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Selection of finishing beef cattle for slaughter and evaluation of performance is currently

achieved through visual assessment and/or by weighing through a crush. Consequently,

large numbers of cattle are not meeting target specification at the abattoir. Video

imaging analysis (VIA) is increasingly used in abattoirs to grade carcasses with high

accuracy. There is potential for three-dimensional (3D) imaging to be used on farm to

predict carcass characteristics of live animals and to optimise slaughter selections. The

objectives of this study were to predict liveweight (LW) and carcass characteristics of live

animals using 3D imaging technology and machine learning algorithms (artificial neural

networks). Three dimensional images and LW’s were passively collected from finishing

steer and heifer beef cattle of a variety of breeds pre-slaughter (either on farm or after

entry to the abattoir lairage) using an automated camera system. Sixty potential predictor

variables were automatically extracted from the live animal 3D images using bespoke

algorithms; these variables included lengths, heights, widths, areas, volumes, and ratios

and were used to develop predictive models for liveweight and carcass characteristics.

Cold carcass weights (CCW) for each animal were provided by the abattoir. Saleable

meat yield (SMY) and EUROP fat and conformation grades were also determined for

each individual by VIA of half of the carcass. Performance of prediction models was

assessed using R2 and RMSE parameters following regression of predicted and actual

variables for LW (R2 = 0.7, RMSE = 42), CCW (R2 = 0.88, RMSE = 14) and SMY

(R2 = 0.72, RMSE = 14). The models predicted EUROP fat and conformation grades

with 54 and 55% accuracy (R2), respectively. This study demonstrated that 3D imaging

coupled with machine learning analytics can be used to predict LW, SMY and traditional

carcass characteristics of live animals. This system presents an opportunity to reduce a

considerable inefficiency in beef production enterprises through autonomous monitoring

of finishing cattle on the farm and marketing of animals at the optimal time.
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INTRODUCTION

In 2017, 51% of prime beef carcasses in the UK did not
meet target fat and conformation grades: 40% had poor
conformation and 15% were too fat (AHDB, 2018a). The cost
to UK producers of sending over-finished cattle to slaughter has
been estimated at £8.8 million per year (AHDB, 2018b). For
example Roehe et al. (2013) estimated that for an increase in
EUROP grade from R4L to R4H for an intensively fed steer
of a medium sized breed, a loss of £11.37 would be made in
feeding costs alone. Furthermore, processors set weight limits on
carcasses and penalise producers for sending overweight cattle,
despite them being otherwise to specification. Sending cattle to
slaughter too lean equally results in a loss due to the lower price
paid for the carcass. Identifying the optimum slaughter point to
meet market specifications for beef cattle has economic benefits
(Roehe et al., 2013), and reduces the environmental impact
of cattle production (de Vries and de Boer, 2010). Therefore,
to improve sustainability in the beef production sector it is
important for farmers to be able to predict carcass value in the
live animal.

Some equations exist for the prediction of carcass
characteristics in live animals (Realini et al., 2001; Greiner
et al., 2003; Afolayan et al., 2006; Lambe et al., 2008; Minchin
et al., 2009; Pogorzelska-Przybylek et al., 2014) but they generally
rely on obtaining manual measurements of body dimensions,
body condition or tissue depth using ultrasound scanners.
Obtaining these measurements is time consuming, may require
a level of training and skill, and they can be stressful and
potentially dangerous for both animals and handlers.

As imaging technologies become more advanced and
affordable it is now economically feasible to implement them
on commercial farms. Ozkaya et al. (2016) demonstrated that
body measurements of cattle (body length, wither height, chest
depth. and hip height) can be accurately determined from
2-dimensional (2D) digital image analysis (90–98% accuracy).
Applications for 2D imaging have included estimating liveweight
(LW) of broiler chickens (Mollah et al., 2010), pigs (Kashiha
et al., 2014; Wongsriworaphon et al., 2015; Shi et al., 2016)
and beef cattle (Ozkaya et al., 2016), and LW (Tasdemir
et al., 2011), body condition score (Bewley et al., 2008), and
lameness (Viazzi et al., 2014) in dairy cows.

Using both Limousin or Aberdeen Angus crossbred steers
managed under typical UK conditions Hyslop et al. (2008,
2009) used 2D digital imaging to estimate LW and carcass
characteristics. Successful prediction of slaughter parameters
included LW (R2 = 0.81, RMSE = 15.7); cold carcass weight
(CCW) (R2 = 0.81, RMSE = 10.4); killing out proportion (R2 =
0.91, RMSE = 5.3), sirloin weight (R2 = 0.58, RMSE = 2.1) and
proportions (R2 = 0.61, RMSE = 5.1) along with fat (R2 = 0.81)
and conformation (R2 = 0.81) gradings.

Advances in imaging technology have allowed for the use
of three-dimensional (3D) imaging in the livestock sector with
applications in estimating LW (Mortensen et al., 2016) and lying
behaviour (Aydin, 2017) in broiler chickens and body condition
scoring (Weber et al., 2014; Fischer et al., 2015; Kuzuhara et al.,
2015), LW (Kuzuhara et al., 2015), milking traits (Kuzuhara et al.,
2015), and lameness (Van Hartem et al., 2014; Viazzi et al., 2014)

in dairy cows. 3D imaging is also successfully used in estimating
LW in pigs (Wang et al., 2008). There are no known reports
where 3D imaging has been applied in estimating both LW and
carcass characteristics of beef cattle.

Whilst multiple 2D cameras have been investigated (Hyslop
et al., 2009), it was concluded that a “top down” camera view
rather than the addition of side and rear view 2D cameras was
sufficient for accurate prediction. Application of a 3D camera
suspended above the animal would extend the range of potential
“top down” predictor variables and refine prediction models
further, with the continued advantage of equipment being kept
away from animals and potential damage as well as being
accessible for both installation and maintenance.

Increasingly, video image analysis (VIA) is being used to grade
carcasses in the abattoir, improving the consistency of grading by
removing subjective differences in visual assessment by trained
graders (Craigie et al., 2012). However, many producers still
subjectively select animals for slaughter by visual assessment of
fat and condition score and by weighing manually through a
crush. This is a clear inefficiency in the beef market. 3D imaging
technology has the potential to provide predictions of carcass
characteristics from live animals on farm, allowing farmers to
send cattle to slaughter as soon as they are within the parameters
specified by the abattoir. Havingmore animals slaughtered within
specification increases the profit to the producer, improves the
uniformity of the products produced for down-stream customers
and reduces the environmental impact per kg of product
produced (i.e., lower greenhouse gas emissions and reduced
water use).

The objectives of this study were to use live animal body
measurements automatically extracted from 3D images to
build machine learning algorithms to predict LW and carcass
characteristics of finishing beef cattle.

METHODS

Ethics Statement
The animal trials described below were approved by the
Animal Experiment Committee of SRUC and were conducted in
accordance with the requirements of the UK Animals (Scientific
Procedures) Act 1986.

Measurements—Live Animals
The 3D cameras used were Basler Time-of-Flight near infra-
red cameras (Basler Inc., Exton, PA). The camera specifications
are as follows: 640 × 480 pixels, 20 frames per second, 57◦

horizontal × 43◦ vertical angular field of view, accuracy of +/–
1 cm. Eighteen measurements (5 widths, 6 lengths, 5 heights,
and 2 diagonals, Figure 1) were extracted from each 3D image
and 20 ratios, 11 areas, and 11 volumes were calculated, giving a
total of 60 potential predictor variables available for evaluation.
Measurements were extracted in real time from 3D images using
algorithms developed by Innovent Technology Ltd. using Halcon
software (MVTec Software GmbH, München, Germany).

Live animal data was gathered from a range of sources:
including both commercial and research farms and from an
abattoir lairage.
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FIGURE 1 | Measurements acquired from 3D images. W, width; L, length; D, diagonal; H, height; S, shoulder; M, middle; R, rump, T, tail.

Farm Trials

Five automatic Beef Monitor weigh crates (Ritchie Ltd, Turriff,
UK) fitted with Tru-test weigh heads and electronic ID (EID)
readers (Tru-Test Corporation Ltd., Auckland, New Zealand)
were installed on four commercial finishing units throughout
Scotland and two were installed at SRUC’s Beef Research Centre
near Edinburgh. The crates were the sole water source for up
to 50 steers or heifers in group pens. All animals behind the
system were allocated low frequency EID ear tags to allow
individual identification and automated weight recording. Three
dimensional cameras were suspended from custom made frames
3m above each crate. Liveweight and 3D images were recorded
at every visit to the water trough. Variables were automatically
linked to the EID and LW recorded by the Beef Monitor crate
and immediately uploaded to a database. Data extracted from
images which had poor animal outlines (determined visually)
or where the automatically calculated variables were 0 (i.e., a
height, width etc. cannot be 0) were removed from the analysis.
Poor outlines were generally caused by strong direct sunlight
below the camera, a second animal’s head against the rear of
the animal being measured or the animal leaning against the
side of the crate or race. Across the five farms, 17127 LWs were
collected from 674 animals (see Table 1 for a breakdown of sexes
and breeds).

Abattoir Trial

A ten day data collection trial was undertaken in a commercial
abattoir in Scotland. This allowed a large number of individual
animal data points from a variety of breeds, sexes, and animal
types with a range of conformation and fat grades to be
obtained rapidly. A weigh platform was placed between two
sliding gates in the race leading up to the stun box and a
3D camera was secured 3m above the platform. This allowed
individual animals to be held for a short time immediately
pre-slaughter to record UKID and LW and to capture a 3D
image. Liveweights and clear images were recorded for 1,484 beef
animals. A summary of animal numbers by breed and sex are
shown in Table 1.

TABLE 1 | Summary of cattle used in the development of

liveweight prediction algorithms.

AA (x) LIM (x) SIM (x) CH (x) Other Total

Total 909 556 300 225 168 2158

FARM TRIALS

Total 88 253 139 118 76 674

Steers 5 203 99 91 34 432

Heifers 83 50 40 27 42 242

ABATTOIR TRIAL

Total 821 303 161 107 92 1484

Steers 436 190 93 52 59 830

Heifers 385 113 68 55 33 654

AA, Aberdeen Angus; LIM, Limousin, SIM, Simmental; CH, Charolais.

Measurements—Slaughter Data
Cattle were stunned by captive bolt, exsanguinated and their
hides were removed. Carcasses were split down the midline
and dressed as per normal abattoir practice. Conformation class
and fatness class were visually assessed for each carcass by
trained abattoir staff (according to the abbreviated EUROP grid
commonly used in UK abattoirs). VIA technology (VBS 2000,
E+V GmbH, Germany) was operated on-line to predict fat and
conformation grades on both the 15 point scale and the EUROP
grid (7 fat and 8 conformation grades). Cold carcass weight,
saleable meat yield (SMY) estimated by VIA along with visually
assessed EUROP fat and conformation grades were provided
by the abattoir. Carcass characteristics data for a total of 1649
carcases from both the abattoir and on-farm trial datasets were
matched to clear pre-slaughter 3D images, see Table 2 for a
breakdown of breeds and sexes.

Statistical Analysis and Development of
Predictive Models
Data from all abattoir and on-farm sources were combined into
one dataset. For the LW predictions the abattoir data consisted
of a single LW per animal taken immediately pre-slaughter. The
commercial and SRUC on-farm trial data consisted of multiple
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TABLE 2 | Summary of cattle used in the development of carcass characteristics

prediction algorithms.

AA(x) LIM(x) SIM(x) CH(x) Other Total

Total 842 395 175 131 106 1649

Farm Trials 22 92 15 24 14 167

Steers 0 77 3 11 2 93

Heifers 22 15 12 13 12 74

FAT GRADE

1 28 31 13 12 10 94

2 373 194 103 69 38 777

3 339 112 43 35 38 567

4L 85 50 15 15 14 179

4H 17 8 1 0 6 32

5L 0 0 0 0 0 0

CONFORMATION GRADE

–P 0 0 0 0 1 1

P+ 24 2 1 0 6 33

–O 286 41 25 7 46 405

O+ 395 118 95 51 38 697

R 127 146 47 59 14 393

–U 10 83 7 14 1 115

U+ 0 5 0 0 0 5

E 0 0 0 0 0 0

See Table 1 for breakdown of animal breeds and sexes from the abattoir trial. Fat and

conformation grades as predicted by VIA. AA, Aberdeen Angus; LIM, Limousin; SIM,

Simmental; CH, Charolais.

weights per animal across the finishing period. For the fat grade,
conformation grade, CCW and SMY predictions, only the final
LW recorded in the beef monitor crates on farms was used
alongside the LWs collected in the abattoir trial. No 5L or 5H
fat grades and no E and insufficient U+ conformation grades (n
= 5) were recorded and so these grades could not be included in
the prediction model. A summary of the breeds, sexes, fat grades
and conformation grades are shown in Table 2.

Sex was included as a factor in the model. Cattle were
categorised as either native type (smaller, quick finishing breeds
such as Aberdeen Angus) or continental type (larger breeds
such as Charolais) (see Supplementary Table 1 for categorisation
of breeds), and this was also included as a factor in the
model. From the commercial farm trials, the final measured LW
from the weigh crate was included as a predictor variable for
carcass characteristics.

Artificial neural networks (ANNs) were selected for this
study as they can be used for both regression and classification
problems and are capable of handling complex non-linear
relationships between large numbers of variables. ANNs
comprise a framework of “neurons” which are connected by
weighted links (Agatonovic-Kustrin and Beresford, 2000). ANNs
can be used for regression and classification problems and
have many applications in financial forecasting, machine vision,
game theory, medicine and ecology to name only a few. ANNs
were developed using the caret package in R (version 3.4.1,
R Core Team, 2017). To optimise neural network training,
continuous input variables were standardised using a Gaussian

transformation (subtracting the mean and dividing by one
standard deviation) and min-max scaling between −0.9 and
0.9. The data was then randomly split into training (70%) and
validation (30%) subsets.

In this study ANNs were developed through supervised
training by backward propagation. The model was presented
with the training set and known target values. Weights and
biases were automatically randomly initialised to non-zero values
(between 1 and −1) by the ANN software and during the
training phase the model adjusted the weighted connections by
feeding back the error and optimising the weights to decrease the
difference between target and output values. Repeated training
iterations (three repeats of 10-fold repeated cross validation)
further reduced the model error. Models were regularised to
prevent overfitting to the training data subset by applying a
penalty (a weight decay value) to weights which became relatively
much larger than others in the model. Parameter estimation
(model size and weight decay values) were optimised after testing
100 potential models (10 possible values per parameter). Several
topographies (number of hidden layers and nodes in each layer)
were tested for each ANN. The topography which produced the
best performance results without overfitting to the training data
sub-sets was selected for each ANN. All of the ANNs had one
hidden layer with five nodes, except the fat grade classification
ANN which only had one node in the hidden layer. The model
was then tested on the validation data subset. Model performance
was assessed by R2 and RMSE for regression (LW, CCW, and
SMY). Classification accuracy for fat and conformation grades
were assessed by way of confusion matrices. A confusion matrix
is a table summarising the number of validation sub-set data
points in each class and the predicted classes, and the sensitivity
(Equation 1) and specificity (Equation 2) for each class.

sensitivity = true positive/true positive+ false negative (1)

specificity = true negative/true negative+ false positive (2)

Where for any class (x), a true positive is a data point that is
correctly predicted to be within class x, a false negative is a data
point incorrectly predicted to not be in class x, a true negative is
a data point which is correctly predicted to not be in class x and
a false positive is a data point which is incorrectly predicted to be
in class x.

Stepwise linear regression models were also created for the
continuous variables (LW, CCW, and SMY) using the same
training and validation data subsets as were used to create
the ANNs and were cross validated using the same method.
Summary results (R2 and RMSE) are reported alongside the
ANN results.

Finally, the importance of each predictor variable to the
overall ANN was assessed using the VarImp function in R.
This function calculates the influence each input variable has
on the output by using the connection weight between the
input and each hidden neuron and apportioning the connection
weights between each hidden neuron and the output between
each input variable (based on the method described in Gevrey
et al., 2003). Connection weights are analogous to coefficients
in a linear model (although the number of connection weights
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in an ANN is excessive compared to coefficients in a linear
model) and so dictate the influence any variable has on the
hidden nodes and ultimately on the output e.g., variables with
low weights are suppressed and so have little importance and
those with large weights are influential and have high importance.
Variable importance was scaled from 100 to 0 with 100 being
the predictor variable with the highest calculated influence and
0 being redundant. The following calculations below are quoted
from Gevrey et al. (2003).

1. For each hidden neuron, divide the absolute value of the
input-hidden layer connection weight by the sum of the
absolute value of the input-hidden layer connection weight of
all input neurons, i.e.,

For h= 1 to nh, and for i= 1 to ni

Qih =
|Wih|

∑ni
i=1 |Wih|

2) For each input neuron i, divide the sum of the Qih for each
hidden neuron by the sum for each hidden neuron of the sum
for each input neuron of Qih, multiply by 100. The relative
importance of all output weights attributable to the given
input variable is then obtained.

For i= 1 to ni

RI (%) =

∑nh
h=i Qih

∑nh
h=i

∑ni
i=1 Qih

x 100

Where Q is the proportional influence an input neuron has on a
hidden neuron, h is a hidden neuron, i is an input neuron, W is a
weight and RI is the relative influence of an input neuron (%).

RESULTS AND DISCUSSION

3D Image Collection
A total of 18,134 3D images were collected during this trial. Of the
16,100 3D images collected on commercial and research farms
1,292 (8%) of images were removed due to a poor outline being
obtained. From the abattoir trial 550 of 2,034 3D images (27%)
were removed from the analysis. The more stressful environment
in the abattoir lairage led to a higher proportion of 3D images
being removed from the analysis. Animals were more likely to be
agitated and so a good quality 3D image was difficult to obtain.
Removal of images from the on-farm data sets is not deemed to
be a concern for commercial implementation as multiple images
are collected per animal per day; therefore not all images of each
individual animal are required to provide a prediction to the
end user.

Prediction of Liveweight, Cold Carcass
Weight, and Saleable Meat Yield
Pre-slaughter LW’s ranged from 341 to 774 kg and the mean
weight at slaughter was 608 ± 57 kg. The mean CCW was 339
± 39 kg and mean SMY was 223± 32 kg.

In this study LW was predicted for a wide variety of breeds,
both steers and heifers, with an R2 of 0.70 (RMSE = 42, n

= 4443, Figure 2). The performance of the stepwise linear
regression for LW was much poorer than the ANN (R2 = 0.54,
RMSE= 51). Ozkaya et al. (2016) used multiple linear regression
of measurements extracted from lateral 2D digital images of
Limousin cattle to predict LW with an R2 of 0.89. Although
sex and breed type had low importance (3 and 0, respectively,
Table 3), to investigate the performance of sex and breed specific
models the ANN was trained only using the Aberdeen Angus
steers data subset (n = 441, Table 1). The model performance
increased to R2 = 0.77 (RMSE = 37), suggesting that the further
development of this system may benefit from breed and sex
specific models. As LW had the highest importance (100) for the
prediction of CCW, SMY and fat grade, and the importance of
sex (CCW: 51, SMY: 29, conformation grade: 1, fat grade: 11) and
breed type (CCW: 32, SMY: 15, conformation grade: 18, fat grade:
32) are generally of higher importance for prediction of carcass
characteristics (Table 3), breed and sex specific LW models
should also improve prediction of these carcass characteristics.

Carcasses which are over a defined weight face a penalty at
the abattoir. Being able to predict CCW in the live animal would
allow producers to ensure that animals are sent to slaughter
before they grow beyond the weight limit. The ANN predicted
CCW with R2 = 0.88 (RMSE = 14, n = 449, Figure 3) and
SMY with R2 = 72 (RMSE = 14, n = 448, Figure 4). The
stepwise linear regression models predicted CCW with R2 =

0.83 (RMSE = 16) and SMY with R2 of 0.63 (RMSE = 16).
LW was of most importance in the ANNs for CCW and SMY
in this study (Table 3). LW has previously been shown to have
a strong linear relationship with CCW (Minchin et al., 2009),
hot carcass weight (Pogorzelska-Przybylek et al., 2014), and SMY
(Realini et al., 2001; Greiner et al., 2003). However, predictor
variables extracted from the 3D images still had significant
influence over the ANN model outputs (Table 3), and the ANNs
had improved performance over the stepwise linear regression

FIGURE 2 | Measured liveweights plotted against liveweights predicted using

an artificial neural network.
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TABLE 3 | Relative importance (scaled from 100 to 0 where 100 is most influential

in the model and 0 is redundant) of the 5 predictor variables with highest influence

[and liveweight (LW), sex and breed type if not already included], for each ANN.

ANN Predictor variable Scaled relative importance

LW

Height (S) 100

Height (R) 80

Diagonal (RM) 79

Length ratio (RM/MS) 75

Width ratio (R/RM) 71

Sex 3

Breed “type” 0

CCW

LW 100

Sex 51

Breed “type” 32

Volume (MS) 24

Height (M) 18

SMY

LW 100

Diagonal (MS) 30

Sex 29

Width (RM) 27

Length ratio (RM/MS) 26

Breed “type” 15

CONFORMATION GRADE

Height (M) 100

Width (M-S) 79

Width Ratio (R/M) 78

Diagonal (MS) 78

Length (TM) 78

LW 30

Breed “type” 18

Sex 1

FAT GRADE

LW 100

Height (M) 68

RateA_TR_RM 49

Height (R) 36

VolumeTR 35

Breed “type” 32

Sex 11

See Figure 1 for definition of predictor variables.

models. Greiner et al. (2003) found that when LW was used
as a single predictor for SMY their regression model had an
R2 of 0.66 for a more limited range of animals (534 cross-
bred steers) than used in the present study, demonstrating the
potential of 3D imaging to provide more accurate predictions of
carcass characteristics.

Prediction of Fat and Conformation Grades
Farmers in the UK are currently paid for their animals on both
carcass weight and fat and conformation grades. ANNs were

FIGURE 3 | Measured cold carcass weight (CCW) plotted against CCW

predicted using an artificial neural network.

FIGURE 4 | Measured saleable meat yield (SMY) plotted against SMY

predicted using an artificial neural network.

developed for fat and conformation grade using the abbreviated
EUROP scale in operation at the abattoir. The accuracy of the
classification ANNs for the validation data subset were 54.2%
for fat grade and 55.1% for conformation grade. The confusion
matrices are shown for the fat (Table 4) and conformation grades
(Table 5), along with the sensitivity (ability of the model to
correctly classify a data point to that particular grade) and
specificity (ability of the model to correctly identify a data
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TABLE 4 | Confusion matrix for the fat grade classification artificial neural network

and the sensitivity and specificity of the model to each grade.

VIA predicted fat class

ANN predicted fat class 1 2 3 4L 4H

1 0 0 0 0 0

2 24 191 98 16 1

3 3 40 62 25 1

4L 0 0 9 12 7

4H 0 0 0 0 0

Sensitivity 0 0.83 0.37 0.23 0

Specificity 1 0.46 0.78 0.96 1

Observations in validation dataset 27 231 169 53 9

TABLE 5 | Confusion matrix for the conformation grade classification artificial

neural network and the sensitivity and specificity of the model to each grade.

VIA predicted conformation class

ANN predicted

conformation class

P+ –O O+ R –U U+

P+ 0 0 0 0 0 0

–O 5 58 37 2 0 0

O+ 4 61 146 50 10 0

R 0 2 23 55 13 0

–U 0 0 1 11 11 1

U+ 0 0 0 0 0 0

Sensitivity 0.00 0.48 0.71 0.47 0.32 0.00

Specificity 1.00 0.88 0.56 0.90 0.97 1.00

Observations in

validation dataset

9 121 207 118 34 1

point as not belonging to that particular grade) of the model to
each grade.

The majority of carcasses were classed as fat grade 2 (47%) or
3 (34%) (Table 2). The fat grade model had a sensitivity of 0.83
for grade 2, but a specificity of 0.46 (Table 4). This low specificity
was due to the tendency of the algorithm to classify the grade
3 carcasses as grade 2. The model classified all of the grade 1
carcasses in the validation subset as grade 2 and most of the 4H
carcasses as 4L. It did not correctly classify to either grade 1 or
4H (sensitivity equal to 0, Table 4), this was likely due to there
being insufficient data points in the training set for these two
grades. The specificity of the conformation grade classification
ANN model to both P+ and U+ was 1 (Table 5). There were
also only a small number of data points collected for carcases of
these grades. There was a tendency for the model to classify the
O- and R carcases as O+ (O+ had a specificity of 0.56), likely
due to the relatively large number of data points in the training
data set which were grade O+. It is anticipated that increasing the
number of data points in the less desirable grades would improve
the predictive performance of these models.

Lambe et al. (2010) used ultrasound measurements of
tissue depth in live finishing beef steers and heifers to
predict conformation and fat grades using linear regression.
The predictions in their study were slightly more accurate

(R2 = 0.60) for fat grade and similar (R2 = 0.56) for
conformation class than in the present study, however their
models performed poorly on validation data sets (fat class:
R2 = 0.39–0.46, conformation class: R2 = 0.07–0.24). SMY
has also been successfully (R2 = 0.80) predicted using
similar ultrasound measurements (Realini et al., 2001). No
literature could be found where a classification model had
been used to predict fat and conformation grade of beef
carcases. The advantage of a 3D imaging system over manual
measurements such as ultrasound are the reduction in stress
caused by handling of animals and the automated system can
passively provide multiple estimates per animal per day at
minimal cost.

In this study LWwas found to be themost important predictor
of fat grade (weighted importance of 100, Table 3), and was less
important, but not redundant (weighted importance of 30) for
conformation grade. Minchin et al. (2009) found that LW was
not a significant predictor of fat or conformation grade for cull
cows from either dairy or beef sired lines. This is likely due to
the generally lower body condition and fat cover of cull cows
compared to finished beef heifers and steers.

CONCLUSIONS

This study has shown that there is potential to use 3D
imaging technology to automate the process of selecting cattle
for slaughter at the correct specification, so improving the
efficiency and profitability of beef enterprises through marketing
of animals at the optimal time. Further work to improve
the prediction of fat and conformation grades in the live
animal is required. Particularly more data needs to be collected
from animals with carcass grades out with the desirable target
grades. Addressing this imbalance of carcass grades in the
dataset will allow the model to better distinguish between
grades. Further development of this technology also requires the
development of breed and sex specific algorithms for LW and
carcass characteristics.
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