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Cronobacter species are linked with life-treating diseases in neonates and show
strong tolerances to environmental stress. However, the information about factors
involved in oxidative tolerance in Cronobacter remains elusive. Here, factors involved in
oxidative tolerance in C. malonaticus were identified using a transposon mutagenesis.
Eight mutants were successfully screened based on a comparison of the growth
of strains from mutant library (n = 215) and wild type (WT) strain under 1.0 mM
H2O2. Mutating sites including thioredoxin 2, glutaredoxin 3, pantothenate kinase,
serine/threonine protein kinase, pyruvate kinase, phospholipase A, ferrous iron transport
protein A, and alanine racemase 2 were successfully identified by arbitrary PCR and
sequencing alignment. Furthermore, the comparison about quantity and structure of
biofilms formation among eight mutants and WT was determined using crystal violet
staining (CVS), scanning electron microscopy (SEM), and confocal laser scanning
microscopy (CLSM). Results showed that the biofilms of eight mutants significantly
decreased within 48 h compared to that of WT, suggesting that mutating genes play
important roles in biofilm formation under oxidative stress. The findings provide valuable
information for deeply understanding molecular mechanism about oxidative tolerance
of C. malonaticus.
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INTRODUCTION

Cronobacter species are important foodborne pathogens causing life-threating infections in infants
(Van Acker et al., 2001; Healy et al., 2010). Contaminated powdered infant formula (PIF) is
considered to be the major transmission route of Cronobacter infections (Biering et al., 1989; Van
Acker et al., 2001; Norberg et al., 2012; Ye et al., 2014). So, the high risks of Cronobacter strains in
powdered infant formula on newborn’s health has arouse public concerns.

Cronobacter spp. show unusual abilities to survive under environmental stress (Gurtler et al.,
2005). To date, the genus of Cronobacter includes C. sakazakii, C. malonaticus, C. turicensis,
C. muytjensii, C. dublinensis, C. universalis, and C. condiment (Iversen et al., 2008). The factors
involved in oxidative stress in C. sakazakii have been reported. For example, polymorphisms in
RpoS sequence and Significant heterogeneity of stress tolerance including oxidative stress among
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natural isolates of C. sakazakii has been described (Alvarez-
Ordóñez et al., 2012). Johler et al. (2010) demonstrated that genes
including crtX, crtE, and crtY involved in yellow pigmenting
of C. sakazakii ES5 affected tolerance to oxidative stress. In
C. sakazkaii ATCC29544, Hfq, an RNA chaperone, has been
found to increase the tolerance to oxidative stress (Kim et al.,
2015). C. malonaticus has been implicated in infections in infant
and adults (Forsythe et al., 2014; Alsonosi et al., 2015). PIF is the
major source of C. malonaticus (Ogrodzki and Forsythe, 2015,
2017). Hydrogen peroxide (H2O2) is a well-studied sanitizer for
inactivate foodborne pathogens. In addition, Ye et al. (2018)
determined the inhibitory effects of H2O2 on C. malonaticus
cells and its biofilm formation. However, information about
factors involved in oxidative tolerance in C. malonaticus is
largely unknown.

In this study, a transposon mutagenesis approach was
applied to reveal the factors involved in resistance to oxidative
stress, and the biofilm formation among mutants and WT
strains were further detected using crystal violet staining
(CVS), scanning electron microscopy (SEM), and confocal laser
scanning microscopy (CLSM) to reveal potential relationship
between oxidative stress and biofilm formation.

MATERIALS AND METHODS

The Development of Mutants Library
The procedure of transposon mutagenesis approach was
performed as described by Zhang et al. (2018).

Screening of Mutants Tolerance to
Oxidative Stress
For screening positive mutants tolerant to oxidative stress,
overnight culture (OD600 = 0.8, v/v, 1%) was inoculated into
LB broth (Luqiao, Beijing) with 1.0 mM H2O2 at 37◦C for 8 h.
Growth of mutants (n = 215) and WT strain were measured
spectrophotometrically in 96-well culture plates (Corning,
New York, NY, United States) by determining the optical density
at 600 nm (OD600). Each experiment was independently done
in triplicate. Growth of strains were analyzed by the statistical
analysis of t-tests using OriginPro 8.5.1 software. A significant
difference was defined as a p-value (p < 0.05) between wild-type
(WT) and mutants.

Identification of Mutating Sites
The detailed procedure for identification of mutating sites and
analysis of inserting sites was performed as described by Zhang
et al. (2018). In brief, the mutating genes were amplified by
arbitrary PCR, then the fragments were purified for being
sequenced and aligned.

Comparison of Biofilm Formation Among
Mutants and Wild Type
Under oxidative stress (LB with 1.0 mM H2O2), biofilm
formation using CVS was determined ranging from 24 to 72 h
described previously by Zhang et al. (2018). In addition, the

biofilms on the cell slips at 48 h was detected using SEM
(Hitachi, Tokyo, Japan) and CLSM (Zeiss, Berlin, Germany)
using LIVE/DEAD BacLight bacterial viability Kit according to
instructions (Invitrogen, Carlsbad, CA, United States).

RESULTS AND DISCUSSION

Based on the growth of mutants and WT strain under oxidative
stress (1.0 mM H2O2), eight mutants were successfully screened,
and the growth of eight mutants under oxidative stress was
significantly (p < 0.05) decreased compared with that of WT
shown in Figure 1. The mutating genes listed in Table 1 encode
thioredoxin 2 (Trx2), glutaredoxin 3 (Grx3), pantothenate kinase
(Pank), serine/threonine protein kinase (STPK), pyruvate kinase
(PK), phospholipase A (PLA), ferrous iron transport protein A
(FeoA), and alanine racemase 2 (Alr2) which contributed to
tolerance to oxidative stress in C. malonaticus.

In Escherichia coli, thioredoxin 2 (encoded by trxC) was
identified on the basis of sequence similarity (Miranda-Vizuete
et al., 1997), but trxC mutants do not show altered sensitivity to
H2O2 (Ritz et al., 2000). In addition, inactivity of thioredoxin
1 (encoded by trxA) and thioredoxin reductase (encoded by
trxB) caused more sensitive to H2O2 in stationary phase of
E. coli (Takemoto et al., 1998). Glutaredoxin (Grx) is a thiol-
disulfide oxidoreductase widely distributed from bacteria to
higher eukaryotes (Rouhier et al., 2008). In yeast, mutants
lacking Grx are sensitive to oxidative stress (Luikenhuis et al.,
1998). The OxyR and SoxR in E. coli, and the S. cerevisiae
Yap1p transcriptional regulators were modulated by glutathione-
and thioredoxin-dependent reduction systems for the adaptive
responses to oxidative stress (Carmel-Harel and Storz, 2000).
The inactivity of glutaredoxin 2 and glutaredoxin 3 encoded
by grxB and grxC, respectively, were found in E. coli strains
lacking glutaredoxin 1 and thioredoxin 1 still showed GSH

FIGURE 1 | Growth of C. malonaticus wild strain (WT) and mutants under
1.0 mM H2O2 oxidative stress. Bar = mean ± SD. ∗Significant difference
about growth under 1.0 mM H202 with WT strain (p < 0.05), ∗∗significant
difference about growth under 1.0 mM H202 with WT strain (p < 0.01).
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TABLE 1 | Transposon insertion sites involved in oxidative stress in
C. malonaticus YE01.

Mutant Gene function of Relevant Accession

strains encoded protein features No.

Trx2 mutant Thioredoxin 2 The Component of TrxR AHB69350

Glrx3 mutant Glutaredoxin 3 Participate in the redox
reaction

AHB72372

Pank mutant Pantothenate
kinase

The synthesis of CoA AHB72217

STPK mutant Serine/
threonine protein
kinase

Stimulate production of
proteins of
serine/thronine

AHB68419

PK mutant Pyruvate kinase The synthesis of
pyruvate

AHB70675

PLA mutant Phospholipase A Hydrolyzed glycerin
phospholipids

AHB72248

FeoA mutant Ferrous iron
transport protein A

Transport iron AHB68639

Alr2 mutant Alanine racemase 2 The transformation of
alanine isomers

AHB70086

oxidoreductase activity (Aslund et al., 1994). The inactivity
of glutaredoxin 2 in E. coli cells were more sensitive to
hydrogen peroxide and other oxidants, and the interconnection
between catalases and thioredoxin/glutaredoxin pathways in

FIGURE 2 | Biofilm formation of C. malonaticus wild strain (WT) and mutants
under 1.0 mM H202 oxidative stress. ∗Significant difference about growth
under 1.0 mM H202 with WT strain (p < 0.05), ∗∗significant difference about
growth under 1.0 mM H202 with WT strain (p < 0.01).

the antioxidant response was observed (Vlamis-Gardikas et al.,
2002). Regulators including OxyR, SoxRS, and RpoS in E. coli
were associated with the tolerance to oxidative stress (Chiang
and Schellhorn, 2012). The redox proteins such as Grx A (Grx1)

FIGURE 3 | Biofilm formation of C. malonaticus wild strain (WT) and mutants at 48 h under 1.0 mM H202 using SEM.
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FIGURE 4 | Biofilm formation of C. malonaticus wild strain (WT) and mutants at 48 h under 1.0 mM H202 using CLSM.

required for maintaining redox status in bacteria also protect
bacteria from oxidative stress (Caldas et al., 2006; Meyer et al.,
2009). The pantothenate kinase is required for the biosynthesis
of coenzyme A (CoA). In Bacillus anthracis, the type III
pantothenate kinase plays important roles in maintenance of
cytosolic redox balance and in adaptation to the oxidative stress
in B. anthracis (Paige et al., 2008).

Ferrous iron (Fe2+) is one of the essential elements
required for growth and virulence of the majority of pathogens
(Hayrapetyan et al., 2016). Here, ferrous iron transport
contributed to oxidative tolerance in C. malonaticus through
the reduction reaction of Fe2+ to attenuate the injuries from
oxidation (H2O2). The ferrous iron transport (feo) operon was
first discovered in E. coli K12 in 1987 through studies of a series
of ferrous iron transport mutants, and the deletion of feo strains
cause the failure to taking up ferrous iron (Hantke, 1987). In
addition, in the absence of FeoB, H. pylori was unable to colonize
the gastric mucosa of mice (Velayudhan et al., 2000). Naikare
et al. (2006) found that FeoB is essential for the uptake of ferrous

iron, gut colonization and intracellular survival. On the Contrary,
feo deletions in V. cholerae do not seem to affect its colonization
in the mouse model (Wyckoff et al., 2006).

Through 2-D method combined with MALDI-TOF-MS and
database queries, pyruvate kinase was involved in enhancement
of oxidative stress in Pichia caribbica (Zhang et al., 2017).
In the mitochondrial, pyruvate kinase M2 isoform (PKM2)
regulates oxidative stress-induced apoptosis by stabilizing B-cell
lymphoma 2 (Bcl2) (Liang et al., 2017). Brien et al. reported
that increased placental phospholipase A2 gene expression
was implicated in oxidative stress in preeclampsia (Brien
et al., 2017). Expression of serine/threonine protein kinase
and peroxisomal catalase in P. caribbica were involved in the
enhancement of oxidative stress tolerance and biocontrol efficacy
of P. caribbica (Zhang et al., 2017). Serine/Threonine kinases
activation was induced by oxidative stress in frontotemporal
dementia (Palluzzi et al., 2017). S. mutans expresses a
eukaryotic serine/threonine type kinase known as STPK which
enhances resistance to oxidative stress (Zhu and Kreth, 2010).
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Likewise, our results also found that inactivity of pantothenate
kinase (Pank), serine/threonine protein kinase (STPK), pyruvate
kinase (PK) caused sensitive to oxidative stress. To date,
roles of Phospholipases (PLs) on tolerance to oxidative stress
are not reported in other foodborne pathogens except for
C. malonaticus.

Based on analysis of biofilms using CVS, the strong
biofilm-formatting abilities among eight mutants and WT were
observed, and biofilms of eight mutants significantly decreased
at 48 h compared with that of wild type (WT) shown in
Figure 2. Furthermore, the detection of spatial structure of
biofilms was confirmed using SEM (Figure 3), and the mature
biofilms were formed at 48 h among mutants and WT.
From Figure 4, the viable cells and exopolysaccharides (blue)
were more predominant at 48 h. Here, inactivity of eight
factors caused weak biofilms compared with that of WT under
oxidative stress, and a positive relationship between biofilm
formation and oxidative tolerance was observed. Hartmann
et al. (2010) demonstrated that cellulose and flagella facilitated
biofilm formation in C. sakazakii. Using comparative proteomics
analysis, genes including LuxS and TolB were found to contribute
to biofilm formation in Cronobacter strains (Ye et al., 2016).
In addition, the deoB, adh, and nlpD were involved in biofilm
formation in C. sakazakii (Du et al., 2012). In addition,
environmental conditions such as temperature and pH also
greatly affected biofilm formation in C. sakazakii strains (Jung
et al., 2013; Ye et al., 2015). In Haemophilus influenzae, expression
abundance of peroxiredoxin–glutaredoxin increased in biofilms
compared to planktonic cells (Gallaher et al., 2006). Similarly,
thioredoxin, peroxidase, and thioredoxin were upregulated in
biofilms in Candida albicans (Seneviratne et al., 2008). The
biofilm formation in trxB mutant of Neisseria gonorrhoeae on
human cervical epithelial cells was greatly reduced compared
with wild-type strain (Potter et al., 2009). In S. typhimurium,
the Feo system has been found to play important roles in
colonization of the mouse intestine (Tsolis et al., 1996). Jiang
et al. (2015) found that hydrolase and pantothenate kinase
were detected in the Streptococcus mutans 593 biofilm only,
indicating that pantothenate kinase was involved in the biofilm
formation in S. mutans 593. The high pyruvate kinase activity
in S. mutans contributed to the cariogenic biofilm formation in
caries patents (Krzyściak et al., 2017). Pyruvate kinase activity
in Staphylococcus aureus was regulated by serine/threonine
protein kinase, which favors biofilm formation (Vasu et al.,
2015). Serine/Threonine kinases (STPKs) have been implicated
in biofilm formation of Bacillus subtilis (Madec et al., 2002).
Ser/Thr protein kinase PrkC mediates biofilm formation in

B. anthracis by regulation of GroEL activity (Arora et al.,
2017). Phospholipases (PLs) are considered important factors for
C. parapsilosis adherence, tissue penetration, and host invasion
(Junior et al., 2011). Meanwhile, the germination, adherence,
biofilm formation, phospholipase and proteinase production
were considered the virulence factors in Candida albicans
(Larkin et al., 2017).

CONCLUSION

In summary, the factors involved in tolerance to oxidative
stress in C. malonaticus were identified including Trx2,
Grx3, Pank, STPK, PK, PLA, FeoA, and Alr2. A positive
relationship between biofilm-forming ability and oxidative
tolerance was also observed, which might indicated that biofilm
formation was related with environmental stress. The findings
here provide valuable information for deeply understanding
molecular mechanism about tolerance to oxidative stress.
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