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Objective: We investigated gene interactions (epistasis) for body mass index (BMI) in a
European-American adult female cohort via genome-wide interaction analyses (GWIA)
and pathway association analyses.

Methods: Genome-wide pairwise interaction analyses were carried out for BMI in
493 extremely obese cases (BMI > 35 kg/m2) and 537 never-overweight controls
(BMI < 25 kg/m2). To further validate the results, specific SNPs were selected based on
the GWIA results for haplotype-based association studies. Pathway-based association
analyses were performed using a modified Gene Set Enrichment Algorithm (GSEA)
(GenGen program) to further explore BMI-related pathways using our genome wide
association study (GWAS) data set, GIANT, ENGAGE, and DIAGRAM Consortia.

Results: The EXOC4-1q23.1 interaction was associated with BMI, with the most
significant epistasis between rs7800006 and rs10797020 (P = 2.63 × 10−11). In
the pathway-based association analysis, Tob1 pathway showed the most significant
association with BMI (empirical P < 0.001, FDR = 0.044, FWER = 0.040). These findings
were further validated in different populations.

Conclusion: Genome-wide pairwise SNP-SNP interaction and pathway analyses
suggest that EXOC4 and TOB1-related pathways may contribute to the
development of obesity.

Keywords: epistasis, obesity, genome wide, pathway associations, EXOC4, TOB1

INTRODUCTION

Obesity is a worldwide epidemic associated with increased morbidity of chronic diseases, including
diabetes, cardiovascular diseases, metabolic syndrome, and cancer. In 2015, 603.7 million adults
and 107.7 million children were obese; furthermore, in many countries the incidence of obesity
continues to rise, doubling since 1980 (Afshin et al., 2017). This in turn imposes an enormous
burden on the public health system. Many studies have shown that 40–70% of inter-individual
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variability in obesity can be attributed to genetic factors (Zaitlen
et al., 2013; Locke et al., 2015). Currently, large-scale genome-
wide association studies (GWASs) and meta-analyses have
successfully identified in excess of 75 loci associated with obesity
(Fall and Ingelsson, 2014). Nevertheless, these genetic variability
can explain only a minor fraction of obesity cases (Li et al.,
2010; Speliotes et al., 2010). This is partly due to the existence
of other mechanisms such as epigenetics, gene-environment, and
gene-gene interactions, that influence the heritability of obesity
(Gibson, 2010; Wang X. et al., 2010). Almost one-third of the
genetic variance in the etiology of obesity were due to non-
additive factors, according to the family, twin and adoption
studies (Stunkard et al., 1986; Price, 1987; Sorensen et al., 1989;
Stunkard et al., 1990).

SNP-SNP interactions are considered to be potential sources of
the unexplained heritability of common diseases (Manolio et al.,
2009). In research to date on the influence of interactions, most
studies invariably selected loci based on biological knowledge
and known associated loci, studies of genome-wide gene
x gene interactions are rare. Speliotes et al. (2010) tested
SNP-SNP interaction effects among 32 BMI-associated SNPs
in their GWAS result, however, no significant results were
obtained after multiple test corrections. Young et al. (2016)
found the interaction rs11847697(PRKD1)-rs9939609 (FTO)
associated with BMI via pairwise SNP × SNP interactions
analysis based on 34 established BMI-related SNPs in European
American adolescents. Ding et al. (2012) also examined Gene-
Gene interactions for abdominal obesity in Chinese population.
Nevertheless, these studies ignored genomic regions that were
not individually associated but could contribute to disease
development if combined.

Until now, following the traditional GWAS approach,
genome-wide interaction analyses (GWIAs) were used to
investigate SNP-SNP interactions. This method did not need
the selection of candidate sites, but computational time was
a very large barrier. With the advancement of computing
technology, the major barrier has been overcome, and SNP-SNP
interaction studies gradually focused on the whole genome level.
Wei et al. (2012) performed GWIAs for BMI using multiple
human populations, and found eight interactions that had a
significant P-value in one or more cohorts. Their studies further
demonstrated the GWIA is an effective approach to explain the
genetic factor of BMI. SNP-SNP interactions have always been
explained by mapping to gene-gene interactions, and genome-
wide pathway-based association analysis will further support the
interpretation of gene-gene interactions. “Pathway” means a gene
set collected from the same biological or functional pathway.
Pathway-based association analysis will measure the correlations
between phenotypes and gene sets based on the whole genome.
This approach can provide additional biological insights and
allow one to explore new candidate genes (Wang K. et al., 2010).

Compared to association analysis, fewer studies have assessed
potential gene-gene interactions in obesity, and the relatively high
heritability of obesity still has not been completely explained.
We explored genome-wide IBD (identical by descent) sharing in
obese families using linkage with data derived from genome-wide
genotyping data, observing an interaction between 2p25-p24 and

13q13-21 that may influence extreme obesity (Dong et al., 2005).
In the present study, we sought to discover novel susceptibility
loci through assessing interaction effects with BMI across the
whole genome, and to determine how multiple genetic variants
contribute to the development of obesity.

MATERIALS AND METHODS

Subjects
One thousand and seventy-one (1071) unrelated European
American adults were recruited, 1030 of which were females.
In this study, we carried out our analyses only in females,
comprising 493 extremely obese cases (BMI > 35 kg/m2) and
537 never over-weight controls (BMI < 25 kg/m2). The collection
processes have been described in our previous report (Wang
et al., 2011). All participants gave informed consent, and the
investigation protocol was approved by the Committee on Studies
Involving Human Beings at the University of Pennsylvania.

Genome-Wide Interaction Analysis
About 550,000 SNP markers were genotyped by Illumina
HumanHap 550 SNP Arrays in our previous GWAS (Wang
et al., 2011). PLINK 1.90 was used to perform GWIA for
BMI. Due to the computational-demand, we used the “–fast-
epistasis” command to screen for association. This test was
based on a Z-score for the difference in SNP1-SNP2 association
(odds ratio) between cases and controls by logistic regression,
Z = [log(R)−log(S)]/sqrt[SE(R) + SE(S)], where R and S are
the odds ratios in cases and controls, respectively (Purcell
et al., 2007). We excluded SNPs of minor allele frequencies
(MAF) < 5%. After frequency and genotyping pruning, 497174
SNPs were used to carry out interaction analyses. A total
of 123,590,744,551 valid SNP-SNP tests were performed. We
then selected the SNPs with interaction P < 1 × 10−8

(Bonferroni-corrected significant threshold P = 4.05 × 10−13)
to analyze interactions by logistic regression based on allele
dosage for each SNP.

Haplotype-Based Association Analysis
Eight hundred and thirty-one (831) SNP-SNP interactions
showed P < 10−8 in the results of the SNP-SNP interaction
tests based on Z-scores. In order to rule out the possibility of
an accidental finding, we mapped these SNPs to genes, then
excluded the SNP-SNP interactions by the following criteria:
1© neither SNPs exist in genes; 2© either of the two SNPs

exist independently in a gene. Through the above exclusion
criteria, the rs7800006(EXOC4)-rs10797020(1q23.1) interaction
was the most significant (P = 2.63 × 10−11), where there
were 39 interactions with P < 10−8 between EXOC4 and
1q23.1. Five SNPs exist in the EXOC4 gene region and 9 SNPs
exist in the 1q23.1 region, but their interaction P-value did
not pass Bonferroni multiple tests. However, the Bonferroni
correction test is highly conservative and would overcorrect for
the non-independent SNPs, which fall within blocks of strong
linkage disequilibrium (LD) (Duggal et al., 2008). Morris and
Kaplan (2002) have reported that haplotype-based association
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analyses are more powerful than single allele-based methods
when multiple disease-susceptibility mutations occur within the
same gene. Epstein and Satten (2003) also have pointed out
that haplotypes are useful during disease development due
to the interaction of multiple cis-acting susceptibility variants
located at the gene.

Therefore, in case of producing false negatives, we selected the
5 SNPs that exist in EXOC4 and the 9 SNPs that exist in 1q23.1,
respectively, for the next haplotype-based association analysis,
which were conducted by PLINK1.07. The haplotype windows
were defined at two SNPs, three SNPs, and four SNPs.

Genome-Wide Pathway-Based
Association Analysis
To further study the gene-gene interactions by pathway
analysis, the GenGen program was used to analyze pathway-
based association based on the modified Gene Set Enrichment

Algorithm (GSEA) (Subramanian et al., 2005; Wang et al., 2007).
The calculation steps have been outlined previously (Li et al.,
2015). In this study, a total of 518230 SNPs passed the quality-
control thresholds of minor allele frequencies > 0.01 and Hardy-
Weinberg equilibrium > 0.001, which covered 17,438 genes,
mapping SNPs to 20 kb upstream and downstream of each
gene. A total of 1347 gene sets were selected from BioCarta,
Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Gene Ontology (GO) databases, gene set sizes were between
5 and 200 genes.

Replication of the Pathway-Based
Association Results
We further attempted to replicate the GenGen results in data
sets from the GIANT (N = 339,224) (Locke et al., 2015),
ENGAGE (N = 87,048) (Horikoshi et al., 2015), and DIAGRAM
(N = 119,688) (Wood et al., 2016) consortia. Given that no

FIGURE 1 | The flow chart of experimental analysis.
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phenotypes and genotypes were available online from the three
consortia, GSA-SNP software (Nam et al., 2010) was carried out
to perform the pathway associations analyses using the GWAS
P-values. To better compare with GenGen analysis results,
we obtained SNP specific P-values from GIANT, ENGAGE,
and DIAGRAM GWASs, and the same SNPs identified by
the GenGen analysis were selected for the pathway association
analysis for BMI in the three consortium data sets.

As described above, the flow chart of experimental analysis
was shown in Figure 1.

RESULTS

The average age of the 1030 female subjects was 42.2 ± 9.0 years
(range, 17–65 years). In our study, we defined BMI > 35 kg/m2

as “cases,” N = 493, and BMI < 25 kg/m2 as “controls,” N = 537
(Figure 2). Distributions of BMI in cases and controls are shown
in Table 1.

Genome-Wide Interaction Analysis
GWIA based on Z-score of BMI determined 831 SNP-SNP
interactions with P < 10−8, those with P < 1 × 10−9 were
shown in Figure 3. To avoid errors caused by chance and
rare genotypes, some interactions were excluded according to
the exclusion criteria, which has been described in method.
rs7800006(EXOC4)-rs10797020(1q23.1) interaction yielded the
lowest P-value (P = 2.63 × 10−11) after screening by
exclusion criteria, but did not pass the threshold for multiple
testing (P < 4.05 × 10−13). Fourteen SNPs resulted in 39
interactions that had P < 10−8 between EXOC4 and 1q23.1.
Five SNPs (rs10954428, rs12540206, rs6963221, rs7800006, and
rs6976491) were found in the EXOC4 gene region, while 9
SNPs (rs1578761, rs975118, rs10489833, rs10797020, rs11264997,
rs7512592, rs6679056, rs1873511, and rs6697656) were found in
1q23.1among which the maximum distance is 70.4 kb (Table 2).

FIGURE 2 | Violin plots of BMI in 1030 samples. Cases (BMI > 35 kg/m2,
N = 493), and controls (BMI < 25 kg/m2, N = 537).

Haplotype-Based Association Analysis
Due to the highly conservative of Bonferroni correction test, false
negatives were prone. We selected the above-mentioned 14 SNPs
located in EXOC4 or 1q23.1 for haplotype-based association
analyses. The SNPs showed LD in both EXOC4 (D’ > 0.94),
and 1q23.1 (D’ > 0.99) (Supplement Figure 1). Two-locus
haplotype analysis revealed that rs6963221| rs7800006 (A| C)
was associated with BMI (P = 0.013). BMI was also influenced
by three-locus haplotypes rs6963221| rs7800006| rs12540206
(A|C|date, fewer studies have examined T, P = 0.025), rs6963221|
rs7800006| rs10954428 (A|C|G, P = 0.018) and the four-
locus haplotype rs6963221| rs7800006| rs12540206| rs10954428
(A|C|T|G, P = 0.033) (Table 3). The four SNPs are in EXOC4,
indicating that EXOC4 associated with BMI.

Genome-Wide Pathway-Based
Association Analysis
In the genome-wide pathway-based association study carried
out with GenGen, 43 pathways achieved a significance of
empirical P < 0.05 (Figure 4 and Supplement Table 1). The
Tob1 pathway (role of Tob in T-cell activation) showed the
most significant association with BMI (empirical P < 0.001,
FDR = 0.044, FWER = 0.040, Table 4). Empirical P-values
(denoted as “nominal P” values by the GenGen program) were
calculated based on the 1000 phenotype permutations.

Replication studies were conducted in data sets from the
GIANT, ENGAGE, and DIAGRAM consortia by GSA-SNP.
The Tob1 pathway did not have a significant P-value in these
settings. However, the pathway GO0051169 (nuclear transport)
containing TOB1 was associated with BMI in GIANT and
ENGAGE consortia, and passed FDR correction for multiple
testing (PGIANT = 0.048, FDRGIANT = 0.015; PENGAGE = 0.041,
FDRENGAGE = 0.036, Table 4). The EXOC4-contained pathway
hsa04530 was also associated with BMI in ENGAGE and
DIAGRAM consortium data sets by GSA-SNP (Table 4).
GO0030165 containing EXOC4 was also related to BMI in the
GIANT and ENGAGE consortium data sets and passed FDR
correction (Table 4).

DISCUSSION

In the context of genetic epidemiology, although GWASs have
found the majority of BMI-related genes identified to date,
combined these loci explain only about 4% of the phenotypic
variation of BMI (Loos, 2018). Modest and rare variants
have been ignored by the GWASs, partly because of the
other mechanisms, including epigenetics, gene-gene and gene-
environment interactions, and statistical issues (Gibson, 2010;
Wang X. et al., 2010; Chiefari et al., 2013, 2016; Lee et al., 2014).
To date, fewer studies have examined the effects of interactions on
obesity. Despite this, some obesity-related interactions still have
been found, including PRKD1-FTO and WNT4-WNT5A (Wei
et al., 2012; Young et al., 2016; Dong et al., 2017). Pathway-based
analysis is an alternative approach to detect gene interactions.
Liu et al. (2010) had found that the vasoactive intestinal peptide
pathway was significantly correlated with BMI and fat mass,
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TABLE 1 | BMI distributions in cases and controls.

N Age BMI (kg/m2) Maximum Minimum Mean Std. Deviation

Cases 493 41.0 ± 9.2 >35.0 97.0 35.6 49.4 8.7

Controls 537 43.3 ± 8.6 <25.0 25.0 16.0 20.1 1.8

FIGURE 3 | Circos visualization of mapped SNP-SNP interactions for BMI (P < 1 × 10−9). The curves represent the interactions between the two SNPs, and the
color gradually changes from red to blue as the P-value decreases.

suggesting that this pathway plays an important role in the
development of obesity. Our previous studies also revealed
that the Rac1pathway was associated with the obesity-related
phenotype plasma adiponectin (Li et al., 2015).

In the present study, our GWIA for BMI found an interaction
between EXOC4 and 1q23.1 that may contribute to the
development of obesity, although this interaction did not pass
the Bonferroni correction test, they had the lowest interaction
P-value (P = 4.05× 10−13) after accidental exclusion. To further
examine whether EXOC4 and 1q23.1 were related to BMI, we
selected the SNPs locate in EXOC4 and 1q23.1 accordingly base
on the results of GWIA to carry out haplotype-based association
analyses, the results verified that EXOC4 contributed to BMI.

In genome-wide pathway-based association studies, the relation
between the TOB1 pathway and BMI was identified. EXOC4 and
TOB1 associated with BMI were replicated in GIANT, ENGAGE,
and DIAGRAM data sets. To our knowledge, these findings
have not been identified having main effects in previous BMI-
related studies.

EXOC4 (exocyst complex component 4, also known as SEC8)
is a component of the exocyst complex involved in the targeting
of exocytic vesicles, which participate in temporal and spatial
regulation of exocytosis (Hsu et al., 1996; TerBush et al., 1996).
Numerous research results show that exocysts interact directly
or indirectly with many proteins including cell membranes,
cytoskeletal, the small GTPases and other proteins in the cell
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TABLE 2 | Genotype interactions (epistasis) associated with BMI.

SNP1 MAF1 Gene1 SNP2 MAF2 Gene2 P-value∗ (allele dosage) P-value∗∗ (Z-score)

rs10954428 0.339 EXOC4 rs10797020 0.449 Between OR10R1P and OR6Y1 4.24 × 10−8 1.44 × 10−8

rs10954428 0.339 EXOC4 rs1578761 0.452 Between OR10R1P and OR6Y1 2.04 × 10−7 8.66 × 10−8

rs10954428 0.339 EXOC4 rs10489833 0.450 Between OR10R1P and OR6Y1 6.25 × 10−8 2.26 × 10−8

rs10954428 0.339 EXOC4 rs11264997 0.452 Between OR10R1P and OR6Y1 8.54 × 10−8 3.21 × 10−8

rs12540206 0.424 EXOC4 rs1578761 0.452 Between OR10R1P and OR6Y1 4.95 × 10−9 1.21 × 10−9

rs12540206 0.424 EXOC4 rs975118 0.453 Between OR10R1P and OR6Y1 3.43 × 10−9 7.92 × 10−10

rs12540206 0.424 EXOC4 rs10489833 0.450 Between OR10R1P and OR6Y1 1.97 × 10−9 4.19 × 10−10

rs12540206 0.424 EXOC4 rs10797020 0.449 Between OR10R1P and OR6Y1 7.25 × 10−10 1.26 × 10−10

rs12540206 0.424 EXOC4 rs11264997 0.452 Between OR10R1P and OR6Y1 1.70 × 10−9 3.41 × 10−10

rs12540206 0.424 EXOC4 rs7512592 0.450 Between OR10R1P and OR6Y1 1.97 × 10−9 4.19 × 10−10

rs12540206 0.424 EXOC4 rs1873511 0.453 OR10R3P 4.38 × 10−9 1.04 × 10−9

rs12540206 0.424 EXOC4 rs6697656 0.452 Between OR6Y1 and OR6P1 1.13 × 10−8 3.28 × 10−9

rs6963221 0.413 EXOC4 rs1578761 0.452 Between OR10R1P and OR6Y1 9.53 × 10−9 2.67 × 10−9

rs6963221 0.413 EXOC4 rs975118 0.453 Between OR10R1P and OR6Y1 6.81 × 10−9 1.83 × 10−9

rs6963221 0.413 EXOC4 rs10489833 0.450 Between OR10R1P and OR6Y1 3.81 × 10−9 9.33 × 10−10

rs6963221 0.413 EXOC4 rs10797020 0.449 Between OR10R1P and OR6Y1 1.43 × 10−9 2.87 × 10−10

rs6963221 0.413 EXOC4 rs11264997 0.452 Between OR10R1P and OR6Y1 2.40 × 10−9 5.29 × 10−10

rs6963221 0.413 EXOC4 rs7512592 0.450 Between OR10R1P and OR6Y1 3.81 × 10−9 9.33 × 10−10

rs6963221 0.413 EXOC4 rs6679056 0.471 OR10R2 2.58 × 10−8 8.63 × 10−9

rs6963221 0.413 EXOC4 rs1873511 0.453 OR10R3P 6.21 × 10−9 1.61 × 10−9

rs6963221 0.413 EXOC4 rs6697656 0.452 Between OR6Y1 and OR6P1 2.11 × 10−8 6.83 × 10−9

rs6976491 0.423 EXOC4 rs1578761 0.452 Between OR10R1P and OR6Y1 7.46 × 10−9 2.01 × 10−9

rs6976491 0.423 EXOC4 rs975118 0.453 Between OR10R1P and OR6Y1 5.11 × 10−9 1.31 × 10−9

rs6976491 0.423 EXOC4 rs10489833 0.450 Between OR10R1P and OR6Y1 3.00 × 10−9 7.00 × 10−10

rs6976491 0.423 EXOC4 rs10797020 0.449 Between OR10R1P and OR6Y1 1.13 × 10−9 2.16 × 10−10

rs6976491 0.423 EXOC4 rs11264997 0.452 Between OR10R1P and OR6Y1 1.89 × 10−9 4.01 × 10−10

rs6976491 0.423 EXOC4 rs7512592 0.450 Between OR10R1P OR6Y1 3.00 × 10−9 7.00 × 10−10

rs6976491 0.423 EXOC4 rs6679056 0.471 OR10R2 2.09 × 10−8 7.03 × 10−9

rs6976491 0.423 EXOC4 rs1873511 0.453 OR10R3P 4.81 × 10−9 1.20 × 10−9

rs6976491 0.423 EXOC4 rs6697656 0.452 Between OR6Y1 and OR6P1 1.68 × 10−8 5.30 × 10−9

rs7800006 0.427 EXOC4 rs1578761 0.452 Between OR10R1P and OR6Y1 1.31 × 10−9 2.65 × 10−10

rs7800006 0.427 EXOC4 rs975118 0.453 Between OR10R1P and OR6Y1 8.72 × 10−10 1.66 × 10−10

rs7800006 0.427 EXOC4 rs10489833 0.447 Between OR10R1P and OR6Y1 5.26 × 10−10 9.00 × 10−11

rs7800006 0.427 EXOC4 rs10797020 0.449 Between OR10R1P and OR6Y1 1.96 × 10−10 2.63 × 10−11

rs7800006 0.427 EXOC4 rs11264997 0.452 Between OR10R1P and OR6Y1 4.42 × 10−10 7.09 × 10−11

rs7800006 0.427 EXOC4 rs7512592 0.450 Between OR10R1P and OR6Y1 5.26 × 10−10 9.00 × 10−11

rs7800006 0.427 EXOC4 rs6679056 0.471 OR10R2 6.87 × 10−9 1.98 × 10−9

rs7800006 0.427 EXOC4 rs1873511 0.453 OR10R3P 1.12 × 10−9 2.19 × 10−10

rs7800006 0.427 EXOC4 rs6697656 0.452 Between OR6Y1 and OR6P1 3.10 × 10−9 7.41 × 10−10

∗ Interaction analysis based on allele dosage for each SNP.
∗∗ Interaction analysis based on Z-score.
MAF, minor allele frequency.

TABLE 3 | Haplotype analysis of EXOC4 gene SNPs.

SNPs Haplotype F_A∗ F_U∗∗ χ2 DF P

rs6963221| rs7800006 AC 0.036 0.015 6.146 1 0.013

rs6963221| rs7800006| rs12540206 ACT 0.032 0.014 5.026 1 0.025

rs6963221| rs7800006| rs10954428 ACG 0.033 0.014 5.624 1 0.018

rs6963221| rs7800006| rs12540206| rs10954428 ACTG 0.029 0.013 4.559 1 0.033

∗Frequency in cases.
∗∗Frequency in controls.
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FIGURE 4 | Distribution of empirical P-FDR for BMI. Empirical P-FDR for BMI- related pathways (empirical P < 0.05, denoted as “nominal” P-values in the GenGen
program) obtained by modified GSEA (GenGen), Tob1 pathway is indicated by the arrow.

TABLE 4 | Pathway-based association study for BMI.

Pathway ID Gene set Consortium Empirical P P Corrected-P∗ FDR∗∗ FWER∗∗∗ Method

tob1Pathway Role of Tob in T-cell activation Our-data <0.001 0.044 0.040 GenGen

GO0051169 Nuclear GIANT 0.048 0.622 0.015 GSA-SNP

transport ENGAGE 0.041 0.329 0.036 GSA-SNP

hsa04530 Tight ENGAGE 0.004 0.487 0.032 GSA-SNP

junction DIAGRAM 0.001 0.277 0 GSA-SNP

GO0030165 PDZ GIANT 0.032 0 GSA-SNP

domain binding ENGAGE 0.028 0.034 GSA-SNP

∗Benjamini and Hochbaum false discovery rate (Benjamini and Hochberg, 1995).
∗∗False discovery rate used by Subramanian et al. (2005).
∗∗∗Family wise-error rate.

cortex (Wu et al., 2008; Tanaka and Iino, 2015). Tanaka et al.
indicated that EXOC4 modulates cell migration by controlling
the ERK and p38 MAPK signaling pathways (Tanaka and Iino,
2015). They also found that EXOC4 can mediate cell migration
and adhesion via controlling Smad3/4 expression through CBP
(Tanaka et al., 2017).

EXOC4 is located in a widely replicated obesity linkage peak
on chromosome 7q22-q36 (Feitosa et al., 2002; Li et al., 2003),
and has been connected with various diseases, such as type
2 diabetes, cancer, and neuronal disorders. GLUT4 (glucose
transporter 4) transports most of the glucose in muscle and
adipose tissue; the docking and tethering of the GLUT4 vesicle to
the plasma membrane is mediated via EXOC4 (Inoue et al., 2003;
Inoue et al., 2006). A population genetic study also identified

several type 2 diabetes-associated SNPs near EXOC4 in The
NHLBI Family Heart Study (Laramie et al., 2008).

Nineteen genes are involved in BMI-related Tob1 pathway
(role of Tob in T-cell activation): TOB1, TOB2, IFNG, IL2,
IL2RA, IL4, SMAD3, SMAD4, TGFB1, TGFB2, TGFB3,
TGFBR1, TGFBR2, TGFBR3, CD3D, CD3E, CD3G, CD247,
and CD28. This pathway is a component of balanced
functioning of the immune system. TOB1 represses T cell
activation and is a member of a family of genes with anti-
proliferative properties. Research has shown that TOB1
interacts with the TGF (transforming growth factor) and
can stimulate transcription factors SMAD4 and SMAD2,
increasing their binding to the IL-2 promoter and helping
to repress IL-2 expression, suggesting that interference
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in TOB1 function be associated with autoimmune disease
(Tzachanis et al., 2001; Tzachanis and Boussiotis, 2009; Gibson,
2010). Numerous studies have found a significant correlation
between obesity and many autoimmune diseases, adipokines
such as leptin, adiponectin and resistin may be key players in
interactions among them (Versini et al., 2014).

TOB1and TOB2 belong to the TOB family of anti-proliferative
proteins that have the potential to regulate cell growth. As
a repressor of the p38/MAPK pathway, TOB1 can suppress
p38/MAPK signaling by decreasing phosphorylation of p38
and ATF2 (Sun et al., 2013; Ng et al., 2017); p38/MAPK acts
as an enhancer of adipogenesis contributes to obesity (Patel
et al., 2003). The miR-32-TOB1-FGF21 pathway can regulate
brown adipose tissue adipocyte function and development and is
associated with obesity and metabolic syndrome (Ng et al., 2017).
The biological functions mentioned above are consistent with
our study results and provided evidence of a direct connection
between TOB1 and obesity.

Traditional GWASs have identified many obesity-associated
genes, however, additional loci have yet to be identified. EXOC4
and Tob1 pathway genes may be among these from our GWIA
and genome-wide pathway-based association analysis.

EXOC4 join in the tight junction signal pathway: this pathway
receives not only assembly signals but also transmit information
(Zihni et al., 2014). Therefore, EXOC4 may play a role in signal
transmission from sensory perception to the brain, thus affecting
obesity. The Tob1 pathway may contribute to obesity through
the MAPK pathway. Needless to say, molecular biological
experiments are needed to repeat the results. For the GWASs,
statistical replication is the golden rule to prevent false positives.
Although our findings were replicated in different populations
with different methods, it also needs to be confirmed in larger
populations by GWIAs.
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