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White matter abnormalities are a nearly universal pathological fea-
ture of neurodegenerative disorders including Huntington disease
(HD). A long-held assumption is that this white matter pathology is
simply a secondary outcome of the progressive neuronal loss that
manifests with advancing disease. Using a mouse model of HD,
here we show that white matter and myelination abnormalities
are an early disease feature appearing before the manifestation
of any behavioural abnormalities or neuronal loss. We further
show that selective inactivation of mutant huntingtin (mHTT) in
the NG2+ oligodendrocyte progenitor cell population prevented
myelin abnormalities and certain behavioural deficits in HD mice.
Strikingly, the improvements in behavioural outcomes were seen
despite the continued expression of mHTT in non-oligodendroglial
cells including neurons, astrocytes and microglia. Using RNA-seq
and ChIP-seq analyses, we implicate a novel pathogenic mecha-
nism, namely enhancement of PRC2 (polycomb repressive complex
2) activity by mHTT, in the intrinsic oligodendroglial dysfunction
and myelination deficits observed in HD. Our findings challenge
the long-held dogma regarding the etiology of white matter
pathology in HD and highlight the contribution of epigenetic
mechanisms to the observed intrinsic oligodendroglial dysfunc-
tion. Our results further suggest that ameliorating white matter
pathology and oligodendroglial dysfunction may be beneficial for
HD.

Huntington disease | white matter | oligodendrocytes | myelination |
PRC2

Introduction

White matter (WM) structures are profoundly affected in nearly
all neurodegenerative disorders. In Huntington disease (HD),
morphometric and histological studies have shown myelin break-
down and loss of white matter volume in post mortem HD brains
(1-3). Furthermore, structural magnetic resonance and diffusion
tensor imaging (MRI) have revealed volumetric atrophy and
tract connectivity abnormalities in white matter regions in pre-
symptomatic gene carriers and symptomatic patients with HD
(4-6). Evidence of white matter abnormalities has also been
observed in animal models of HD. Indeed, decreased expression
inmyelin binding protein (MBP) and thinnermyelin sheaths were
found in the BACHD mouse model of HD at a very early time
point, weeks before the onset of behavioral phenotypes (7). In
agreement with this, our laboratory has recently shown white
matter microstructural abnormalities, thinner myelin sheaths and
a lower expression of myelin related genes in the YAC128 mouse
model of HD at a very early age (8, 9). Despite this prominence of
white matter atrophy in HD, its etiology is not fully understood.
It has long been assumed that white matter atrophy is secondary
to neuronal loss. However, the appearance of whitematter abnor-
malities very early in the disease course, indeedmany years before

neurological onset in patients (6, 10, 11) and prior to any neu-
ronal loss in animal models of HD (7, 8, 12) suggests otherwise.
Oligodendrocytes, the myelinating cells of the central nervous
system (CNS), play a crucial role in maintaining axonal integrity
and function. Deficits in oligodendrocytes or their precursors can
lead to axonal pathology and neurodegeneration (13). Here, we
hypothesized that intrinsic mHTT-mediated deficits in oligoden-
droglia contribute to myelination abnormalities and behavioural
manifestations in HD. To test this hypothesis, we evaluated the
impact of genetic reduction of mHTT in the oligodendrocyte
progenitor cell (OPC) population specifically on myelination and
behavioural phenotypes in HD mice.

Results
NG2Cre mediated reduction of mHTT in oligodendroglia

BACHD mice carry a full-length human mutant HTT gene
modified to harbor a loxP-flanked exon 1 sequence (14). By
crossing BACHD to NG2Cre mice which express the Cre re-
combinase in NG2+ OPCs (Fig. 1A), we were able to reduce
mHTT expression specifically in oligodendroglia. Genomic PCR
analysis showed successful excision of mHTT in the cortex of
BACHDxNG2Cre (BN) mice (Fig. 1B). We further confirmed

Significance

Huntington disease (HD) is a progressive neurodegenerative
disorder. While research efforts in HD have largely focused
on understanding grey matter atrophy representing neuronal
loss, there is clear evidence from human and animal studies
that white matter structures, representing myelin-rich regions
of the brain, are profoundly affected. Here, using an HD
animal model, we show that myelin abnormalities appear
before the manifestation of behavioural deficits or neuronal
loss. Reduction of the mutant protein in oligodendrocytes, the
myelinating cells of the central nervous system, prevented
myelin abnormalities and certain behavioural deficits in HD
mice. Our data implicate a novel pathogenic mechanism and
suggest that directly targeting white matter pathology could
be beneficial for HD. New therapeutic interventions targeting
oligodendroglia should be considered.
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Fig. 1. OPC-intrinsic effects of mHTT cause myelination abnormalities in HD mice.(A) Schematic representation of Cre-mediated genetic reduction of mHTT
expression in OPCs (NG2+ cells) in BACHD mice. (B) PCR analysis confirmed the excision of human mHTT exon 1 in the cortex of BN mice. (C) mHTT mRNA levels
are reduced in purified OPCs in BN mice at P6-P7. n = 3/genotype (P = 0.0100, t = 4.601, d.f. = 4). (D) EM images of myelinated axons in the CC at 12 months of
age. Scale bar represents 1 μm. (E-G) Higher g-ratios (thinner myelin sheaths) in BACHD mice are rescued in BN mice. n = 3/genotype; ∼300 axons quantified
per animal. Data show means ± SEM; P * < 0.05, ** P < 0.01; two-tailed Student’s test in C and one-way ANOVA followed by Tukey’s test in G.

Fig. 2. Behavioural deficits in HD mice are partly the result of mHTT-
mediated defects in oligodendroglia. (A) Overview of behavioural assess-
ments. BACHD mice show cognitive deficits in the rotarod learning (B), motor
deficits in the rotarod (C) and climbing (D) tests, anxiety-like behavior in
the OF at 6 months of age (E) and depressive-like behavior in the Porsolt
FST at 12 months of age (F). The ability to swim is comparable among
genotypes at 12 months of age (G).BN mice show a rescue in some of the
behavioral phenotypes. n = 12-20 mixed gender/genotype. Data represent
means ± SEM; ns = not significant; * P < 0.05; ** P < 0.01; *** P < 0.001;
**** P < 0.0001 (compared to BACHD); ### P < 0.001; #### P < 0.0001
(compare to BN). One-way ANOVA (E-G) or two-way ANOVA (B-D) followed
by Tukey’s multiple comparisons test were applied for all behavioral studies.
G=genotype, T=trial, A=age.

that mHTT mRNA levels in isolated NG2+ OPCs were reduced
by ∼70% in BN mice (Fig. 1C).

OPC-intrinsic effects of mHTT cause myelin deficits in HD
mice

To assess the impact of reducing mHTT expression specifi-
cally in OPCs on myelination deficits in HD, we used electron
microscopy to visualize myelinated fibres in the corpus callosum,
the largest white matter structure in the brain, at 12 months
of age (Fig. 1D). We examined g-ratios of myelinated axons,
a measure of myelin sheath thickness calculated as the ratio
of axon diameter (axon caliber) to myelinated fibre diameter.

BACHD mice presented increased g-ratio compared with WT
(Fig. 1E), indicating that their myelin sheaths were thinner. We
found that selective reduction of mHTT in OPCs reversed this
phenotype in BN mice (Fig. 1F). Indeed, the increased mean
g-ratio in BACHD mice was rescued in BN mice, where it was
comparable to WT mice (Fig. 1G). We also performed the same
analysis at one month of age (SI Appendix, Fig. S1A), where no
significant differences in g-ratio were found among genotypes
with one-way ANOVA. However, a binary t-test of only WT and
BACHD groups showed increased mean g-ratio in BACHDmice
(SI Appendix, Fig. S1, B and C). This indicates that myelin sheaths
in BACHD mice were thinner compared with WT mice as early
as one month of age, demonstrating that myelin abnormalities
in HD are an early phenotype. Periodicity, a measure of myelin
compaction calculated as the mean distance between two major
dense lines, was also increased in BACHD mice indicating less
compact myelin compared with WT mice (SI Appendix, Fig. S1D
and E). Both abnormalities, mean g-ratio and periodicity, were
rescued in BNmice (SI Appendix, Fig. S1, B-E).We next analyzed
the number of myelinated axons in the corpus callosum (CC) and
did not find any significant differences between the genotypes,
suggesting no defects in the initiation ofmyelination (SI Appendix,
Fig. S1F). To evaluate the functional impact of the WM abnor-
malities, we measured compound action potentials (CAPs) in the
CC of BACHD brain slices at 14 months of age. Quantification
of the average stimulus-response revealed a modest decrease in
the amplitude of the N1 component (myelinated axons), but not
N2 (unmyelinated), in BACHD mice compared with WT mice,
although the difference did not reach statistical significance (SI
Appendix, Fig. S2B). BN mice showed a similar amplitude of the
N1 component to WT mice (SI Appendix, Fig. S2, A and B).
Furthermore, a modest but not significant decrease in the area
of CAPs was detected on BACHD and BN in both N1 and N2
components, while duration of CAPs was comparable between
the groups (SI Appendix, Fig. S2, C and D). The findings of
the electron microscopy myelin sheath analyses clearly indicate
that intrinsic oligodendroglial dysfunction mediated by mHTT
contributes to structural myelination defects in HD. However, a
conclusion of how this dysfunction impacts conduction velocity
cannot be drawn due to the small sample size.

Behavioural deficits in HD mice are partly the result of
mHTT-mediated defects in oligodendroglia

We next tested whether specific inactivation of mHTT in
OPCs leads to improved motor and psychiatric-like behavioral
phenotypes in BACHD mice. We evaluated mice at 2, 4, 6, 8,
10 and 12 months of age using a battery of behavioural tests
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Fig. 3. Epigenetic dysregulation mediates mHTT effects on oligodendroglia. (A) Heatmap and hierarchal clustering of the significantly differentially expressed
genes between WT (n=3), BACHD (n=3), and BN (n=3) (360 genes, 10% FDR LRT). Red indicates higher gene expression and blue represents lower gene
expression. Boxes indicate clusters of samples determined by 10,000 bootstraps (B) Volcano plot showing the differentially expressed genes between BN (n=3)
and BACHD (n=3) mice corpus callosum. The significant up-regulated genes with respect to BN are indicated in red, while the significant down-regulated
genes are indicated in blue (FDR<10%). (C) GO analysis of significant DEGs between BACHD and BN mice. The top three significant terms (FDR<5%) for
up-regulated and down-regulated genes are shown. (D) Heat maps shows mean gene expression levels of selected genes in WT, BACHD and BN mice. (E)
Nkx2.2 appears as top motif enriched in up-regulated DEGs between BACHD and BN. (F) Htt gene expression (Fragments Per Kilobase Million, FPKM) in
different stages of oligodendroglial differentiation (from (20), n=2 for each group, bars indicate mean). OPC = oligodendrocyte progenitor cells, NFOL =
newly formed oligodendrocytes, MOL = myelinating oligodendrocytes. (G) REST and PRC2 binding sites are enriched in DEGs between BACHD and BN. (H)
ChIP-qPCR enrichment at the En2 promoter in CC for EZH2 and SUZ12. Rpl32 was used as negative control. (I) Increased number of EZH2 and SUZ12 binding sites
in the BACHD compared to WT is partially rescued in BN mice. (J) Immunoblot analysis of H3K27me3 in the CC of WT, BACHD, and BN mice. Values normalized
to WT and presented as means ± SEM; n=3 per genotype; * P < 0.05 by one-way ANOVA with Tukey’s post-hoc test; $ P < 0.05 by unpaired two-tailed t-test.

(Fig. 2A). BACHD mice exhibited motor deficits as early as
four months of age in the rotarod (latency to fall) and climbing
(time climbing) tests, both reliable assays of motor impairment
in BACHD mice (15). We found that BN mice showed improve-
ments in the climbing test but not rotarod training or performance
(Fig. 2, B-D). The improvements in climbing performance of BN
mice are most readily seen at 2-6 months, with more comparable
performance amongst the groups at later time-points due to age-
dependent decline in the WT and BN groups. BACHDmice also
displayed psychiatric-like behavioral deficits, including anxiety-
like behavior in the open-field (OF) test at six months of age and
depressive-like behavior in the Porsolt forced swim (FST) test at
12 months of age, as shown previously (15). BN mice showed a
modest improvement in the OF test, where the time spent in the
center is not significantly different compared to WT mice, and a
significant improvement in the FST (Fig. 2E and F). In order to
verify that this phenotype reflects psychiatric-like behavior rather
than motor impairments, we tested the mice for swimming ability
in a simple swim test. We showed that the ability to swim is
comparable among genotypes (Fig. 2G).

To rule out the possibility that increased body weight may
contribute to certain behavioural phenotypes, body weight was
plotted against time climbing and time in center ofOF at 6months
of age, and time immobile at 12 months of age. Regression anal-
ysis revealed no correlation between body weight and climbing
time (r2 = 0.10, P = 0.24 for WT; r2 = 0.01, P = 0.72 for NG2; r2
= 0.01, P = 0.74 for BACHD; r2 = 0.02, P = 0.55 for BN), body
weight and time in center (r2 = 0.02, P = 0.57 for WT; r2 = 0.01,
P = 0.72 for NG2; r2 = 0.09, P = 0.31 for BACHD; r2 = 0.12, P
= 0.13 for BN), and body weight and time immobile (r2 = 0.15, P
= 0.17 for WT; r2 = 0.15, P = 0.17 for NG2; r2 = 0.004, P = 0.82
for BACHD; r2 = 0.04, P = 0.39 for BN), showing that increased
body weight is not contributing to these behavioural phenotypes.

Therefore, selective inactivation of mHTT in OPCs improves
certain aspects of motor and psychiatric-like deficits in BACHD
mice, suggesting that mHTT-related effects in oligodendroglia
contribute to the manifestation of some behavioural phenotypes
in HD.

Absence of OPC-intrinsic effects of mHTT on neuropathol-
ogy and oligodendrogenesis in HD mice
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Wenext addressed whether the specific inactivation of mHTT
in OPCs can influence striatal atrophy in BACHD mice. We
found that striatal volume was decreased in BACHD mice (SI
Appendix, Fig. S3B) while forebrain weight was not significantly
different among genotypes by one-way ANOVA. However, when
a binary t-test was used, BACHD mice showed a significant
decrease in forebrain weight compared to WT (SI Appendix, Fig.
S3A). Forebrain weight and striatal volume loss were not rescued
in BN mice (SI Appendix, Fig. S3, A and B), suggesting that
striatal pathology is not markedly impacted by mHTT-related
oligodendroglial deficits.

Changes in the proliferation of NG2+ cells are observed
in a wide variety of acute and chronic CNS conditions (16).
To investigate whether oligodendroglia proliferation is altered
in HD, we counted the number of cells that were positive for
Olig2 (a transcription factor that marks the entire oligodendro-
cyte lineage), together with BrdU in the CC (SI Appendix, Fig.
S3C). We also evaluated oligodendroglia density using Olig2,
GST-pi (a marker of mature oligodendrocytes) and PDGFRα (an
OPC marker) cell markers (SI Appendix, Fig. S3D). No changes
were observed in oligodendroglia density or their proliferation
in BACHD mice at 12 months of age, suggesting that myelin
pathology in BACHD mice is not associated with altered oligo-
dendroglial proliferation or differentiation in adult mice. Also,
we did not find any differences in the density or proliferation of
oligodendroglia populations in the striatum and subventricular
zone in BACHDmice compared withWTmice (SI Appendix, Fig.
S3, E-H).

RNA-seq analysis provides insights into the pathogenic
mechanisms

To gain insights into the pathogenic mechanisms underlying
the oligodendrocyte dysfunction observed in HD mice, we per-
formed RNA-seq analysis on the CC of WT, BACHD and BN
mice at one month of age. We compared the gene expression
profiles of the three genotypes and identified 360 significantly
differentially expressed genes (DEGs, FDR 10%). Hierarchical
clustering of the gene expression from these DEGs revealed that
the expression profile from BN mice was significantly closer to
that of the WT mice than that of the BACHDmice (P<0.05, Fig.
3A, Dataset S1).

We then compared gene expression profiles from BN and
BACHD only and identified 449 DEGs (FDR<10%, Fig. 3B;
Dataset S1). Functional annotation of these DEGs revealed in-
creases in the expression of key genes associated withmyelination
in BN mice versus synaptic transmission in BACHD mice (Fig.
3C; Dataset S2). A heatmap of representative myelin related
genes that were down-regulated in BACHD compared to WT
mice and up-regulated in BN mice is shown in Fig. 3D. We also
found that somemyelin proteins such as Ermin, MBP (myelin ba-
sic protein), MAG (myelin-associated glycoprotein) and Septin-8
were indeed more highly expressed in BN versus BACHD mice
(SI Appendix, Fig. S4, A-D). To examine whether certain DNA
motifs were enriched in the DEGs, we applied a motif-discovery
algorithm, HOMER (17). An Nkx2.2 consensus-binding motif,
ACTTGGGAGG, was the top motif enriched among genes up-
regulated in BN mice (Fig. 3E, SI Appendix, Table S1). Nkx2.2
plays a key role in the regulation of OPC differentiation (18)
and is up-regulated during the OPC-to-oligodendrocyte transi-
tion (19). Interestingly, Htt is more highly expressed in OPCs
and newly formed oligodendrocytes compared with more mature,
myelinating oligodendrocytes (Fig. 3F) (20), suggesting the pos-
sibility of greater influence of mutant HTT in OPCs and newly
differentiated oligodendrocytes.

To further investigate the transcriptional changes identified,
we performed transcription-factor/target-gene interactions anal-
ysis using ChEA, a database of ChIP-based studies (21).We found
that DEGs between BACHD and BN were enriched for RE1

Regulation Transcription Factor (REST) and Polycomb Repres-
sive Complex 2 (PRC2) binding sites (Fig. 3G). Dysregulation
of REST has been implicated in HD, where as a result of dere-
pression by mutant HTT it translocates from the cytoplasm to
the nucleus in neurons leading to the repression of key neuronal
genes such as BDNF (22). In OPCs, REST is required for the
repression of neuronal properties and their development into
oligodendrocytes (23). Here, however, the role of mHTT in
REST dysregulation is not clear. PRC2 is a class of polycomb-
group proteins (PcG) thought to play a key role in the initia-
tion of gene repression (24). Via EZH2, the catalytic subunit
of the complex, PRC2 initiates repressive activity at target gene
promoters by trimethylating histone H3 lysine 27 (H3K27me3).
PRC2 plays a major role in lineage determination and cell
type specification, including oligodendroglia differentiation (25).
PRC2 activity is indeed down-regulated at the earliest stages of
neuron and astrocyte differentiation, while down-regulation of
PRC2 activity in oligodendrocytes parallels their maturation (25).
HTT is known to interact with and stimulate PRC2 activity in a
polyglutamine length-dependent manner (26). Moreover, mHTT
enhances PRC2 activity, increasing PRC2-specific histoneH3K27
methylation. Here we propose a mechanism by which mHTT,
enhancing PRC2 activity in oligodendroglia, leads to a delay in
their maturation and results in myelination defects. In order to
test the hypothesis of increased PRC2 activity in oligodendrocyte-
enriched white matter regions as a result of mHTT, we performed
chromatin immunoprecipitation followed by sequencing (ChIP-
seq) analysis on the CC of WT, BACHD and BN mice at one
month of age for EZH2, and SUZ12 (a subunit of PRC2).

Epigenetic dysregulation contributes to mHTT-mediated de-
fects in oligodendroglia

We first carried out ChIP-qPCR analysis, which showed high
enrichment (EZH2 and SUZ12 occupancy) at the promoter of
En2, a known target, compared to Rpl32 (negative control), in
the CC of WT mice (Fig. 3H). ChIP-seq revealed an increased
number of EZH2 and SUZ12 binding sites in BACHD compared
with WT chromatin (Fig. 3I). We found that the increased EZH2
and SUZ12 peaks observed in BACHD mice are rescued in BN
mice (Fig. 3I), implicating a role for excessive PRC2 activity in
oligodendroglial dysfunction in HD. EZH2 and SUZ12 binding
site peaks significantly overlapped in WT, BACHD and BN
conditions (SI Appendix, Fig. S5A). Enrichment analysis revealed
that peaks with significantly higher binding of SUZ12 in BACHD
compared to BN were enriched for processes including cerebel-
lum development, the node of Ranvier and a number of processes
associated with differentiation and morphogenesis (SI Appendix,
Fig. S5B). EZH2 peaks with higher binding in BACHD versus
BN were enriched for similar processes including regulation of
myelination and axonogenesis. Plekhb1, a gene highly expressed
in myelin (27), was down-regulated in BACHD compared to BN
(nominal p-value < 0.05), and was found to only have an EZH2
peak close to its TSS in BACHD and not in WT or BN (SI
Appendix, Fig. S5D).

We compared the set of genes whose promoters (± 5kb from
the TSS) were differentially bound by EZH2 between BN and
BACHD (Dataset S3) with the set genes identified as differen-
tially expressed between BN and BACHD. We found that the set
of DEGs was significantly enriched for differential EZH2 binding
in their promoters (11% of DEGs, P=0.001, Chi-squared test).
These differentially bound DEGs included genes involved in
myelination such as Semaphorin-4D (Sema4d) (28). In contrast,
the set of DEGs between BN and WT showed no enrichment
for differential binding of EZH2 (7% of DEGs, P=0.40, Chi-
squared test). Differential binding of SUZ12 in the promoter
regions (Dataset S3) did not show an enrichment in the set of
DEGs. Finally, we assessed the levels of H3K27me3 in the CC of
WT, BACHD, and BNmice as a global measure of PRC2 activity.
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Consistent with the ChIP-seq results, we found that the elevated
levels of H3K27me3 in BACHD mice are rescued in BN mice
(Fig. 3J). These results implicate differences in the binding and
activity of PRC2, driven by mHTT, in the dysregulation of key
genes involved in oligodendrocyte myelination.

Discussion

In this study, we provide strong evidence for intrinsic mutant
HTT-mediated defects in oligodendroglia leading to myelination
deficits and behavioural abnormalities in HD, and contributing
to the overall pathology of HD. Consistent with previous studies
on animal models of HD (7, 8), we show that BACHD mice
exhibit thinner myelin and decreased myelin compaction as early
as one month of age, suggesting that myelin abnormalities in
HD are an early phenotype. The appearance of white matter
abnormalities early in the disease course is in agreement with
clinical studies, where it appears many years before neurological
onset in patients (6, 10). We show that these early phenotypes
worsen with age, with greater myelin thinning in BACHDmice at
12 months old, indicating that myelin structure deteriorates with
disease progression, in line with the worsening of WM pathology
in subjects with HD as the disease progresses (10). While myeli-
nation abnormalities in HD have long been considered to be a
secondary effect of axonal degeneration, here we show that these
are primarily driven by intrinsic oligodendroglial dysfunction in
early stages of disease and are rescuable by inactivating mHTT in
oligodendroglia.

WM abnormalities have been linked to neuropsychiatric dis-
orders, including HD (29) and major depression (30-32), where
disconnection of WM regions including the CC has been re-
ported. In addition, loss of NG2-expressing glial cells has been
shown to trigger depressive-like behaviours in mice (33). Mo-
tor and cognitive abnormalities have also been associated with
changes in white matter structure in several disorders including
HD (34, 35). Our observations of improved psychiatric-like phe-
notypes, such as a rescue in the FST, and motor function that
accompanied the improvements in myelination (e.g. rescue of
increased callosal g-ratios) in BN mice support this link between
WM abnormalities and neurological deficits.

While inactivation of mHTT in oligodendroglia rescues
myelin deficits and ameliorates certain aspects of behavioural
phenotypes, it is not sufficient alone to improve striatal neu-
ropathology in HD mice. This lack of rescue of striatal atrophy
may not be entirely surprising given that mutant HTT remains
expressed in neurons and other glial cell types, and thus continues
to exert its detrimental effects on the function and survival of
striatal neurons. Moreover, medium spiny neurons, which are the
major neuronal population in the striatum and most vulnerable
neurons in HD (36), have very short projections and are mostly
unmyelinated, and thus may not benefit directly from improved
oligodendroglial function.

Two mechanisms that underlie myelination deficits in HD
have been proposed: abnormal cholesterol metabolism (7) and
MYRF (myelin regulator factor) dysregulation by its abnormal
association with mHTT (37). MYRF regulates oligodendrocyte
maturation and is essential for proper myelination (38). Re-
duction of MYRF transcriptional activity has been associated
with oligodendroglial dysfunction and myelin impairment in
HD (37). Decreased cholesterol biosynthesis has been linked to
impaired activity of peroxisome-proliferator-activated receptor
gamma coactivator 1 alpha (PGC1α) in HD (7). Here we impli-
cate enhancement of PRC2 activity by mHTT in intrinsic oligo-
dendroglial dysfunction and myelination deficits in HD, high-
lighting the contribution of epigenetic mechanisms to HD white
matter pathology. Oligodendroglia development is regulated by
a dynamic interaction between genetic and epigenetic factors.
EZH2, a component of PRC2, is a histonemethyltransferase that,

through the methylation of lysine 27 on histone H3 (H3K27),
plays a crucial role in oligodendroglia lineage determination
(25). A number of compounds have been developed to dampen
PRC2 function by inhibiting the enzymatic activity of EZH2 (39).
Targeting PRC2 activity with such EZH2 antagonists would help
address whether reducing PRC2 activity could lead to improve-
ments in myelination deficits in HD. Given its broad activity
and ubiquitous expression, however, it is doubtful that targeting
general PRC2 activity would be a viable therapeutic strategy for
HD. Nonetheless, efforts to establish the basis of interaction
between mutant HTT and PRC2 may reveal novel strategies for
moderation ofHTT’s interaction with PRC2 and normalization of
its activity. Such targeted mutant HTT-specific approaches have
the potential to provide therapeutic benefit while at the same time
minimizing undesirable side-effects.

While not validated in the current study, our analysis also
highlights a potential role for dysregulation of Nkx2.2 target
genes in the myelination deficits in HD. Of note, a recent hu-
man pluripotent stem cell-based study has provided evidence
that transcriptional targets of Nkx2.2 are down-regulated in HD
oligodendroglia compared with control (40). These studies to-
gether with our findings indicate a role for deficits in multiple
oligodendroglia processes as primary contributors to myelination
abnormalities in HD. However, the degree of interdependence
and the relative contribution of the different pathways identified
to WM pathology in HD remains to be determined.

Emerging evidence suggests that neurodevelopment may be
altered in HD (41), including several aspects related to oligo-
dendroglia. For example, mice expressing reduced levels of Htt
throughout development exhibit OPC maturation abnormalities
and white matter tract impairments (42). OPCs isolated from
neonatal HDmouse brains and derivative oligodendrocytes show
deficits in the levels of myelin-related genes (8). Mouse HD em-
bryonic stem cells show altered oligodendrogenesis upon neural
induction (43), and OPCs derived from human HD embryonic
stem cells show dysregulation in myelin-related transcriptional
profiles as well as altered myelination properties (40). Our obser-
vations of early post-natal deficits in myelination (e.g. as early as 1
months of age) are in line with the possibility that the myelination
deficits in HD originate during development and persist with age.
An outstanding question that remains, particularly in the context
of the HTT lowering therapeutic efforts currently underway, is
whether inactivating mutant HTT in mature oligodendrocytes
in adulthood would rescue the myelination abnormalities and
associated neurological deficits.

In addition to oligodendroglia in the CNS, NG2 is also ex-
pressed by Schwann cells in the peripheral nervous system (44).
Although in the few studies that have examined Schwann cells in
HD, they were found to be unaffected (45), their possible role in
the current study was not evaluated. Future studies to investigate
possible Schwann cell pathology and any relationship to disease
manifestations in HD should be considered.

A better understanding of the mechanisms underlying myeli-
nation deficits could shed light on new therapeutic approaches
for HD. Strategies for intervention should be expanded from the
current neuro-centric focus of most therapeutic efforts to include
oligodendroglial targets. Indeed, our data suggests that directly
targeting white matter pathology could be beneficial for HD.

Materials and methods
Animals

BACHD SPF mice (JAX, Stock Number: 008197) were maintained on the
FVB/N background. NG2-Cre SPF mice (JAX, Stock Number: 008533) were
backcross onto the FVB/N background and then bred to generate BACHD-
NG2Cre mice. Cre-excision validation was performed by PCR on genomic DNA
using primers listed in Table S2. For details, see SI Appendix.

PCR for Cre-excision validation
Genomic DNA was extracted from dissected frozen mouse cortex at 1

month of age using the DNeasy Tissue kit (Qiagen). To visualize the successful
deletion of HTT exon 1 in BACHDxNG2Cre mice the PCR products were run
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on a 1% agarose gel with SYBER Safe DNA gel stain (Invitrogen). The primers
flanking the loxP sites of HTT exon 1 in the BACHD mice are summarized in
Table S2.

Real-time quantitative PCR
Brains from P6-P7 pups were collected and dissociated with the Neural

Tissue Dissociation Kit (Miltenyi Biotec). A pure population of NG2+ OPCs
was isolated using anti-AN2 magnetic microbeads (Miletenyi Biotec) through
MACS separation. For details, see SI Appendix.

Transmission electron microscopy
Mice were transcardially perfused with 2.5% glutaraldehyde and 2.5%

PFA in phosphate buffer saline before post-fixing the brains overnight at 4°C
in the same buffer. Brains were subsequently washing in PBS and transferred
in 5% sucrose plus 0.08% NaN3 in PBS. For details, see SI Appendix.

Corpora callosa slice preparation and electrophysiology
14 months old female mice were used for this experiment. Animals brain

were carefully dissected after cervical dislocation and placed in oxygenated
(95% O2 + 5% CO2) ice-cold sucrose artificial cerebrospinal fluid (ACSF)
cutting solution For details and for the compound action potentials (CAPs)
recording, see SI Appendix.

Behavioural test of affective function
All the behavioural tests were performed during the dark phase of the

reverse light/dark-cycle. One independent cohort was used with n = 12-20
mixed gender per genotype (body weight in grams ± SD: 20.56 ± 3.15 in WT,
20.28 ± 3.54 in NG2Cre, 24.16 ± 3.47 in BACHD and 19.99 ± 3.23 in BN at 6
weeks). For details, see SI Appendix.

Immunohistochemistry and stereological measurements
For immunohistochemistry and stereological measurements one inde-

pendent cohort was used with n = 13-18 per genotype. For cell proliferation

studies, 200mg/kg of BrdU (Sigma, B9285) was injected intraperitoneally for
3 days at 12 h intervals before transcardial perfusion with 4% PFA and brain
extraction. For details and antibodies used, see SI Appendix.

Protein analysis
Protein lysate of CC from male mice were prepared using RIPA buffer

(Sigma-Aldrich) with 1mM PMSF (Sigma-Aldrich), 5µm Z-VAD (Promega),
1mM NaVan (Sigma-Aldrich), and 1x Complete Protease Inhibitor Cocktail
tablets (Roche). For details and antibodies used, see SI Appendix.

RNA-seq and ChIP-seq analysis
RNA was extracted from mouse CC (WT, n=3; BACHD, n=3; BN, n=3) using

Trizol (Life Technologies) and subsequently a RNeasy plus mini kit (Qiagen)
according to the manufacturer’s instructions. For ChIP-seq analysis mouse CC
tissues were microdissected and pooled from 12 mice per sample at 1 month
of age. For details on RNA-seq and ChIP-seq analysis, see SI Appendix.
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