
METHOD ARTICLE

 META-pipe cloud setup and execution [version 2; peer

review: 2 approved, 1 approved with reservations]
Aleksandr Agafonov1, Kimmo Mattila2, Cuong Duong Tuan3, Lars Tiede4,
Inge Alexander Raknes5, Lars Ailo Bongo 1

1Department of Computer Science, UiT The Arctic University of Norway, Tromsø, Norway
2CSC - IT Center for Science, Espoo, 02150, Finland
3CESNET, Prague 6, 160 00 , Czech Republic
4Department of Information Technology, UiT The Arctic University of Norway, Tromsø, Norway
5Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway

First published: 29 Nov 2017, 6(ELIXIR):2060
https://doi.org/10.12688/f1000research.13204.1
Second version: 18 Jan 2018, 6(ELIXIR):2060
https://doi.org/10.12688/f1000research.13204.2
Latest published: 02 May 2019, 6(ELIXIR):2060
https://doi.org/10.12688/f1000research.13204.3

v2

Abstract
META-pipe is a complete service for the analysis of marine
metagenomic data. It provides assembly of high-throughput
sequence data, functional annotation of predicted genes, and
taxonomic profiling. The functional annotation is computationally
demanding and is therefore currently run on a high-performance
computing cluster in Norway. However, additional compute resources
are necessary to open the service to all ELIXIR users. We describe our
approach for setting up and executing the functional analysis of
META-pipe on additional academic and commercial clouds. Our goal is
to provide a powerful analysis service that is easy to use and to
maintain. Our design therefore uses a distributed architecture where
we combine central servers with multiple distributed backends that
execute the computationally intensive jobs. We believe our
experiences developing and operating META-pipe provides a useful
model for others that plan to provide a portal based data analysis
service in ELIXIR and other organizations with geographically
distributed compute and storage resources.

Keywords
ELIXIR, Portability, META-pipe, OpenStack, EGI Federated Cloud,
Amazon Web Services, AAI federation, Apache Spark

 This article is included in the ELIXIR gateway.

Open Peer Review

Reviewer Status

Invited Reviewers

1 2 3

version 3

(revision)
02 May 2019

version 2

(revision)
18 Jan 2018

report

version 1
29 Nov 2017 report report

Olivier Collin , CNRS, IRISA F-35000,

Rennes, France

1.

Kang Ning , Huazhong University of

Science and Technology, Wuhan, China

2.

Chunlei Wu , Scripps Research Institute,

La Jolla, USA

3.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 15

F1000Research 2018, 6(ELIXIR):2060 Last updated: 06 JUL 2021

https://f1000research.com/articles/6-2060/v2
https://orcid.org/0000-0002-7544-2482
https://doi.org/10.12688/f1000research.13204.1
https://doi.org/10.12688/f1000research.13204.2
https://doi.org/10.12688/f1000research.13204.3
https://f1000research.com/gateways/elixir
https://f1000research.com/gateways/elixir
https://f1000research.com/articles/6-2060/v3
https://f1000research.com/articles/6-2060/v2
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://f1000research.com/articles/6-2060/v1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://orcid.org/0000-0002-8959-8402
https://orcid.org/0000-0003-3325-5387
https://orcid.org/0000-0002-2629-6124
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.13204.2&domain=pdf&date_stamp=2018-01-18

Corresponding author: Lars Ailo Bongo (larsab@cs.uit.no)
Author roles: Agafonov A: Software, Writing – Original Draft Preparation, Writing – Review & Editing; Mattila K: Validation, Writing –
Original Draft Preparation, Writing – Review & Editing; Tuan CD: Software, Writing – Review & Editing; Tiede L: Software, Writing –
Review & Editing; Raknes IA: Conceptualization, Software, Writing – Review & Editing; Bongo LA: Conceptualization, Funding Acquisition,
Supervision, Writing – Original Draft Preparation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This work was funded by ELIXIR, The Research Council of Norway (project number 270675), EGI-Engage, and UiT The
Arctic University of Norway. ELIXIR received funding from the European Union’s Horizon 2020 research and innovation program (ELIXIR-
EXCELERATE, grant agreement no 676559). The EGI-Engage project is co-funded by the European Union (EU) Horizon 2020 program
under Grant number 654142.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2018 Agafonov A et al. This is an open access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Agafonov A, Mattila K, Tuan CD et al. META-pipe cloud setup and execution [version 2; peer review: 2
approved, 1 approved with reservations] F1000Research 2018, 6(ELIXIR):2060 https://doi.org/10.12688/f1000research.13204.2
First published: 29 Nov 2017, 6(ELIXIR):2060 https://doi.org/10.12688/f1000research.13204.1

Page 2 of 15

F1000Research 2018, 6(ELIXIR):2060 Last updated: 06 JUL 2021

mailto:larsab@cs.uit.no
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.13204.2
https://doi.org/10.12688/f1000research.13204.1

Introduction
ELIXIR was established to unite European life science resources.
It has 21 member states and more than 180 research organi-
zations that each take responsibility for an analysis service,
database, software tool, training material, or provide cloud stor-
age and compute resources. For example, one of the deliveries
from ELIXIR Norway are marine metagenomics analysis
services, whereas ELIXIR Finland provides cloud storage and
compute resources. An ELIXIR user from Portugal may therefore
use a service maintained in Norway run on resources in Finland.
In this paper, we describe our approach for setting up distributed
execution of such analyses.

META-pipe1 is a complete workflow for the analysis of marine
metagenomic data. It provides assembly of high-throughput
sequence data, functional annotation of predicted genes, and
taxonomic profiling. We provide META-pipe as an Analysis-as-
a-Service for Norwegian and Finnish ELIXIR users. However,
additional compute resources are necessary to open the service
to all ELIXIR users. Users log into the META-pipe web appli-
cation where they can upload data to analyze, select tool param-
eters, start analyses, and download analysis results. The functional
annotation is computationally demanding and must therefore be
run on a high-performance computing (HPC) cluster or a compute
cloud. Job execution is handled by the META-pipe backend, such
that resource allocation, parallel execution, and fault handling is
hidden from the user.

META-pipe has a distributed architecture with three central
servers and geographically distributed execution managers
(Figure 1). We have currently four META-pipe execution manag-
ers: (i) the Sigma2 Stallo supercomputer in Tromsø, which is a
Norwegian academic HPC; (ii) the CSC cPouta OpenStack based
Infrastructure-as-a-Service cloud, Finland; (iii) the CESNET-
MetaCloud OpenNebula cloud that supports the open cloud
computing interface, Czech Republic; and (iv) the commercial
Amazon EMR cloud service. cPouta is an ELIXIR compute
service. CESNET-MetaCloud is part of the EGI Federated Cloud.

An important design goal for the META-pipe backend is to make
the execution managers portable. In addition, we have taken care
to make setup and maintenance of the execution managers easy.
We achieve these goals since our backend is designed such that all
state is maintained at the central servers. We therefore reduce the
amount of code that needs to be ported, maintained, and optimized
for a new execution environment. The execution managers are
stateless, and the jobs are idempotent. This simplifies failure han-
dling. We also use the widely available Apache Spark framework to
execute the pipeline analyses. In addition, we have implemented
tools that make it easy to set up and administer the execution
managers. These pull the META-pipe tools, dependencies, and jobs
from the centralized servers. In this paper, we describe these tools
and their use. We make the following contributions:

1. We demonstrate the use of geographically distributed
compute resources for life science data analysis.

2. We describe the design and implementation of cloud
setup tools for our analysis service.

3. We describe our experiences developing and operating
the META-pipe analysis service.

We designed our analysis service to be powerful, easy to use,
and easy to maintain. We believe our work provides a useful

Figure 1. META-pipe backend architecture has three servers located at the University of Tromsø. The authorization server, which is
integrated with the ELIXIR AAI, enables login for Elixir users. The storage server stores all META-pipe input, output and provenance data. The
job server schedules and maintains submitted analysis jobs. The jobs are implemented as Spark programs that are executed by an execution
manager running in an execution environment. There can be multiple execution managers distributed over many HPC clusters and clouds.

 Amendments from Version 1

We have improved this paper by addressing the comments raised
by the reviewers. We have added additional details about the
servers and tools.

See referee reports

REVISED

Page 3 of 15

F1000Research 2018, 6(ELIXIR):2060 Last updated: 06 JUL 2021

https://www.sigma2.no/content/stallo
https://research.csc.fi/cpouta
https://www.elixir-europe.org/services/compute
https://www.elixir-europe.org/services/compute
https://www.egi.eu/federation/egi-federated-cloud/

model for others that plan to provide a portal-based data analysis
service in ELIXIR and other organizations with geographically
distributed compute and storage resources.

Methods
The META-pipe is deployed as shown in Figure 2. META-pipe
is implemented as a Spark program and requires Spark v1.6.1 or
v1.6.2. Spark and the META-pipe executable require Scala v2.10.6.
In addition, the META-pipe execution environment requires the
Java v1.8 OpenJDK. Here we describe how META-pipe is set
up on the cPouta cloud. The setup on other clouds may differ as
described below. Additional details, including instructions for
using the cluster setup tool are in the META-pipe cloud setup
design document.

META-pipe virtual machines and storage
A META-pipe execution environment has three types of virtual
machines (VMs):

• Bastion VM: acts as the gateway machine used for cluster
management and gateway to an initiated cluster.

• Cluster Master VM: acts as Spark Master, NFS Server, and
it runs the main META-pipe executable.

• Cluster Worker VMs: act as Spark Workers, NFS Clients,
and the runners of parallelized tasks of META-pipe jobs.

In addition, META-pipe requires the use of NFS-shared
storage used by the worker VMs to read and write temporary
computation data including intermediate result files. The master
VM contains a NFS-server that serves the access to the storage.
The worker VMs are NFS-clients that have full read-write access
to the shared storage. The NFS server also has the Spark and
Scala installations. The NFS storage can be either a Master VM
internal volume, or a virtual volume attached to the Master. We
typically use the latter, since it makes deployment easier and it
allows META-pipe volume caching (as described below). We have,
however, not compared the performance of these two approaches.

META-pipe executable and dependencies
The META-pipe executable is downloaded from our artifacts
server. The executable is a (42 Megabyte) jar file that contains

Figure 2. META-pipe deployment. End-users run analyses using the META-pipe web app. The web app is integrated with ELIXIR AAI, so
users can authenticate using their home institution username and password. Resource providers use the cluster setup tool to set up an
execution manager, on, for example, the cPouta OpenStack cloud, which executes analysis jobs. The execution manager, pipeline, and
dependencies are all read from our artifacts server. META-pipe developers use git to maintain the code. Our GitLab is integrated with Jenkins
that compiles and runs integration tests and pushes new META-pipe versions to the artifacts server. META-pipe administrators administer all
jobs using the META-pipe Job manager interface.

Page 4 of 15

F1000Research 2018, 6(ELIXIR):2060 Last updated: 06 JUL 2021

https://docs.google.com/document/d/1ONGUhcmPblRU6vppl-L2qzHVeqSVCO3btgWo-W3IpRQ/edit
https://docs.google.com/document/d/1ONGUhcmPblRU6vppl-L2qzHVeqSVCO3btgWo-W3IpRQ/edit
https://jenkins.io/

the Spark job, and it is submitted as a Spark job from the Master
VM. The executable jar does not contain 3rd party tools used by the
pipeline, tool libraries, and the reference databases used by the
tools. These dependencies must be downloaded from our arti-
facts web server. The dependencies are 44 Gigabytes, of which
most of the space is used for the reference databases. Each
worker VM must have access to the META-pipe dependencies, so
they are typically stored locally on each cluster VM. If there are
not enough volume resources, NFS storage is used.

Tests
After setting up the Spark, a simple parallelized script should be
used to test that Spark and META-pipe is set up correctly. We
first test Spark by submitting a parallelized version of prime
number counter, wait for all Workers to be done, and then ensure
that there were no error messages and that the result is correct.

To validate the correctness of META-pipe installation, we use
the built-in validation procedure in the META-pipe executable.
This procedure will check the state of all tools required and
their dependencies that are required for META-pipe execution. It
will also check that the tools do not return errors.

META-pipe job execution
After initialization, the submitted executable will listen for,
and run, new jobs until the spark-submit is stopped. The jobs are
submitted to the central META-pipe job server that checks the tag
in the job and submits it to a specific META-pipe executable. The
executable downloads the input data from the META-pipe storage
server to a Spark RDD data structure and launches the META-
pipe job using the spark-submit command. When the job is com-
pleted, the executor uploads the output datasets to the META-pipe
storage server, which are then accessible by the user on META-pipe
portal. After the execution of each tool in the pipeline, the interme-
diate output datasets are also uploaded to the storage server, so that
if the job fails, it can be restarted from the last successful pipeline
step.

cPouta Open Stack setup
To set up the META-pipe execution manager on cPouta we
created an execution manager setup tool that setups the virtual
machines, storage, Spark, and META-pipe as described above.
It is implemented as a command line tool written in Java, with
some parts implemented in Bash, Ansible and Python. The tool’s
requirements, usage information, as well as more detailed techni-
cal information is in our design document.

We have optimized cluster provision by caching virtual volumes
with the META-pipe execution manager and dependencies. To
avoid downloading, unpacking and preparing META-pipe files
for each new cluster instance, we store these in a virtual volume
the first time a cluster is set up. This volume is used as the
storage of prepared META-pipe files (a cache), which is used to
create volumes for cluster VMs in later cluster provision. This
reduces the time to create a cluster from 30 minutes to 10 minutes.

In comparison, the execution time for a typical META-pipe job is
several hours.

CESNET-MetaCloud OpenNebula setup
To set up the META-pipe execution manager on the CESNET-
MetaCloud cloud we adapted the cPouta tool to create a tool that
uses the Open Cloud Computing Interface (OCCI). It is therefore
compatible with all EGI Federated Clouds, since they all
support OCCI. The tool is a rOCCI Client implemented in
Python and ansible that uses X509 VOMS certificates. It imple-
ments a Terraform OCCI plugin. Additional details are in https://
github.com/cduongt/mmg-cluster-setup-CESNET.

The manager of the server must provide a contextualization file
and Terraform configuration file that define the technical features
of the virtual cluster. When the launching command is issued the
tool first builds the virtual cluster to the given endpoint and then
automatically installs the software components and reference
datasets to the new virtual cluster as described above.

The end users submit analysis tasks from the META-pipe web
app to the META-pipe backend running in EGI Federated cloud.
The end users do not need certificates, Virtual Organization
membership or the tools required to launch the META-pipe
backend. Instead, the end users just authenticate to the META-pipe
web interface using ELIXIR AAI.

Elastic MapReduce on Amazon Web Services
To set up the META-pipe execution manager on Amazon Web
Services (AWS), we use the AWS Elastic MapReduce (EMR)
console and a custom cluster boot-time script. We use AWS’s
EMR managed framework since it natively supports Spark.
The cluster setup is therefore simpler than on OpenStack and
OpenNebula, but it is not as configurable. For instance, EMR
clusters always use the YARN resource allocator and cannot be con-
figured to use Spark’s “standalone” mode instead, which we use on
the other platforms. This has not been a big problem in practice,
but it constitutes an uncontrollable variable when optimizing the
execution for various cloud platforms. A detailed description of
the setup is in https://gitlab.com/uit-sfb/metapipe-on-aws. We plan
to implement a setup tool like the OpenStack and EGI Federated
Cloud tools described above. For automation of EMR cluster setup,
AWS offers a comprehensive API and CLI, and CloudFormation.

For META-pipe, we make AWS EMR clusters on demand. Our
clusters use spot instances with VM flavors that provide the best
cost-performance for META-pipe (currently we use c4.4xlarge).
An EMR cluster boots up with a compatible version of Spark
provisioned by Amazon. Our automatically started boot-time
script then provisions META-pipe tools and dependencies from
an S3 bucket. The whole cluster creation process takes about
10 minutes. Similar to other execution environments, the cluster
is idle until we start the META-pipe execution manager on
the cluster’s master node. The execution manager continually
fetches jobs submitted using the META-pipe web app and

Page 5 of 15

F1000Research 2018, 6(ELIXIR):2060 Last updated: 06 JUL 2021

https://gitlab.com/uit-sfb/METApipe-cPouta-cloud-setup
https://docs.google.com/document/d/1ONGUhcmPblRU6vppl-L2qzHVeqSVCO3btgWo-W3IpRQ/edit
http://occi-wg.org/
https://github.com/cduongt/mmg-cluster-setup-CESNET
https://github.com/cduongt/terraform/tree/occi
https://github.com/cduongt/mmg-cluster-setup-CESNET
https://github.com/cduongt/mmg-cluster-setup-CESNET
https://gitlab.com/uit-sfb/metapipe-on-aws

submits them to Spark on the cluster. We must terminate the cluster
ourselves, either by a script through the AWS API or manually in
the EMR console.

Use cases
Here we describe a use case where the computationally demand-
ing parts of META-pipe are setup to execute on a cloud resource
provided for a new user community. The new user group first
applies for computational resources from its partner clouds, and
then utilizes these resources easily through the interface provided
by the META-pipe web application. The tools described here
makes it easy for a resource provider to administer the META-
pipe job executions, and the use of standardized technologies and
protocols ensure compatibility and portability of the META-pipe
analysis backend across clouds. Below we describe the execu-
tion of analysis jobs from the point of view from META-pipe end
users, compute resource providers, and META-pipe service
providers. We have also described these use cases in an ELIXIR
webinar (November 2016) about the ELIXIR compute platform.

End user
The new user community, represented for example by their
national ELIXIR node, have applied and received compute
resources from an academic cloud provider. One of the academic
users has a marine metagenomics dataset they want to analyze:

1. The user logs into the META-pipe web application using
their home institution credentials. The login page is the
single sign on provided by ELIXIR AAI. The datasets are
typically up to a few GB in size and they can quickly be
uploaded using the browser.

2. The user uploads their dataset to be analyzed, and possibly
changes some of the analysis parameters. This is done in
the META-pipe web app.

3. The user tags the cloud to use for the analysis and submits
the job for analysis using the web app GUI.

4. Once computations finish, the data is returned to the
portal, and the user can download the enriched results for
further analysis or visualization using separate tools such
as Krona2, Artemis3, or METAREP4.

Resource provider
The resource provider must setup the META-pipe execution
manager that executes the Spark job that implements the analy-
sis. In addition, the resource provider must test and maintain the
execution manager. The execution manager setup tools described in
the previous section simplifies this task.

The first time the META-pipe backend is set up on a cloud
environment, the resource administrator needs to edit a con-
figuration file that defines the virtual cluster to be created. After
that the administrator runs the following commands in the tool:

1. create-env: to set up the environment and META-pipe
files caching volume that will be used in create-cluster.

2. create-cluster: provision cluster resources, install and
configure the execution manager (Spark and NFS), install
META-pipe tools, dependencies, and reference databases
on the provisioned cluster VMs, and test the setup.

To set up a cluster as second time, only step 2 is run. It will use
cached META-pipe volumes created previously.

Then to accept META-pipe jobs from the job server:

3. sw-launch: start Spark and the server that listens for new
META-pipe jobs to execute.

To stop accepting new jobs:

4. sw-kill: stop all META-pipe related processes on all cluster
VMs.

To free the allocated resources:

5. remove-cluster: remove the cluster and keep the
environment for future use.

6. remove-env: remove the environment, including cached
volumes.

Step 6 is only done when the resource is not intended to be used
for META-pipe jobs anymore. Steps 2–5 may be automated.

Service provider
The META-pipe team providing the service do not need to make
any changes to the central services since the new execution
manager is authorized using the META-pipe authorization
server, and since the end-user specifies the tag for the new
execution manager.

Metagenomics course
In April 2017 we used META-pipe in a metagenomics course
organized by the Finnish ELIXIR node (https://www.csc.
fi/web/training/-/metagenomics) also described in the report
“EGI-Engage D6.15 Demonstrator for ELIXIR workflows
implemented in the EGI Federated cloud”). We setup two META-
pipe execution environments. The main execution environment was
running in the cPouta cloud environment at CSC, and a backup
execution environment that was running in EGI Federated Cloud
(CESNET-MetaCloud). These META-pipe backends were set
up by the course organizers and so the students did not need to
do any technical preparations to use the cloud services. Instead,
they only needed to define one extra parameter in the web inter-
face to guide their analysis tasks to a specific external META-pipe
backend. 42 students participated to the metagenomics course
and successfully used these temporary execution environments
through the META-pipe web interface without any interference.

Discussion
Related work
Bioinformatics pipelines can be specified for portable execution
in either a popular bioinformatics pipeline (workflow) manager,

Page 6 of 15

F1000Research 2018, 6(ELIXIR):2060 Last updated: 06 JUL 2021

https://www.elixir-europe.org/documents/elixir-webinar-elixir-compute-platform-roapmap-november-2016
https://www.elixir-europe.org/documents/elixir-webinar-elixir-compute-platform-roapmap-november-2016
https://metapipe.uit.no/
https://www.elixir-europe.org/services/compute/aai
https://www.csc.fi/web/training/-/metagenomics
https://www.csc.fi/web/training/-/metagenomics
https://documents.egi.eu/public/ShowDocument?docid=3019
https://documents.egi.eu/public/ShowDocument?docid=3019

such as Galaxy5 or Chipster6, or in a standardized language, such
as the Common Workflow Language7, that is supported by many
pipeline managers including Galaxy and Toil8. META-pipe is
implemented in Apache Spark. Spark is widely used for big
data processing, and it is supported natively in Amazon Web
Services, Microsoft Azure, and Google Cloud Platform.

Another approach for portable bioinformatics tool execution
is to package the tools as containers. Repositories such as
BioContainers provides many tools. Several pipeline managers
support containers, including Nextflow9, Toil, Pachyderm, and
Luigi10. META-pipe does not use containers, since our arti-
facts server and the ansible scripts used by the setup tools take
care of META-pipe dependencies. In addition, even when using
containers, there is a need to set up container orchestration
for parallel execution on distributed resources. Systems such
as Kubernetes and Docker Swarm can be used to orchestrate
containers. The META-pipe execution manager use Spark for
orchestration.

The EBI Cloud Portal enables execution of pipelines on cloud
resources. Users can sign on using ELIXIR AAI, add their
applications, pipelines as virtual machine images, and configure
cloud compute and storage resources. We attempt to hide these
details to the end users. Commercial solutions include platform
such as Illumina BaseSpace, where developers can provide apps
for analysis on AWS of data uploaded to BaseSpace. Currently,
most of the provided apps are single tools instead of complete
pipelines, such as META-pipe.

Limitations
An important limitation of our approach is that we do not
handle resource allocation for end users. Instead users must
contact a service provider in their country (or be added to an
EGI based VO) to allocate resources and setup an execution
environment. This is not something all users know how to do,
and it is unnecessarily complicated for small projects. There are
four possible solutions. First, for small projects an ELIXIR node
may provide the computation resources for all users. Second, an
ELIXIR node may provide computation resources for all their
users. Third, federated cloud resources can be used through EGI
Federated Cloud or the ELIXIR federated cloud testbed. Long
term usage of federated approach requires that access guarantees
(SLAs, OLAs) are arranged. Fourth, the users can allocate and
pay for resources from a commercial cloud provider. Such
pay-by-use is especially easy for industry users.

We do not provide a service for predicting resource usage for
META-pipe jobs. However, we believe that we can make good
estimates based on the input file size. We are also currently

evaluating and optimizing META-pipe job execution. An impor-
tant part of such optimization is to choose the most cost efficient
virtual machine flavors and storage solutions on a cloud.

Conclusion
We have described our approach for setting up and executing
the functional analysis of META-pipe on academic and com-
mercial clouds. To make our analysis service easy to use and to
maintain, we use a distributed architecture where we combine
central servers with multiple distributed backends that execute
the computationally intensive jobs. A key issue in ELIXIR is to
obtain computing resources for META-pipe end users. It is still
to be decided how resources will be obtained, managed and
allocated to the individual end users. For all solutions, an up-to
date and highly automatized tool for launching a META-pipe
execution environment is needed. We will continue improving the
META-pipe backend and to add support for additional resource
providers.

Data and software availability
No data is needed to use the cloud setup tools.

The code for the three setup tools are open source at:

• CSC cPouta OpenStack cloud: https://gitlab.com/uit-sfb/
METApipe-cPouta-cloud-setup.

• CESNET-MetaCloud OpenNebula: https://github.com/
cduongt/mmg-cluster-setup-CESNET.

• Amazon Web Services EMR: https://gitlab.com/uit-sfb/
metapipe-on-aws.

Archived code at time of publication for all: http://doi.org/10.5281/
zenodo.105380711. All use the MIT license. The above repositories
include user guides.

Competing interests
No competing interests were disclosed.

Grant information
This work was funded by ELIXIR, The Research Council of
Norway (project number 270675), EGI-Engage, and UiT The
Arctic University of Norway. ELIXIR received funding from the
European Union’s Horizon 2020 research and innovation pro-
gram (ELIXIR- EXCELERATE, grant agreement no 676559). The
EGI-Engage project is co-funded by the European Union (EU)
Horizon 2020 program under Grant number 654142.

The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Page 7 of 15

F1000Research 2018, 6(ELIXIR):2060 Last updated: 06 JUL 2021

http://biocontainers.pro/
http://www.pachyderm.io/
https://github.com/spotify/luigi
https://kubernetes.io/
https://github.com/docker/swarm
https://portal.tsi.ebi.ac.uk/
http://basespace.illumina.com/
https://gitlab.com/uit-sfb/METApipe-cPouta-cloud-setup
https://gitlab.com/uit-sfb/METApipe-cPouta-cloud-setup
https://github.com/cduongt/mmg-cluster-setup-CESNET
https://github.com/cduongt/mmg-cluster-setup-CESNET
https://gitlab.com/uit-sfb/metapipe-on-aws
https://gitlab.com/uit-sfb/metapipe-on-aws
http://doi.org/10.5281/zenodo.1053807
http://doi.org/10.5281/zenodo.1053807
https://opensource.org/licenses/MIT

References

1. Robertsen EM, Kahlke T, Raknes IA, et al.: META-pipe - Pipeline Annotation,
Analysis and Visualization of Marine Metagenomic Sequence Data.
ArXiv160404103 Cs. 2016.
Reference Source

2. Ondov BD, Bergman NH, Phillippy AM: Interactive metagenomic visualization in
a Web browser. BMC Bioinformatics. 2011; 12: 385.
PubMed Abstract | Publisher Full Text | Free Full Text

3. Carver T, Harris SR, Berriman M, et al.: Artemis: an integrated platform for
visualization and analysis of high-throughput sequence-based experimental
data. Bioinformatics. 2012; 28(4): 464–469.
PubMed Abstract | Publisher Full Text | Free Full Text

4. Goll J, Rusch DB, Tanenbaum DM, et al.: METAREP: JCVI metagenomics
reports--an open source tool for high-performance comparative
metagenomics. Bioinformatics. 2010; 26(20): 2631–2632.
PubMed Abstract | Publisher Full Text | Free Full Text

5. Afgan E, Baker D, van den Beek M, et al.: The Galaxy platform for accessible,
reproducible and collaborative biomedical analyses: 2016 update. Nucleic
Acids Res. 2016; 44(W1): W3–W10.
PubMed Abstract | Publisher Full Text | Free Full Text

6. Kallio MA, Tuimala JT, Hupponen T, et al.: Chipster: user-friendly analysis
software for microarray and other high-throughput data. BMC Genomics.
2011; 12: 507.
PubMed Abstract | Publisher Full Text | Free Full Text

7. Amstutz P, Crusoe MR, Tijanić N, et al.: Common Workflow Language, v1.0.
Publisher Full Text

8. Vivian J, Rao AA, Nothaft FA, et al.: Toil enables reproducible, open source, big
biomedical data analyses. Nat Biotechnol. 2017; 35(4): 314–316.
PubMed Abstract | Publisher Full Text | Free Full Text

9. Di Tommaso P, Chatzou M, Floden EW, et al.: Nextflow enables reproducible
computational workflows. Nat Biotechnol. 2017; 35(4): 316–319.
PubMed Abstract | Publisher Full Text

10. Schulz WL, Durant TJ, Siddon AJ, et al.: Use of application containers and
workflows for genomic data analysis. J Pathol Inform. 2016; 7(1): 53.
PubMed Abstract | Publisher Full Text | Free Full Text

11. Agafonov A, Mattila K, Tuan CD, et al.: META-pipe Cloud Setup and Execution
(Version Tag: Zenodo-F1000). Zenodo. 2017.
Data Source

Page 8 of 15

F1000Research 2018, 6(ELIXIR):2060 Last updated: 06 JUL 2021

https://arxiv.org/ftp/arxiv/papers/1604/1604.04103.pdf
http://www.ncbi.nlm.nih.gov/pubmed/21961884
http://dx.doi.org/10.1186/1471-2105-12-385
http://www.ncbi.nlm.nih.gov/pmc/articles/3190407
http://www.ncbi.nlm.nih.gov/pubmed/22199388
http://dx.doi.org/10.1093/bioinformatics/btr703
http://www.ncbi.nlm.nih.gov/pmc/articles/3278759
http://www.ncbi.nlm.nih.gov/pubmed/20798169
http://dx.doi.org/10.1093/bioinformatics/btq455
http://www.ncbi.nlm.nih.gov/pmc/articles/2951084
http://www.ncbi.nlm.nih.gov/pubmed/27137889
http://dx.doi.org/10.1093/nar/gkw343
http://www.ncbi.nlm.nih.gov/pmc/articles/4987906
http://www.ncbi.nlm.nih.gov/pubmed/21999641
http://dx.doi.org/10.1186/1471-2164-12-507
http://www.ncbi.nlm.nih.gov/pmc/articles/3215701
http://dx.doi.org/10.6084/m9.figshare.3115156.v2
http://www.ncbi.nlm.nih.gov/pubmed/28398314
http://dx.doi.org/10.1038/nbt.3772
http://www.ncbi.nlm.nih.gov/pmc/articles/5546205
http://www.ncbi.nlm.nih.gov/pubmed/28398311
http://dx.doi.org/10.1038/nbt.3820
http://www.ncbi.nlm.nih.gov/pubmed/28163975
http://dx.doi.org/10.4103/2153-3539.197197
http://www.ncbi.nlm.nih.gov/pmc/articles/5248400
http://dx.doi.org/10.5281/zenodo.1053807

Open Peer Review
Current Peer Review Status:

Version 2

Reviewer Report 23 April 2019

https://doi.org/10.5256/f1000research.14965.r46505

© 2019 Wu C. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Chunlei Wu
Department of Molecular and Experimental Medicine (MEM), Scripps Research Institute, La Jolla,
CA, USA

This manuscript described META-pipe as a cloud-based workflow for marine metagenomic
analysis. The computation-intensive analysis is parallelized via a distributed Spark-compatible
infrastructure. The unique feature of META-pipe is its support of heterogeneous cloud
environment for job execution, including those available from academic institutes and
commercially available AWS.

This is the 2nd version of the manuscript. The authors have addressed all remarks raised by the
previous reviewers.

A few minor remarks are listed below:

Use cases->End user section:

Cannot evaluate the application without a valid ELIXIR AAI login credential. Should either
provide a demo account or a recorded screencast for the review purpose.

○

Discussion->Limitations section:

"(or be added to an EGI based VO)": What's "VO"?○

"requires that access guarantees (SLAs, OLAs)": the first appearance of acronyms (SLAs,
OLAs) should be spelled out and/or include links.

○

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use

Page 9 of 15

F1000Research 2018, 6(ELIXIR):2060 Last updated: 06 JUL 2021

https://doi.org/10.5256/f1000research.14965.r46505
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-2629-6124

by others?
Yes

If any results are presented, are all the source data underlying the results available to
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: bioinformatics

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 26 Apr 2019
Lars Ailo Bongo, UiT The Arctic University of Norway, Tromsø, Norway

Thank you for your suggestion to improve the readability of our paper. We have now
spelled out the acronyms. Also note that in the "Use cases" section we provide a link
(https://elixir-europe.org/documents/elixir-webinar-elixir-compute-platform-roapmap-
november-2016) to a seminar where we show the end user interfaces.

Competing Interests: No competing interests were disclosed.

Version 1

Reviewer Report 22 December 2017

https://doi.org/10.5256/f1000research.14327.r29076

© 2017 Ning K. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Kang Ning
Department of Bioinformatics and Systems Biology, Huazhong University of Science and
Technology, Wuhan, China

This article describes the setup of a multi-cloud architecture that can support the execution of
META-pipe jobs for marine metagenomic data analysis. And META-pipe provides assembly of high-

Page 10 of 15

F1000Research 2018, 6(ELIXIR):2060 Last updated: 06 JUL 2021

https://doi.org/10.5256/f1000research.14327.r29076
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-3325-5387

throughput sequence data, functional annotation of predicted genes, and taxonomic profiling.

Remarks:

The introduction of META-pipe backend architecture and deployment is detailed and clear

1.

It achieves the goal which is to provide a powerful analysis service that is easy to use and to
maintain since META-pipe has web app and GUI that the users just set parameters and then
they can make analysis of data.

2.

In the chapter concerning resource provider (page 6), “The tools described in the previous
section simplifies this task“ needs more details like names of the tools since there are some
tools referred in the previous section. It would be easy to understand.

3.

There is less example to indicate tasks in META-pipe can be easy and fast. It would be better
to give some data like running time and volume to state. Giving other projects differed from
this as ‘ control group ’and setting characters to make comparisons will be more persuasive.

4.

There are some spelling mistakes like ‘manger’.5.

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use
by others?
Partly

If any results are presented, are all the source data underlying the results available to
ensure full reproducibility?
No source data required

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Microbiome

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Author Response 16 Jan 2018

Page 11 of 15

F1000Research 2018, 6(ELIXIR):2060 Last updated: 06 JUL 2021

Lars Ailo Bongo, UiT The Arctic University of Norway, Tromsø, Norway

Thank you for your remarks. We have specified that the tools used by the resource provider
are the execution manager setup tools.

Performance and scalability evaluation of META-pipe on different execution environments is
important, but outside the scope of this paper. Here we describe the work done before and
after executing pipeline jobs. This approach can be used for other bioinformatics pipelines
(implemented as Spark jobs). A performance evaluation would require a detailed
explanation of the META-pipe tools. To make this point clearer we have added a line in
“cPouta Open Stack setup” about META-pipe job execution time being several hours
(compared to 10-30 minutes of setup time).

Competing Interests: No competing interests

Reviewer Report 15 December 2017

https://doi.org/10.5256/f1000research.14327.r28995

© 2017 Collin O. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Olivier Collin
Univ Rennes, Inria, CNRS, IRISA F-35000, Rennes, France

The article describes the setup of a multi-cloud architecture that can support the execution of
META-pipe jobs for marine metagenomics data analysis.

It is intended for a technically inclined audience and focuses on the different configuration steps
required for the setup of a complex computing architecture involving several clouds in several
countries.

The purpose is to be able to open the META-pipe service to a large number of ELIXIR users.
Several cloud middleware have been configured (Openstack, OpenNebula, Amazon).

The description of the infrastructure is clear and additional links to github repositories or online
documents allow the reader to fetch extra technical information.

Remarks :

In the introduction, the authors indicate that the design goal is to make execution mangers (sic)
portable and that the setup and maintenance of execution mangers (sic) is easy. The authors state

Page 12 of 15

F1000Research 2018, 6(ELIXIR):2060 Last updated: 06 JUL 2021

https://doi.org/10.5256/f1000research.14327.r28995
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-8959-8402

that these goals are achieved because all state is maintained on central servers. This section is not
completely clear and should be rewritten to highlight the advantages of the central servers
architecture. Emphasizing the fact that the META-pipe environment will be pushed from a central
server to the execution clouds could clarify things.

In the chapter concerning the META-pipe executables and dependencies (page 4), it could be
interesting to better describe these dependencies. These dependencies are downloaded from the
artifact server but no technical information is given about this server (for example : location, size
of the downloads). Are the reference databases provided by the artifact server ?

The infrastructure is articulated around a central server hosting the configuration of META-pipe.
This creates a single point of failure. It could be interesting to describe the actions that are taken
in order to have a more resilient system.

In the META-pipe job execution paragraph, the input data is downloaded to a data structure (page
5, col 1, line 18). What is this data structure ?

 Typos:

Page 3 / Col 2 / Line 4, 5, 11 : manager/manger

Page 3 / Col 2 / Line 27 : executables instead of executable

Page 3 / Col 2 / Line 29 : is set up

Page 5 / Col 1 / Line 3 : is set up

Page 5 / Col 1 / Line 27 : to set up

Page 5 / Col 2 / Line 42 : are set up

Page 5 / Col 2 / Line 45 : utilizes

Page 6 / Col 1 / Line 13 : its dataset

Page 6 / Col 1 / Line 23 : set up

Page 6 / Col 1 / Line 28 : set up

Page 6 / Col 1 / Line 38 : To set up a cluster for a second time

Page 6 / Col 2 / Line 19 : We set up

Page 6 / Col 2 / Line 24 : did not need to : Missing word

Page 6 / Col 2 / Line : several pipeline mangers : managers ?

Page 7 / Col 1 / Line 19 : ELIXIR

Page 13 of 15

F1000Research 2018, 6(ELIXIR):2060 Last updated: 06 JUL 2021

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use
by others?
Yes

If any results are presented, are all the source data underlying the results available to
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 16 Jan 2018
Lars Ailo Bongo, UiT The Arctic University of Norway, Tromsø, Norway

Thank you for your remarks. We have made the following changes in our revised version:
We improved the description of the centralized server and the execution
environments in the introduction.

1.

We added additional details about the dependencies and the artifacts server in
“META-pipe executable and dependencies”

2.

We now specify that the data is downloaded into a Spark RDD.3.
We have fixed the typos.4.

We agree that centralized servers create a single-point-of-failure, but at the same time it
simplifies the implementation of the backend. We are not a stage at the project yet where
we believe the improved availability justifies prioritizing this issue.

Competing Interests: No competing interests

Page 14 of 15

F1000Research 2018, 6(ELIXIR):2060 Last updated: 06 JUL 2021

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 15 of 15

F1000Research 2018, 6(ELIXIR):2060 Last updated: 06 JUL 2021

mailto:research@f1000.com

