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To make plants more attractive to vectors of viruses, plant-infecting viruses can alter host
plant physiology. The recent outbreaks of Tomato yellow leaf curl virus (TYLCV) relate
to the spread of its primary vector, the whitefly Bemisia tabaci. Here, we investigated
the question of whether the better performance of B. tabaci Q, relative to that of the
B biotype, on TYLCV-infected tomato plants could be explained by differences in the
ability of the B. tabaci Q and B to obtain free amino acids from the virus-infected
plants. We found that the TYLCV infection of tomato plants significantly affected the
mole percentage (mol%) of free amino acids in the phloem sap of the tomato plants and
the mol% of free amino acids in B. tabaci adults and B. tabaci honeydew. The TYLCV
infection caused the mol% of a larger number of free amino acids to rise in B. tabaci Q
than in B, and the analysis of honeydew indicated that, when feeding on TYLCV-infected
plants, B. tabaci Q was better able to use the free amino acids than B. tabaci B. The
results suggest that B. tabaci Q is better adapted than B to feed on TYLCV-infected
plants, and that TYLCV alters the B. tabaci B–Q competitive interaction in favor of Q.

Keywords: Bemisia tabaci, adaptation, Tomato yellow leaf curl virus, free amino acid, virus-herbivore interactions

INTRODUCTION

Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a devastating agricultural pest worldwide
(De Barro et al., 2011). It is a cryptic species complex consisting of at least 36 morphologically
indistinguishable species (Boykin and De Barro, 2014) that differ in host range (Iida et al., 2009; Chu
et al., 2012), feeding behavior (Liu et al., 2012), virus transmission (Pan et al., 2013a), insecticide
resistance (Horowitz et al., 2005; Luo et al., 2010; Pan et al., 2015), or endosymbiont composition
(Gottlieb et al., 2006; Chiel et al., 2007). Two of the most invasive and devastating genotypes of the
species are B (Middle East-Asia Minor 1) and Q (Mediterranean) (Dinsdale et al., 2010; De Barro
et al., 2011). In most parts of China, B. tabaci Q has gradually displaced B. tabaci B and has become
the predominant B. tabaci genotype (Pan et al., 2011, 2015; Zheng et al., 2017).

Because of their polyphagous nature and adaptability, B. tabaci B and Q are highly invasive
(Inbar and Gerling, 2008). B. tabaci B and Q have spread in as many as 60 countries during the last
two decades (De Barro et al., 2011; Pan et al., 2015). B. tabaci harm plants by transmitting 311 plant
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viruses, sucking phloem sap, and excreting honeydew (Gilbertson
et al., 2015). The rapid spread of B. tabaci B and Q has
come together with outbreaks of begomoviruses in the cropping
systems of China and many other countries (Shi et al., 2014).

As a single-stranded-DNA plant virus, Tomato yellow leaf curl
virus (TYLCV) is phloem-limited, exhibits tissue tropism in the
plant phloem, and produces characteristic symptoms on plants
(Czosnek and Ghanim, 2002). In many tropical and subtropical
areas, it is a destructive pathogen of the Solanaceae and causes
significant yield losses. Within B. tabaci populations, TYLCV
is transmitted transovarially, i.e., from female whiteflies to
offspring, contributing significantly to its global spread (Ghanim
et al., 1998; Wei et al., 2017). When feeding on a TYLCV-infected
host plant, B. tabaci ingests TYLCV virions through the stylet.
The ingested virions are then delivered to midgut epithelial cells,
from where they moved to the hemolymph, and circulate until
they access the salivary glands, which enables transmission to the
plant phloem (Cicero et al., 1995; Hunter et al., 1998; Ghanim
et al., 2001; Czosnek and Ghanim, 2002).

Plants are frequently damaged by insects and insect-vectored
pathogens. In plant–pathogen–vector systems, the pathogen can
directly affect the insect vector or indirectly affect the insect
vector through an alteration of plant physiology (Belliure et al.,
2005; Colvin et al., 2006; Stout et al., 2006). For example, Stout
et al. (2006) studied nutrition-related interactions between aphids
and virus-infected plants and concluded that the performance of
aphids is often related to the nutritional quality of phloem sap as
phloem-feeders, aphids, and other phloem feeding insects, such
as whiteflies, absorb a diet that contains fairly high levels of free
amino acids (Buchanan et al., 2000). Host selection and insect
development are correlated with the diet’s relative quality and
feeding efficiency (Montllor, 1989). Many studies have examined
how such tripartite interactions affect the population dynamics of
insect vectors and plant pathogens, and the invasiveness of alien
species (Colvin et al., 2006; Stout et al., 2006; Jiu et al., 2007; Pan
et al., 2013a; Su et al., 2015, 2016).

Recent research has indicated that TYLCV-infected host
plants have different effects on B. tabaci B and Q host preference
and feeding behavior (Fang et al., 2013; Liu et al., 2013). In
general, TYLCV andB. tabaciB seem to be neutral or antagonistic
(Liu et al., 2009; Pan et al., 2013a; Shi et al., 2013), whereas
TYLCV and B. tabaci Q seem to be mutualistic or neutral
(Matsuura and Hoshino, 2009; Li et al., 2011; Pan et al., 2013a; Shi
et al., 2013). However, the mechanisms underlying the nutrition-
related interactions (especially with respect to free amino acids)
are not completely understood.

For the present research, we hypothesized that B. tabaci
Q was better adapted than B for feeding on TYLCV-infected
tomato plants and that this difference was associated with
variations in the levels of free amino acids in the plants, the
whiteflies, and the honeydew produced by these whiteflies.
We first examined how the free amino acid composition
of the phloem sap of tomato plants was modified by
TYLCV infection. After allowing B and Q adults to feed
on healthy and virus-infected tomato plants, we assessed
how virus-induced changes in phloem amino acids affect
the nutritional status of B. tabaci B and Q, as indicated

by the composition of free amino acids in the adults and
in their honeydew.

MATERIALS AND METHODS

Plant Cultures and B. tabaci Populations
Tomato (Solanum lycopersicum Miller, cv. Zhongza 9) was used
in our experiments and were held in a glasshouse with natural
light and a controlled temperature (26± 2◦C).

Bemisia tabaci Q specimens were collected from poinsettia,
Euphorbia pulcherrima Wild. EX Klotz., in Beijing, China in 2009,
whereas B. tabaci B whiteflies were originally collected in 2004
from a cabbage field, Brassica oleracea L. cv. Jingfeng 1, in Beijing,
China (Pan et al., 2012).

From the time of their collection, the B. tabaci B and Q
insects used in this study were reared on tomato (S. lycopersicum
Mill. cv. Zhongza 9), in a glasshouse with natural light and
a controlled temperature (26 ± 2◦C). The method used for
monitoring the purity of the populations was the same as that
described previously (Chu et al., 2010).

TYLCV Inoculation
In our experiments, the method of TYLCV inoculation was
the same as that described previously (Pan et al., 2013a). The
GenBank accession ID of the TYLCV genome is AM282874.

Amino Acid Analyses
Sampling and Assaying of Amino Acids in the
Phloem Sap
To assess the impact of the TYLCV infection on plant nutritional
quality, we collected and analyzed the phloem sap of healthy and
TYLCV-infected tomato plants as described by Su et al. (2015).
In brief, phloem sap from the fifth expanded leaf was sampled.
The leaf was immersed in 600 µl of 5 mM Na2EDTA (pH 7.5).
The leaf in the EDTA solution was incubated in a light-proof
box at 25◦C; a saturated solution of KH2PO4 was put in the box
to maintain high relative humidity. After 90 min, the leaf was
discarded and the phloem exudate in the EDTA solution was
frozen at −20◦C until it was used for amino acid analysis. Free
amino acid content of phloem exudates were analyzed with an
automatic amino acid analyzer S433 (Sykam, Munich, Germany).
All analyses were performed on three biological replicates.

Sampling and Assaying of Amino Acids in
B. tabaci Adults
Newly emerged B and Q adults were collected from healthy
and TYLCV-infected tomato plants. We analyzed the amino
acid content of B. tabaci adults using the approach described
in Pan et al. (2013b). A 20 mg whitefly adult (representing one
replicate) was fully homogenized with a 2 mL-glass homogenizer,
shaken for 2 min on the vortex shaker (QL-866, Qilinbeier),
and then centrifuged at 14,000 rpm for 10 min in centrifuge
(5417R, Eppendorf, Germany). One mL of the supernatant was
mixed with an equal volume of n-hexane. The mixture was then
centrifuged at 10,000 rpm for 10 min, after which the supernatant
was discarded and 0.5 mL of the underlayer was drawn and mixed
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with an equal volume of 8% sulfosalicylic acid. The latter was
centrifuged at 10,000 rpm for 10 min (to remove protein). Then,
0.5 mL of the supernatant was concentrated to dryness and re-
dissolved in 0.75 mL of double-distilled water. The extracts were
passed through a 0.45 µm filter, and an analysis of free amino acid
content was performed as described for phloem sap. All analyses
were performed on three biological replicates.

Sampling and Assaying of Amino Acids in the
Honeydew of B. tabaci Adults
Newly emerged B and Q adults feeding on healthy tomato plants
were moved to the TYLCV-infected or healthy tomato plants.
These whiteflies were placed on the back side of leaves (50 adults
per leaf), and their honeydew was collected on aluminum foil
in a clip collection cage (2.5 cm diameter) for 48 h (Wilkinson
and Douglas, 1995). The honeydew should be kept dry because
the amino acids of honeydew would be broken during collection
(Sandström and Moran, 2001), and was dried in a Speed-vac. The
dry honeydew samples were dissolved in 50 µL of 80% methanol,
and an analysis of free amino acid content was performed as
described for phloem sap. All analyses were performed on three
biological replicates.

Statistical Analyses
The concentration of every amino acid was transformed to
the mole percentage (mol%) of total amino acids. A one-way
analysis of the variance (ANOVA) and the least significant
difference (LSD) test (SPSS 17.0 for Windows; SPSS, Chicago,
IL, United States) were used to compare the mol% of individual
amino acids in the phloem sap of healthy and TYLCV-infected
tomato plants. A two-way analysis of the variance and the LSD
test (SPSS 17.0 for Windows; SPSS, Chicago, IL, United States)
was used to compare the mol% of individual amino acids of
whiteflies whole body and honeydew.

RESULTS

Free Amino Acids in the Phloem Sap of
Healthy and TYLCV-Infected
Tomato Plants
Twenty free amino acids were detected in healthy tomato plants,
and the same 20 plus proline (Pro) were detected in TYLCV-
infected tomato plants. The TYLCV infection increased the
mol% of histidine (His) (+212%, F1,8 = 92.159, P < 0.001),
isoleucine (Ile) (+42%, F1,8 = 6.937, P = 0.030), leucine
(Leu) (+79%, F1,8 = 13.769, P = 0.006), valine (Val) (+70%,
F1,8 = 7.468, P = 0.026), asparagine (Asn) (+470%, F1,8 = 181.163,
P < 0.001), and tyrosine (Tyr) (+153%, F1,8 = 11.007, P = 0.011)
in the phloem sap of tomato plants. However, the virus
infection decreased the relative concentration of lysine (Lys)
(−77%, F1,8 = 92.159, P < 0.001), phenylalanine (Phe) (−16%,
F1,8 = 8.384, P = 0.020), tryptophan (Trp) (−43%, F1,8 = 19.116,
P = 0.002), aspartate (Asp) (−29%, F1,8 = 10.538, P = 0.012),
glutamate (Glu) (−30%, F1,8 = 6.011, P = 0.040), glycine (Gly)
(−37%, F1,8 = 17.374, P = 0.003), phosphoserine (PSer) (−41%,

F1,8 = 20.778, P = 0.002), taurine (Tau) (−41%, F1,8 = 18.516,
P = 0.003), and urease (Urea) (−42%, F1,8 = 29.528, P = 0.001) in
the phloem sap of tomato plants. (Figure 1).

Free Amino Acids in B. tabaci B and
Q Adults
A total of 24 free amino acids were detected in both B. tabaci B
and Q adults that fed on infected and healthy plants (Table 1).
Genotypes significantly affected the mol% of the essential amino
acids arginine (Arg), Ile, and Phe in the adults (Table 1).
Genotypes also significantly affected the mol% of the non-
essential amino acids ornithine (Orn) and β-aminoisobutyric acid
(β-AiBA) in the adults. Virus infection significantly influenced
the mol% of the essential amino acids Arg and Trp, and of the
non-essential amino acids Asn, cysteine (Cys), Glu, Gly, Orn,
Pro, Tyr, and β-AiBA in adults. The interaction of genotypes and

TABLE 1 | ANOVA results for the effects of B. tabaci genotypes and virus (TYLCV)
on the mol% of free amino acids in B. tabaci adults.

Amino acida Genotypec Virusd Genotype∗virus

Arginine (Arg) ∗ ∗∗ n.s.

Histidine (His) n.s. n.s. n.s.

Isoleucine (Ile) ∗ n.s. n.s.

Leucine (Leu) n.s. n.s. n.s.

Essential Lysine (Lys) n.s. n.s. n.s.

amino acidsb Methionine
(Met)

n.s. n.s. n.s.

Phenylalanine
(Phe)

∗ n.s. ∗

Threonine (Thr) n.s. n.s. n.s.

Tryptophan
(Trp)

n.s. ∗∗ n.s.

Valine (Val) n.s. n.s. n.s.

Alanine (Ala) n.s. n.s. n.s.

Asparagine
(Asn)

n.s. ∗∗ n.s.

Aspartate (Asp) n.s. n.s. n.s.

Cysteine (Cys) n.s. ∗ n.s.

Glutamate (Glu) n.s. ∗∗ n.s.

Glycine (Gly) n.s. ∗ n.s.

Ornithine (Orn) ∗∗∗ ∗∗ n.s.

Non-essential Proline (Pro) n.s. ∗∗∗ n.s.

amino acids Serine (Ser) n.s. n.s. n.s.

Tyrosine (Tyr) n.s. ∗∗ n.s.

α-Aminoadipic
acid (α-Aaa)

n.s. n.s. n.s.

β-Alanine
(β-Ala)

n.s. n.s. n.s.

β-Aminoisobutyric
acid (β-AiBA)

∗ ∗ n.s.

γ-Aminobutyric
acid (γ-Aba)

n.s. n.s. n.s.

aAbbreviated amino acid names are in parentheses. bEssential amino acids as
defined by Morris (1991). cB. tabaci B and B. tabaci Q. dTomato plants with and
without TYLCV. ∗, ∗∗, and ∗∗∗ indicate P < 0.05, P < 0.01, and P < 0.001 (LSD
test, n = 3), respectively; n.s. indicates non-significant.
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FIGURE 1 | The mol% of free amino acids in the phloem sap of healthy and TYLCV-infected tomato plants. Values are means ( ± SE) of three replicates. ∗ Indicates
significant differences between healthy and TYLCV-infected tomato plants at P < 0.05; LSD test. For abbreviations, see Table 1.

FIGURE 2 | The mol% of free amino acids in B. tabaci B and Q adults that fed on (A) healthy tomato plants or on (B) TYLCV-infected tomato plants. Values are
means ( ± SE) of three replicates. ∗ Indicates a significant difference between B and Q at P < 0.05; LSD test. For abbreviations, see Table 1.

the virus infection significantly affected the mol% of the essential
amino acid Phe in adults (Table 1).

When adults fed on healthy plants, the mol% of Arg
and Orn were higher in Q than in B (Figure 2A and
Supplementary Table S1); Arg is essential, but Orn is not. When

adults fed on virus-infected plants, the mol% of Ile, Phe, Val,
Gly, Orn, and β-AiBA were higher in Q than in B (Figure 2B
and Supplementary Table S1); Ile, Phe, and Val are essential
amino acids, but the others are not. When adults fed on
either TYLCV-infected or healthy tomato plants, the mol% was
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not significantly higher in B than in Q for any free amino
acid (Figure 2).

Free Amino Acids in the Honeydew of
B. tabaci Adults
A total of 22 free amino acids were found in the honeydew of
B. tabaci adults that fed on TYLCV-infected and healthy tomato
plants. Genotypes significantly influenced the mol% of the
essential amino acids Ile, threonine (Thr), and Val, and the mol%
of the non-essential amino acids Glu, Pro, Tyr, and β-Alanine
(β-Ala) in the honeydew. The virus infection significantly affected
the mol% of all the essential amino acids except Arg, and
significantly affected the mol% of the non-essential amino acids
Asn, Asp, Glu, Orn, Pro, and Tyr in the honeydew. The
interaction of genotypes and the virus significantly affected the
mol% of the essential amino acid Ile and of the non-essential
amino acid β-Ala in the honeydew (Table 2).

The mol% of five essential amino acids (Ile, Leu, Lys, Thr,
and Val) and four non-essential amino acids (Asp, Glu, Pro, and
Tyr) were lower in the honeydew produced by B adults that
fed on TYLCV-infected tomato plants rather than on healthy
plants, and the mol% of two essential amino acid (Met and
Trp) and two non-essential amino acids (Asn and Orn) were
higher in the honeydew produced by B adults that fed on
TYLCV-infected tomato plants rather than on healthy plants

TABLE 2 | ANOVA results for the effects of B. tabaci genotypes and virus (TYLCV)
on the mol% of free amino acids in the honeydew of B. tabaci adults.

Amino acida Genotypesc Virusd Genotype∗virus

Arg n.s. n.s. n.s.

Ile ∗ ∗∗∗ ∗

Leu n.s. ∗ n.s.

Essential Lys n.s. ∗∗ n.s.

amino acidsb Met n.s. ∗∗ n.s.

Phe n.s. ∗ n.s.

Thr ∗∗ ∗∗ n.s.

Trp n.s. ∗∗ n.s.

Val ∗ ∗∗ n.s.

Ala n.s. n.s. n.s.

Asn n.s. ∗∗ n.s.

Asp n.s. ∗∗ n.s.

Glu ∗∗ ∗∗ n.s.

Gly n.s. n.s. n.s.

Orn n.s. ∗∗∗ n.s.

Non-essential Pro ∗ ∗∗ n.s.

amino acids Ser n.s. n.s. n.s.

Tyr ∗ ∗∗ n.s.

α-Aaa n.s. n.s. n.s.

β-Ala ∗∗ n.s. ∗∗

β-AiBA n.s. n.s. n.s.

γ-Aba n.s. n.s. n.s.

aAbbreviated names of amino acid. bEssential amino acids as defined by Morris
(1991). cB. tabaciB and B. tabaci Q. dTomato plants with and without TYLCV. ∗, ∗∗,
and ∗∗∗ indicate P < 0.05, P < 0.01, and P < 0.001 (LSD test, n = 3), respectively;
n.s. indicates non-significant.

(Figure 3A, Table 3 and Supplementary Table S2). The mol%
of five essential amino acids (Ile, Lys, Phe, Thr, and Val) and
four non-essential amino acids (Asp, Glu, Pro, and Tyr) were
lower in the honeydew produced by Q adults that fed on TYLCV-
infected tomato plants than on healthy plants, and the mol% of
only two non-essential amino acids (Asn and Orn) were higher in
the honeydew produced by Q adults that fed on TYLCV-infected
tomato plants rather than on healthy plants (Figure 3B, Table 3
and Supplementary Table S2).

DISCUSSION

Research has shown that vectored viruses can alter host plant
phenotypes so as to change interactions with other organisms,
including interactions between plants, viruses, and insect vectors
of viruses (Mauck et al., 2012, 2018; Casteel and Falk, 2016;
Eigenbrode and Bosque-Perez, 2016; Mauck, 2016). Insect-
vectored viruses can alter many host plant factors, including
odors, induced defenses, visual and tactile characteristics, sugars,
free amino acids, and secondary metabolites (Bosque-Perez
and Eigenbrode, 2011; Casteel et al., 2014; Mauck et al.,
2014a,b). In our study, TYLCV significantly altered the free
amino acid concentration in the phloem sap of tomato plants
(Figure 1), an observation that is consistent with earlier studies
on other interactions between plants and pathogens (Casteel
et al., 2014; Su et al., 2015). Amino acids are important
nutrients because they are required for cell growth regulation,
hormone metabolism, nerve transmission, protein synthesis,
the production of metabolic energy, and nitrogen metabolism
(Castagna et al., 1997; Curis et al., 2007; Manna et al., 2009; Wu,
2009; Wu et al., 2014). Lys and Asn are directly related to antiviral
activity and the regulation of the immune function, respectively,
and Trp is the only amino acid with enhanced immune function
(Wu, 2009). Posttranslational modifications of Lys are related
to Leishmania survival (Nayak et al., 2018). In an earlier study,
a positive correlation was observed between the number of
B. tabaci individuals (feeding and eggs) and the amino acid
content of a plant (Crafts-Brandner, 2002). The concentrations
of Ser, Ala, Pro, Phe, Asn, Glu, Asp, Arg, and Trp play a role in

TABLE 3 | The number of free amino acids whose mol% were higher or lower in
the honeydew of B. tabaci adults (genotypes B and Q) that fed on TYLCV-infected
tomato plants vs. healthy tomato plants.

Mol%a Genotypes Free amino acids in the honeydew

Essential amino acids Non-essential
amino acids

Lower B 5 (Ile, Leu, Lys, Thr, Val) 4 (Asp, Glu,
Pro, Tyr)

Q 5 (Ile, Lys, Phe, Thr, Val) 4 (Asp, Glu,
Pro, Tyr)

Higher B 2 (Met, Trp) 2 (Asn,Orn)

Q 0 2 (Asn, Orn)

aLower and Higher indicate that the mol% were lower or higher, respectively, in
the honeydew derived from virus-infected plants than in the honeydew derived
from healthy plants.
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FIGURE 3 | The mol% of free amino acids in the honeydew of (A) B. tabaci B adults and (B) B. tabaci Q adults that fed on healthy and TYLCV-infected tomato
plants. Value are means ( ± SE) of three replicates. ∗ Indicates a significant difference between healthy and infected plants at P < 0.05; LSD test. For abbreviations,
see Table 1.

the survival rate of B. tabaci, while the concentrations of Asp,
Glu, Arg, His, and Asn are related to oviposition by B. tabaci
(Thompson, 2006). In our study, the mol% of Lys, Trp, and Urea
were much lower, and the mol% of Asn was much higher in
TYLCV-infected tomato plants than in healthy tomato plants.
Our results are consistent with a previous study that found that
TYLCV increases free amino acids (His, Ile, Leu, Val, Asn, and
Tyr) in the infected tomato phloem sap (Su et al., 2015); the latter
study also found that TYLCV attenuates the induction of defenses
against B. tabaci Q. In contrast to the latter study, the current
research assessed the effects of TYLCV on both B. tabaci Q and
B to advance our understanding of how the virus might affect
competition between the two genotypes.

Because virus-infected plants often display better nutritional
quality, more efficient absorption of nutrients, or repressed anti-
herbivore defenses, many insect herbivores select virus-infected
plants (Mauck et al., 2012; Wang et al., 2012; Angeles-López
et al., 2016). Our study revealed that B. tabaci Q is better
able to use TYLCV-infected plants as a source of amino acids,
as compared with B. tabaci B. In our study, when feeding
on TYLCV-infected tomato plants, B. tabaci Q had a higher
mol% of amino acids (Ile, Phe, Val, Gly, Orn, and β-AiBA)
than B. tabaci B (Figure 2B and Supplementary Table S1).
TYLCV also had different effects on the mol% of some free
amino acids in B. tabaci Q and B adults. The amino acid
mol% of B. tabaci Q was relatively high as a consequence of
feeding on TYLCV-infected plants, indicating that B. tabaci Q
is better adapted to feeding on TYLCV-infected tomato plants
than B. tabaci B. As is well known, many amino acids, especially
essential amino acids obtained through the diet, cannot be
synthesized in insects, but are necessary for normal development
(Hansen and Moran, 2011; Boudko, 2012). Research on aphid-
virus-host interactions has shown that aphid performance is
associated with the nutritional quality of phloem sap (Stout et al.,
2006). For example, Aphis gossypii Glover feeding on Zucchini
yellow mosaic virus-infected Cucurbita pepo had longer longevity

and higher fecundity than when feeding on healthy plants. In
addition, the differences were associated with higher amino acid
concentrations in the virus-infected plant’s phloem sap (Blua
et al., 1994). In contrast, lowered concentrations of amino acids
in the phloem sap of wheat plants infected by two Barley yellow
dwarf virus strains reduced the suitability of wheat for the aphid
Sitobion avenae (Fabricius) (Fiebig et al., 2004). In the latter
study, the assimilation of amino acids was also lower for aphids
feeding on virus-infected plants than on non-infected plants
(Fiebig et al., 2004).

We analyzed amino acids in honeydew excreted by B. tabaci
adults to assess the assimilation of amino acids by adults. The
number of free amino acids whose mol% in honeydew was
reduced by the TYLCV infection of tomato plants was the same
for B. tabaci Q and B, but the number of free amino acids whose
mol% in honeydew was increased by TYLCV infection was less
for B. tabaci Q than B (Table 3). This result suggests that the
efficiency of amino acid utilization was higher in B. tabaci Q than
for B. The changes in the mol% of free amino acids in honeydew
may help explain why B. tabaci Q performs better than B. tabaci
B on TYLCV-infected plants (Pan et al., 2013a).

Taken together, our study shows that B. tabaci Q is better
adapted than B. tabaci B for feeding on TYLCV-infected tomato
plants. These results are in agreement with earlier observations
indicating that B. tabaci Q may more effectively spread TYLCV
than B. tabaci B, and that B. tabaci Q performs better on TYLCV-
infected plants than on healthy plants (Pan et al., 2013a). This
mutualistic relationship between TYLCV and B. tabaci Q may
help explain why B. tabaci Q has gradually displaced B. tabaci B
during TYLCV outbreaks in China and elsewhere.
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