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Abstract 

Non-coding RNAs are increasingly recognized not only as regulators of various 

biological functions but also as targets for a new generation of RNA therapeutics and 

biomarkers. We hereby review recent insights relating to non-coding RNAs including 

microRNAs (e.g. miR-126, miR-146a), long non-coding RNAs (e.g. MIR503HG, 

GATA6-AS, SMILR) and circular RNAs (e.g. cZNF292) and their role in vascular 

diseases. This includes identification and therapeutic use of hypoxia-regulated non-

coding RNAs and endogenous non-coding RNAs that regulate intrinsic smooth 

muscle cell signalling, age-related non-coding RNAs and non-coding RNAs involved 

in the regulation of mitochondrial biology and metabolic control. Finally, we discuss 

non-coding RNA species with biomarker potential.  
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Introduction  

Manifestations of vascular diseases are the leading causes of morbidity and mortality 

1. Endothelial dysfunction is a key initiator of vascular disease. Proliferation, migration 

and the phenotype switch of smooth muscle cells are further hallmarks of vascular 

disease. Inflammatory cells aggravate vascular disease by release of secreted 

growth factors and cytokines, as well as cell/cell interactions that perpetuate the 

response to injury.  Relatively recently, non-coding RNA has been discovered as new 

regulators of vascular function and angiogenesis. Non-coding RNAs include 

microRNAs (miRs, miRNAs, short non-coding RNAs of about 20nt length), long non-

coding RNAs (lncRNAs) (length of >200 nt) as well as circular RNAs, a specific 

subtype of lncRNAs that form circular structures 2 through back-splicing events. Here, 

we focus on recent new insights how non-coding RNAs constitute regulatory 

therapeutic targets and biomarkers in vascular disease, with a special focus on 

cardiac disease-associated factors (e.g. hypoxia, ageing, smooth muscle cell biology 

and metabolism). 

Hypoxia-regulated non-coding RNAs  

Hypoxia is a key trigger for angiogenic events and has a substantial impact on the 

non-coding transcriptome. Oxygen depletion alters endothelial expression of a wide 

range of lncRNAs, as indicated by next-generation RNA sequencing and microarray 

approaches in endothelial cells subjected to hypoxia 3.  Validation experiments 

confirmed strong hypoxia-dependent activation of 2 intergenic lncRNAs (LINC00323 

and MIR503HG). Silencing of these lncRNA transcripts led to angiogenic defects, 

including repression of growth factor signaling and/or the key endothelial transcription 

factor GATA2. Endothelial loss of these hypoxia-driven lncRNAs impaired cell-cycle 

control and inhibited capillary formation. The potential clinical importance of identified 
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endothelial lncRNAs to vascular structural integrity was demonstrated in an ex vivo 

model of human induced pluripotent stem cell–based engineered heart tissue (EHT) 

showing that pharmacological inhibition of these lncNRAs impaired vascular structure 

appearance. Interestingly, research in the non-coding RNA field discovered the well-

known endothelial (and protein-coding RNA) transcription factor GATA2 as a 

common target for many non-coding RNAs 4. GATA2 orchestrates the expression of 

many endothelial-specific genes, illustrating its crucial importance for endothelial cell 

function 5. In addition to being regulated through the actions of endothelial lncRNAs 

LINC00323 and MIR503HG, GATA2 was recently identified to be also a master 

switch for several key microRNAs. Using profiling approaches, the GATA2-

dependent miR transcriptome was identified 6. Indeed, global miRNAnome-screening 

identified several GATA2-regulated miRNAs, including miR-126 and miR-221. 

Specifically, proangiogenic miR-126 was regulated by GATA2 transcriptionally and 

targeted antiangiogenic SPRED1 and FOXO3a contributing to GATA2-mediated 

formation of normal vascular structures, whereas GATA2 deficiency led to vascular 

abnormalities. In contrast to GATA2 deficiency, supplementation with miR-126 

normalized vascular function and expression profiles of cytokines contributing to 

proangiogenic paracrine effects. GATA2 silencing resulted in endothelial DNA 

hypomethylation leading to induced expression of antiangiogenic miR-221 by 

GATA2-dependent demethylation of a putative CpG island in the miR-221 promoter. 

Mechanistically, a reverted GATA2 phenotype by endogenous suppression of miR-

221 was mediated through direct proangiogenic miR-221 target genes ICAM1 and 

ETS1. Of therapeutic importance was the finding that in a mouse model of carotid 

injury with endothelial-specific repressed GATA2, systemic supplementation of miR-

126-coupled nanoparticles enhanced miR-126 availability in the carotid artery. MiR-



 CVR-2018-115  

page 5 of 18 

126 improved reendothelialization of injured carotid arteries in vivo thus proving a 

therapeutic strategy for treatment of GATA2-deficient vascular diseases. 

An additional screen for hypoxia-regulated lncRNAs revealed that the long non-

coding antisense transcript of GATA6 (GATA6-AS) is induced by hypoxia in 

endothelial cells as well 7. Silencing of GATA6-AS in endothelial cells in vitro 

diminished TGF-β2-induced endothelial-mesenchymal transition. Transplantation of 

GATA6-AS modulated human umbilical vein endothelial cells (HUVECs) via 

application of an antisense oligonucleotide (GapmeR) promoted the formation of 

human blood vessels in immune deficient mice. Mechanistically, GATA6-AS 

interacted with the known deaminase LOXL2, which can remove activating H3K4me3 

chromatin marks, and controlled a set of angiogenesis-related genes that are 

inversely regulated by LOXL2 and GATA6-AS silencing. Specifically, GATA6-AS 

silencing reduces H3K4me3 methylation of two of these genes, periostin and 

cyclooxygenase-2, suggesting that GATA6-AS acts as negative regulator of nuclear 

LOXL2 function. Interestingly, - at least in endothelial cells in vitro - the levels of 

secreted LoxL2, which are known to regulate collagen cross-linking and are 

implicated in cardiac fibrosis 8, were not affected.  

Non-coding RNAs are also molecular targets in therapeutic revascularization. It was 

recently demonstrated that endothelial cells can be derived via both directed 

differentiation and haematopoetic origin 9. Expression of the lncRNA SENCR, a 

lncRNA already known to be expressed in vascular SMCs, 10 was upregulated upon 

differentiation to endothelial cells, and manipulation of SENCR during differentiation 

affected endothelial cell appearance. Interestingly, SENCR modulation modified the 

angiogenic phenotype of endothelial cells, suggesting that lncRNAs have important 

regulatory functions for vascular cell types. Such studies are consistent with others in 
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the field, assessing different lncRNA in endothelial cells 11-13. Circulating levels of 

SENCR are also an independent predictor of diastolic function and remodeling in 

patients with type 2 diabetes 14.  

Apart from linear lncRNAs, circular forms of RNA species exist and are differentially 

regulated in the context of cardiovascular diseases 2, 15. CircRNAs lack 

polyadenylation, are resistant to RNase R digestion and localized to the cytoplasm. 

Boeckel et al explored the expression and function of circular RNAs in endothelial 

cells 16. Using a modified computational analysis pipeline 17, RNA sequencing data of 

ribo-minus RNA from HUVECs cultured under normoxic or hypoxic conditions was 

analysed. cZNF292, cAFF1, and cDENND4C were shown to be up-regulated by 

hypoxia. Silencing of cZNF292 inhibited cZNF292 expression and reduced tube 

formation and spheroid sprouting of endothelial cells in vitro. Since circRNAs were 

previously suggested to act as microRNA sponges 17, the authors also explored 

whether this mechanism of action accounts for the biological function of endothelial 

circRNAs, by merging the RNA sequencing data with Argonaute HITS-CLIP data. 

Here the majority of circRNAs were shown to not possess a microRNA binding site, 

and only a small number have more than one binding site, suggesting that the 

majority of circRNAs are not acting as miRNA sponges, although this requires further 

exploration. 

Cardiovascular aging-associated non-coding RNAs 

The role of aging associated non-coding RNAs has been recently reviewed 18. Here 

we focus on novel lncRNAs that were not covered in the aforementioned review. The 

hypoxia-sensitive nuclear-localised lncRNA Meg3 was induced highly in endothelial 

cells of aged mice in vivo compared to controls and its levels correlate with aging in 

human heart tissue 19. In vitro, Meg3 was increased in replicative senescent 
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HUVECs. Silencing of Meg3 using LNA gapmeRs induced angiogenic sprouting and 

proliferation and repressed senescence as evidenced by the reduction of SA-β-

galactosidase activity of endothelial cells in vitro. Conversely, lentiviral 

overexpression of Meg3 inhibited sprouting angiogenesis and cell cycle progression, 

although splicing isoforms of Meg3 show differential effects. In vivo, silencing of 

Meg3 in aged mice using gapmeRs in combination with hind limb ischemia 

significantly repressed Meg3 levels in the hind limb and increased recovery of 

perfusion compared to control mice. These results demonstrate that silencing Meg3 

may be a potential strategy to reduce endothelial senescence and increase 

regenerative angiogenesis. Of note, Meg3 is also expressed in other non-endothelial 

cells such as cardiac fibroblasts and its silencing was effective in reducing cardiac 

fibrosis showing importance of this lncRNA broadly as a potential target in the 

treatment of cardiovascular diseases 20.  

A novel approach for aged patients with cardiovascular diseases using non-coding 

RNAs as targets was recently presented.  Aging populations show higher incidences 

of myocardial infarction (MI) and heart failure (HF). With regards to miRNAs, miR-22 

was shown to be strongly increased during aging in murine and human hearts and 

was identified as an abundant and strong inhibitor of cardioprotective autophagy 21. 

Inhibition of miR-22 in aging cardiomyocytes activated autophagy and inhibited 

cellular hypertrophy. Pharmacological inhibition of miR-22 post-MI in older mice 

activated cardiac autophagy, prevented post-infarction remodeling, and improved 

cardiac function compared with control subjects. Interestingly, similar effects were 

less pronounced in younger mice with significantly lower cardiac miR-22 expression 

levels. In addition, circulating levels of miR-22 in 154 patients with systolic HF were 

highly associated with early mortality. Thus, miR-22 seems to be an important 

regulator of cardiac autophagy and a potential therapeutic target, especially in the 
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older myocardium. Clearly, targeting therapeutics to the aged or diseased 

myocardium in human is challenging and requires sophisticated delivery strategies to 

be developed.  

 

Non-coding RNAs in smooth muscle cell biology 

The expression and function of long non-coding RNA in smooth muscle cells remains 

relatively poorly defined. Aside from SENCR 10, a recent study identified  a single 

transcript (3 exons) lncRNA called SMILR (Smooth Muscle cell Induced LncRNA) 

that was activated following exposure of basal vSMC to pro-proliferative signals. 

Following exposure to a combination of platelet-derived growth factor and interleukin 

-1, SMILR was induced 22. Interestingly SMILR was localized both in the nuclear 

and cytoplasmic compartments, suggestive of differential modes of action within the 

cell. Further, an accurate lncRNA quantification assay for secretion from cells and 

human plasma samples was developed. Indeed, plasma levels of SMILR were 

elevated in patients with higher C-reactive protein levels compared to patients with 

lower levels, albeit in a small population sample set.  Using a siRNA approach, an 

anti-proliferative effect following efficient downregulation of SMILR was identified, 

with effects on the neighboring gene HAS2. Further, levels of SMILR were higher in 

patients with advanced atherosclerosis compared to stable patient samples, 

suggesting relevance of human disease. These studies clearly show the importance 

of lncRNA expression on function of vSMC. Since vSMC are centrally important in 

vascular health and disease, this suggests a much greater understanding of both 

required and essential lncRNA characteristics. Several questions remain regarding 

the function of SMILR. These include the mode of action with respect to vSMC 

proliferation. Further, how this is consistent across vascular beds and 
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vasculoproliferative diseases, as well as refining the therapeutic potential of SMILR 

inhibition to block proliferation. Notably, in the context of vein graft failure, an anti-

proliferative strategy would provide likely efficacy when considering the predominant 

role of vSMC in vein graft neointima formation.  Other studies have also 

demonstrated the importance of lncRNA in vSMC function 23, 24, consistent with the 

notion that they hold important regulatory potential in vascular health and disease. 

 

Non-coding RNAs in the control of mitrochondrial function and energy 

metabolism 

Recently, miRNAs emerged as central regulators of mitochondrial function and 

energy metabolism in diabetes, hypertension, ischemia, atherosclerosis and 

cardiotoxicity. Mitochondrial miRNAs –also mitomiRs- are enriched in those diseases. 

In diabetes mellitus, mitomiRs are enriched in spatially distinct compartments 25, 

whereas in hypertensive- hearts their expression differ in the early and later stage of 

heart failure 26. In general, miR-146a, -181c and -378 act as important therapeutic 

targets affecting mitochondrial function in cardiovascular diseases. MiR-146a was 

first reported to affect cardiac metabolism during peripartum cardiomyopathy 27. 

Uptake by cardiomyocytes of endothelial cell-released miR-146a decreased the 

metabolic activity of cardiomyocytes during pregnancy, with downregulation of Erbb4, 

Notch1 and Irak1. Inhibition of miR-146a is thereby protective. Its suppression is not 

only beneficial in peripartum cardiomyopathy, but also in pressure-overload induced 

cardiomyopathy 28, and in atherosclerosis 29. Inhibition of miR-146a in pressure 

overload –either with aortic banding or angiotensin-II infusion- blunted the cardiac 

hypertrophic response and protected against systolic dysfunction 29. MiR-146a 

decreased dihydrolipoyl succinyl transferase (DLST) levels, a rate-controlling enzyme 
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in the tricarboxyl acid (TCA) cycle in the failing heart, thereby impairing cardiac 

oxidative metabolism. Both fatty acid and glucose oxidation decreased upon 

pressure overload in wild type mice, but were preserved upon miR-146a inhibition. 

Increase of DLST upon loss of miR-146a helped to preserve these oxidative fluxes, 

protecting against maladaptive hypertrophy and dysfunction. As in peripartum 

cardiomyopathy 27 and in atherosclerosis 29, miR-146a seems to be mainly derived 

from endothelial cells.  In line, also in atherosclerosis, deficiency of miR-146a in 

those endothelial cells tempered the chronic inflammatory response to the 

atherogenic high fat diet, thereby protecting against atheroma formation 29.  MiR-

181c is another detrimental mitomiR involved in mitochondrial function. Its inhibition 

increases Bcl2, a key-player in mitochondrial apoptosis and morphology, and thereby 

protects against cardiomyocyte apoptosis in vitro 30. In doxorubicin-induced toxicity in 

vivo, miR-181c inhibition decreases the reactive oxygen species production and 

reduces basal mitochondrial respiration 31. In ischemic hearts, miR-181c targets 

mitochondrial COX1, and its deficiency thereby resulted in decreased infarct size, 

emphasizing the overall cardio-protective effect of miR-181c inhibition. Further, 

presence of miR-378 attenuated ischemia-induced apoptosis by inhibiting caspase-3 

expression in cardiac myocytes 32 and blunted cardiac hypertrophy and dysfunction 

upon cardiac overload by targeting Ras signaling 33. In the diabetic heart, antagomiR 

blockade of this mitomiR-378 increased ATP6 protein production and thereby also 

improved cardiac function 25. In a human infarct study, miR-378 modulated the 

proangiogenic capacity of CD34+ progenitor cells after myocardial infarction, with 

clear stimulatory effects on endothelial cells as confirmed in vitro and in vivo 34.   

In conclusion, diverse mitomiR modulate mitochondrial function in cardiovascular 

diseases caused by ischemia,  the metabolic syndrome –diabetes, hypertension and 

hyperlipidemia-,  and cardiotoxic agents. Whereas inhibition of the mitomiRs-146a is  
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beneficial in hypertensive and peripartum cardiomyopathy, and in atherosclerotic 

disease, and inhibtion of miR-181c in ischemic and toxic cardiomyopathy, the 

presence of miR-378 is needed to protect against cardiac dysfunction caused by 

ischemic injury and maladaptive hypertrophy.  

 

Circulating microRNAs as novel cardiovascular biomarkers 

Previous studies have highlighted the presence of endogenous circulating miRNAs 

that are not cell-associated. Zampetaki and colleagues have performed the first 

systematic analysis of circulating miRNAs in a large community-based study and 

revealed a diagnostic potential of miRNA changes associated with type 2 diabetes 

and cardiovascular disease 35, 36. In subsequent studies, it has become apparent that 

platelets have abundant amounts of miRNAs 37, and that circulating miRNAs reflect 

platelet activation 38, 39. As platelets are anucleate and do not perform transcription, it 

was initially thought that circulating miRNAs are unlikely to be platelet-derived. 

However, surprisingly many abundant plasma and serum miRNAs, including miRNAs 

like miR-126 that were previously thought to be endothelial specific, can originate 

from platelets 37-39. YRNAs is another species of circulating non-coding RNAs that is 

platelet-derived 39. There still remains a gap in our understanding of how changes in 

platelet biology relate to circulating miRNAs. In contrast, miR-122 is a liver-specific 

miRNA that is readily detectable in the circulation 40. Notably, circulating levels of 

miR-122 are strongly associated with the risk of developing metabolic syndrome 41. 

The presence of circulating tissue-derived miRNAs provides the possibility of a cross-

organ communication by miRNAs. 
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Conclusion and Outlook 

The discovery of miRNAs and other non-coding RNAs such as lncRNAs and 

circRNAs that are involved in transcriptional and other functional regulation of the 

vasculature have transformed our understanding of biological processes and disease 

development especially in cardiovascular diseases. This might lead to new 

therapeutics and diagnostics. The non-coding RNAome offers promising 

opportunities for treating and assessing cardiovascular disease, but many obstacles 

still need to be overcome. A major point to address in therapeutic use of non-coding 

RNAs is to develop tailored drug delivery with e.g. heart specificity. Next to that, 

lncRNA and circRNAs are relatively new areas of research, thus it is paramount to 

better understand their biological function. 
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Figure Legends 

Figure 1. Non-coding RNAs as angiogenic therapeutic entry points. 
Enhancement or inhibition strategy can be followed for modulation of vascular non-

coding RNAs. Circular RNA, miRNA or long non-coding RNA are target structures for 

therapeutic intervention. Modulation of RNA subtypes triggers expression changes 

(up or down) of interacting effectors (e.g. proteins such as chromatin modifiers or 

ribosomal factors or different RNA species). Collectively cardiac vascularization is 

positively or negatively influenced dependent on the chosen non-coding RNA 

therapy. 

 

Figure 2. GATA2 as a central player for angiogenic non-coding RNAs (modified 
from 6). 
Besides the regulation of GATA2-dependent coding genes (e.g. ICAM1, VCAM1), 

endothelial transcription factor GATA2 directly controls transcription of miR-126 / 

miR-221 locus. Interestingly loss of GATA2 causes DNA hypomethylation thereby 

activating miR-221 expression. Next to that, GATA2 repression lowers miR-126 

expression levels causing an upregulation of anti-angiogenic factors. Overall, 

downstream modulation leads to anti-angiogenic outcome and imbalanced 

endothelial cell biology. 

 

Table 1. Non-coding RNA associated biomarker studies 
 

Non-coding RNA Disease association Study reference 

miR-126 type 2 diabetes 35 

miR-126, miR-197, miR-

223 

myocardial infarction 36 

miR-126, miR-150, miR-

191, miR-223 

atherosclerosis 38 

YRNA platelet reactivity 39 

miR-122 Metabolic syndrome 

development and type 2 

diabetes 

41 
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