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Abstract. In elimination theory, the matrix method of computing the resultant 
remains the most popular method due to its lower computational complexity 
compared to Groebner-based and set characteristics approaches. However, for 
the matrix method to be effective, the size and nature of the elements of the 
matrix play an important role. If the resultant is not an exact resultant it has to be 
extracted from the determinant of the corresponding resultant matrix. In this 
paper, a new resultant matrix is proposed. The hybrid construction consists of 
four blocks, one of which uses an entry formula for computing a Dixon matrix, 
while two of the blocks use a mapping from Jouanolou’s method, and the final 
block consists of zero elements only. The new formulation is computed without 
intermediate cancelling terms, which reduces the complexity of the construction 
and enhances its effectiveness.  

Keywords: Dixon resultant; hybrid resultant; Jouanolou’s resultant; resultant matrix.  

1 Introduction Compute  

The resultant technique is important in elimination theory for solving systems of 
polynomial equations. The method has also been used to determine whether or 
not a set of polynomial equations has a common root without analytically or 
numerically solving for the roots. It can be used in many real-life and 
engineering applications, such as in robotics (Yang, et al. [1]), computer-aided 
geometric design (Lewis and Stiller [2]), geodesy and geoinformatics (Awenge 
et al. [3]), and many more. The resultant is figured out as a polynomial in terms 
of the coefficients of the given system. For the univariate system there are two 
types of constructions, namely the Sylvester and Bézout resultant, as 
respectively proposed by Sylvester [4] and Bézout [5]. The size of the Sylvester 
resultant matrix is large but easy to compute, while the Bézout matrix has 
complicated entries but produces a comparatively small-sized matrix. Macaulay 
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[6] and Dixon generalized the Sylvester and Bézout cases to their respective 
multivariate settings. Any setting that combines two methods is referred to as a 
hybrid resultant matrix. A detailed comparison of a number of existing hybrid 
methods is given by Sulaiman & Aris [7].    

For a system of polynomials  1 2 1, , , [ ,..., ]n nF f f f K x x    with their respective 

degrees 1 2, ,..., nd d d , the classical Macaulay method of computing the resultant 
polynomial is given by the ratio of the two matrices. Wang & Lian [8] give the 
implementation of the Macaulay method for the system of three polynomial 
equations. One major setback of this method is that the determinants of the two 
matrices can be zero. In addition, Kapur & Saxena [9] gave an example that 
shows that the resultant cannot always be computed using the Macaulay 
formulation. 

Jouanolou [10,11] modified Macaulay’s method to produce a tighter matrix, 
resulting in another Macaulay-style formula. His formulation consists of four 
blocks. Two of the blocks are defined by some mappings that are purely 
Sylvester-type, while the third block is defined using a Bézoutian matrix and the 
final block consists of zero entries only. Szanto in [12] observed that the 
Jouanolou method also produces some extraneous factors and proposed a 
Macaulay-style formula by dividing the resultant matrix with a minor matrix, 
called the matrix of unwanted factors.  

To determine the Bézoutian matrix of the Jouanolou method, first, the 
differentials are computed and arranged in the matrix using a certain order. 
Then the determinants of the matrix of differentials are used to determine the 
entries of the Bézoutian matrix, also called the Morley form [11]. The 
computation of the determinants usually gives very large polynomials, which 
makes the extraction of the entries of the Bézoutian matrix very difficult. The 
proposed method replaces the Bézoutian matrix with a portion of the entry 
formula for computing the resultant given by Chionh, et al. [13]. 

The Dixon formulation can produce the smallest resultant matrix. However, the 
entries of the Dixon matrix are complicated in comparison to other Sylvester-
type methods. As an alternative to the direct method of computing the Dixon 
resultant matrix, two different algorithms are proposed in Chionh, et al. [13-14]. 
Zhao & Fu [15] extended one of the algorithms to more general form and Qin, 
et al. [16] gave a complexity analysis of the generalized algorithm. The 
algorithms compute the Dixon resultant matrix directly from the coefficients, 
which avoids computation of an intermediate expression swell that usually 
occurs during large polynomial computations [13]. Details of the resultant 
formulations in relation to extraneous factors can be found in [17-18]. In this 
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paper, a hybrid method for computing the resultant matrix is proposed. The 
hybrid setting is based on the Dixon-Jouanolou methods. A portion of the entry 
formula for computing the Dixon matrix is combined with one of the mappings 
of the Jouanolou method. 

2 Background  

This section gives a brief description of the two methods considered for 
construction of the hybrid method. A detailed description can be found in [12-
14]; these background materials are given to make this paper self-contained. 

2.1 The Jouanolou Method 

Consider the system of homogeneous polynomials 
 1 2 1, , , [ ,..., ]n nF f f f K x x    with their respective degrees given as 1 2, ,..., nd d d

. The critical degree is given by: 

 ( 1)
n

i
i

d    (1)                                               

Using Eq. (1), the size of the Jouanolou matrix is given by the formula:  

  1( ) ( ),       0 .1r
r nS M r rn          (2) 

The parameter ( )r    is the dimension of the   vector space; the size of the 
Jouanolou method depends on the right choice of parameter r . The elements of 
the   vector space are of a degree r   in the ideal generated by system F .  

Definition 2.1 [12] Let  1 2 1, , , [ ,..., ]n nF f f f K x x  
 

be a system of 

homogeneous polynomials. For 0 1     the following terms are defined: 

 Mon ( ) { : }n x     

 Rep ( ) { : , }d i ix i d         

 Dod ( ) { : , }d i i j jx i j d d           
 

Definition 2.2 [12] Let 1 2[ , ,..., ]i

i

a

i a nf C x K x x x   with 1 2( , ,..., )nx x x x
 

and let 𝑦 ൌ ሺ𝑦ଵ, 𝑦ଶ, … , 𝑦௡ሻ be a new variable and define the differentials

, ( , )i j x y  by 1 1 1 1
,

( ,..., , ,..., ) ( ,..., , ,..., )
( , ) i j j n i j j n

i j
j j

f y y x x f y y x x
x y

x y
 

 


, 

1 ,i j n  which can be written as: 
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1 1 1 1

,

( ,..., , ,..., ) ( ,..., , ,..., )

( , )( )  1 , .

i j j n i j j n

i j j j

f y y x x f y y x x

x y x y i j n

 

    
 

The Bézoutian block is computed from the following determinant: 

 , 1 ,( , ) det( ( , )( )) ( )i j j j i j n
v

x y x y x y x y



 



        

Definition 2.3 [12] For a fixed r , 0 r   , the Jouanolou resultant matrix is 
given by:  

 *( ) 0
r r

r
r

J F  


    
 

where *,t t tand      represent the following mappings: 

 *: Mon( ) Mon( ) Morl ( )r r r y x
         (3) 

If Rep ( )dx r  , then let ( )i   be the smallest index such that 
( )( ) ii d
  and 

define: 

 
r

: Rep
d
( r)   Mon( r) x 

x

x
i( )

di ( )
)  f

i ( )
 (4) 

* *

Rep ( )

: Mon( ) Rep ( ) ( ))
d

r d t

x r

r r y y x y


    


        (5)  

Definition 2.3 describes the Jouanolou resultant matrix for r  , if r   the 
formulation precisely gives the classical Macaulay resultant matrix. 

2.2 Entry Formula 

Consider the bivariate system of degree 1 2( , )m m . The system of Eq. (6) is 

assumed to be unmixed, which means they have the same set of exponents. 

 
1 2 1 2 1 2

1 , 2 , 3 ,
0 0 0 0 0 0

,    ,    
m m m m m m

i j k l p q

i j k l p q
i j k l p q

f a x y f b x y f c x y
     

       (6) 

Let 1 1( , )x y  be a set of new variables. Using the Dixon method, the following 

determinant is given as: 

 
1 2 3

1 1 1 1 2 1 3 1

1 1 1 2 1 1 3 1 1

( , ) ( , ) ( , )
Det( , , , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

f x y f x y f x y
x y x y f x y f x y f x y

f x y f x y f x y
  (7) 
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Simplifying Eq. (7) gives another equation in terms of summations: 

 
1 2 1 2 1 2

1 1 1 1
0 0 0 0 0 0

D et( , , , ) , ; , ; ,
m m m m m m

i j l k p q

i j k l p q

x y x y i j k l p q x y x y 

     

        (8) 

Here , ; , ; ,i j k l p q
 
are the 3 3 determinants in terms of the coefficients of the 

polynomials defined by Eq. (6) as given in Eq. (9):  

 
, , ,

, , ,

, , ,

, ; , ; ,
i j i j i j

k l k l k l

p q p q p q

a b c
i j k l p q a b c

a b c
  (9) 

Let ,  ,  and a i c k p b j l d q      . Eq. (8) can be represented in the 
following form: 

 
1 2 1 22 2

1 1 , , , 1 1
0 0 0 0

( , , , )Det
m m m m

a b c d

a b c d
a b c d

x y x y C x y x y
   

   (10) 

Here, , , ,a b c dC  denotes the coefficients of 1 1

a b c dx y x y  in 
1 1

Det( , , , )x y x y . Note 

that 
1 1

Det( , , , )x y x y  is divisible by 1 1( )( )x x y y  , therefore the Dixon 

polynomial is defined as: 

 1 1
1 1

1 1

D et( , , , )
( , , , )

( )( )
x y x y

x y x y
x x y y

 
 

 (11) 

The Dixon polynomial defined in Eq. (11) is of degree at most 1 1m   in x ,

22 1 in m y , 1 12 1 in m x  and 2 11 in m y . Substituting Eq. (10) into Eq. (11) 
and a little work gives:  

 
1 2 1 21 2 1 2 1 1

1 1 , , , 1 1
0 0 0 0

( , , , )
m m m m

a b c d

a b c d
a b c d

x y x y C x y x y
   

   

       (12) 

To avoid polynomial divisions, a formula for the sum to infinity is employed so 
that the fraction can be written as: 

 1 1

0 01 1

1 1

( )( )

vu

u v

x y

x x y y xy x y

 

 

          
   (13)  

Substituting Eq. (8) and Eq. (13) into Eq. (11) gives:  

1 1
1 1 1 1 1 1

, ; , ; . ,

( , , , ) , ; , ; ,
u v

i j l k p q

u v
i j k l p q u v

x y
x y x y i j k l p q x y x y

x y
 

 
     (14) 

Equating both sides of Eq. (12) and Eq. (14) gives:  
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1 1, , ,
, , ,

1 1
1 1 1 1

, ; , ; . ,

, ; , ; ,

a b c d
a b c d

a b c d

u v
i j l k p q

u v
i j k l p q u v

C x y x y

x y
i j k l p q x y x y

x y
 

 



 
   (15) 

Comparing the exponents of Eq. (15) gives: 

 1,  , 1 and i a u k p c u j l b v q d v             (16) 

Referring back to Eq. (6), the two constraints 10 , ,  andi k p m 

20 , ,j l q m 
 are found. Combining these constraints with Eq. (16) gives: 

 1 2 1 2
0 1 , 0 1 2 ,  0 2  and 0a u m b v m c u m d v m               (17) 

Considering Eq. (13), the constraints 0 ,v u    can be obtained and from 
Eq. (12). The following condition is imposed: 

 1 2 1 20 1,  0 2 1,  0 2 1 and 0 1a m b m c m d m             (18) 

Combining Eq. (16) and Eq. (17) for 0 ,v u    gives another set of 

constraints in terms of ,u v  as follows: 

1 20 min( , 1 )  and 0 min( , 2 1 )u c m a v d m b         (18) 

Referring to Eq. (16), the coefficients of , , ,a b c dC  can now be written in the 

following form: 

, ; , ; , 1 , 1 ; , ; ,i j k l p q a u b v l k l c u k d v          (19) 

Note that there are existing constraints 1 20  and 0k m l m     together with 

other constraints 2 10 1  and 0b v l m c u k m          from Eq. (16);

 and k l  have the following conditions: 

 1 1

2 2

max(0, ) min( , );

max(0, 1 ) min( , 1 )

c u m k m c u

b v m l m b v

    

      
  (20) 

Combining Eqs. (18), Eq. (19) and Eq. (20), the first entry formula emerges:  

 
1 2 1

1

min(c, 1 ) min( ,2 1 ) min( , )

, , ,
0 0 max(0, 1 )

m a d m b m c u

a b c d
u v k c m

C
    

    
     
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2

2

min( , 1 )

max(0, 1 )

1 , 1 ; , ; ,
m b v

l b v m

a u b v l k l c u k d v
 

   
         (21) 

Note that getting rid of the intermediate cancelling terms, which are precisely in 
the range of l  from 0  to d , Eq. (21) can be improved as follows: 

 

1 2 1min(c, 1 ) min( ,2 1 ) min( , )

, , ,
0 0 max(0, 1 )

m a d m b m c u

a b c d
u v k c a

C
    

    

   
 

 

2

2

min( , )

max(b+1, 1 )

1 , 1 ; , ; ,
m b v d

l b v m

a u b v l k l c u k d v
 

   

       
  

(22)
 

The formula given in Eq. (22) first appeared in [13], providing a systematic way 
of computing the entries of the Dixon resultant matrix.  

3 Main Results 

This section introduces the hybrid construction that combines the mapping 
defined in Eq. (4) with the entry formulation given by Eq. (22). The hybrid 
matrix consists of four blocks: the first block is defined by Eq. (22), the second 
and third blocks are given by Eq. (4), while the final block consists of zero 
entries only. 

3.1 Hybrid Formulation   

Definition 3.1  Let 0r   be a fixed parameter; the resultant matrix of the 
system of polynomials  1 2 1, , , [ ,..., ]n nF f f f K x x    is contained in the 

determinant of the following matrix: 

 R ( )
0Tr

A C
F

C
  
  

. 

Eq. (22) is used to compute the entries of block A  with the following additional 
conditions: 

 
1 2

1 2

0 ,
1

0 , m ax ( , )
2

0 , m ax ( , )

u v

a d m m

b c m m

   
      

 

, 

where the function     
denotes the floor function.  

The entries of block C  and its transpose are computed from Eq. (4), subject to 
the following condition: 
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1

( 1 )

2

n

i
i

d
r 

 
 
 
 
  




 . 

Let max 1 2
max( , , , )

n
d d d d  , where each 

i
d

 denotes the degree of if , the size of 

the hybrid matrix is estimated by the formula: 

 
m ax( ) ( 1) !   rS R n d     . (23) 

Here 𝜌 ൌ |𝑅𝑒𝑝ሺ𝑟ሻ| denotes the number of multipliers found in the sets of 
monomials Rep(r). These multipliers are used to obtain the entries of block C  
as well as TC .  
 
Notice the Dixon resultant requires the system to have 1n   polynomials with 
n  variables. Geometrically speaking the results are considered to be in an affine 
space. However, the Jouanolou method requires 1n   polynomials with 1n   
variables, which define a projective resultant. To overcome the different 
requirements of these methods, the notion of pseudo-homogenization is 
introduced.  

3.2 Pseudo-homogenization 

Definition 3.2  A variable mx  is called an artificial variable if it satisfies the 

following conditions: 

1. 1 for n

mx n ℕ    

2. 2. For all nℕ 2 n

m m mx x x   . 

Definition 3.3  Pseudo-homogenization is the act of using an artificial variable 
to normalize the system of polynomial equations from inhomogeneous to 
homogeneous and vice versa.  

Example 1  Let F be a system of polynomials in the variables ,x y : 

 

2 2

1

2 2

2

2 2

3

4 5 6 3 5 1

5 2 6 3 3

6 5 2 4 6 5

f x x y ay y

F f x xy ax a a

f ax y y a a

     

      

     







   (24) 

Using Definitions 3.2 and 3.3, a pseudo-variable z  can be used to homogenize 
the system of Eq. (24) into the following form: 
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2 2 2

1
2 2 2

2
2 2 2

3

4 5 6 3 5
5 2 (6 3 3)

6 5 2 (4 6 5)

f x xz y ayz yz z
F f x xy axz a a z

f axz y yz a a z

     
      

     





 . (25) 

Note that the hybrid method uses the two forms described in Eqs. (24) and (25). 
The entry formula requires that the system is inhomogeneous, while the 
mapping defined in Eq. (4) requires a homogenous system. 

Figure 1 describes the procedure for computing the hybrid resultant matrix. The 
system of equations can be either homogeneous or inhomogeneous. In whatever 
case, the notion of pseudo-homogeneousness will be used to homogenize or 
dehomogenize the equations based on the conditions of the individual block. 

 
Figure 1 Procedure for computing the hybrid resultant matrix. 

3.3 Elements of the Entry Formula 

This section describes the elements of the entry formula given in Eq. (22). 
Referring to the system of polynomial equations given by Eq. (6), the direct 
method for computing the Dixon resultant matrix is given by the formula: 

 
1 2 3

1 2 3

1 2 3

( , ) ( , ) ( , )1
( , , , ) ( , ) ( , ) ( , )

( )( ) ( , ) ( , ) ( , )

f x y f x y f x y
x y f y f y f y

x y f f f
    

       
 

 
 (26) 

Where α and β are regarded as new variables. By means of a lexicographical 
order x > y and α > β as imposed in [14], the following system can be obtained: 

System of polynomials 

Is the system 
homogenous

No Yes

Inhomogeneous  Homogeneous  

Homogenized 

Generate the 
entries of A and its 
transpose using the 

multipliers 

Compute the 
multipliers of the 

block A Compute the 
multipliers of the 

block A 

Generate the 
entries of A and its 
transpose using the 

multipliers 

Compute the 
entries of the block 

A using entry 
formula 

Hybrid resultant matrix 

De‐homogenized  

Compute the 
entries of the block 

C using entry 
formula  
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 (27) 

Here, D  is the Dixon resultant matrix and Eq. (28) gives the complete nature of 
the elements of the Dixon matrix: 

 

0,0,0,0 0,0,0,1 0,0,2 1, 1

0,1,0,0 0,1,2 1, 1

1,2 1,0,0 1,2 1,0,1 1,2 1,2 1, 1

s t

s t

s t s t s t s t

C C C

C C

D

C C C

 

 

       



 
 
 
 
 
 
 
 
  

  

  
 
  

  

  (28) 

Note that the elements of matrix D  are computed directly from Eq. (22) such 
that the computation can be performed in parallel. Example 2 shows that the 
computation of each entry is independent. 

 

0 ,0 , 0 , 0 0 ,0 , 0 ,1 0 ,0 ,1 , 0 0 ,0 ,1

0 ,1 ,0 , 0 0 ,1 , 0 ,1 0 ,1 ,1 , 0

0 , 2 , 0 ,0 0 , 2 , 0 ,1 0 , 2 ,1 , 0

0 ,3 ,0 ,0 0 ,3 , 0 ,1 0 ,3 ,1 , 0

1 ,0 ,0 , 0 1 , 0 , 0 ,1 1 , 0 ,1 , 0

1 ,1 , 0 , 0 1 ,1 , 0 ,1 1 ,1 ,1 , 0

1 , 2 ,0 , 0 1 , 2 ,0 ,1 1 , 2 ,1 , 0

1 ,3 , 0 , 0 1 ,3 , 0 ,1 1 ,3 ,1 , 0

C C C C
C C C
C C C
C C C

D C C C
C C C
C C C
C C C



,1 0 , 0 , 2 , 0 0 ,0 , 2 ,1 0 , 0 ,3 , 0

0 ,1 ,1 ,1 0 ,1 , 2 , 0 0 ,1 , 2 ,1 0 ,1 ,3

0 , 2 ,1 ,1 0 , 2 , 2 , 0 0 , 2 , 2 ,1

0 ,3 ,1 ,1 0 ,3 , 2 , 0 0 ,3 , 2 ,1

1 ,0 ,1 ,1 1 , 0 , 2 , 0 1 , 0 , 2 ,1

1 ,1 ,1 ,1 1 ,1 , 2 , 0 1 ,1 , 2 ,1

1 , 2 ,1 ,1 1 , 2 , 2 ,0 1 , 2 , 2 ,1

1 ,3 ,1 ,1 1 ,3 , 2 , 0 1 ,3 , 2 ,1

C C C
C C C C
C C C
C C C
C C C
C C C
C C C
C C C

0 , 0 ,3 ,1

,0 0 ,1 ,3 ,1

0 , 2 ,3 , 0 0 , 2 ,3 ,1

0 ,3 ,3 , 0 0 ,3 ,3 ,1

1 ,0 ,3 ,0 1 ,0 ,3 ,1

1 ,1 ,3 ,0 1 ,1 ,3 ,1

1 , 2 ,3 , 0 1 , 2 ,3 ,1

1 ,3 ,3 , 0 1 ,3 ,3 ,1

C
C

C C
C C
C C
C C
C C
C C

 
 
 
 
 
 
 
 
  

 

Example 2  Let the degree of the system of Eq. (6) be 𝑚ଵ ൌ 𝑚ଶ ൌ 2, the Dixon 
resultant matrix will be a square matrix of dimensions 2𝑚ଵ𝑚ଶ as described by 
Eq. (28). The entry 𝐶଴,ଵ,଴,ଵ can be computed using Eq. (22) as follows: 

 
1 1

0,1,0,1
0 0 1 2 0 0 1 2

1, ;2,0;0,1 1, ;0,2,1,1
u v k l u v k l

C v v v v
       

      

 0,1,0,1 1,0;1,2;0,1 1,1;1,2;0,0 1,0;0,2;1,1 1,1;0,2;1,0C      

where each |𝑖, 𝑗; 𝑘, 𝑙; 𝑝. 𝑞| is a 3 ൈ 3 determinant and they are computed using 
Eq. (9). Note that computing each entry largely depends on the values of a,b,c 
and d in 𝐶௔,௕,௖,ௗ. The values a,b,c and d have unique combinations that allow 
parallel computation of the entries. 
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In Example 3, we use a system of three polynomial equations of degree at most 
two to describe how this hybrid method can be used to compute the resultant 
polynomial. 

Example 3  Consider the system of homogeneous polynomials in 𝑥ଵ, 𝑥ଶ, 𝑥ଷ: 

 
1 1 1 2 2 3 3

2 1 1 2 2 3 3
2 2 2

3 1 1 2 2 3 3 4 1 2 5 1 3 6 2 3

f a x a x a x

F f b x b x b x

f c x c x c x c x x c x x c x x

  
   
      

  

Since the given system is homogenous, the two blocks 𝐶 and 𝐶் are computed 
as follows: 

3

1

( 1) 1i
i

d


   , 0
2

r   
   and (1,1,2) 1 2Rep( ) Rep (1) { , }r x x    .  

Using the mapping defined in Eq. (4), the multipliers are found and the blocks  
𝐶 and 𝐶்are computed.  

To compute block 𝐶, the system is dehomogenized by setting 𝑥ଷ ൌ 1 and the 
entry formula is used for the computation of the block according to Definition 
3.1. Combining the four blocks together, the following is the 5 ൈ 5 resultant 
matrix for the system in Example 3: 

1 2 3 1 3 6 2 1 3 2 3 5 3 1 6 3 2 5 2 3 1 1 3 4 3 1 4 3 2 13 1 2 1 3 2 1 1

2 3 4 1 3 2 3 1 2 3 2 4 2 1 4 1 2 42 1 2 1 2 2 2 2

2 1 1 1 2 12 3 1 3 2 1 3 3

321

321

  

0

0 0

0 0

a b c a b c a b c a b c a b c a b c a b c a b c a b c a b ca b c a b c a b

a b c a b c a b c a b c a b c a b ca b c a b c a b

a b c a b ca b c a b c a b

aaa

bbb

        
    
 











 
The determinant of the above matrix is the projection operator. If the 
determinant is an irreducible polynomial in terms of the coefficients of the 
given system, then it is considered exact. 

4 Complexity Analysis 

This section presents the computational analysis of the Dixon-Jouanolou 
method. The hybrid method has two components, called Sylvester and Bézout 
type. The monomial 𝑅𝑒𝑝ሺ𝑟ሻ is used to generate one of the Sylvester parts while 
𝑅𝑒𝑝ሺ𝛿 െ 𝑟ሻ is used to obtain the other. However, a loose entry formula is used 
obtained the Bézout block. Referring to Eq. (22), two factors need to be 
considered: 

i. The precise number of 3 ൈ 3 determinants required. 
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ii. The estimated number of multiplications and additions necessary while 
computing each determinant.   

Referring to Eq. (22) for a bivariate case, Chionh, et al. in [14] estimate the 
upper bound of the 3 ൈ 3 determinants as: 

 
2 2

1 1 1 2 2 21 2, ( 1)(2 1) ( 1)( 2)

3

m m m m m m m m
C

   
  (29) 

where 𝑚ଵ and 𝑚ଶ are the highest exponents of 𝑥ଵ and 𝑥ଶ respectively. Eq. (29) 
provides only the estimate of the number of 3 ൈ 3 determinants. For bivariate 
systems the exact number of  3 ൈ 3 determinants is estimated by Eq. (30): 

 1 2

2 2
, 1 1 1 2 2 2( 1) ( 2) ( 1) ( 2)

6 6
m m m m m m m m

D
   

   (30) 

Eq. (30) was obtained by Chionh, et al. [14] for 𝑚ଵ ൌ 𝑚ଶ ൌ 2 after solving 25 
linear equations in terms of the coefficients of the three bivariate equations. 
Proposition 1 gives the computational cost of computing the Dixon resultant 
using an entry formula. 

Proposition 1. The computational complexity of formulating the Dixon 
resultant matrix using the loose entry formula described by Eq. (22) for 
bivariate systems requires Oሺ𝑚ଵ

ଷ𝑚ଶ
ଷሻ multiplications and additions.  

Proof: Referring to Eq. (22), the number of 3 ൈ 3 determinants is given by 
Table 1. 

Table 1 Exponents of the Polynomials and their Corresponding Number of 
Determinants. 

ሺ𝒎𝟏, 𝒎𝟐ሻ Number 3 ൈ 3 Determinants 

(1,2) 
(2,2) 

36 
144 

(5,7) 26460 
(10,15) 1346400 
(20,17) 13430340 

From Table 1, Eq. (30) is derived only for (2,2), which gives 144 determinants. 
Apart from that, Eq. (30) fails to provide the exact number. Modifying Eq. (30) 
to a more general setting gives the following equation: 

 11 2

2 2
, 1 1 2 2 2

1 2

( 1) ( 2) ( 1) ( 2)

( 1) ( 1)

m m m m m m m m
E

n m n m

   
 

 
 (31) 
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Note that 𝑚ଵ and 𝑚ଶ stand for the highest power of variables 𝑥ଵ and 𝑥ଶ 
respectively from the bivariate system. The perimeter 𝑛 represents the number 
of variables. Simplifying Eq. (31) gives: 

 1 2, 1 1 1 2 2 2( 1)( 2) ( 1)( 2)

4

m m m m m m m m
E

   
   (32) 

To compute each 3 ൈ 3 determinant, 12 multiplications and 5 additions are 
required. Therefore, the total number of multiplications and additions required 
is estimated by Eq. (33): 

 
1 1 1 2 2 2

1 1 1 2 2 2

3 ( 1)( 2) ( 1)( 2)   multiplications

5
( 1)( 2) ( 1)( 2)         addditions

4

m m m m m m

m m m m m m

   

   





  (33) 

Expanding the terms of Eq. (33) gives Oሺ𝑚ଵ
ଷ𝑚ଶ

ଷሻmultiplications and additions 
respectively. 

The second part of the hybrid method consists of the Sylvester part. The 

formula 𝑁ሺ௠௢௡௢௠௜௔௟௦ሻ ൌ
ଵ

ଶ
ሺ𝑚ଵ ൅ 𝑚ଶ ൅ 1ሻሺ𝑚ଵ ൅ 𝑚ଶ ൅ 2ሻ is used to estimate 

the number of monomials available in each homogeneous polynomial in three 
variables. There are at least n  monomial multipliers for each polynomial 
equation. Therefore, a system of three bivariate polynomials requires the 
following operations: 

 
1 2 1 2

1 2 1 2

3
( 1)( 2)   multiplications

2

3
(( 1)( 2) 1)   additions   

2

n
m m m m

m m m m

   

    







  (34) 

So if we compute all these 3 ൈ 3 intermediate determinants just once and store 
them, we need to perform at least 

1 1 1 2 2 2 1 2 1 2

1 1 1 2 2 2 1 2 1 2

3
3 ( 1)( 2) ( 1)( 2) 2[ ( 1)( 2)]            

2
multiplications

5 3
( 1)( 2) ( 1)( 2) 2[ (( 1)( 2) 1)]    

4 2

additions

n
m m m m m m m m m m

m m m m m m m m m m

        

         









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Therefore the complexity of the Dixon-Jouanolou resultant matrix involves  
Oሺ𝑚ଵ

ଷ𝑚ଶ
ଷሻmultiplications and Oሺ𝑚ଵ

ଷ𝑚ଶ
ଷሻadditions.  

Chionh [14] reported that the computational cost of constructing the Dixon 
resultant matrix entails  Oሺ𝑚ଵ

ସ𝑚ଶ
ସሻ multiplications and Oሺ𝑚ଵ

ସ𝑚ଶ
ସሻ additions. A 

summary of the complexity of computing the entries of the Dixon resultant 
matrices are given in Table 2. The result of the analysis shows an improvement 
in terms of the complexity of computing the polynomials resultant using the 
new hybrid method. This analysis is done without the application of parallel 
computation, which can further pick up the performance of the Dixon-
Jouanolou method. 

Table 2 Complexity for Computing Standard Dixon versus Hybrid Method. 

Types of Operation Standard Dixon Method New Hybrid Method  
Multiplications Oሺ𝑚ଵ

ସ𝑚ଶ
ସሻ Oሺ𝑚ଵ

ଷ𝑚ଶ
ଷሻ 

Additions Oሺ𝑚ଵ
ସ𝑚ଶ

ସሻ Oሺ𝑚ଵ
ଷ𝑚ଶ

ଷሻ 

5 Conclusion 

This paper presented a new approach of computing the resultant polynomial 
from a given system of equations; this notion is used for solving systems of 
multivariable polynomials. The efficiency of the matrix method depends on the 
size of the matrix and the nature of the elements of the resultant matrix. A new 
approach of computing the entries of the hybrid resultant matrix was presented 
in addition to producing a smaller matrix compared to existing hybrid methods, 
such as the Sylvester-Bézout hybrid formulation [19], the Cayley-Sylvester 
hybrid method [14] and the Sylvester-Cayley hybrid formulation [14].  
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