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Current technology is producing high throughput biomedical data at an ever-growing
rate. A common approach to interpreting such data is through network-based analyses.
Since biological networks are notoriously complex and hard to decipher, a growing
body of work applies graph embedding techniques to simplify, visualize, and facilitate
the analysis of the resulting networks. In this review, we survey traditional and new
approaches for graph embedding and compare their application to fundamental
problems in network biology with using the networks directly. We consider a broad
variety of applications including protein network alignment, community detection, and
protein function prediction. We find that in all of these domains both types of approaches
are of value and their performance depends on the evaluation measures being used
and the goal of the project. In particular, network embedding methods outshine direct
methods according to some of those measures and are, thus, an essential tool in
bioinformatics research.

Keywords: network biology, network embedding, network alignment, community detection, protein function
prediction

INTRODUCTION

Network biology is a powerful paradigm for representing, interpreting and visualizing biological
data (Barabási and Oltvai, 2004). One of the standard approaches to computing on networks is
to transform such data into vectorial data, aka network embedding, to facilitate similarity search,
clustering and visualization (Hamilton et al., 2017b; Cai et al., 2018).

In a network embedding problem, one is given a network and an induced similarity (or distance)
function between its nodes; the goal is to find a low dimensional representation of the network
nodes in some metric space so that the given similarity (or distance) function is preserved as much
as possible. For example, if the input network is unweighted and the distance between nodes is
defined to be the graph geodesic distance, then a possible goal could be to find an embedding into
Euclidean space that minimizes the sum of squared differences between graph distances and the
corresponding Euclidean distances (Tenenbaum, 2000).

The classical approach to network embedding employs matrix factorization and is based on the
fact that if the desired similarity matrix is positive semi-definite then it can be decomposed into the
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product of a real matrix and its transpose. Thus, if one
represents each node by a row of that matrix then the
given similarity is completely captured by the dot-product
between the corresponding vector representations. Similarly, if
one is given distances between nodes that satisfy the triangle
inequality then double centering the distance matrix gives
a positive semi-definite matrix whose decomposition yields
vector representations that respect the given distances. This
approach is precisely the multidimensional scaling procedure
(Cox and Cox, 2000).

Embedding approaches have several potential advantages.
Algorithms making use of embeddings are frequently faster
than their counterparts which operate on the original networks.
Additionally, the learned embeddings are often applicable for
downstream analysis, either by direct interpretation of the
embedding space or through the application of machine learning
techniques which are designed for vectorial data. Beyond its
computational advantages, network embedding is natural to use
in biological problems that concern physical entities (such as
proteins) that function in 3D space. In such scenarios, Euclidean
representations may capture many of the functional properties of
those entities. Finally, by working in lower dimensional space, the
results are more likely to be robust to the noise inherently present
in the networks. Indeed, recent network denoising approaches
employed embedding for this purpose (Wang et al., 2018).

In this review, we describe several current approaches for
graph embedding including spectral-based, diffusion-based and
deep-learning-based methods. We provide comparisons applying
representative embedding approaches to fundamental problems
in network biology with using the networks directly in three
distinct tasks: protein network alignment, protein module
detection, and protein function prediction (Figure 1). We further
review network embedding methods and their application to
network denoising and pharmacogenomics. We conclude that
network embedding methods are an essential component in the
bioinformatics tool box.

METHODOLOGY

Methods for network embedding aim to optimize the difference
between the node similarities/distances in the original network
space and their similarities/distances under the embedding,
which is typically constrained to have a low dimension. In the
following, we describe various methods for embedding a given
network in Euclidean space. For a graph G with n nodes, a
weighted adjacency matrix W and a diagonal degree matrix D,
we define its Laplacian matrix as L = D-W.

Graph drawing algorithms are perhaps the best-known
embedding techniques, commonly used to visualize a graph in
2D space. Initially proposed in (Eades, 1984) as an extension
of (Tutte, 1963), and further developed in (Fruchterman and
Reingold, 1991), the spring-embedder model is a particularly
elegant example: one can imagine that connected pairs of nodes
are attached to springs which bring them closer together, while
all nodes repel each other so as not to be placed too closely
together. Other classes of graph drawing algorithms, including

multi-level and dimensionality reduction-based techniques, are
described in detail in a recent review (Gibson et al., 2013). Spatial
analysis of functional enrichment (Baryshnikova, 2018) is one
recent application of force-directed graph drawing algorithm,
designed for the annotation and visualization of large, complex
biological networks.

One of the fundamental methods to decompose a matrix is
spectral decomposition, i.e., decomposing the matrix into its
eigenvectors and eigenvalues. Given a network, the principal
eigenvectors Q of its Laplacian matrix capture membership
of nodes in implicit network clusters, commonly used for
embedding (Belkin and Niyogi, 2003). The matrix Q is obtained
by optimizing minQ∈Rn×C Trace

(
QTL+Q

)
, s.t. QTQ = I, where

L+ = I-D−1/2WD−1/2 is a normalized Laplacian and C is the
number of clusters. However, this spectral embedding reflects the
global structure in the network without taking into consideration
more fine-grained local structures and is therefore sensitive to
noise. Wang et al. (2017a) recently introduced the Vicus matrix as
a local-neighborhood version of the Laplacian matrix. Each cell of
the Vicus matrix represents the probability of node j having the
same label as node i if we did a random walk around the local
neighborhood of node i. Encoding local neighborhoods in this
fashion does not only preserve the geometric properties of the
original Laplacian matrix but also reduces the noise and improves
the quality of the embedding. Wang et al. showed that for a
variety of tasks, including network clustering of single-cell RNA-
seq data, cluster stability, identification of rare cell populations,
and ranking of genes associated with cancer subtypes, Vicus-
based spectral methods outperformed Laplacian-based spectral
methods on a wide variety of biological tasks.

Diffusion-based approaches focus on embedding nodes into
low-dimensional vector spaces by first using random walks
to construct a network neighborhood of every node in the
network, and then optimizing an objective function with network
neighborhoods as input (Perozzi et al., 2014a; Tang et al.,
2015; Grover and Leskovec, 2016). The objective function
is carefully designed to preserve both the local and global
network structures. For example, a popular method, Mashup,
complements traditional random walks, which yield only
diffusion states, with a dimensionality reduction step that is
aimed at reducing the noise in these diffusion computations.
To this end, Mashup approximates each diffusion state si
with a multinomial logistic model based on a latent vector
representation of nodes that uses far fewer dimensions than the
original, n-dimensional state. Specifically, if the latent vector
representation for node i is denoted by xi, Mashup also constructs
a contextual vector wi that has the same dimensionality as xi
and captures the topology of the subnetwork around node i. To
this end, Mashup computes the probability assigned to node j

in the diffusion state of node i as ŝij =
exp
(
xT

i wj
)∑

k exp
(
xT

i wk
) , so that these

computed diffusion states align with the original diffusion states.
Mashup constructs an optimization framework to minimize the
KL-divergence of these two diffusion states and applies standard
gradient descent methods to solve for the latent representations.

Another widely used network embedding algorithm that
uses random walks is node2vec (Grover and Leskovec, 2016).
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FIGURE 1 | Schematic representing three applications applied to networks directly as well as applied to the network embeddings. Colors represent some node
features in the network; for example, protein families. (A,B) Visualization of the embedding process for two networks in 2D space. (C) Visualization of community
detection in embedded space (top) and directly on the network (bottom). (D) Top: visualization of network alignment in embedded space. In this example, the
network embedding in panel (B) is rotated, translated and reflected to find an optimal alignment with the embedding in panel (A). Bottom: visualization of direct
alignment of two networks: vertical proximity represents the found alignment. (E) Visualization of function prediction in embedded space. The previously unlabeled
(white) nodes (bottom) or their embeddings (top) are labeled (colored).

Node2vec learns node embeddings so that a node’s embedding
can predict nearby (neighborhood) nodes. Technically, the
network neighborhood N(u) is a set of nodes that appear in an
appropriately biased, short random walk from node u (Grover
and Leskovec, 2016). The goal of the algorithm is to find an
embedding f(u) such that the conditional probability of observing
u’s network neighbors N(u) is maximized. This conditional
probability is modeled using a softmax function, leading to the
following log likelihood:

∑
u

∑
v∈N(u)

log exp(f (u)·f (v))∑
w exp(f (w)·f (u))

, across all

nodes u in the network. Once embeddings are learned, one
can use them for any downstream prediction task, including
node classification, link prediction, and clustering. A similar
network embedding algorithm is DeepWalk (Perozzi et al.,
2014b). DeepWalk has been originally proposed to embed nodes
in a social network setting, taking ideas from the linguistics
literature (Perozzi et al., 2014b). In DeepWalk, the embeddings
are learned based on truncated random walks which can be
intuitively thought of as putting words (nodes) into sentences
(sequences of nodes visited by a random walk). In the biological
context, DeepWalk has been used to associate miRNAs with
diseases (Li et al., 2017), predict drug target associations (Zong
et al., 2017), and predict protein function (Kulmanov et al., 2017).

With the advent of deep learning methods, several deep
learning approaches were proposed to embed networks. An

important class of deep learning methods for network embedding
are graph neural networks that generalize the notion of
convolutions typically applied to image datasets to operations
that can operate on arbitrary graphs (Defferrard et al., 2016;
Kipf and Welling, 2016; Gilmer et al., 2017; Hamilton et al.,
2017a). One can see graph neural networks as an embedding
methodology that distills high-dimensional information about
each node’s neighborhood into a dense vector embedding without
requiring manual feature engineering (Defferrard et al., 2016;
Kipf and Welling, 2016; Gilmer et al., 2017; Hamilton et al.,
2017a). A graph neural network has two main components. First,
the encoder, maps a node u to a low-dimensional embedding
f(u), based on u’s local neighborhood structure, its position in
the graph, and/or its attributes. Next, the decoder takes the
embeddings and extracts user-specified predictions from these
embeddings. In contrast to embedding approaches that use
random walks (reviewed above), graph neural networks support
end-to-end learning. One can jointly optimize all trainable
parameters and propagate gradients of the objective function
through the encoder as well as the decoder. End-to-end learning
can lead to substantial improvements in performance (Defferrard
et al., 2016; Zitnik et al., 2018).

There has been significant recent interest in graph embeddings
in non-Euclidean spaces. In particular, hyperbolic spaces have
attracted much attention due to successful natural language
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processing models which use them for embedding words
(Chamberlain et al., 2017). Muscoloni et al. (2017) describe
a general algorithm termed “coalescent embedding” for
embedding vertices in hyperbolic spaces. The algorithm
proceeds by pre-weighting the network and applying a
non-linear dimension reduction technique, followed by
computing and adjusting the angular positions of the Euclidean
embeddings and radial positioning according to node degree.
More generally, networks and their respective embeddings
can be interpreted geometrically, as described in recent
reviews (Barthélemy, 2011; Papadopoulos et al., 2015; Moyano,
2017). These geometric models have been used successfully
in applications to biological networks, particularly protein–
protein interaction (PPI) networks (Serrano et al., 2012;
Alanis-Lobato et al., 2016, 2018).

APPLICATIONS

Network Alignment
A basic operation in biological research is to transfer knowledge
across species. Indeed, sequence alignment has been the power
horse of computational biology for almost five decades now.
With the availability of physical interaction data, it was suggested
to generalize alignment concepts to the network level (Kelley
et al., 2003; Sharan and Ideker, 2006). There are several types of
network alignment problems, here we focus on global network
alignment where given the networks of two species (typically, PPI
networks) one wishes to identify a 1–1 correspondence between
the proteins of the two species under which the networks are most
similar (Figure 1D).

A leading approach to this problem is the IsoRank algorithm
(Singh et al., 2008) which is based on Google’s PageRank method,
essentially measuring the correspondence, or similarity, between
two proteins from different species based on the similarities of
their neighboring nodes in the two corresponding networks.
Thus, if we denote by Rij the similarity between proteins i and
j (from two different species), and we let N(i) denote the (open)
neighborhood of protein i in its network, then:

Rij =
1

|N(i)||N(j)|

∑
u∈N(i),v∈N(j)

Ruv

These recursive equations give rise to an eigenvalue problem
and their solution is used as an input to a maximum matching
algorithm to compute the eventual correspondence.

Another, more recent approach is MAGNA (Saraph and
Milenkoviæ, 2014) and its successor MAGNA++ (Vijayan et al.,
2015). MAGNA uses a genetic algorithm to find the optimal
alignment, where individuals are viewed as permutations of the
nodes. Crossover relies on the notion of adjacency, where a pair
of permutations is adjacent if they differ only by a single swap
of two nodes; the crossover of two permutations is then the
midpoint of the shortest path between the two permutations in
the graph constructed from these adjacencies. Selection can be
based on any metric, such as EC. MAGNA++ augments this
approach by including cross-species node similarity information.

An extensive review of methods for biological network alignment
can be found in (Guzzi and Milenkovic, 2018) that mentions
over thirty different approaches. Comparative network analysis
methods are further reviewed in (Emmert-Streib et al., 2016).

A recent work by Fan et al. (2017) uses an embedding-
based approach, MuNK, to compare networks across species
by assessing similarity via embedded network topologies. The
idea is to project the nodes of the two networks into the
same Euclidean space in a way that preserves their intra-species
network similarity and inter-species sequence similarity. For
each species separately, a kernel similarity function is defined,
and the corresponding embedding is computed by matrix
decomposition. To tie the projections together, Fan et al. (2017)
assume a given set of known matches, regarded as landmarks,
between the two networks. A similar embedding approach
that does not require a known subset of correspondences was
suggested in (Heimann et al., 2018).

As a test case for network embedding, we evaluated the two
algorithms, IsoRank and MuNK, using metrics of alignment
quality. A common and simple metric is the edge correctness
(EC), defined as the percentage of edges conserved under the
mapping f (Kuchaiev et al., 2009; Clark and Kalita, 2014):

EC =
|f (EA) ∩ EB|

|EA|
× 100%

Note that the EC metric is asymmetric, and the order of the
networks is traditionally chosen to maximize EC, i.e., A is chosen
to be the smaller of the two networks. Beyond topological
similarity, one can use different biological annotations, such
as the Gene Ontology (GO) functional annotation, to compute
biologically relevant measures of alignment quality such as
GO functional consistency (Aladag and Erten, 2013), defined
as the proportion of aligned pairs with more than k GO
terms in common.

Similar to the use of landmarks in MuNK, IsoRank can
incorporate additional similarity information in its computation
of the score matrix, so the landmark pairs are provided as a
binary information matrix to the IsoRank algorithm. In our
experiments, we produce two outputs for method comparison:
cross-species pairwise similarity scores and the node-to-node
mappings. Thus, in addition to the two measures described above
that use the node-to-node mappings, we also evaluated IsoRank
and MuNK using AUPR as a measure of enrichment of GO
functional consistency with respect to the cross-species pairwise
similarity scores. When comparing MuNK to the more recent
MAGNA++, MAGNA++ performs very well according to EC
(as it optimizes EC directly), but it does not output node scores so
we could not directly compare MuNK to MAGNA++ according
to AUPR and other metrics. Per the author recommendation,
the regularization parameter for the Laplacian in MuNK was
fixed at λ = 0.05. Damping can be used in the PageRank step
of the IsoRank algorithm, and therefore we performed a grid
search with step size 0.05 over possible convexity parameters
α ∈ (0, 1), optimizing for EC score. As input data, we use
the PPI networks for two species of yeast, S. cerevisiae and
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S. pombe, extracted from the BioGRID interaction database
(Oughtred et al., 2018).

IsoRank performs better on the measures directly related
to the node mapping (Table 1). This may be due to the fact
that the cross-species similarity coefficients in IsoRank directly
incorporate local neighborhood (i.e., topological) information,
a fact that the IsoRank greedy algorithm is designed to take
advantage of. The MuNK scores predict functional correctness
better than the scores produced by IsoRank, suggesting that
MuNK’s learned embedded space is biologically meaningful
potentially even beyond alignment. In comparing network
alignment methods (Guzzi and Milenkovic, 2018) also found
that methods that do very well according to the topological
quality measures are not very good as far as functional quality
is concerned. The interpretability of the embedding space is one
of the primary benefits of embedding techniques over standard
approaches in the case of network alignment. For example,
the embedding space learned by MuNK captures biological
information beyond pairwise node alignment, specifically, cross-
species synthetic lethal interactions (Fan et al., 2017).

Community Detection
One of the natural uses of a network is the identification
of clusters, or modules of similar nodes, a task known as
community detection (Fortunato, 2010). Community detection
methods (Figure 1C) have great uses in biology from protein

module identification to disease subnetwork discovery (Ghiassian
et al., 2015; Menche et al., 2015). Among the most popular
community detection methods on networks are random walk-
based approaches including Louvain (Blondel et al., 2008),
Infomap (Rosvall and Bergstrom, 2011), Label propagation
(Raghavan et al., 2007), and Walktrap (Pons and Latapy, 2005),
that came up as best performers in a review comparing these
and other approaches (Yang et al., 2016). Originally developed
for community detection in social networks, these methods are
frequently used in biology (Barabási et al., 2011), for example to
identify cancer drivers (Cantini et al., 2015).

Network embedding for the purpose of community detection
was covered in a recent review (Hamilton et al., 2017b).
The authors hypothesized that due to vector-like embedding
representation of a network, there is a wider range of clustering
and community detection methods that can be applied to
embedded networks as compared to graphs directly. The
authors further introduced an encoder-decoder framework
that unifies many of the recently popularized approaches,
including DeepWalk (Perozzi et al., 2014a) and node2vec (Grover
and Leskovec, 2016). A geometric approach, not covered in
the review, suggests a scalable embedding of networks in a
hyperbolic circle and show that the popular random walk-
based community detection methods (Louvain, Infomap, Label
propagation, and Walktrap) can be significantly boosted when
applied to hyperbolic distances (Muscoloni et al., 2017).

TABLE 1 | Comparative analysis of direct vs. embedding methods across a range of problems in network biology.

IsoRank (α = 0.5) MuNK (λ = 0.05)

A. Network alignment

EC 39.0% 21.9%

GOC

K = 20 63.4% 57.6%

K = 50 20.7% 17.9%

K = 100 1.2% 1.0%

GOC (AUPR) 0.721 0.746

Runtime 26 min 40 s (incl. grid search) 1 min 52 s (incl. alignment)

densityCut (K = 4, α = 0.9) Vicus (K = 10, σ = 0.5)

B. Community detection

Buettner (C = 2, Ct = 11) 0.256 0.316

Kolodziejczyk (C = 5, Ct = 4) 0.325 0.552

Pollen (C = 13, Ct = 11) 0.931 0.928

Usoskin (C = 9, Ct = 4) 0.373 0.591

Avg. Runtime 1 min 15 s (incl. parameter grid search) <5 s

STRING v9.1 Homo sapiens. Included with the Mashup distribution.

GeneMANIA Mashup

C. Function prediction

AUPR

MF 0.327 0.372

BP 0.213 0.222

CC 0.514 0.487

Avg. Runtime 3 min 57 s 14 min 56 s (incl. recommended SVM tuning procedure)

Running times were obtained on a 64-bit machine with Intel Core i5-8400 CPU @ 2.80 GHz × 6 with 16 GB RAM running Ubuntu 18.04. Bold refers to the most
successful result, according to the referenced metric.
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We compared two community detection methods, an
embedding-based and a graph-based, on the problem of single-
cell RNA-seq (scRNA-seq) analysis. scRNA-seq data has recently
emerged as a powerful tool to decipher the heterogeneity of cell
populations. This is an important and growing area of network
applications where community detection methods are used
to perform clustering on the constructed cell-to-cell networks
(Wang et al., 2018). Given a gene expression matrix, Gaussian
kernel is usually adopted to construct a pairwise similarity
network in which nodes represent cells and edge weights depict
the similarity between cells.

The first method is Vicus, a generalization of spectral
clustering, which we combined with k-means clustering in
the embedded space. For the network-based approach, we
used densityCut, a random walk-based community detection
method, which approximates clusters using the density of
local neighborhoods. The densityCut method approximates
the true network using a k-nearest neighbor graph, and
selects the number of clusters using an automated procedure.
Therefore, this number of clusters was used as input to the
k-means step of the Vicus evaluation. We used four scRNA-seq
datasets, all from Mus musculus (Pollen et al., 2014; Buettner
et al., 2015; Kolodziejczyk et al., 2015; Usoskin et al., 2015)
but which vary according to tissue of origin (neural, blood
and stem cells) and have known ground truth labels. We
evaluated performance using normalized mutual information
(NMI). Vicus outperformed densityCut on three of the four
datasets (Table 1).

Function Prediction
Another fundamental problem in network biology is the
inference of protein function from the known functions of
its network neighbors (Sharan et al., 2007). The earliest
approach to this problem, neighborhood counting (Schwikowski
et al., 2000), predicted a protein to be involved in a certain
function if a sufficient number of its direct (or up to some
specified distance) neighbors had this property. Current state
of the art methods are based on similar guilt-by-association
principles (Figure 1E). For example, Cao et al. (2013) define
a distance metric between proteins that is based on network
diffusion, thus capturing similarities that are based on multiple
paths in the network.

These single-network methods were generalized in several
ways (Cho et al., 2016) integrate information across multiple
networks and use a low rank approximation of the network
diffusion based similarities to reduce potential noise. The
integration challenge is also tackled by (Gligorijevic et al.,
2018) who learn a compact node representation using
deep autoencoders. In Fan et al. (2017), the cross-species
embedding is utilized to infer protein function. Zitnik and
Leskovec (2017) suggest a network embedding approach
for predicting tissue-specific protein function, which
encourages proteins to share features not only with their
network neighbors but also with proteins that are active in
similar tissues.

Two recent methods were compared on the task of
protein function prediction using multiple interaction networks.

GeneMANIA performs label diffusion, while Mashup finds
an embedding for each of the proteins, allowing one to use
traditional classification techniques such as support vector
machines (SVMs). The area under the precision-recall curve
(AUPR) was used as an evaluation metric. Overall, Mashup
performed better with respect to molecular function and
biological process annotations, while GeneMANIA performed
better on the cellular compartment annotation (Table 1).

Network Denoising
The application of network biology techniques to experimental
data depends on the accuracy and completeness of the network
of interest. The challenge of noisy interaction measurements
plagues many different types of biological networks, such as
Hi-C interaction networks (Rao et al., 2014), cell–cell interaction
networks (Wang et al., 2017b), and PPI networks (Saito et al.,
2002; Przulj et al., 2004; Chua and Wong, 2008; Higham
et al., 2008; Kuchaiev et al., 2009; You et al., 2010; Marras
et al., 2011; Alanis-Lobato et al., 2013; Cannistraci et al.,
2013; Newman, 2018a,b). Such noise adversely impacts the
performance of downstream analysis, calling for methods for
network denoising.

The most common approach to denoise any given network
is to perform diffusions on the network to exploit high-
order structures that can potentially improve the qualities
of the direct links between nodes. Diffusion maps (Coifman
et al., 2005) employ high-order random walks and then
use spectral decomposition to construct an affinity measure.
A tensor-based dynamical model (Wang et al., 2012) aims
to search high-order paths between pairs of objects through
their common nearest neighbors. A low-rank constraint has
been employed to help denoise the network manifold (Wang
and Tu, 2013). Diffusion-state distance (DSD) (Cao et al.,
2013) was utilized to denoise PPI networks and improve the
signal-to-noise ratio for better prediction of protein functions.
To tackle the problem of transitive edges in networks in a
computationally efficient way (Feizi et al., 2013) proposed a
simple closed-form solution, called Network Deconvolution
(ND), to infer direct links.

An alternative direction of network denoising takes
embedding-based approaches. For instance, Mashup (Cho
et al., 2016) aims to learn compact low-dimensional vector
representation of proteins that best explains their wiring
patterns for the input protein–protein association networks
by applying a matrix factorization method on the diffused
network. The embeddings of the nodes (proteins) reflect the
relational structures of the original network, therefore facilitating
the downstream applications by feeding the embeddings to a
support vector machine.

A recent study (Wang et al., 2018) performed an in-depth
comparison between these network denoising methods in three
different experimental settings: PPI function predictions, HiC
network module detection, and species identification. The study
highlighted the advantages of embedding-based methods such as
Mashup (Cho et al., 2016) when the network contains distinct
cluster structures and the noise level is small. However, it also
showed that when the cluster structures are corrupted by high
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noise, existing methods usually fail to uncover the underlying
network structure.

Pharmacogenomics
Modern pharmaceutical research faces challenges with
decreasing productivity in drug development and a
persistent gap between therapeutic needs and available
treatments (Hodos et al., 2016; Moffat et al., 2017).
Network approaches have emerged as a promising
direction to address these challenges and improve our
understanding of the therapeutic and side effects of drugs
(Hopkins, 2008; Berger and Iyengar, 2009). We review
three practically important problems within the realm of
pharmacogenomics that have been tackled with network
embedding methods: drug-target prediction, drug–drug
interaction prediction and prediction problems involving
small molecules.

Drugs influence biological systems by binding to target
proteins and affecting their downstream activity (Imming
et al., 2006). Network approaches formulate drug–target
interaction prediction as a link prediction task on a graph

of drugs/chemicals and the proteins which they interact with
(Yildirim et al., 2007; Yamanishi et al., 2010; Perlman et al.,
2011; Chen et al., 2012; Cheng et al., 2012; Gönen, 2012;
Isik et al., 2015; Zitnik and Zupan, 2016; Luo et al., 2017;
Wen et al., 2017; Lee and Nam, 2018). Given such a graph
(Crichton et al., 2018) use various node embedding methods,
including node2vec (Grover and Leskovec, 2016), DeepWalk
(Perozzi et al., 2014b), and LINE (Tang et al., 2015), to
embed nodes into a compact vector space in a manner
that preserves local network structure. As a result, drugs
with many shared target proteins obtain similar embeddings,
and vice-versa, proteins targeted by similar drugs obtain
similar embeddings. These embeddings are thus well-suited for
predicting drug–target interactions by calculating the similarity
between embeddings representing the drug and the protein,
or by using embeddings as inputs to a machine learning
method (Crichton et al., 2018). Alternatively, predictions can
be made in an end-to-end fashion, where a neural network
learns node embeddings and predicts interactions directly
from the graph (Wang and Zeng, 2013; Gao et al., 2018;
Wan et al., 2018).

TABLE 2 | A summary of network embedding tools and their applications.

Name of the tool Availability What was it applied to

Denoising

Network enhancement Matlab code http://snap.stanford.edu/ne/ Hi-C interaction networks combining gene interaction
networks across tissues

Single-cell representation learning Binary https://github.com/SuntreeLi/SCRL Single-cell RNA-seq data

Geometric denoising http://kuchaev.com/Denoising/ PPI networks

Network alignment

MuNK Python code and all Anaconda-reproducible experiments
https://github.com/lrgr/munk

Cross-species functional PPIs (yeast, mouse, human)

Community detection

Minimum curvilinearity embedding II https:
//sites.google.com/site/carlovittoriocannistraci/5-datasets-
and-matlab-code/minimum-curvilinearity-ii-april-2012

(i) Cerebrospinal fluid proteomics – neuropathic pain

(ii) Transcription factor expressions – tissue prediction

Vicus Single-cell RNA-seq:

(i) Pollen – neural and stem cells

(ii) Usoskin – mouse neurons, sensory subtypes

(iii) Buettner – embryonic stem cells

(iv) Kolodziejczyk – pluripotent cells

Coalescent embedding https://github.com/biomedical-cybernetics/coalescent_
embedding

Non-biological

Function prediction

Mashup http://cb.csail.mit.edu/cb/mashup/ Protein function prediction, gene ontology reconstruction,
and genetic interaction prediction

OhmNet http://snap.stanford.edu/ohmnet/ Tissue-specific gene function prediction

Disease gene discovery http://snap.stanford.edu/pathways/ Disease pathway detection

Pharmacogenomics

Molecular fingerprints https://github.com/HIPS/neural-fingerprint Prediction of molecular properties, including drug efficacy,
solubility, and photovoltaic efficiency

Decagon http://snap.stanford.edu/decagon/ (i) Polypharmacy side-effect prediction

(ii) Drug–drug interaction prediction

Graph convolutional policy network https://github.com/bowenliu16/rl_graph_generation Molecular graph generation

Residual LSTM Embeddings https://github.com/deepchem/deepchem (i) Drug side-effect prediction

(ii) Drug toxicity prediction
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Detecting drug–drug interactions, in which the activity of one
drug changes, favorably or unfavorably, if taken with another
drug, is an important challenge with significant implications
for patient mortality and morbidity (Chan and Giaccia, 2011;
Guthrie et al., 2015; Han et al., 2017). Ma et al. (2018) model
each drug as a node in a multi-view drug association graph,
where edges between drugs in different views encode different
types of similarity between drugs. The approach uses graph
convolutional networks (Kipf and Welling, 2016) to embed
the multi-view graph and attentive mechanisms (Veličković
et al., 2018) to fuse information from multiple views and to
make learning more interpretable. By such embedding, the
approach learns a similarity score between any two drugs and
uses the scores to predict drug–drug interactions. While such
an approach can be useful to describe drug interactions at
the cellular level (Sridhar et al., 2016; Ryu et al., 2018), it
cannot predict the safety or side effects of drug combinations.
To identify the side effects of drug combinations and provide
guidance on the development of new drug therapies (Zitnik
et al., 2018) developed an embedding approach that constructs
a multi-modal graph of PPIs, drug–protein interactions, and
drug–drug interactions, where each drug–drug interaction is
labeled by a different edge type signifying the type of the
side effect. The approach takes the multi-modal graph and
uses graph neural networks as an embedding methodology to
distill information about each node’s network neighborhood into
an embedding vector without any hand-engineering. The final
approach is an end-to-end method for predicting side effects of
drug combinations that considers all types of side effects at once.
The approach learns embeddings of side effects that are indicative
of polypharmacy in patients.

Chemical prediction problems represent another class of
practically important graph problems (Ralaivola et al., 2005;
Altae-Tran et al., 2017; Gilmer et al., 2017; Gómez-Bombarelli
et al., 2018). One key distinction between these problems
and standard network prediction tasks discussed above is
that chemical prediction problems are graph-level classification
problems where individual data examples are graphs (rather
than nodes) representing small molecules. Typical prediction
tasks aim to predict various molecular properties such as
drug efficacy or solubility (Coley et al., 2017; Jin et al.,
2017), predict which drugs bind to which target proteins
(Morris et al., 2018), and identify sites at which a particular
candidate drug binds to a target protein (Feinberg et al.,
2018). The input to a predictor is a small molecule, which is
commonly represented as a graph in which nodes and edges
represent atoms and bonds between atoms, respectively. One
difficulty with such inputs is that molecular graphs can be
of arbitrary size and shape (Niepert et al., 2016; Xu et al.,
2017). However, currently, most machine learning pipelines can
only handle inputs of a fixed size. For this reason, state-of-
the-art systems use embedding techniques to embed molecular
graphs into fixed-dimensional embeddings and then use the
learned representations as inputs to a fully connected deep
neural network or other standard machine learning methods
(Duvenaud et al., 2015; Kearnes et al., 2016). The proposed
graph convolution models do not yet consistently outperform

traditional structural-based fingerprints, however, their flexibility
and potential for further optimization and development have led
to models that provide significant boosts in the predictive power
over older fingerprints.

CONCLUSION

We have reviewed several classes of approaches for network
embedding, including spectral-based methods, random-walk
based approaches and deep neural network techniques. We have
demonstrated the utility of these approaches in a broad set of
applications, ranging from network alignment to community
detection, protein function prediction, and network denoising.
We have also discussed recent embedding approaches in
pharmacogenomics. We were interested in seeing whether the
field of network embedding indeed enhances the types of
questions that can be answered using graph-based approaches
and our conclusion is that there is value in both graph-based and
graph-embedding-based methods in a variety of applications.

In our experiments we found that depending on the task
at hand and metric used, sometimes graph-based methods
outperformed network embedding tools. This was the case
with, for example, IsoRank beating MuNK with respect to
edge conservation in network alignment, whereas MuNK
outperformed IsoRank according to the area under the precision
recall curve with respect to node mapping. In community
detection experiments, our results were reversed, where the
embedding method outperformed the graph-based method 3 out
of 4 times. In fact, there is no single metric according to which
one type of method is consistently better than the other. Even
in compute time, where embedding methods outperform graph-
based methods most of the time, on the function prediction task
graph-based GeneMANIA outperforms the embedding method
Mashup. This implies that the choice of graph-based versus
embedding-based method will depend on many factors, not just
the task at hand, but also the aspect or evaluation measure of
highest importance to the user.

The network embedding principles create new opportunities
to model large network datasets and move beyond standard
prediction tasks of node classification, link prediction, and node
clustering. For example, given a partially observed network of
interactions between drugs, diseases, and proteins, one might be
interested in posing a logical query: “What proteins are likely to
be associated with diseases that have both symptoms X and Y?”
Such a query requires reasoning about all possible proteins that
might be associated with at least two diseases, which, in turn,
clinically manifest through symptoms X and Y. Valid answers to
such queries correspond to subgraphs. Since edges in the network
might be missing because of biotechnological limits and natural
variation, naively answering the queries requires enumeration
over all possible combinations of diseases (Hamilton et al.,
2018) developed a network embedding approach that answers
such complex logical queries and achieves a time complexity
linear in the size of a query, compared to the exponential
complexity required by a naive enumeration-based approach.
The approach embeds nodes into a low-dimensional space and
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represents logical operators as learned geometric operations
in this embedding space. They demonstrated the utility of
the approach in a study involving a biomedical network of
drugs, diseases, proteins, side effects, and protein functions with
millions of edges.

We summarize network embedding tools that are used in the
biomedical field in Table 2. We expect the importance of these
tools to grow with the magnitude and complexity of biomedical
data that are being generated.
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