (Gisselsson et al., 2005). In addition, hypomethylation
of pericentromeric heterochromatin may trouble kinetochore
orientation and spindle attachment, resulting in chromosome
missegregation and micronuclei formation (Luzhna et al., 2013).
Thus, aberrant DNA methylation contributes to abnormal
chromatin compaction and, as a consequence, to DNA damage.

The involvement of epigenetic mechanisms in the pathway
between damaging agents and genome integrity has been
established in the studies of the radiation-induced bystander
effect. The bystander effect is a phenomenon whereby irradiated
cells communicate damage to non-irradiated nearby bystander
cells, thus destabilising their genome and contributing to
carcinogenesis (Koturbash et al., 2007). In rodents, localised
X-ray exposure modifies expression of DNA methyltransferases
and 5-methylcytosine-binding protein MeCP2 genes leading to
global hypomethylation both in irradiated and non-irradiated
tissues in vivo (Koturbash et al., 2006, 2007; Tamminga et al.,
2008). DNA damage in non-irradiated bystander tissues is
associated with induction of apoptosis (Koturbash et al., 2008;
Kovalchuk et al., 2010; Cordelli et al., 2012). Recent advances
in bystander effect aetiology assumed that communication
between irradiated and non-irradiated cells involves numerous
microRNAs (Xu et al., 2015; Yuan et al., 2016; Cai et al.,
2017). In addition to microRNAs, cell-free chromatin released
from radiation-induced dying cells is involved in extensive
chromosome instability of bystander cells (Kirolikar et al., 2018).

Summarising the abovementioned issues, it could be assumed
that activation of the cellular mechanisms involved in the
chromothripsis formation by exogenous and/or endogenous
insult is epigenetically mediated. However, lack of experimental
evidence directly linking disruption of epigenetic regulation
to the initiation of chromothripsis substantiates further
studies in this field.

CHROMOTHRIPSIS AND NEOPLASIA

In 2015, ChromothripsisDB1 database was created (Yang et al.,
2016) to categorise cases of chromothripsis in human and model
organisms by disease, research method, and criteria that enabled
the authors to classify the observed chromosomal abnormalities
as chromothripsis. As of March 2018, the database counted
500 chromothripsis cases across 46 cancers. The authors of
ChromothripsisDB update it on a regular basis and standardise
the information on all the rearrangements that are treated as
chromothripsis (Cai, 2018). At present, ChromothripsisDB is
the most informative source of information for accessing and
comparing the results of chromothripsis studies.

Chromothripsis in Cancers
Chromothripsis is typical for 2–3% of cancer types (Stephens
et al., 2011). As of today, chromothripsis has been observed
in blood cancers, central nervous system cancers, soft tissue
tumours, and carcinomas (Rode et al., 2016).

The frequency of chromothripsis varies across tumour entities
(Table 1). Chromothripsis occurs most frequently in bone
cancers – osteosarcoma and chordoma (Stephens et al., 2011).
It is associated with advanced stages of the disease and poor
clinical outcomes (Forment et al., 2012). At times, chromothripsis
is coupled with additional mutations in tumour cells, for instance,
IDH mutations (Cohen et al., 2015). In addition, the occurrence
of chromothripsis in cancers is considerably higher in patients
with inherited genetic disorders that are linked to cell-cycle
and DNA repair gene mutations: Li-Fraumeni and Louis-Bar
syndromes (Rausch et al., 2012; Ratnaparkhe et al., 2017).
The risk of chromothripsis also varies across different genome
regions: chromosomes 17, 8, 12, and 11 are the most likely to
be involved in such rearrangements. As it appears, the highest
frequency of chromothripsis in chromosome 17 is predetermined
by the presence of the TP53 gene in its short arm (Cai et al., 2014).

Chromothripsis in Benign Tumours
Chromothripsis does not occur exclusively in malignant tumours;
cases of chromothripsis have been observed in benign tumours
as well. The year 2013 brought the first descriptions of
chromothripsis in uterine leiomyoma (also called uterine fibroid)
cells – a benign tumour of the uterine myometrium, which is
characterised by a high frequency of chromosomal abnormalities.
By various estimates, chromothripsis occurs in 13–42% of
uterine fibroids (Mehine et al., 2013; Holzmann et al., 2014;
Mehine et al., 2014).

1http://cgma.scu.edu.cn/ChromothripsisDB
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TABLE 1 | Types of cancer with the highest occurrence of chromothripsis.

References Cancer type Cases with chromothripsis/
total number of cases

Chromothripsis
frequency

Rausch et al., 2012 SHH medulloblastoma with mut TP53 10/10 100%

Rausch et al., 2012 SHH medulloblastoma with wt TP53 0/22 0%

Northcott et al., 2012; Rausch et al., 2012 Medulloblastoma, all subgroups 13/98; 139/1087 13%

Li et al., 2014 Acute lymphoblastic leukaemia with iAMP21 8/9 89%

Morrison et al., 2014 Invasive bladder carcinoma 81/150 60%

Zemanova et al., 2014 Myelodysplastic syndrome with CCR 77/157 49%

Rausch et al., 2012 Acute myeloid leukaemia with mut TP53 8/17 47%

Rausch et al., 2012 Acute myeloid leukaemia with wt TP53 1/91 1%

Przybytkowski et al., 2014 High-risk breast cancer 12/29 41%

Malhotra et al., 2013 Grade IV glioma (glioblastoma) 7/18 39%

Cohen et al., 2015 Grade IV glioma with mut IDH 9/24 37%

Cohen et al., 2015 Grade II–III glioma 5/45 11%

Malhotra et al., 2013 Lung adenocarcinoma 2/6 33%

Stephens et al., 2011 Osteosarcoma 3/9 33%

Nones et al., 2014 Esophageal adenocarcinoma 40/123 32%

iAMP, amplification of a chromosome 21 region; IDH, isocitrate dehydrogenase; SHH, Sonic Hedgehog.

Unlike malignant tumours, chromothripsis in uterine fibroid
cells is characterised by fewer breakpoints (20 or more) and a
larger number of affected chromosomes (up to four) (Figure 1).
Such aberrations are normally observed in uterine fibroids
without fibroid-specific MED12 (mediator complex subunit 12)
and FH (fumarate hydratase) mutations. They do not feature
TP53 mutations or histological signs of malignancy (Mehine
et al., 2013; Holzmann et al., 2014; Mehine et al., 2014; Pendina
et al., 2017). Furthermore, chromothripsis with large deletions
(from 43 to 13,647 kbp) has been observed in non-cultured
sample of uterine fibroid which demonstrated normal karyotype
in culture conditions (Holzmann et al., 2014). This could be
associated with a lower proliferative potential of tumour cells
with chromothripsis in vitro. However, a case of unbalanced
chromothripsis has been observed in both the cultured and non-
cultured fibroid cells (Pendina et al., 2017). It is likely that
the ability of fibroid cells with chromothripsis to proliferate
in vitro is determined not so much by the size of deletions
and number of breaks as by the genomic loci involved in
rearrangement. It should be noted, however, that the absence
of malignisation signs in fibroids with chromothripsis by no
means implies that their growth and malignant potential does not
require thorough study.

CONSTITUTIONAL CHROMOTHRIPSIS
AS A CONSEQUENCE OF GENOME
DAMAGE IN GERM CELLS AND
PREIMPLANTATION EMBRYOS

Chromothripsis may also be a constitutional karyotype
abnormality caused by chromosome damage in germline cells or
preimplantation embryos. Cases of CC are extremely rare and
usually coincide with congenital malformations or reproductive
failure in the patient (Table 2; Kloosterman et al., 2011;

de Pagter et al., 2015). In the virtually complete absence of
any genetic imbalance, CC may co-occur with breakage of
multiple genes or changes in their expression (Table 2; van
Heesch et al., 2014; de Pagter et al., 2015; Bertelsen et al.,
2016; Middelkamp et al., 2017). CC may include structural
chromosomal abnormalities associated with genetic disorders
(Table 2; Fontana et al., 2014; Genesio et al., 2015; Kurtas et al.,
2018). In this case, the patient displays symptoms of an inherited
disease. However, certain non-specific phenotypical features
complicate the diagnosis and prognosis of the clinical outcome
of the CC (Table 2).

Constitutional chromothripsis carriers may transmit the
rearrangement to the offspring either stably or with de novo
events (Gu et al., 2013; Weckselblatt et al., 2015; Bertelsen
et al., 2016; Nazaryan-Petersen et al., 2016; Kurtas et al.,
2019). Whereas the majority of de novo CC cases result
from chromosomal aberrations arising from male gametogenesis
(Pellestor et al., 2014), chromothripsis is inherited primarily
from the mother (Table 3). To all appearances, it is determined
by differences in DNA repair capacity and specific features of
spermatogenesis and oogenesis.

Chromothripsis may arise during mitotic and meiotic
divisions of spermatogenic cells as well as during spermiogenesis
(round spermatid differentiation in spermatogonia) (Pellestor
and Gatinois, 2018). Considering that spermatogonia undergo
a succession of mitotic divisions, the replication stress may
lead to errors during mitosis. Meiotic recombination may also
feature double-strand break repair errors (Pellestor and Gatinois,
2018). The DNA breaks in spermatids that occur at the stage of
histone-to-protamine transition during spermiogenesis can only
be repaired through NHEJ because of the haploid chromosome
number in cells at this stage (Gunes et al., 2015). In rodent male
germ cells, scaffold/matrix-attached and differentially packaged
chromatin regions are highly sensitive to endogenous nucleases,
and, thus, to damage (Arpanahi et al., 2009; Grégoire et al.,
2013). Accumulation of DNA strand breaks may be also caused
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TABLE 2 | Clinical outcomes of constitutional chromothripsis.

References Chromosome
regions involved
in chromothripsis

Chromothripsis
detection method

Imbalance (size, copy
number alterations)

Affected genes Phenotype of a
carrier(s)

Bertelsen et al.,
2016;
Nazaryan-Petersen
et al., 2016

3q22.3-q23
5q23.1

Conventional
cytogenetics,
mate-pair
sequencing

Four deletions (2–110 kb) Truncated genes: PPP2R3A,
CLDN18, A4GNT, DBR1,
HSD17B4, ATR
Fusion genes: CLDN18-HSD17B4,
HSD17B4-DBR1
Deleted genes: DZIP1L

No apparent
association with a
disorder

Anderson et al.,
2016

13q33.1-q33.3
Xp11.22-p21.3
Xq21.31-q22.1

Conventional
cytogenetics, FISH,
aCGH

10 deletions (327 kb –
8 Mb): a total 4.4 Mb of chr.
13 material and 28.1 Mb of
chr. X material

Deleted genes: Chr. 13 – ERCC5,
SLC10A2
Chr. X – IL1RAPL1, DMD, GK,
NROB1, CYBB, OTC, RPGR,
TSPAN7, XK, ATP6AP2, BCOR,
CASK, CFP, KDM6A, MAOA, NDP,
NYX, RBM10, RP2, SYN1, UBA1,
USP9X, ZNF81, BMP15,
CACNA1F, CLCN5, FOXP3,
HSD17B10, IQSEC2, KDM5C,
PHF8, FGD1, HUWE1, HSD17B10,
DIAPH2, SRPX2

Developmental delay
and dysmorphism

Weckselblatt et al.,
2015

1q21
4q31
7p14.3
15q22

Conventional
cytogenetics, FISH,
targeted
sequencing

530-kb deletion of chr. 1
material; 4,2-Mb
duplication of chr. 7
material

No disrupted genes by the
breakpoints

Developmental delay,
autism, intellectual
disability, and/or
congenital anomalies

3q25-q26
8q23
9p22-p24
11p14.1
3q21.1

Conventional
cytogenetics, FISH,
WGS

Mb-sized deletions of chr. 8
and 9 material; a total of
99 bp deleted of other
chromosomes material

Disrupted genes by the
breakpoints: PTPRD, SH3GL2

Developmental delay,
autism, intellectual
disability, and/or
congenital anomalies

2q32-qter
3q13
7q21.11-q22.1
10q21.3
11q14.1

Conventional
cytogenetics, FISH,
WGS

800-kb deletion of chr. 7
material, 2.2-Mb deletion of
chr. 11 material; in addition,
there are 55 total bp
deleted at breakpoint
junctions on other
chromosomes

Disrupted genes by the
breakpoints: GRM3, KPNA1,
DLG2, CACNA2D1, GULP1,
COL5A2, KCNH7, PCLO, TRRAP

Developmental delay,
autism, intellectual
disability, and/or
congenital anomalies

Nazaryan et al.,
2014

2p16.1-p22.1
5p14.2-p15.2
7p21.3-q31.1

Conventional
cytogenetics, FISH,
mate-pair
sequencing

No copy number alterations Truncated genes: CDH12, DGKB,
FOXP2

Global developmental
and psychomotor
delay, severe speech
disorder

Gamba et al., 2015 1p36.33-p35.3 Conventional
cytogenetics,
aCGH

Five deletions: 0.83, 0.94,
1.4, 1.7, 3.7 Mb 1
duplication: 5.9 Mb

No data Multiple congenital
malformations
presenting some
features overlapping
the 1p36 deletion
phenotype

Gu et al., 2013 5p13.3-p15.33
7p22
7q32
11q23
21q21

Conventional
cytogenetics, FISH,
aCGH

No copy number alterations No data Phenotypically normal

5p13.3-p15.33
11q23

Conventional
cytogenetics, FISH,
aCGH

Three deletions: 2.89, 0.56,
and 3.21 Mb

Deleted genes: LOC340094,
ADAMTS16, KIAA0947, FLJ33360,
MED10, UBE2QL1, LOC255167,
NSUN2, SRD5A1, PAPD7,
MIR4278

Phenotypically normal

5p13.3-5p15.33 Conventional
cytogenetics, FISH,
aCGH

∼26.22-Mb deletion No data Developmental delay,
dysmorphic and autistic
features

(Continued)
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TABLE 2 | Continued

References Chromosome
regions involved
in chromothripsis

Chromothripsis
detection method

Imbalance (size, copy
number alterations)

Affected genes Phenotype of a
carrier(s)

Kloosterman et al.,
2011

1p32.3
4q24
10q21.1

Conventional
cytogenetics, SNP
array, mate-pair
sequencing

Small deletions and
duplications (<50 bp)

Disrupted gene: PCDH15 Severe psychomotor
retardation, speech
delay, hypertelorism
and kyphoscoliosis

Slamova et al.,
2018

1q23-q25
6q15-q24
14q13?
18p11.2-p11.3
18q11.2

Conventional
cytogenetics, FISH,
aCGH, mate-pair
sequencing

Two deletions: 0.7 and
2.5 Mb

Deleted genes: DNM3, PIGC,
C1ORF105, SUCO, NMBR, VTA1,
ADGRG6, HIVEP2, AIG1, ADAT2,
PEX3, FUCA2, PHACTR2, LTV1,
ZC2HC1B, PLAGL1, SF3B5, STX11,
UTRN, PAX9
Disrupted genes by the breakpoints:
FILIP1, PHIP, HMGN3, AK097143,
GAREM

Developmental and
growth delay

Wang et al., 2015 19p13.13-p13.2
19p12
19q12
19q13.11-q13.12

Conventional
cytogenetics, FISH,
aCGH

Four duplications: 4.3,
0.98, 1.12, and 5.13 Mb

No data Subtle dysmorphic
features

Macera et al., 2015 3p24.3
5q14
7q35
9p23
18p11.31
18q21.31

Conventional
cytogenetics, FISH,
SNP array, NGS

No loss or gain of
chromosomal material at
any of the breakpoints

Disrupted genes by the breakpoints:
CNTN6, TBC1D5, CNTNAP2,
PTPRD, L3MBTL4,
LOC1001304840, WDR7

Bilateral
ventriculomegaly (13
and 15 mm),
colpocephaly, with
partial agenesis of the
corpus callosum, and
an absent left kidney
and small right kidney

Kurtas et al., 2018 22q13.1-q13.3 Conventional
cytogenetics, FISH,
aCGH, WGS, WES

Two duplications: 2.4 Mb,
148 kb 1 deletion: 8.4 Mb

Disrupted genes by the breakpoints:
EP300, NFAM1, MYO18B, GTPBP1

Phelan-McDermid
syndrome

Genesio et al.,
2015

9p21-q31 Conventional
cytogenetics, FISH,
aCGH

Two deletions: 176.56 kb,
7.44 Mb

Deleted genes: RORB, TRPM6,
NMRK1, OSTF1, GNAQ, and the
critical region of the 9q21.13 deletion
syndrome

Platelet disorder and
thyroid dysfunction in
addition to the classical
neurobehavioral
phenotype of the
9q21.13 microdeletion
syndrome

Del Rey et al., 2016 2q34-q37.3 Conventional
cytogenetics, FISH,
HR-CGH, MLPA

Deletion: 2.58 Mb
duplication of 2q34q37.2

Deleted genes: K1F1A, PASK,
HDLBP, FARP2

Multiple congenital
disorders and
intellectual disability

Fontana et al.,
2014

1q41
1q43
9p24.3
21q22.12

Conventional
cytogenetics,
aCGH

Four deletions: 5.23, 1.33,
0.15871, and 0.826 Mb

Deleted genes: SMYD2, PTPN14,
CENPF, KCNK2, KCTD3, USH2A,
ESRRG, SPATA17, RRP15, TGFB2,
CHRM3, KANK1, RCAN1, CLIC6,
RUNX1

Loeys–Dietz syndrome,
type 4; borderline
mental impairment

Kurtas et al., 2019 3q22.3-q26.2 Conventional
cytogenetics, FISH,
aCGH, paired-end
sequencing

Deletion: 6.8 kb Disrupted genes by the breakpoints:
ROPN1B, NAALADL2, TF

Healthy

3q22.3-q26.2 Conventional
cytogenetics, FISH,
aCGH, paired-end
sequencing

Duplication: 10 Mb
deletion: 5 Mb

Disrupted genes by the breakpoints:
ROPN1B, NAALADL2, TF

Multiple phenotypic
abnormalities and
psychomotor delay

chr. 6
14q31.3

Conventional
cytogenetics, FISH,
aCGH, paired-end
sequencing

Two deletions: 5.3 and
3.7 kb

Disrupted genes by the breakpoints:
OPRM, RNGTT

Healthy

chr. 6
14q31.3

Conventional
cytogenetics, FISH,
aCGH, paired-end
sequencing

Deletion: 1 Mb Disrupted genes by the breakpoints:
OPRM, RNGTT

Healthy

(Continued)
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TABLE 2 | Continued

References Chromosome
regions involved
in chromothripsis

Chromothripsis
detection method

Imbalance (size, copy
number alterations)

Affected genes Phenotype of a
carrier(s)

15q15.1
6p21.3-p25.1
6q14.2
6q21-q22.31
7q32.3

Conventional
cytogenetics, FISH,
SNP-CGH array,
paired-end
sequencing

Deletion: 6 kb Disrupted genes by the breakpoints:
CASC5, RPF2, CHCHD3, CLVS2

Healthy

15q15.1
6p21.3-p25.1
6q14.2
6q21-q22.31
7q32.3

Conventional
cytogenetics, FISH,
SNP-CGH array,
paired-end
sequencing

Four deletions up to 100 bp
6-bp microduplication

Disrupted genes by the breakpoints:
CASC5, RPF2, CHCHD3, CLVS2. One
parental breakpoint junction is absent

Developmental and
speech delay,
dysmorphic features

aCGH, array comparative genomic hybridisation; FISH, fluorescent in situ hybridisation; HR-CGH, high resolution comparative genomic hybridisation; MLPA, multiplex
ligation-dependent probe amplification; NGS, next generation sequencing; SNP array, single nucleotide polymorphism array; WGS, whole genome sequencing; WES,
whole exome sequencing.

TABLE 3 | Chromothripsis inheritance.

References Maternal
inheritance,

cases

Paternal
inheritance,

cases

De novo
chromothripsis,

cases

Kloosterman et al., 2011 – – 1 (pat)

Kloosterman et al., 2012 1 – 7 (4/7 – pat;
3/7 – n/d)

Gu et al., 2013 1 – –

Nazaryan et al., 2014 – – 1

Fontana et al., 2014 – – 1

Wang et al., 2015 – – 1

Genesio et al., 2015 – – 1

de Pagter et al., 2015 3 – –

Gamba et al., 2015 – – 1

Weckselblatt et al., 2015 1 1 1 (pat)

Del Rey et al., 2016 – – 1

Anderson et al., 2016 – – 1

Bertelsen et al., 2016 3 1 –

Collins et al., 2017 – – 2

Kurtas et al., 2018 – – 1

Kurtas et al., 2019 2 1 –

Total: 10 3 19

De novo chromothripsis cases include information on the parental origin of the
rearranged chromosomes (if known). pat, paternal chromosomes; n/d, no data
about derivative chromosome origin.

by the epigenetically mediated bystander effect in non-irradiated
whole testis tissue (Tamminga et al., 2008). This phenomenon
is also involved in the production of delayed DNA damage in
mouse elongated spermatids due to upregulation of proapoptotic
genes 21–33 days later after spermatogonia exposure to X-rays
(Cordelli et al., 2012). However, the apoptotic elimination
of spermatogenic cells with DNA damage may be aborted
before completion (the so-called abortive apoptosis or anoikis),
allowing such cells to continue to differentiate and participate
in fertilisation (Tubio and Estivill, 2011; Tang et al., 2012). In
addition, there are some evidence of aberrant DNA methylation

and tissue-specific accumulation of chromosome aberrations in
unexposed progeny of cranially irradiated rodents (Koturbash
et al., 2006; Tamminga et al., 2008). These data indicate an
epigenetic link between DNA damaging agents and occurrence
of chromosome aberrations both in unexposed parental germline
and offspring’s somatic cells.

In contrast to male germ cells, oocytes may repair breaks
through both homologous recombination and NHEJ (Marchetti
et al., 2007). Consequently, chromothripsis during oogenesis
appears to be less likely than during spermatogenesis.
Aberrations in chromosome segregation and premature
chromatid separation may cause chromosomal rearrangements
during female gametogenesis (Pellestor and Gatinois, 2018). In
addition, the DNA repair capacity of an oocyte is the crucial
factor of zygote viability, because the repair of maternal and
paternal chromosome damage after fertilisation and prior to
embryo genome activation occurs through DNA repair factors
accumulated in the oocyte cytoplasm.

De novo CC may also be induced by DNA damage
during early embryogenesis. Preimplantation embryos typically
demonstrate micronuclei formation, blastomere fragmentation,
and abnormal mitosis at the cleavage stage (Chavez et al.,
2012). This could be a consequence of imperfect repair in germ
cells or DNA damage in embryo. In addition, asynchronous
pronuclear development and resulting under-replication of the
paternal DNA may induce chromosome pulverisation in a zygote
(Eichenlaub-Ritter et al., 1995).

Importantly, CCRs are hardly ever detected during
conventional karyotyping of chorion cells in a miscarriage,
which is conducted starting from 4 to 5 weeks of gestation (i.e.,
after embryo implantation) (Pendina et al., 2014; Massalska
et al., 2017; Soler et al., 2017; Pylyp et al., 2018). As of today,
the literature describes only one case of CC in an embryo with
multiple malformations (Macera et al., 2015). Apparently, most
embryos with CCRs, including chromothripsis, are eliminated at
the implantation stage. Despite the wide use of preimplantation
genetic testing, the actual frequency and the specific mechanisms
of chromothripsis occurrence in gametes and embryos at early
stages of development are yet to be determined.
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Constitutional chromothripsis is generally characterised by
fewer chromosome breaks and almost complete absence of
deletions in comparison with malignant tumours (Figure 1;
Kloosterman and Cuppen, 2013). A number of studies treat
CCR cases with duplications of chromosome regions as
chromothripsis (Table 2; Gamba et al., 2015; Wang et al., 2015;
Del Rey et al., 2016; Kurtas et al., 2018). It is yet to be established,
however, whether such genetic abnormalities in patients are cases
of true chromothripsis or variations of other CCRs.

CONCLUDING REMARKS

As is the case with any recently discovered phenomenon, the
concept of chromothripsis is ambiguous. In our opinion, the
most comprehensive definition of chromothripsis has been
suggested by Ly and Cleveland: “Chromothripsis is a catastrophic
event in which one or a few chromosomes are shattered
and stitched back together in random order, producing a
derivative chromosome with complex rearrangements within
a few cell cycles” (Ly and Cleveland, 2017). Considering that
chromothripsis is a highly complex genomic aberration, its
reliable detection necessitates the use of a comprehensive
approach, combining molecular genetic, molecular cytogenetic,
and cytogenetic methods.

Chromothripsis was first detected in chronic lymphocytic
leukaemia. To date, it is most frequently found in cancers, even
though there are registered cases of chromothripsis both in
benign tumours and as constitutional chromosomal abnormality.
Both somatic and CC feature multiple rearrangements of one
or more chromosomes with a random order and orientation of
reassembled fragments, as well as alteration of regions with loss
and retention of heterozygosity. However, these aberrations are
less pronounced in CC, which normally has fewer breaks and
shorter chromosome regions with copy number alterations or a
complete absence of such.

The causes and mechanisms underlying chromothripsis
remain a subject for discussion. The most probable are telomere
damage, exposure to ionising radiation, and viral infections.
Along with these already known causes and mechanisms, we
suggest aberrant epigenetic regulation as a possible pathway
to chromothripsis. The above-mentioned factors may directly
destruct chromosomes or activate cell mechanisms associated
with chromothripsis. To clearly understand chromothripsis
mechanisms, it is necessary to develop models of chromosome

pulverisation in micronuclei, reversible apoptosis, and dicentric
chromosome breaks.

As of today, it is not clear whether somatic chromothripsis is
the cause of tumours or a consequence of pathological processes
in tumour cells. Considering that cases of chromothripsis are
observed in both malignant and benign tumours, as well as in
the karyotype of healthy individuals, it cannot be unambiguously
associated with poor clinical outcomes. Apparently, what
matters most for neoplasia pathogenesis and a chromothripsis
carrier’s phenotype are the genome regions involved in the
rearrangement, their localisation, and the size of deleted or
amplified fragments – not the presence of chromothripsis itself.

Regardless of the fact that chromothripsis was discovered over
7 years ago, we are still facing challenges in its differentiation
from other multiple chromosomal rearrangements and in the
understanding of its causes, mechanisms, and consequences – all
of which requires further in-depth research.
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