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In most task and resting state fMRI studies, a group consensus is often sought,
where individual variability is considered a nuisance. None the less, biological variability
is an important factor that cannot be ignored and is gaining more attention in the
field. One recent development is the individual identification based on static functional
connectome. While the original work was based on the static connectome, subsequent
efforts using recurrent neural networks (RNN) demonstrated that the inclusion of
temporal features greatly improved identification accuracy. Given that convolutional
RNN (ConvRNN) seamlessly integrates spatial and temporal features, the present work
applied ConvRNN for individual identification with resting state fMRI data. Our result
demonstrates ConvRNN achieving a higher identification accuracy than conventional
RNN, likely due to better extraction of local features between neighboring ROIs.
Furthermore, given that each convolutional output assembles in-place features, they
provide a natural way for us to visualize the informative spatial pattern and temporal
information, opening up a promising new avenue for analyzing fMRI data.

Keywords: functional magnetic resonance imaging, individual identification, recurrent neural network,
convolutional neural network, visualization

INTRODUCTION

Mainstream fMRI studies have been focusing on deriving population consensuses using group
analysis. A group analysis in neuroimaging, albeit important, commonly neglects individual-to-
individual variations. The importance of individual variability in neurobiological research has
drawn increasing attention (Mohr and Nagel, 2010). Using task-fMRI, significant individual
differences in brain activation were identified, reflecting alterations in cognitive function and
behavior (Barch et al., 2013). Individual variability in functional connectivity (FC) has been
successfully used to identify subjects from a large group. More specifically, static connectivity
patterns throughout the brain were shown to be subject specific and distinctive across scan
sessions and conditions, providing powerful features for individual identification (Finn et al., 2015).
Therefore, exploring the individual uniqueness of the brain connectivity points to a new avenue to
study the brain.

Although the static FC achieved decent accuracy, it required a sufficiently long data set (600
frames, 7.2 min) and considered only the spatial pattern through the temporal correlation without
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taking temporal features into full account. The performance
degraded with short clips of fMRI data, probably due to temporal
variability (or dynamics) in the resting-state fMRI data, which
leads to high variability in the FC derived from a short window.
On the other hand, the dynamic information of resting state
activity, if taken into account, could provide additional features
for individual identification, improving the accuracy with the
short time series.

In the application of time sequence modeling, recurrent neural
networks (RNNs) have shown outstanding promise in a broad
range of applications, including video classification, machine
translation, and biomedical image segmentation (Sharma et al.,
2015; Chen et al., 2016; Vaswani et al., 2017; Gao et al.,
2018). For fMRI data analysis, RNN was able to model the
dynamics of brain activity in response to sensory stimuli,
providing accurate estimates of hemodynamic response with
temporal dynamics (Güçlü and van Gerven, 2017). RNNs have
also been implemented to incorporate temporal information
along with spatial features from resting-state fMRI data instead
of merely spatial pattern in the connectome (Dvornek et al.,
2017; Chen and Hu, 2018). Furthermore, a convolution-based
RNN was introduced to make full use of features in both
spatial and temporal domains, consistently outperforming fully
connected RNNs (Shi et al., 2015). Therefore, combining the local
features between adjacent ROIs by the convolutional structure
and sequence modeling capability of RNN may lead to a
better approach to extract spatiotemporal features for individual
identification on resting-state fMRI data.

In the meantime, it is also valuable to visualize the underlying
features in the trained convolutional models. Although deep
learning is becoming a panacea in almost every domain, it
has been criticized due to its poor interpretability as being a
black-box. While many attempts have been made to provide
an interpretation and an intuitive understanding of trained
networks, our understanding of how these networks work and
what is important behind their performance have not kept
up with the pace of the development of neural networks.
While dedicated deep learning models have achieved amazing
performance by end-to-end learning through huge volumes of
data, better comprehension of the success of these models can
uncover fundamental principles of deep neural networks and
reveal important features within the data.

In this work, we adopted convolutional RNN or ConvRNN
for individual identification using resting-state fMRI data.
The convolutional recurrent model was able to achieve
individual identification with shared convolutional weights
capturing local coactivation features. In-place visualization of the
informative area by ConvRNN also opened up a new avenue for
understanding fMRI data based on individual differences.

MATERIALS AND METHODS

Dataset and Preprocessing
The resting-state fMRI data for 100 subjects from the Human
Connectome Project (HCP) (54 females, age: 22–36, and
TR = 0.72 s) was used in this work. Each subject had four

resting-state fMRI sessions, 1200 volumes for each session,
leading to 4800 volumes per subject in total (Van Essen et al.,
2013). The fMRI data was preprocessed by the HCP minimal
preprocessing pipeline (Glasser et al., 2013) and denoised
by ICA-FIX (Salimi-Khorshidi et al., 2014), for the removal
of spatial artifact/distortion and motion-related fluctuations.
Surface-based registration was performed with the MSM-ALL
template (Robinson et al., 2014). To decrease the computation
complexity, two hundred and thirty-six regions of interest (ROIs)
over the cerebral cortex, as shown in Figure 1 based on meta-
analysis (Power et al., 2011), were used for subsequent analysis.
BOLD signals within each ROI (10 mm diameter sphere) were
averaged spatially. We ordered our ROIs-based data in a 1D array
and preserved the order of ROIs according to the Power Atlas,
where ROIs having similar functional connectivities are close to
each other. They were also demeaned and scaled to unit variance
over the temporal axis. For each fMRI session, fMRI data with
1200 volumes was divided into twelve 100-frame clips as inputs
of ConvRNN. Data from Day 1 was used as the training dataset.
The two sessions from Day 2 were used as validation and testing
datasets, respectively. The best model was decided based on the
validation dataset and the final performance was assessed on the
testing dataset.

Convolutional Recurrent Neural Network
The architecture of the ConvRNN is given in Figure 2, along
with its unrolling version. In contrast to conventional RNN,
convolution was applied in both the input-to-state and state-to-
state transitions, in place of the Hadamard product. There were
two stacked convolutional layers, with the first convolutional
layer containing 8 filters and the second convolutional layer
having 16 filters. The kernel size of all convolutional filters was
2. Padding was used in all convolutional layers such that the
outputs from each layer had the same spatial dimension as
the original input, which is very important for the subsequent
visualization of the in-place features. Batch normalization layers
were used before the non-linear activation layers of Rectified
linear unit (ReLU) to reshape the distribution of convolutional
layer outputs in order for better convergence and easy training

FIGURE 1 | The spatial distribution of 236 ROIs over the cerebral cortex.
Voxels within the 10 mm diameter sphere were averaged to get the value for
each ROI.
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FIGURE 2 | The architecture of our convolutional recurrent neural network and its unrolling version over time. All red arrows represent the convolutional operations
between each input-to-state and state-to-state transitions. Batch normalization and ReLU as the non-linear activation are utilized after each convolutional layer. Final
classification is based on all hidden states on average. The dimension of the data flow through the diagram is also labeled.

(Ioffe and Szegedy, 2015). The final Softmax layer with 100-
category outputs was used for classification based on averaged
outputs from all hidden states. No temporal or spatial pooling
layer was employed to keep the spatial and temporal resolutions
of the original fMRI data. All kernel weights were initialized by
the Xavier uniform initializer (Glorot and Bengio, 2010), and
recurrent weights were initialized as random orthogonal matrices
(Saxe et al., 2013).

Training of the Neural Network
Our implementation of ConvRNN was carried out in Keras
(Chollet, 2015) with the Tensorflow backend (Abadi et al., 2016).
Considering the limited number of frames for each subject, we
chose 100 frames of fMRI data as inputs during training and
validation, which is the tradeoff between the number of fMRI
clips and the number of frames for each clip. Shuffled minibatches
of training data as inputs were fed into the ConvRNN with
the batch size of 128. Adam optimizer (Kingma and Ba, 2014)
was applied for training with the initial learning rate set to
0.001, and reduced if the validation accuracy stopped increasing.
Dropout layer with 50% was utilized before the final classification
to avoid overfitting only during the training (Srivastava et al.,
2014). After each training epoch, the model was evaluated on
the validation dataset and saved only if better validation accuracy
was achieved. Finally, the performance of the best model was

measured on the testing dataset, which was never involved during
training or validation.

It is well known that RNN is difficult to train properly,
even though it is a powerful model for time series modeling.
The main reasons are vanishing and exploding gradient issues
of Backpropagation Through Time (BPTT) on the unrolling
version of RNN (Bengio et al., 1994). Therefore, advanced
architectures with gating mechanism to overcome the vanishing
and exploding gradient problem, such as the Long short-term
memory (LSTM) (Hochreiter and Schmidhuber, 1997) and the
Gated recurrent unit (GRU) (Cho et al., 2014), have gained a
lot of popularity in practice to model long-term dependencies.
In this work, LSTM with convolutional structure was applied.
For training techniques, we used L2 regularization for recurrent
weights, along with the gradient clipping strategy as a simple and
computationally efficient method, effectively addressing the issue
of exploding gradients (Pascanu et al., 2013). In the present work,
the clipping norm of the gradient was set to 1. Different L2 values
(0.1, 0.01, 0.001, and 0.0001) on recurrent kernel weights were
tested to achieve the best validation accuracy.

Visualization of the Individual
Identification
Our ConvRNN first performed feature extraction through two
convolutional recurrent layers and then fed the features into
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the Softmax layer for the 100-catergory classification. Original
data was projected to a high-dimensional feature space, which
was easily separated by the classification layer. In the feature
space, fMRI data from the same subject are expected to be
close to each other and cluster tightly. In consideration of
the single classification layer, the identification accuracy of
our ConvRNN relies heavily on the performance of feature
extraction by convolutional recurrent layers. In order to ascertain
and visualize the performance of convolutional recurrent layers
in low dimensional space, t-Distributed Stochastic Neighbor
Embedding (t-SNE) (Maaten and Hinton, 2008) was applied
to map datapoints in high-dimensional feature space onto a
two-dimensional representation.

To visualize and understand informative areas related
to individual identification, intermediate outputs from
convolutional layers were examined. Output patterns were
obtained from convolutional layers after non-linear activation
and mapped onto the cortical surface (20 mm radius sphere).
As all regions are considered equal in our convolutional model
during the training, but they are of different importance to
the final classification. We also used the occlusion method to
visualize informative areas (Zeiler and Fergus, 2014). More
specifically, in order to ascertain the contribution of ROIs with
regard to individual identification, input of each ROI was zeroed
out, and the subsequent performance decrease with the same
model configuration was considered as the contribution of this
ROI to the final classification.

RESULTS

We carried out the supervised classification task to identify each
subject from a group of 100 subjects. First, the identification
accuracy of different models was assessed on the testing dataset
with 100 frames of fMRI data as inputs. As seen in Table 1,
our ConvRNN model was able to achieve 98.50% accuracy on
the testing dataset, where the best performance was obtained
with the L2 value of 0.001 during training. The test accuracy
for the traditional RNN with average temporal pooling was
94.43% (Chen and Hu, 2018). In order to exclude the influence
of temporal averaging, we trained another RNN without the
temporal averaging and achieved an identification accuracy of
95.33%. Furthermore, we evaluated the performance of these
models using different window sizes on the testing dataset. With
the pre-trained models, we adopted different number of frames
(from 1200 frames to single frame) as inputs from the testing
dataset and evaluated the identification performance. Testing
results with different number of frames are plotted in Figure 3.
As shown in the figure, ConvRNN outperformed conventional
RNN (no temporal averaging) in all cases except with 1200 frames
or with less than 10 frames. In contrast, FC could achieve over
90% accuracy with 600 frames of fMRI data. But the individual
identification accuracy drops to 70% on average when only a
short period of fMRI data (100 frames) is used (Finn et al., 2015).

To visualize convolutional outputs on low-dimensional space,
we applied t-SNE on intermediate outputs of our ConvRNN
before the classification layer. There were 16 convolutional filters

TABLE 1 | The accuracy of different models on the testing dataset and their
number of model weights.

Architecture # Parameters Test accuracy
(feature extraction)

RNN (Chen and Hu, 2018) 405K (380K) 94.43%

RNN w/o temporal pooling 405K (380K) 95.33%

ConvRNN 382K (3.8K) 98.50%

FIGURE 3 | The relationship between identification accuracy and the window
size. We evaluated pre-trained models on testing dataset. Our ConvRNN
outperformed RNN except with 1200 frames or with less than 10 frames.

in the second convolutional recurrent layer of our ConvRNN.
With proper padding, the output of the layer was made to have
the same spatial dimension as the input. The feature space with
3776 dimensions was then mapped to a 2D space in Figure 4.
It is clear that 100 subjects (12 clips with 100 frames for
each subject) in the testing dataset appear as non-overlapping
cliques in different colors with each clique representing one
subject. This figure clearly indicates that spatiotemporal features,
capable of individual identification, were successfully obtained by
convolutional recurrent layers.

To visualize intermediate outputs of ConvRNN, average
patterns from first and second convolutional layers of ConvRNN
are shown in Figures 5, 6, respectively. Most patterns from
the first convolutional layer were quite similar (except Filter
6) with large distinctive areas, which could be considered as
the ubiquitous low-level features from fMRI data. While high-
level patterns from the second convolutional layer had diverse
informative regions, which were sparse and localized inside
the area of those low-level features generated by the first
convolutional layer. Meanwhile, when ROIs were individually
occluded, performance degradation was observed when some
ROIs were occluded, while the occlusion of some ROIs led
to negligible degradation of the performance. In Figure 7, the
absolute value of the performance degradation, normalized to
reflect the contribution of each ROI is shown. It is evident that the
informative area generated by alternative occlusion was similar as
the patterns from first convolutional layer of ConvRNN.
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DISCUSSION

While most resting-state fMRI studies have relied on group
averages, this study employed individual differences for

FIGURE 4 | t-Distributed Stochastic Neighbor Embedding (t-SNE)
visualization of 2nd convolutional recurrent layer outputs based on
100-subject testing dataset. Twelve hundred 100-frame testing data from 100
subjects were fed into ConvRNN with outputs being obtained before the
classification layers and projected to 2D space by t-SNE. Projections for
different subjects are in different colors.

individual identification. Unlike the first study of individual
identification employing static FC (Finn et al., 2015), we
incorporated both temporal and spatial features from the fMRI
data. As an improvement of our previous work employing
the recurrent architecture (Chen and Hu, 2018), we applied a
convolutional recurrent neural network which led to a significant
improvement in performance and a straightforward means
to visualize in-place features. Figure 3 shows that ConvRNN
is better than conventional RNN for the majority of the time
windows. The performance of ConvRNN was slightly worse than
conventional RNN with 1200 frames, probably due to the small
number of testing data when the performance was evaluated
on fMRI clips with 1200 frames. On the other hand, since our
ConvRNN was trained with the fixed number of frames (i.e.,
100), it is not be optimized for short clips of data with less than 10
frames, and its performance with frames less than 10 is therefore
worse than that of conventional RNN.

Our ConvRNN has the same number of parameters compared
with the conventional RNN, indicating that both models have
comparable model complexity. Apart from the different types
of recurrent unit, our earlier work (Chen and Hu, 2018)
employed a temporal pooling layer to reduce the temporal
resolution. For a fair comparison with this work, another
conventional RNN was applied without the temporal averaging
layer. The accuracy of the conventional RNN without the
temporal averaging layer was 95.33%, which was 0.9% higher
than that with the temporal averaging. This improvement

FIGURE 5 | Average output patterns of the first convolutional layer with 8 convolutional kernels. Twelve hundred 100-frame testing data from 100 subjects were fed
into the convolutional recurrent model with output patterns generated and averaged from the first non-linear activation layer. Red areas represent large
activation values.
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FIGURE 6 | Average output patterns of the second convolutional layer with 16 convolutional kernels. Twelve hundred 100-frame testing data from 100 subjects were
fed into the convolutional recurrent model with output patterns generated and averaged from the second non-linear activation layer. Red areas represent large
activation values.

due to increased temporal resolution is significantly smaller
than the improvement achieved with the adoption of the
convolutional structure, indicating that the latter is the main
contributor to the performance enhancement. Both the spatial
and temporal features were fully utilized by convolutional kernels
in the ConvRNN with unprecedented identification accuracy.
Also, feature extraction layers of ConvRNN showed strong
discriminating power for 100 subjects, where pre-trained layers
could be applied for transfer learning on new subjects or semi-
supervised learning on partially labeled data. On the other hand,
only one hundredths of the parameters in ConvRNN were from
the convolutional recurrent layers. Convolution with shared
weights in spatial and temporal spans makes it more robust
against overfitting during training. Given the reduced number of
trainable weights, increasing the depth and width of the model
is possible without significantly increasing the model complexity,
possibly capturing more sophisticated features in both spatial and
temporal domains.

FIGURE 7 | The performance degradation with occlusion. Each ROI was
zeroed out separately and evaluated with the pre-trained model of ConvRNN.
The performance degradation reflects the contribution of each ROI. Red
region reflects large performance degradation if corresponding ROIs
were occluded.

Furthermore, convolutional kernels with shared weights
sweep across ROIs and frames. Different from the
indecomposable matrix multiplication in conventional RNN,
ConvRNN generates in-place features with exactly spatial
correspondence as the original data. Furthermore, ConvRNN
accumulates temporal information related to evolving features in
the hidden state. Therefore, it is possible to examine the hidden
states to have an in-place visualization and understanding of
hidden features from ConvRNN. It is also clear that informative
regions from two convolutional layers are totally different, in
agreement with the conclusion drawn from convolutional neural
networks for image classification (Yosinski et al., 2015). Beside
the direct visualization of the hidden state, the occlusion of
ROIs served as an indirect method for visualizing significant
regions under resting state for identification. Two visualization
approaches came to the same conclusion of informative ROIs
in term of individual identification using the resting-state fMRI
data. In terms of resting state networks (RSNs) in the literature
(Holmes et al., 2011; Lee et al., 2012), the informative area
identified by our ConvRNN mainly contained frontoparietal
network (FPN), default mode network (DMN), as well as visual
network (VN). Our result is consistent with a previous study,
which concluded that the most distinguishing network was FPN,
with significant improvement achieved through the combination
of multiple RSNs (Finn et al., 2015). In contrast, occlusion of
language network (LN) and somatosensory motor network
(SMN) did not cause much reduction in performance. One
possible explanation is that there was little explicit or individual-
specific language or motor activity during the acquisition of the
resting-state fMRI datasets used here.

Although DMN and FPN stood out as the most important
networks for individual identification, other networks also
contributed to individual identification (Finn et al., 2017).
It is likely that contributions from most networks may be
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needed with more subjects to be identified. In addition, a
hierarchical approach, incorporating all networks, might be
the most appropriate and robust approach. Furthermore, a
recent study demonstrated that task induced changes in FC
provided better prediction of individuals, whereas resting-
state fMRI data failed to capture the full range of individual
differences (Greene et al., 2018). Such changes in FC could
also be incorporated into our model to further improve the
identification accuracy.

Several limitations should be noted for further work. First,
the present study adopted only 236 ROIs within 10 mm
diameter spheres on average, which was enough for an accurate
identification for a group of 100 subjects. Inadequate power of
identification could be present on new subjects beyond existing
subjects. Possible reasons are the limited feature extraction of our
model and the high variability of the fMRI data. It is likely that
smaller and more ROIs are needed for the identification of more
subjects. But more advanced models with good generalization on
fMRI data should be explored. Second, current visualization of
individual identification depicted in Figure 7 was based on group
average of ROIs’ performance. While this highlights areas that are
most important for individual identification, it does not explicitly
depict individual features. Such features will be the focus of
our future studies. Third, visualization of the spatial pattern is
easy to understand, but the remarkable performance achieved
by RNN suggests that a substantial amount of information is
coming from temporal features. Visualizing and understanding
temporal features are still necessary to gain a deeper insight into

the brain dynamics. Furthermore, other popular architectures
(e.g., Siamese network) and pre-trained models should be applied
and compared with our approach in terms of classification
performance and training efficiency in future work.

CONCLUSION

In this paper, we described the application of the convolutional
recurrent neural network for individual identification based on
resting-state fMRI data. To explore the dynamics in the resting-
state fMRI data, the convolutional architecture with recurrent
structure was implemented to extract and incorporate features in
both spatial and temporal domains. Compared to conventional
RNN model, our ConvRNN model exhibited better identification
performance, with local features between neighboring ROIs being
modeled by convolutional kernels. Moreover, visualization based
on the ConvRNN model provides a direct understanding of the
success of identification; this could lead to a promising alternative
for analyzing fMRI data.
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