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Abstract 12	

Advances in metabolic engineering have led to the synthesis of a wide variety of valuable 13	

chemicals in microorganisms. The key to commercializing these processes is the improvement of 14	

titer, productivity, yield, and robustness. Traditional approaches to enhancing production uses 15	

the “push-pull-block” strategy that modulates enzyme expression under static control. However, 16	

strains are often optimized for specific laboratory set-up and are sensitive to environmental 17	

fluctuations. Exposure to sub-optimal growth conditions during large-scale fermentation often 18	

reduces their production capacity. Moreover, static control of engineered pathways may 19	

imbalance cofactors or cause the accumulation of toxic intermediates, which imposes burden on 20	

the host and results in decreased production. To overcome these problems, the last decade has 21	

witnessed the emergence of a new technology that uses synthetic regulation to control 22	

heterologous pathways dynamically, in ways akin to regulatory networks found in nature. Here 23	

we review natural metabolic control strategies and recent developments in how they inspire the 24	

engineering of dynamically regulated pathways. We further discuss the challenges of designing 25	

and engineering dynamic control and highlight how model-based design can provide a powerful 26	

formalism to engineer dynamic control circuits, which together with the tools of synthetic 27	

biology, can work to enhance microbial production. 28	

 29	

Keywords: Dynamic metabolic control, genetic circuits, biosensors, synthetic biology, model-30	

based design 31	
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§ 1. Introduction 33	

Microbial production of valuable chemicals provides an attractive alternative to petroleum-based 34	

synthesis routes. A wide variety of chemicals such as biofuels, pharmaceuticals, and 35	

nutraceuticals have been successfully produced in microbial hosts by assembling and optimizing 36	

metabolic pathways [71,47,48]. Typically, the expression of pathway enzymes is either 37	

constitutive or under the control of inducible promoters that are tuned to balance the pathway 38	

flux to maximize titers, productivities, and yields. Static overexpression of enzymes can impose 39	

a load onto the cell by competing for native resources from metabolism and draining resources 40	

such as ribosomes, ATPs and chaperones [23]. The extra load to the host cell also makes it 41	

challenging to dynamically balance resource allocation between cell growth and the engineered 42	

pathway. In addition, the obtained strains are often optimized under certain laboratory conditions 43	

and are not as robust in large bioreactors, where environmental fluctuations (e.g., nutrient 44	

concentration, temperature, dissolved oxygen, etc.) can subject cells to suboptimal conditions 45	

and lead to decreased production. Deviation from the optimal condition may divert carbon to 46	

byproducts or lead to the accumulation of toxic intermediates that attenuate cell growth [42]. 47	

Furthermore, engineered strains often suffer from stability issues where genetic mutations may 48	

arise during fermentation that deactivate the pathway activity. By comparison, natural cells 49	

maintain robust growth and withstand environmental fluctuations by dynamically adjusting 50	

cellular metabolism through complex regulatory networks. These regulatory networks govern the 51	

distribution of cellular resources and sustain homeostasis in fluctuating environments. 52	

The study of how natural regulatory networks enable cells to grow robustly has been a 53	

focus in systems biology. Diverse regulation mechanisms have been identified to dynamically 54	

control metabolism in response to varying environmental conditions and intracellular metabolic 55	

status [29,39,30,16]. These mechanisms sense environmental signals such as nutrient 56	
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concentration, pH, and light, as well as intracellular metabolite concentrations and cell density. 57	

The sensed signals are then coupled to transcriptional, translational or post-translational 58	

processes to control protein expression or activities for efficient carbon usage. Taking the 59	

concept of dynamic regulation, synthetic biologists have designed genetic circuits to dynamically 60	

regulate engineered pathways for optimal biochemical production [73,24,18,76,37,22,70,68]. 61	

In this review we discuss dynamic control strategies found in nature and how they inspire 62	

engineering efforts to increase bioproduction, with a particular focus on the design of control 63	

architectures. We further discuss some of the key challenges to designing dynamic control for 64	

enhancing biochemical production and highlight the utility of mathematical models to help 65	

address these. We conclude with an outlook that integrating design principles learned from 66	

natural control systems and model-based design into the metabolic engineering workflow can 67	

facilitate the design of dynamic metabolic control, towards the development of robust and 68	

efficient microbial cell factories. 69	

  70	

§ 2. Natural strategies for dynamic control of metabolism 71	

Dynamic regulation of metabolic pathways is ubiquitous in nature. Spanning from simple 72	

microbes to multicellular animals, all forms of life depend on complex regulatory networks to 73	

coordinate metabolism to maintain cellular activity and adapt to environmental changes. To 74	

achieve this, cells use a variety of strategies that involve the interplay between DNAs, RNAs, 75	

regulatory proteins, enzymes and metabolites. Transcriptional regulation represents a significant 76	

level of control that is responsive to a wide variety of molecules and exhibits versatile regulatory 77	

architectures. In Escherichia coli, 577 interactions have been identified between transcription 78	

factors and their regulated operons [55], and this number is still growing. These complex 79	



5	

interactions are made up of network motifs with different architectures that give rise to different 80	

functions [1].   81	

One major function of dynamic regulation is to allocate resources efficiently. This is 82	

mostly achieved by transcriptional control to avoid high cost of protein synthesis. At the 83	

transcriptional level, the expression of enzymes is often controlled by transcription factors that 84	

can sense either an intermediate or product of a pathway, generating different regulation 85	

architectures. For example, in the lysine biosynthesis pathway in Saccharomyces cerevisiae, the 86	

transcription factor Lys14 is activated by an intermediate alpha aminoadipate 6-semialdehyde 87	

(αAAS), which activates all the seven genes in the pathway. Similarly, enzymes in the arginine 88	

biosynthesis pathway of E. coli are repressed by ArgR, which is in turn activated by the end 89	

product arginine. Experimental analyses and cost-benefit models for enzyme expression have 90	

uncovered links between regulatory architecture and the timing of gene expression in unbranched 91	

pathways [44,15,72,17], revealing unique patterns of timing and promoter activity for efficient 92	

enzyme expression. 93	

In addition to the transcriptional level, many cellular activities are modulated at the 94	

translational and post-translational levels, and oftentimes interplay among them. Translational 95	

regulation, usually through controlling translation initiation rate or mRNA stability, only respond 96	

to a small number of metabolites due to the limited chemical diversity of nucleic acids. Post 97	

translational regulation is abundant in metabolic pathways and controls enzyme activities in 98	

response to environmental stimuli or metabolite concentrations. For example, enzymes in E. coli 99	

central metabolism are heavily regulated at the post-translational level to tightly maintain 100	

constant metabolic flux under small environmental perturbations [50]. In addition, product 101	

allosteric inhibition of the first enzyme in metabolic pathways is commonly observed to rapidly 102	

turn down the metabolic flux through the pathway, allowing for immediate saving on carbon 103	
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usage. By comparison, transcriptional or translational regulation, though responding at a slower 104	

time scale due to slow protein synthesis and dilution, can drastically shift the distribution of 105	

metabolic flux and enable cells to save resources in the long run. Among different levels of 106	

regulation, transcriptional regulation offers a variety of traits desirable for engineering 107	

applications, including versatility in regulation architecture, chemical diversity of the sensed 108	

molecules, and tunability of the regulatory parameters. Indeed, transcriptional regulation is the 109	

most widely used control in metabolic engineering. Overall, understanding natural regulatory 110	

mechanisms provides us a wide variety of tools and design principles to develop synthetic 111	

dynamic control, which can be applied in metabolic engineering [36].  112	

 113	

§ 3. Engineered strategies for dynamic control of metabolism 114	

A synthetic dynamic control circuit typically consists of a biosensor and a genetic 115	

controller. The application of biosensors [75,39,35,74] and genetic control circuits [58,10] have 116	

been extensively reviewed. A variety of signals can be sensed, such as intracellular metabolites, 117	

quorum signal molecules (AHLs), exogenous stimuli (inducers and lights), environmental signals 118	

(pH, oxygen, and temperature), and molecules that reflect cellular growth status (exponential 119	

growth v.s. stationary growth, etc.). These signals can be used to repress or activate enzyme 120	

expression and thus regulate flux of a pathway. One primary design objective for dynamic 121	

control of metabolic flux is to balance the growth of the cell and production of the target 122	

molecule. Next, we discuss different types of design strategies from input signals to output 123	

regulations that attempt to address this objective. 124	

The basic method to dynamically regulate the flux distribution is adding exogenous 125	

inducers or nutrients at a time point during fermentation (Fig. 1a). Xie et al. constructed a 126	
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glucose-dependent regulatory system in S. cerevisiae to control the flux from branch point 127	

farnesyl diphosphate (FPP) to ergosterol biosynthesis (an essential component in yeast 128	

membrane) or to the carotenoid pathway [69]. Squalene synthase (erg9), the first gene from FPP 129	

to ergosterol pathway, was placed under the HXT1 promoter, which was induced at high glucose 130	

concentration, while the carotenoid pathway was controlled by glucose-repressible GAL 131	

promoters so that the production pathway was turned on after glucose was partially replaced by 132	

glycerol as an alternative carbon source. Dynamic regulation by exogenous inducers is 133	

straightforward and effective, but requires addition of inexpensive and environmentally-friendly 134	

inducers. These limitations can be overcome by introducing feedback control of enzyme 135	

expression to respond to signals produced by the cell itself. 136	

An example of autonomous control is that on growth flux through negative feedback by a 137	

quorum sensing (QS) system (Fig. 1b). Soma and Hanai employed a QS system to autonomously 138	

redirect acetyl-CoA from the TCA cycle to the isopropanol pathway at a given cell density [60]. 139	

In a recent application, QS was used to downregulate phosphofructokinase-1 (pfk-1) in the upper 140	

glycolysis pathway [24]. Lower pfk-1 activity channeled more carbon flux from the 141	

interconverting branch points G6P and F6P to the glucaric acid pathway, thus turning on product 142	

synthesis while inhibiting cell growth.  143	

One key function of dynamic control in a biosynthetic pathway is to avoid accumulation 144	

of toxic intermediates or overexpression of toxic enzymes. Inhibiting an upstream pathway that 145	

generates the toxic intermediate and activating a downstream pathway that converts it are 146	

common control strategies (Fig. 1c). One of the pioneering works in dynamic pathway regulation 147	

was demonstrated for biodiesel production from free fatty acids [73]. In the pathway, 148	

accumulation of two intermediates ethanol and acyl-CoA is harmful to cell growth. The authors 149	

developed a dynamic regulatory system to activate ethanol production and the conversion of 150	
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ethanol and acyl-CoAs to final products only when fatty acyl-CoAs are sufficient. In another 151	

example, promoters responsive to FPP (toxic to cell) accumulation were used to repress the 152	

mevalonate pathway that produces FPP and to activate amorphadiene synthase that consumes 153	

FPP. Such regulatory topology dynamically stabilized the FPP concentration below its toxic 154	

level, while increasing amorphadiene production [18]. Similar control topologies can be 155	

constructed using transcription-factor-based sensors as demonstrated in the fatty acid pathway to 156	

optimize cellular malonyl-CoA pool [70]. In addition, synthetic inverters can be used to switch 157	

regulation between repression and activation, achieving a desired control topology [37].  158	

Dynamic regulation can also be implemented by sensing signals that reflect the growth 159	

status of the host and using them to control production. In one of the first examples of dynamic 160	

regulation, acetyl phosphate served as the signal for excess glycolytic flux to regulate the rate-161	

limiting enzymes in lycopene pathway [22] (Fig. 1d). Recently, a biosynthetic pathway was 162	

controlled by a two-layered circuit, which acted as an AND gate that senses both the cellular 163	

growth status and the pathway precursor availability [38]. The first enzymatic step was not 164	

turned on until stationary phase and downstream steps were activated by the intermediate from 165	

the first step (Fig. 1e), which reduces burden from the engineered metabolic pathway. Synthetic 166	

control can also be designed to sense production flux and regulate growth (Fig. 1f). Xiao et al. 167	

described a strategy that uses metabolite product to activate cell growth via expression of an 168	

antibiotic pump, TetA [68]. This ensured that high producing cells would tolerate the antibiotic 169	

treatment, and thus facilitated the selection of high producing phenotypes at the population level. 170	

Without selection, a wide variation in biosynthetic performance was observed in the whole 171	

population. With selection, only the high-performing cells could survive, thus increasing total 172	

production.  173	
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Despite a growing number of success stories, engineering dynamic control remains 174	

extremely challenging. Current implementations require multiple iterations between construction 175	

of part libraries, testing of different control architectures, and characterization of system 176	

performance. This lengthy design cycle is the result of multiple challenges that need to be 177	

addressed if the field is to move towards precision engineering of metabolism.  178	

 179	

§ 4. Challenges for dynamic control and benefits of model-based design. 180	

Current challenges for dynamic control include the construction and tuning of genetic 181	

parts, the assembly of parts into functional circuits, the interplay between circuit and host, and 182	

the control of population diversity (Fig. 2). Some of these challenges are particularly relevant for 183	

the success of dynamic control in industrial applications. For example, in large fermenters the 184	

level of intracellular metabolites and the environmental conditions can vary. Because biosensors 185	

are typically designed to function in model organisms under controlled laboratory conditions, 186	

their sensing ability may be impaired in industrial hosts with highly variable conditions. Control 187	

circuits also need to function robustly during long periods of fermentation, which in turn requires 188	

a good understanding of the host-circuit interactions that drive the allocation of resources within 189	

the host. Lastly, in large bioreactors there are often increased cell-to-cell variations [68], and the 190	

challenge is how to control the product distribution to shift the population to achieve higher 191	

percentage of high-producers. 192	

Mathematical modelling is an ideal framework to integrate different design layers and 193	

explore the design space in a rational manner. Next, we discuss some of the key challenges ahead 194	

and outline how modelling can help overcome them.  195	

 196	



10	

§ 4.1. Construction of tunable parts 197	

Metabolite biosensors are a key component of dynamic metabolic control. Their function 198	

is to control the expression of pathway enzymes in response to metabolic signals such as the 199	

concentrations of metabolic intermediates or other physicochemical cues. Growth conditions 200	

may shift metabolite concentrations to ranges that fall beyond the detection range of biosensors, 201	

thus impairing dynamic control and resulting in a static system unable to regulate enzyme 202	

expression. Tunability of biosensors is therefore essential for dynamic control systems to 203	

appropriately function in industrial conditions. Biosensors must respond with the appropriate 204	

sensitivity and actuate the response at the right signal threshold, according to the growth 205	

conditions. Biosensor function can be captured in the dose-response curve, which relates the 206	

concentration of the sensed metabolite to the enzyme expression (Fig. 2), and its shape can be 207	

modified through experimentally tunable parameters such as the metabolite binding affinity or 208	

the sequence of target promoters [40]. Some of the successful implementations of dynamic 209	

control have demonstrated that tuning the biosensor dose-response curve can affect performance 210	

significantly and increase production [37,70,68]. The question of how to design dynamic control 211	

is thus critical for developing production strains, especially for application in industrial settings. 212	

Much work has focused on developing new biosensors, but the precise calibration of their dose-213	

response curve remains poorly understood [3] and leads to lengthy iterations between biosensor 214	

construction and characterization. 215	

Common biosensors in dynamic control are transcriptional riboswitches [7] and 216	

transcription factors [75]. Progress in RNA engineering has led to a growing number of 217	

riboswitches that respond to specific metabolites [66,26]. Studies have shown that RNA 218	

sequences shape the sensitivity and threshold of riboswitch dose-response curves [52,5], yet the 219	

precise tuning of riboswitch function remains a significant challenge. Computational methods 220	
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have proven powerful for the design of RNA devices [13] and mathematical modelling has 221	

revealed insights on the tunability of the riboswitch function in terms of biophysical parameters 222	

[6]. Integration of sequence design algorithms with mathematical models may facilitate the 223	

discovery of new metabolite-responsive riboswitches, and thus expand the repertoire of pathways 224	

in which dynamic control can be used [7]. 225	

In the case of transcription factors, dose-response curves can be tuned with promoter 226	

engineering [40] or protein engineering to modify metabolite binding kinetics [63]. There are 227	

many natural transcription factors that respond to specific metabolites in their native host, which 228	

can be repurposed as biosensors in a production host of interest. Detailed biophysical models 229	

have revealed relations between sequence-dependent promoter binding affinities and protein 230	

expression [9]. Moreover, mathematical models have uncovered fundamental design constraints 231	

of dose-response curves, and revealed strategies for orthogonal control of biosensor dynamic 232	

range and threshold [40]. 233	

§ 4.2. Assembling parts to design control circuits 234	

To increase production, dynamic control circuits must achieve multiple design objectives 235	

simultaneously [46]. The goal is to construct control circuits that adapt pathway activity to 236	

varying bioreactor conditions, ensuring efficient expression of enzymes, minimizing the impact 237	

of pathway bottlenecks or accumulation of toxic intermediates, and ultimately maximize yield, 238	

titer or productivity at industrial scales. Achieving all these objectives demands the availability 239	

of a wide repertoire of control circuit architectures, but in reality architectures are severely 240	

constrained because well-characterized metabolite biosensors exist only for few relevant 241	

compounds [75]. Key questions for architecture design are which pathway metabolite should be 242	

sensed, and which enzymatic steps to implement dynamic control. Mathematical modelling can 243	
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be a powerful tool to explore such design space and assess performance of architectures that 244	

would otherwise be infeasible or too costly to test experimentally. 245	

Unlike in static control, where genome-scale models can be used for strain design 246	

[11,57], model-based approaches for dynamic control are still in early stages. Mathematical 247	

models have revealed design principles to improve biofuel production through control of efflux 248	

pumps [21] and have provided conditions on the parameter design space to avoid accumulation 249	

of toxic intermediates [46]. Genome-scale models have been employed to determine which 250	

enzymes to control, which when coupled with dynamic modelling showed higher production as 251	

compared to static control [2]. A particularly promising use for modelling is the exploration of 252	

circuit architectures. Models have been used to search for architectures that efficiently trade-off 253	

production flux against toxicity effects by metabolic intermediates [61], to explore circuit 254	

architectures that function robustly in the face of environmental or genetic perturbations [25], or 255	

to discover new useful architectures, such as a bistable metabolic switch that filters out 256	

fluctuations in nutrient availability [43]. 257	

Control engineering has been tremendously successful in designing regulation systems 258	

for diverse disciplines such as aerospace, bioprocessing, and information technologies [4]. 259	

Principles from control engineering have gained ground in synthetic biology [19] and optimal 260	

control ideas have revealed design principles in natural metabolic systems [65,72], but their 261	

broader application to dynamic pathway control remains less explored. A potential area for 262	

future development is the use of mathematical optimization for circuit design [53] coupled with 263	

detailed kinetic models of metabolism [32,49,41,14,27]. Optimization of control architectures 264	

also faces significant computational challenges, as the sheer number of circuit designs and 265	

tunable parameters may lead to optimization problems that cannot be solved in feasible time. 266	
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Trade-offs between circuit size and computation time needs to be considered and the 267	

development of scalable optimization methods poses multiple opportunities for further research. 268	

§ 4.3. Host-circuit interactions 269	

As metabolic pathways and control circuits become larger and more complex, their 270	

footprint on their host can become a major limiting factor on function. Engineered systems draw 271	

resources from the host, which can disrupt homeostasis and cause growth defects that lead to 272	

poor or even altered functionality [62,12]. A key source for host-circuit interactions is the 273	

competition for cellular resources such as ribosomes, RNA polymerases, and amino acid pools 274	

[8]. This competition affects cell growth and ultimately may result in impaired circuit function, 275	

leading to suboptimal production that is economically impractical at industrial scale. 276	

Mathematical models can give a systems-level understanding of the relationship between 277	

circuit function and the physiology of the host where they reside. To this end, Weiße and 278	

colleagues developed a mechanistic model for bacterial growth, based on a coarse-grained 279	

partition of the proteome and its interaction through metabolism, transcription and translation 280	

[67]. The model predicts growth defects caused by gene circuits and provides a quantitative 281	

platform to assess the impact of growth defects on circuit function. A recent extension to this 282	

work includes more detailed mechanisms of the different host-circuit crosstalks and proved 283	

useful for circuit design [34]. Models for host-circuit interactions do not yet allow the inclusion 284	

of dynamic pathway control, but the use of dynamic control to manage host load and increase 285	

production is promising, especially in light of recent evidence showing that feedback control can 286	

mitigate the impact of resource coupling [56].  287	

§ 4.4. Control of population heterogeneity 288	
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Phenotypic heterogeneity is ubiquitous in cellular populations. In microbes, heterogeneity 289	

has been extensively studied as a product of stochasticity in gene expression and the resulting 290	

variation in protein levels [51], and recent work has focused on variability on metabolic 291	

phenotypes and growth [59,31,28]. Though phenotypic variability in natural systems can serve as 292	

a population survival strategy, variability amongst strains engineered for production can lead to 293	

suboptimal performance. Phenotypic variability may also result from fluctuations in growth 294	

conditions, and the inhomogeneities in growth media can be further exaggerated when scaling-up 295	

to industrial level production. In strains engineered for chemical production, phenotypic 296	

variability manifests itself as wide distributions of metabolic production [54,20]. Such variability 297	

has been exploited to increase production by designing control that couples the concentration of 298	

product to growth, and thereby selects for high producers [68]. 299	

Mathematical modelling can provide novel insights on the sources and control of 300	

metabolic variability. For example, the integration of genome-scale models with single-cell 301	

proteomics datasets revealed the emergence of a bimodal growth distribution in E. coli [33], and 302	

the emergence of bimodal phenotypes was also explored with dynamic models [64,31]. A 303	

seminal stochastic modelling work on enzymatic reactions revealed conditions for a dynamic 304	

control circuit to amplify or attenuate the variability of a metabolic product [45]. 305	

The emergence of mutants and genotypic heterogeneity pose a significant problem for 306	

long term biochemical production, and can plague the implementation of production strains at 307	

industrial scales. Over long time scales of fermentation mutations may impair the control circuit 308	

or result in the emergence of non-producing, faster growing strains that will dilute out production 309	

strains. This is a key area for future development to help sustain long-term bioproduction in 310	

industrial settings. 311	

 312	
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§ 5. Final remarks 313	

Dynamic control of metabolism is a powerful mechanism for cells to survive and adapt to 314	

environmental perturbations. In natural systems, dynamic control shifts metabolic activity 315	

between various operating regimes. Metabolic engineering can harness similar control strategies 316	

to increase production in varying and often unpredictable bioreactor conditions. In this paper we 317	

outlined some of the natural strategies for dynamic control together with recent successful 318	

implementations on metabolic production pathways.  319	

Dynamic control has vast potential to enhance production at the industrial scale, enabling 320	

autonomous control of pathway activity without the cost of inducers and auto-adapting 321	

production and cellular demands according to fluctuating or changing fermentation conditions. 322	

Challenges for this technology are manifold and cover several layers of complexity, from tunable 323	

control parts, to functional circuits, accounting for host physiology and demands of the cell, and 324	

sustaining production in the face of phenotypic and emergence of genotypic heterogeneity. In 325	

this paper we discussed the challenges at these levels and how they affect the application of 326	

strains engineered with dynamic control to industrial scale bioproduction. Although a few recent 327	

studies have demonstrated the computation-guided tuning of biosensor response, the reliable 328	

determination of the intracellular metabolite concentration remains a challenge to providing 329	

accurate inputs to the model. In addition, the application of dynamic control in industrially 330	

relevant hosts has been limited, which entails tools and efforts to transfer the technology into 331	

those hosts [76]. Robust controls need to use the host resources efficiently and optimize the 332	

balance between growth and production. This is a challenging objective to achieve, and one 333	

where the metabolic engineering community can learn valuable lessons from natural systems. 334	

Systems biology has revealed fundamental design principles by reverse-engineering the 335	

regulation of natural metabolic systems, thanks to the combination of mathematical modelling 336	
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and wet-lab experimentation. Natural design principles and model-based methods integrated into 337	

the metabolic engineering workflow could institute the forward-engineering of control circuits 338	

and hail a new era in which dynamic control becomes the key technology for optimizing 339	

chemical production. 340	
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Figure 1. Engineered control strategies of metabolic pathway in bioproduction. To abstract 519	

the designs of different dynamic control strategies, we represent cell growth and product 520	

biosynthesis as two linear fluxes that branch from the same precursor metabolite, where growth 521	

encompasses fluxes towards essential metabolites (e.g. TCA cycle, amino acid biosynthesis, 522	

nucleotide biosynthesis, membrane biosynthesis). (a) Using inducers to control flux from the 523	

branch point [69]. (b) Using QS systems to control growth flux by negative feedback circuits 524	

[24,60]. (c) Using metabolite-responsive regulators to control toxic intermediate levels 525	

[73,18,37,70]. (d) Using growth flux to activate the production pathway [22]. (e) Using 526	

metabolite levels and growth status, which accounts for toxic effects, to regulate the production 527	

pathway [38]. (f) Using product level to control survival of the cells [68]. 528	

 529	

Figure 2. Challenges for designing dynamic control circuits at various levels. These 530	

challenges include how to tune parts to obtain desired dose-response functions, when control is 531	

actuated by riboswitches [6,52] or transcription factors [40,63]; how regulatory architectures 532	

affect dynamics [17,46,61] and robustness [43], as learned from models of natural control 533	

systems; how to balance limited resources between growth and production, studied theoretically 534	
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[34,67]; and how to control cell-cell heterogeneity for sustainable and efficient production, 535	

studied theoretically [45] and experimentally [68]. 536	
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