

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Enhanced sulfide removal and bioelectricity generation in microbial fuel cells with anodes modified by vertically oriented nanosheets

Citation for published version:

Borthwick, A, Yang, M, Zhong, Y, Zhang, B, Shi, J, Huang, X, Xing, Y, Su, L & Liu, H 2019, 'Enhanced sulfide removal and bioelectricity generation in microbial fuel cells with anodes modified by vertically oriented nanosheets' Environmental Technology (United Kingdom), vol. 40, no. 14, pp. 1770-1779. DOI: 10.1080/09593330.2018.1429496

Digital Object Identifier (DOI):

10.1080/09593330.2018.1429496

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Environmental Technology (United Kingdom)

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Environmental Technology

Enhanced sulfide removal and bioelectricity generation in microbial fuel cells with anodes modified by vertically oriented nanosheets

Journal:	Environmental Technology		
Manuscript ID	TENT-TENT-2017-1395.R2		
Manuscript Type:	Original Article		
Date Submitted by the Author:	n/a		
Complete List of Authors:	Yang, Meng; China Unversity of Geoscience Beijing Zhong, Yuezhi; China Unversity of Geoscience Beijing Zhang, Baogang; China Unversity of Geoscience Beijing, Shi, Jiaxin; China Unversity of Geoscience Beijing Huang, Xueyang; China Unversity of Geoscience Beijing Xing, Yi; University of Science and Technology Beijing Su, Lin; Southeast University Liu, Huipeng; China Unversity of Geoscience Beijing Borthwick, Alistair G.L.; University of Edinburgh School of GeoSciences		
Keywords:	Sulfide, Nano-sheets, Microbial fuel cells, Microbial community, Carbon- fiber-felt		

SCHOLARONE[™] Manuscripts

Page 1 of 33

1		
2		
3		
4	1	Enhanced sulfide removal and bioelectricity generation in microbial
6		
7	2	fuel cells with anodes modified by vertically oriented nanosheets
8		
9	_	
10	3	Meng Yang ^a ,", Yuezhi Zhong ^a ,", Baogang Zhang ^a , Jiaxin Shi ^a , Xueyang Huang ^a , Yi
11		
12	4	Xing ^{b,*} , Lin Su ^c , Huipeng Liu ^a , Alistair G.L. Borthwick ^d
13		
14	5	^a School of Water Resources and Environment MOE Key Laboratory of Groundwater
16	0	School of maler hesothees and Environment, mol hey Eusonatory of Crownanauter
17	6	Circulation and Environmental Evolution, China University of Geosciences (Beijing),
18	-	
19	7	Beijing 100083, P. R. China
20	8	^b School of Energy and Environmental Engineering. University of Sciences and
21	-	
22	9	Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of
23	10	Industrial Dollutanta Doiiing 100082 D. D. China
24	10	Industrial Politicanis, Beijing 100085, P. K. China
26	11	^c State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R.
27		
28	12	China
29	13	^d School of Engineering The University of Edinburgh The King's Buildings
30	15	Seneer of Engineering, The Chiversity of Edunouigh, The Hing's Edunatings,
31	14	Edinburgh EH9 3JL, UK
32		
34	15	Abstract
35	15	Abstract
36		
37	16	Anode materials and structures are of critical importance for microbial fuel cells
38		
39	17	(MFCs) recovering energy from toxic substrates Carbon-fiber-felt anodes modified
40	1,	
41	18	by layers of vertically oriented TiO, and Fe.O. paposheets respectively were applied
43	10	by layers of vertically offended 1102 and 1 0203 handsheets respectively were applied
44	10	
45	19	in present study. Enhanced sulfide removal efficiencies (both over 90%) were
46		
47	20	obtained after 48 h operation, with maximum power densities improved by 1.53 and
48		
49 50	21	1.36 folds compared with MFCs with raw carbon-fiber-felt anode, respectively. The
51		
52		[#] These authors contributed equally to this work.
53		*
54		Corresponding author. Tel.: +86 10 8232 2281; fax: +86 10 8232 1081.
55		E-mail: zbgcugb@gmail.com, baogangzhang@cugb.edu.cn (B. Zhang); xing_bkd@163.com (Y. Xing).
56		
5/ 59		
50		1

22	modified anodes provided more active sites for microbial adhesion with increasing
23	biomass densities. High-throughput 16S rRNA gene sequencing analysis also
24	indicated the increase of microbial diversities. Bacteroidetes responsible for
25	bioelectricity generation with Thiobacillus and Spirochaeta dominating sulfide
26	removal were found in the MFCs with the modified anodes, with less anaerobic
27	fermentative bacteria as Firmicutes appeared. This indicates that the proposed
28	materials are competitive for applications of MFCs generating bioelectricity from
29	toxic sulfide.
30	Keywords: Sulfide; Nano-sheets; Microbial fuel cells; Microbial community;
31	Carbon-fiber-felt
32	1. Introduction
33	Sulfide is a hazardous, corrosive and odorous substance that often occurs in
34	industrial wastewaters, especially in effluent from viscose rayon industries,
35	petrochemical plants and tanneries [1,2]. Sulfide is toxic to human health, with studies
36	showing that sulfide is particularly harmful to cytochrome c oxidase and causes cell
37	hypoxia [3]. Thus, sulfide-contaminated wastewater must be treated thoroughly
38	before discharge into the environment. Although common physical-chemical methods,
39	such as adsorption and chemical oxidation, can remove sulfide, they are costly to
40	implement and require high energy inputs [4]. In contrast, biological processes
41	provide an environmental-friendly alternative for sulfide removal from both liquids
42	and gases under ambient environmental conditions [5-7].

Page 3 of 33

Environmental Technology

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
3/ 20	
30	
40	
40	
42	
43	
44	
45	
46	
47	
48	
49	
50 ⊑1	
51 52	
52 53	
54	
55	
56	
57	
58	
59	
60	

43	Microbial fuel cells (MFCs) are nowadays recognized to be renewable, clean
44	energy sources that can generate bioelectricity during wastewater treatment [8,9].
45	Numerous pollutants have been successfully handled with energy recovery based on
46	MFC technology, including organics and metals [10-12]. Additionally, anode
47	materials and structures are particularly important regarding the performance of
48	MFCs in removal of toxic substances: properly designed anodes can help electricigens
49	to collect electrons from anolyte and thus sustain bioelectricity generation while
50	tolerating harmful substrates [13]. Carbon-based anodes are most frequently used [14]
51	and further gains in performance arise from coating them with conducting polymers
52	or metal oxides [15,16]. Nowadays, hydrothermally synthesized layers of vertically
53	oriented metal oxides nanosheets such as TiO ₂ and Fe ₂ O ₃ with activated carbon (AC)
54	powder in situ on the surface of carbon paper exhibit excellent behavior as MFCs'
55	anodes as they have high biocompatibility, support mass transport, have large surface
56	area for adhesion of bacteria, and provide direct pathways for electrons movement to
57	the electrode [17,18]. Furthermore, carbon fiber felt is more promising as anodic
58	material for scale-up of MFCs because it offers a more suitable support for bacteria
59	attachment and growth, higher mechanical strength, more active sites for the chemical
60	reactions [19-21], while its performances after being modified by layers of vertically
61	oriented metal oxides nanosheets are rarely reported. Studies have been carried out on
62	sulfide removals using MFCs [4,22,23]. In anode chambers, sulfide acts as electron
63	donor and it is biochemically oxidized based on Equ. (1) and (2), with anodic
64	electrodes as electron acceptors:

$$65 \qquad \text{HS}^{-} \rightarrow \text{S}^{0} + \text{H}^{+} + 2\text{e}^{-} \tag{1}$$

$$66 \qquad S^0 + 4H_2O \to SO_4^{2^-} + 8H^+ + 6e^- \tag{2}$$

67 Commonly, co-substrate such as glucose is supplied as co-existing electron donor

$$69 \qquad C_6H_{12}O_6 + 6H_2O \to 6CO_2 + 24H^+ + 24e^-$$
(3)

Moreover, other contaminants with higher redox potentials such as nitrate may be presented with sulfide [22]. It can also act as competitive electron acceptor, which is reduced as Equ. (4),

73
$$2NO_3^- + 12H^+ + 10e^- \rightarrow N_2 + 6H_2O$$
 (4)

Then electrons flow to cathode via external circuits. In cathode chambers, oxygen and potassium ferricyanide are most frequently used as electron acceptors and they are reduced as Equ. (5) and (6) [23,24],

77
$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$
 (5)
78 $Fe(CN)_6^{3-} + e^- \rightarrow Fe(CN)_6^{4-}$ (6)

While most of these studies focus on co-existing pollutants removals [4,22,24-26],
operating factors investigations [27] and commercial electrodes comparisons [28].
Little attention has been paid to date on modified carbon-based anode especially for
carbon fiber felt to enhance bioelectricity generation and sulfide removal in the
context of accumulation of microbes in anode chambers with toxic matrix.
The present research explores carbon-fiber-felt anodes modified with two kinds of

- metal oxides (TiO₂ and Fe_2O_3) nanosheets respectively that are vertically oriented on
- 86 the surface. Enhanced performances in aspects of power outputs and sulfide removals

87	are investigated for MFCs equipped with these anodes, compared with unmodified
88	one. The amounts and species of accumulated microbes are also analyzed. This work
89	provides a potential alternative for treating sulfide-contaminated wastewater by MFC
90	technology with proposed anodes.
91	2. Materials and methods
92	2.1 Preparation of anodes and fabrication of MFCs
93	TiO_2 and Fe_2O_3 sols were synthesized in the laboratory following a previous report
94	[17,18]. Clean carbon-fiber-felt materials (3 mm thickness, 4 cm length and width,
95	provided by Beijing Evergrow Resources CO., LTD, China) were immersed in the
96	TiO ₂ and Fe ₂ O ₃ sols for 10 min and dried at 80 °C. After that, the materials were
97	calcined for 30 min in a tubular furnace at 350 °C so that a TiO_2 and Fe_2O_3 seed
98	layers formed on the surfaces of the carbon-fiber felts. A Teflon-lined stainless steel
99	autoclave (50 mL in volume) filled with 40 mL of aqueous solution of 10 M NaOH
100	and 0.2 g of AC powder was placed in an oven at 180 °C for 24 h. After the
101	carbon-fiber-felts had cooled down to room temperature, the modified carbon-fiber
102	felts were rinsed with ultrapure water to remove AC, followed by soaking with 0.1 M
103	hydrochloric acid for 1 h, then washed to neutral with deionized water and dried at
104	80 °C. Sequentially, the samples were calcined at 550 °C for 1 h in a N_2 atmosphere
105	[17,18].
106	Three H-type MFCs with cylindrical chambers (250 mL for each) were fabricated
107	as previously described [29]. The two chambers for each MFC were divided by a

Page 6 of 33

108	proton exchange membrane (Nafion117#. Dupont, USA) with a surface area about 4
109	cm^2 . The MFCs were equipped with TiO ₂ nanosheets modified carbon-fiber-felt anode
110	(MFC-TiO ₂) and Fe ₂ O ₃ nanosheets modified carbon-fiber-felt anode (MFC-Fe ₂ O ₃),
111	respectively, as prepared above, with surface area of 16 cm ² . Raw carbon-fiber-felt
112	anode without modification was also employed as control (MFC-CF). All cathodes
113	were made of ordinary carbon-fiber-felt with the same size as anodes. The anode and
114	cathode were connected across a 100 Ω external resistor. Each anode chamber was
115	inoculated with 25 mL anaerobic granular sludge from an up-flow anaerobic sludge
116	blanket (UASB) reactor treating high strength sulfate wastewater. The anolyte
117	included the following (per L): 0.75 g of $C_6H_{12}O_6$; 5.62 g of $NaH_2PO_4 \cdot 2H_2O$; 6.15 g
118	of Na ₂ HPO ₄ ·12H ₂ O; 0.31 g of NH ₄ Cl; 0.13 g of KCl; 1.25 mL of vitamin solution;
119	and 12.5 mL of trace mineral element solution. Sulfide was added to the anode
120	solution in the form of $Na_2S \cdot 9H_2O$ with concentration of 60 mg L ⁻¹ to facilitate the
121	comparison [30]. The catholyte included the following (Per L): 9 g of KH_2PO_4 , 8 g of
122	K_2 HPO ₄ ·3H ₂ O and 0.05 g K_3 [Fe(CN) ₆].
123	2.2. Experimental procedures
124	Morphology and composition of the modified anodes were analyzed first. Then
125	successful start-up of all MFCs was realized by refreshing anolyte every 2 days. After
126	that, the power outputs and sulfide removals in a typical cycle (48 h) were evaluated,
127	noting that most of the sulfide was removed within that time. Electrochemical
128	measurements were also undertaken for the three types of MFC. After 3 months
	6

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
∠⊺ วา	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
J۷ رح	
<u>ک</u> ر ۲	
54	
55	
56	
57	
58	
59	
60	

129	operation with refreshment of anolyte every 2 days, ultrasonic was employed to
130	collect the bacteria attached to the surfaces of the anodes, and the samples then used
131	for high-throughput 16S rRNA gene sequencing on MiSeq (Illumina, the USA). All
132	experiments were carried out at room temperature (22 ± 2 °C) for practical application
133	consideration and easy comparison with existing studies [22]. For each condition,
134	trials were carried out in triplicate and average results from the three MFCs were
135	reported.
136	2.3. Analytical methods and data representation
137	Measurement of chemical oxygen demand (COD) was undertaken based on
138	digestion with potassium dichromate in concentrated sulfuric acid for 2 h at 150 °C.
139	Sulfide was determined according to the methylene blue method ($n = 665 \text{ nm}$) [31].
140	The indication of "sulfide" described all species (H ₂ S, HS ⁻ , and S ²⁻). Total organic
141	carbon (TOC) was monitored by Multi N/C 3000 TOC analyzer (Analytik Jena AG,
142	Germany). Sulfate was measured by ion chromatography (ICS-1600, Dionex, the
143	USA). pH was measured using a pH-201 meter (Hanna, Italy). The biomass on the
144	anode surface was determined using the phospholipid analysis as previously described
145	and the biomass density was expressed as the mass of phosphorus normalized by
146	anode volume (48 cm ³) [32]. The morphology and composition of modified anodes
147	were analyzed by a JEOL JAX-840 scanning electron microscope (SEM) operating at
148	20 kV with an energy dispersive X-ray (EDX).
149	Voltage measurements were taken using a voltmeter throughout the test. The

150	polarization curve and power outputs were obtained by varying the external resistance
151	over the range from 10 to 5000 Ω . For each point on the polarization curve, readings
152	were taken when pseudo-steady-state conditions was established, which might take
153	several minutes or more [4,33,34]. MFCs operated at least twice under each resistance
154	to ensure the repeatability of power outputs. Power density was normalized to the
155	single-side projected surface area of the anode. Cyclic voltammetry (CV)
156	measurement was carried out at a scan rate of 2 mV s ⁻¹ in the range of -1 V to +1 V
157	using an electrochemical workstation (VMP3, Bio-Logic Science Instruments, France)
158	with Ag/AgCl as reference electrode. Electrochemical impedance spectroscopy (EIS)
159	measurement was conducted over a frequency range of 100 kHz to 1 mHz with an AC
160	signal of 10 mV amplitude. All electrolyte solutions were deaerated by high-purity
161	nitrogen for at least 15 minutes prior to the measurement [32]. Coulombic efficiency
162	(CE) was calculated as reported previously [4].
163	Molecular biology analysis was performed to obtain the characteristics of the
164	microbial population. Total genomic DNA was collected, pooled, and amplified
165	according to previous procedures [35]. Then a mixture of amplicons was used for
166	high-throughput 16S rRNA gene sequencing on MiSeq (Illumina, the USA). Raw
167	sequencing data were deposited in the NCBI Sequence Read Archive with access
168	number of SPR067096 and were analyzed according to Hao et al. [35].

Page 9 of 33

1	
2	
3	
4	
5	
6	
0	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 01	
ו∠ רר	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

169	3. Results	and	discussion
-----	------------	-----	------------

170 **3.1 Characteristics of the modified anodes**

171	It was observed that the modified carbon-fiber-felt surfaces were covered with
172	dense layers, comprising vertically oriented nanosheets on top, which formed vertical
173	pores through the layer, compared with raw carbon-fiber-felt anode (Fig. 1a, Fig. 1b,
174	Fig. 1c). This structure improved the roughness of the anode surface, which was
175	similar with previous studies [17,18] and meant that the 3D open porous structure was
176	favorable to biofilm growth as well as permeability of electrolyte, substrates, and
177	electron mediators [36]. These vertically oriented nanosheets extending upward from
178	the surface of carbon-fiber-felts could provide direct pathways for electrons to transfer
179	from exoelectrogens in the biofilm to the carbon-fiber-felts. Moreover,
180	carbon-fiber-felts with larger specific surface areas were selected as the basic material
181	in present study instead of plain carbon paper, which would provide more sites for
182	microbes' attachment [17,18]. The compositions of the modified anodes were
183	examined using EDX and the corresponding elements (Ti, Fe, O) were detected (Fig.
184	1d), indicating that the anodes were well modified with metal oxides. It was
185	interesting to note that some metal oxides could not only enhance the interfacial
186	electron transfers in MFCs [17] but also stimulate the growth of chemoautotrophic
187	and heterotrophic bacteria using solar energy [37]. This implied that the proposed
188	modified anodes were promising and ready for following experiments.

3.2 Bioelectricity generation by the MFCs

190	Polarization curves were obtained using closed-circuit MFCs during 48 h operation
191	(Fig. 2a). MFC-TiO ₂ exhibited the highest maximum power density of 607.8 ± 16.1
192	mW m ⁻² at current density of 1591.38 mA m ⁻² with 150 Ω external resistances,
193	followed by MFC-Fe ₂ O ₃ with this value of $537.6 \pm 14.8 \text{ mW m}^{-2}$ at current density of
194	1296.15 mA m ⁻² with 200 Ω external resistances, 1.53 and 1.36 folds higher than the
195	maximum power output of MFC-CF (396.1 \pm 11.7 mW m ⁻² with 400 Ω external
196	resistances), while the maximum power output of MFC-CF was slightly higher than
197	that obtained from previous study, where maximum power output of 283 mW m^{-2} was
198	obtained in dual chamber MFCs (300 mL net volume for anode chamber) with 300
199	mg L^{-1} initial sulfide concentration [25]. The results indicated that the modified
200	anodes with the TiO_2 and Fe_2O_3 nanosheets vertically oriented on the surface of
201	carbon-fiber-felt could increase the power output of MFCs by providing more sites for
202	microbes' attachment and more direct electrons transfer pathways [17,18].
203	Anode potentials which dominated the above difference were also monitored
204	during this period (Fig. 2b). The anode potentials of the MFC-CF were lower than
205	those obtained with sulfide free substrate due to lower redox potential of sulfide
206	[38,39]. Additionally, the sulfide added to the anodic solution and the sulfate produced
207	through sulfide oxidation acted as a soluble redox mediator, which could promote
208	electron transfer from the bacterial cells to the anode surface [40]. The anode
209	potentials of both MFC-TiO ₂ and MFC-Fe ₂ O ₃ were further lower than those of
210	MFC-CF. It should be noted that previous results had shown that the lower negative

URL: http:/mc.manuscriptcentral.com/tent

Environmental Technology

3 4	211	anode potential could demonstrate better activity of anode communities [41].
5 6 7	212	Moreover, metal oxides possess superior electronic, optical, and dielectric properties
8 9	213	and had been employed for surface modifications of anodes in MFCs for high power
10 11	214	output [36]. Hence, the present results indicated that carbon-fiber-felt with TiO_2 and
13 14	215	Fe ₂ O ₃ nanosheets vertically oriented on the surface as anode materials could facilitate
15 16	216	adhesion, growth and activity of bacteria for enhancement of MFC performance.
17 18 19	217	The electrochemical behaviors of the modified anodes were also characterized.
20 21	218	More obvious redox peaks and much higher redox peak currents than untreated
22 23 24	219	carbon-fiber-felt anode were observed in CV curves, especially with TiO ₂ nanosheets
25 26	220	(Fig. 3a). This indicated that electrodes with metal oxides nanosheets vertically
27 28 29	221	oriented on the surface of carbon-fiber-felt had better electron transfer properties than
30 31	222	an untreated electrode [42]. EIS was used to characterize the electrode surface and to
32 33	223	evaluate the kinetics of the electrochemical reaction and dramatically decrease of
35 36	224	internal resistances for MFCs with modified anodes were observed in Fig. 3b. Charge
37 38	225	transfer resistances derived from the MFC-TiO ₂ and MFC-Fe ₂ O ₃ were also
39 40 41	226	remarkably smaller than that of the untreated electrode, consistent with the CV
42 43	227	behavior and showing the advantage of the proposed modification in electron
44 45 46	228	transfers.
47 48 49 50	229	3.3 Sulfide and organics removals in the MFCs
51 52	230	Concentrations of sulfide and generated sulfate as well as TOC were monitored
53 54	231	initially and after 48 h operation (Fig. 4). Both sulfide and TOC declined after the
55 56 57	232	operation, demonstrating the feasibility of MFC technology for the removal of sulfide
58		11

URL: http:/mc.manuscriptcentral.com/tent

233	and organic carbon simultaneously. Similar as the power outputs, sulfide removal
234	efficiencies of MFC-TiO ₂ (94.4 \pm 1.5%) and MFC-Fe ₂ O ₃ (91.6 \pm 1.7%) were higher
235	than that of MFC-CF (88.5 \pm 1.9%), with the removal efficiency obtained from
236	MFC-CF comparable with results from dual chamber MFCs that 84.7% of 100 mg $\rm L^{\textsc{-1}}$
237	sulfide in the influent was removed within 72 h [4] and higher than removal efficiency
238	of 60% with 80 mg L^{-1} initial sulfide concentration in 72 h operation [26].
239	Nevertheless, sulfide removal efficiencies obtained in this study were relatively lower
240	than those achieved by Cai et al. [43], where above 99% of added sulfide were
241	removed, as our used cathode electron acceptor ($K_3[Fe(CN)_6]$) possesses lower redox
242	potential than their employed KMnO ₄ [24]. The TOC removal efficiencies also
243	exhibited the similar principles, with MFC-TiO ₂ (56.9 \pm 1.8%) and MFC-Fe ₂ O ₃ (55.2
244	\pm 1.4%) higher than that of MFC-CF (31.7 \pm 1.7%). The removal efficiencies of
245	sulfide were superior to the TOC indicated that sulfide and organics acted as
246	co-electron donors with competitive relationship and sulfide was easier to be oxidized
247	than organic matter because of its lower redox potential [44,45]. Moreover, the
248	calculated CE based on COD of the MFC-TiO ₂ (13.2 \pm 1.7%), MFC-Fe ₂ O ₃ (12.2 \pm
249	1.6%) and MFC-CF (11.4 \pm 1.8%) was comparable with similar systems as previously
250	reported [4]. This implied that carbon-fiber-felt with these two kinds of metal oxide
251	(TiO ₂ and Fe ₂ O ₃) nanosheets vertically oriented on its surface as promising anode
252	material could enhance both sulfide and organics removals in MFCs.
253	Oxidation products of sulfide in the MFCs were investigated. After 48 h
254	operation, concentrations of generated sulfate in the exhausted analyte were $3.26 \pm$
	12
	12

Environmental Technology

255	0.97 mg L^{-1} in MFC-TiO ₂ and $2.74 \pm 0.89 \text{ mg L}^{-1}$ in MFC-Fe ₂ O ₃ , respectively (Fig. 4),
250	with other soluble species ($S_2O_3^-$, SO_3^{-2-}) undetected in all MFCs, suggesting that most
257	oxidation products were insoluble. In fact, many obvious solid particles covered on
258	the anode surfaces after operation (Figure S1, Supporting Information). The particles
259	were examined using EDX and it was found that the main component was elemental
260	sulfur (Fig. 1d), which was the expected oxidation product as it was a non-corrosive
26	solid and was easy to remove from aqueous solutions [4]. The present results
262	suggested that elemental sulfur was the main product for sulfide removal when the
263	electrochemical and biological oxidations were performed in MFCs, also proved by
264	previous studies [4,46]. Recovery and quantification of generated elemental sulfurs
265	were difficult as they mixed with biofilms. The relatively lower sulfate concentration
260	and higher peak of elemental sulfur indicated that the modified carbon-fiber-felt
267	electrodes were more amenable to biofilm growth, enabling more sulfur to be
268	generated.
269	3.4 Identification of the involved microbes
270	The monitored voltage outputs and sulfide removals were relatively stable during
27	the whole experiment. After 3 months operation, it was found that the biomass
272	densities of the MFC-TiO ₂ (26.7 μ g cm ⁻¹) and MFC-Fe ₂ O ₃ (22.1 μ g cm ⁻¹) were higher
273	than that of MFC-CF (16.2 μ g cm ⁻¹), suggesting more microbes adhering on the
274	modified anodes (Figure S1, Supporting Information). Total numbers of operational
275	taxonomy units (OTUs) estimated by Chao and Ace estimators with infinite sampling
276	in MFC-TiO ₂ and MFC-Fe ₂ O ₃ were much larger than that in MFC-CF (Table 1),

URL: http:/mc.manuscriptcentral.com/tent

277	indicating that MFC-TiO ₂ and MFC-Fe ₂ O ₃ possessed greater richness of microbial
278	diversity than MFC-CF. Both Simpson and Shannon diversity index provide not only
279	the simply species richness (i.e., the number of species present) but how the
280	abundance of each species is distributed (the evenness of the species) among all the
281	species in the community. The increase of Shannon index and decrease of Simpson
282	index of MFCs with modified anodes compared with raw one implied the bacterial
283	communities in MFC-TiO ₂ and MFC-Fe ₂ O ₃ were more diverse than those in the
284	MFC-CF due to the stimulated growth bacteria with the added metal oxides [36].
285	Besides, visible light-excited photoelectrons from metal oxide could stimulate the
286	growth of chemoautotrophic and heterotrophic bacteria [37].
287	16S rRNA gene sequence and taxonomy analyses for the microbes in the three
288	MFCs were performed at phylum, class and genus levels in order to understand the
289	role of bacteria in enhanced sulfide oxidation and bioelectricity generation (Table 2).
290	Electrochemically activated bacteria that were conducive to bioelectricity generation
291	were enriched in the MFCs, especially with modified anodes. Bacteroidetes, the most
292	frequently appeared species in the anode biofilms of MFCs with electrochemical
293	activity as reported by Ha et al. [46] were enriched in MFC-TiO ₂ (4.94%) and
294	MFC-Fe ₂ O ₃ (1.45%) than those in MFC-CF (1.22%). Moreover, with the
295	enhancement of MFCs' functions of electricity generation and sulfide removal, plenty
296	of bacteria with electrochemical activity were domesticated, such as the
297	Deltaproteobacteria species, especially in the MFCs with modified anode. This
298	implied that the design with TiO_2 and Fe_2O_3 nanosheets vertically oriented on the

Page 15 of 33

Environmental Technology

1		
2 3		
4	299	surface of carbon-fiber-felt could accumulate more electrochemically activated
5 6 7	300	bacteria to generate bioelectricity than the untreated anode.
8 9	301	Sulfur related bacteria responsible for sulfide oxidation and sulfate reduction were
10 11 12	302	also detected. Thiobacillus in Alphaproteobacteria, a famous sulfur-oxidizing
13 14	303	bacterium that can oxidize sulfur to sulfate was enriched in MFC-TiO ₂ [43,47].
15 16 17	304	Spirochaeta of Spirochaetes requiring sulfide in the growth medium and oxidizing it
17 18 19	305	non-enzymically to elemental sulfur was found in MFC-Fe ₂ O ₃ [48]. Sulfate-reducing
20 21	306	bacteria were also greatly enhanced in the MFCs with the proposed anodes, such as
22 23 24	307	Desulfovibrio genus of Deltaproteobacteria, which could reduce sulfate as well as
25 26 27	308	other sulfur species such as sulfite and thiosulfate [4,23]. These species worked
27 28 29	309	together to realized higher sulfide removals in the improved MFCs.
30 31	310	Pseudoxanthomonas of Gammaproteobacteria with an abundance of 4.63% in
32 33 34	311	MFC-CF could be responsible for sulfide removals in this reactor as this species can
35 36	312	oxidize sulfide to sulfate [49]. More species of sulfur related bacteria were found in
37 38 39	313	the three MFCs than previously reported by Sun et al. [50] who employed sulfide as
40 41	314	the sole electron donor in the MFCs; the greater variety and numbers of bacteria
42 43 44	315	probably occurred due to the complex substrate (glucose and sulfide) employed in the
45 46	316	present study.
47 48 49	317	Less anaerobic fermentative bacteria without electrochemical activity appeared in
50 51	318	the MFCs with modified anodes. Firmicutes accounted for the largest portion of
52 53 54	319	bacteria found in anaerobic sludge [51] decreased more greatly in MFC-TiO ₂ and
55 56 57	320	MFC-Fe ₂ O ₃ than in MFC-CF. <i>Rhodobacter</i> sp. (belonging to Alphaproteobacteria)
57 58		15

URL: http:/mc.manuscriptcentral.com/tent

Environmental Technology

321	promoting anaerobic fermentation [52] also exhibited the similar principles. These
322	indicated that anaerobic fermentation process competing with bioelectricity
323	generation was further weakened when MFCs equipped with carbon-fiber-felt anodes
324	with TiO ₂ and Fe ₂ O ₃ nanosheets vertically oriented on their surfaces.
325	4. Conclusions
326	The surfaces of carbon-fiber-felt were successfully modified by layers of
327	vertically oriented TiO_2 and Fe_2O_3 nanosheets respectively and acted as anodes in
328	MFCs. Higher maximum power outputs of MFC-TiO ₂ (607.75 mW m ⁻²) and
329	MFC-Fe ₂ O ₃ (537.63 mW m ⁻²) were obtained, compared with the MFC with untreated
330	carbon-fiber-felt (396.05 mW m ⁻²), and the sulfide and TOC removal efficiencies also
331	increased. These results could be contributed to more active sites for microbial
332	adhesion with increasing biomass densities by the modified anodes. Increases of
333	microbial diversities were also observed by high-throughput 16S rRNA gene
334	sequencing analysis and specific functional species were found, such as the enhanced
335	Bacteroidetes responsible for bioelectricity generation with <i>Thiobacillus</i> and
336	Spirochaeta dominating sulfide removal, with less anaerobic fermentative bacteria
337	Firmicutes.
338	Acknowledgements
339	This research work was supported by the National Natural Science Foundation of
340	China (NSFC) (No. 91647115).

References

341

1	
2	
3	
4	
5	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
20	
21	
22	
23	
24 25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
37	
38	
39	
40	
41 42	
43	
44	
45	
46	
47 48	
49	
50	
51	
52 52	
53 54	
55	
56	
57	
58	
59 60	
~ ~ ~	

342	1. Celis-García LB, González-Blanco G, Meraz M. Removal of sulfur inorganic
343	compounds by a biofilm of sulfate reducing and sulfide oxidizing bacteria in a
344	down-flow fluidized bed reactor. J Chem Technol Biotechnol. 2008;83:260-268.
345	2. Long JW, Wallace JM, Peterson GW, Huynh K. Manganese oxide
346	nanoarchitectures as broad-spectrum sorbents for toxic gases. ACS Appl Mater
347	Interfaces. 2016;8:1184–1193.
348	3. Kim KH. The need for practical input data for modeling odor nuisance effects due
349	to a municipal solid waste landfill in the surrounding environment. Environ
350	Internat. 2016;87:116–117.
351	4. Zhang BG, Zhao HZ, Shi CH, Zhou SG, Ni JR. Simultaneous removal of sulfide
352	and organics with vanadium (V) reduction in microbial fuel cells. J Chem
353	Technol Biotechnol. 2009;84:1780–1786.
354	5. Henshaw PF, Zhu W. Biological conversion of hydrogen sulphide to elemental
355	sulphur in a fixed-film continuous flow photo-reactor. Water Res.
356	2001;35:3605–3610.
357	6. Cirne DG, Van Der Zee FP, Fernandez-Polanco M, Fernandez-Polanco F. Control
358	of sulphide during anaerobic treatment of S-containing wastewaters by adding
359	limited amounts of oxygen or nitrate. Rev Environ Sci Biotechnol.
360	2008;7:93–105.
361	7. Lin HJ, Williams N, King A, Hu B. Electrochemical sulfide removal by low-cost
362	electrode materials in anaerobic digestion. Chem Eng J. 2016; 297:180–192.

URL: http:/mc.manuscriptcentral.com/tent

Environmental Technology

363	8. Penteado ED, Fernandezmarchante CM, Zaiat M, Gonzalez ER, Rodrigo MA.
364	Influence of carbon electrode material on energy recovery from winery
365	wastewater using a dual chamber microbial fuel cell. Environ Technol.
366	2017;38:1333–1341.
367	9. Du Q, An JK, Li JH, Zhou L, Li N, Wang X. Polydopamine as a new modification
368	material to accelerate startup and promote anode performance in microbial fuel
369	cells. J Power Sources. 2017;343:477–482.
370	10. Hao LT, Zhang BG, Tian CX, Liu Y, Shi CH, Cheng M, Feng CP. Enhanced
371	microbial reduction of vanadium (V) in groundwater with bioelectricity from
372	microbial fuel cells. J Power Sources. 2015;287:43-49.
373	11. Liu JD, Liu LF, Gao B. The tubular MFC with carbon tube air-cathode for power
374	generation and N,N-dimethylacetamide treatment. Environ Technol.
375	2016;37:762–767.
376	12. Yamashita T, Ishida M, Ogino A, Yokoyama H. Evaluation of organic matter
377	removal and electricity generation by using integrated microbial fuel cells for
378	wastewater treatment. Environ Technol. 2016;37(2):228–236.
379	13. Lorenzo MD, Scott K, Curtis TP, Head IM. Effect of increasing anode surface
380	area on the performance of a single chamber microbial fuel cell. Chem Eng J.
381	2010;156:40–48.
382	14. Kumar GG, Sarathi VG, Nahm KS. Recent advances and challenges in the anode
383	architecture and their modifications for the applications of microbial fuel cells.
384	Biosens Bioelectron. 2013;43:461–475.
	18
	-

URL: http:/mc.manuscriptcentral.com/tent

Environmental Technology

3 4	385	15. Sivasankaran A, Sangeetha D, Ahn YH. Nanocomposite membranes based on
5		
6 7	386	sulfonated polystyrene ethylene butylene polystyrene (SSEBS) and sulfonated
8 9	387	SiO ₂ for microbial fuel cell application. Chem Eng J.2016;289:442–451.
10 11 12	388	16. Tang JH, Yuan Y, Liu T, Zhou SG. High-capacity carbon-coated titanium dioxide
13 14	389	core-shell nanoparticles modified three dimensional anodes for improved energy
15 16	390	output in microbial fuel cells. J Power Sources. 2015;247:170–176.
17 18 19	391	17. Yin T, Lin ZY, Su L, Yuan CW, Fu DG. Preparation of vertically oriented TiO_2
20 21	392	nanosheets modified carbon paper electrode and its enhancement to the
22 23 24	393	performance of MFCs. ACS Appl Mater Interfaces. 2015;7:400–408.
25 26	394	18. Wang L, Su L, Chen HH, Yin T, Lin ZY, Lin XX, Yuan CW, Fu DG. Carbon paper
27 28 29	395	electrode modified by goethite nanowhiskers promotes bacterial extracellular
30 31	396	electron transfer. Mater Lett. 2015;141:311–314.
32 33 34	397	19. Hidalgo D, Tommasi T, Bocchini S, Chiolerio A, Chiodoni A, Mazzarino I,
35 36	398	Ruggeri B. Surface modification of commercial carbon felt used as anode for
37 38 20	399	microbial fuel cells. Energy. 2016;99:193–201.
40 41	400	20. Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater
42 43	401	treatment using a single chamber microbial fuel cell. Environ Sci Technol.
44 45 46	402	2004;38:2281–2285.
47 48	403	21. Zhu NW, Chen X, Zhang T, Wu PX, Li P, Wu JH. Improved performance of
49 50 51	404	membrane free single-chamber air-cathode microbial fuel cells with nitric acid
52 53	405	and ethylenediamine surface modified activated carbon fiber felt anodes.
54 55 56	406	Bioresour Technol. 2011;102:422-426.
57 58		10
59		
60		UKL: http:/mc.manuscriptcentral.com/tent

Environmental Technology

		Environmental Technology
407	22.	Cai J, Zheng P. Simultaneous anaerobic sulfide and nitrate removal in microbial
408		fuel cell. Bioresour Technol. 2013;128:760–764.
409	23.	Zhao F, Rahunen N, Varcoe JR, Avignone-Rossa C, Thumser AE, SladeRCT.
410		Factors affecting the performance of microbial fuel cells for sulfur pollutants
411		removal. Biosens Bioelectron. 2009;24:1931–1936.
412	24.	Fatemi S, Ghoreyshi AA, Rahimnejad M, Darzi GN, Pant D. Sulfide as an
413		alternative electron donor to glucose for power generation in mediator-less
414		microbial fuel cell. J Environ Sci Health Part A. 2017;52:1150–1157.
415	25.	Cai J, Zheng P, Qaisar M, Xing YJ. Effect of operating modes on simultaneous
416		anaerobic sulfide and nitrate removal in microbial fuel cell. J Ind Microbiol
417		Biotechnol. 2014;41:795–802.
418	26.	Rakoczy J, Feisthauer S, Wasmund K, Bombach P, Neu TR, Vogt C, Richnow HH.
419		Benzene and sulfide removal from groundwater treated in a microbial fuel cell.
420		Biotechnol Bioeng. 2013;110:3104–3113.
421	27.	Zhang L, Mao Y, Ma J, Li D, Shi H, Liu Y, Cai L. Effect of the chemical
422		oxidation demand to sulfide ratio on sulfide oxidation in microbial fuel cells
423		treating sulfide-rich wastewater. Environ Technol. 2013;34:269–274.
424	28.	Cai J, Zheng P, Qaisar M, Sun P. Effect of electrode types on simultaneous
425		anaerobic sulfide and nitrate removal in microbial fuel cell. Sep Purif Technol.
426		2014;134:20–25.
427	29.	Zhang BG, Zhou SG, Zhao HZ, Shi CH, Kong LC, Sun JJ, Ni JR. Factors
428		affecting the performance of microbial fuel cells for sulfide and vanadium (V)
		20
		URL: http:/mc.manuscriptcentral.com/tent

2		
4	429	treatment. Bioproc Biosyst Eng. 2010;33:187-194.
5		
6 7	430	30. Liu HP, Zhang BG, Liu Y, Wang ZJ, Hao LT. Continuous bioelectricity generation
8	421	with simultaneous sulfide and organics removals in an anaerobic baffled stacking
9	431	with sinultaneous sunde and organics removals in an anaelooic barried stacking
10	432	microbial fuel cell. Int I Hydrogen Energy. 2015:40:8128–8136
12	732	merobiar fuer een. met frigurogen Energy. 2013,40.0120 0150.
13	433	31 Cline ID Spectrophotometric determination of hydrogen sulphide in natural
14	155	
15	434	waters, Limnol Oceanogr, 1969;14:454–458.
17		
18	435	32. Wei JC, Liang P, Cao XX, Huang X. A new insight into potential regulation on
19		
20	436	growth and power generation of Geobacter sulfurreducens in microbial fuel cells
22		
23	437	based on energy viewpoint. Environ Sci Technol. 2010;44:3187-3191.
24		
26	438	33. Xiao B, Han Y, Liu X, Liu J. Relationship of methane and electricity production
27		
28	439	in two-chamber microbial fuel cell using sewage sludge as substrate. Int J
30		
31	440	Hydrogen Energy. 2014;39:16419–16425.
32	4.4.1	24. Lessen DE Hamalana D. Daran dal D. Calari da H. Kallan I. Ensaria C. Aaltannan
33 34	441	34. Logan BE, Hamelers B, Rozendar R, Schröder O, Kener J, Fregula S, Aenerman
35	112	P. Verstraete W. Rahaev K. Microbial fuel cells: methodology and technology
36	442	1, verstraete w, Rabaey K. Wierobiai fuer eens. methodology and teenhology.
37	443	Environ Sci Technol 2006:40:5181–5192
39	115	
40	444	35. Hao LT, Zhang BG, Cheng M, Feng CP. Effects of various organic carbon sources
41		
42	445	on simultaneous V(V) reduction and bioelectricity generation in single chamber
44		
45	446	microbial fuel cells. Bioresour Technol. 2016;201:105-110.
46 47		
48	447	36. Qiao Y, Bao SJ, Li CM, Cui X Q, Lu ZS, Guo J. Nanostructured
49		
50	448	polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano.
52		2000 2 112 110
53	449	2008;2:113–119.
54	150	27 LUAH LIV Jin S Wang Y Wu VI Zang (D LiV Ding UD Has DV L. M
55 56	430	JT. LUATI, LI I, JII S, Wally A, WUAL, Zelly CF, LI Y, DIlly HK, Hao KA, LV M,
57		
58		21
59		

URL: http:/mc.manuscriptcentral.com/tent

Environmental Technology

451		Wang CQ, Tang YQ, Dong HL. Growth of non-phototrophic microorganisms
452		using solar energy through mineral photocatalysis. Nat Commun. 2012;3:768.
453	38.	Min B, Cheng S, Logan BE. Electricity generation using membrane and salt
454		bridge microbial fuel cells. Water Res. 2005;39:1675-1686.
455	39.	Bond D R, Lovley D R. Electricity production by Geobacter
456		sulfurreducensattached to electrodes. Appl Environ Microbiol.
457		2003;69:1548–1555.
458	40.	Ieropoulos I, Greenman J, Melhuish C, Hart J. Energy accumulation and improved
459		performance in microbial fuel cells. J Power Sources. 2005;145:253-256.
460	41.	Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K. The anode potential
461		regulates bacterial activity in microbial fuel cells. Appl Microbiol Biotechnol.
462		2008;78:409–418.
463	42.	Zhou MH, Chi M, Wang H, Jin T. Anode modification by electrochemical
464		oxidation: a new practical method to improve the performance of microbial fuel
465		cells. Biochem Eng J. 2012;60:151–155.
466	43.	Cai J, Zheng P, Xing Y, Qaisar M. Effect of electricity on microbial community of
467		microbial fuel cell simultaneously treating sulfide and nitrate. J Power Sources.
468		2015;281:27–33.
469	44.	Raschitora A, Soreanub G, Fernandez-Marchantea CM, Lobatoa J, Cañizaresa P,
470		Cretescub I, Rodrigoa MA. Bioelectro-Claus processes using MFC technology:
471		Influence of co-substrate. Bioresour Technol. 2015;189:94–98.
472	45.	Zhang J, Zhang BG, Tian CX, Ye ZF, Liu Y, Lei Z, Feng CP. Simultaneous sulfide
		22
		URL: http:/mc.manuscriptcentral.com/tent

Environmental Technology

2 3 4	473	removal and electricity generation with corn stover biomass as co-substrate in
5	. – .	
6 7	474	microbial fuel cells. Bioresour Technol. 2013;138:198–203.
8 9	475	46. Ha PT, Lee TK, Rittmann BE, Park J, Chang IS. Treatment of Alcohol Distillery
10 11 12	476	Wastewater Using a Bacteroidetes-Dominant Thermophilic Microbial Fuel Cell.
13 14	477	Environ Sci Technol. 2012;46:3022–3030.
15 16 17	478	47. Kellermann C, Griebler C. Thiobacillus thiophilus sp. nov., a
18 19	479	chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from
20 21 22	480	contaminated aquifer sediments. Int J Syst Evol Micr. 2009;59:583–588.
23 24	481	48. Dubinina G, Grabovich M, Leshcheva N, Rainey FA, Gavrish E. Spirochaeta
25 26	482	perfilievii sp. nov. an oxygen-tolerant, sulfide-oxidizing, sulfur- and
27 28 29	483	thiosulfate-reducing spirochaete isolated from a saline spring. Int J Syst Evol
30 31	484	Microbiol. 2011;61:110–117.
32 33 34	485	49. Krishnani KK, Kathiravan V, Natarajan M, Kailasam M, Pillai SM. Diversity of
35 36	486	Sulfur-oxidizing bacteria in greenwater system of coastal aquaculture. Appl
37 38	487	Biochem Biotechnol. 2010;162:1225–1237.
40 41	488	50. Sun M, Tong ZH, Sheng GP, Chen YZ, Zhang F, Mu ZX, Wang HL, Zeng RJ, Liu
42 43	489	XW, Yu HQ, Wei L, Ma F. Microbial communities involved in electricity
44 45 46	490	generation from sulfide oxidation in a microbial fuel cell. Biosens Bioelectron.
47 48	491	2010;26:470–476.
49 50	492	51. Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK,
52 53	493	Chang HI. A novel electrochemically active and Fe(III)-reducing bacterium
54 55 56	494	phylogenetically related to Clostridium butyricum isolated from a microbial fuel
57 58		23
59 60		URL: http:/mc.manuscriptcentral.com/tent

3 4	495	cell. Anaerobe. 2001;7:297–306.
5 6 7	496	52. Srinivas TNR, Kumar PA, Sasikala C, Ramana CV, Imhoff JF. Rhodobacter
, 8 9	497	vinaykumarii sp. nov., a marine phototrophic alphaproteobacterium from tidal
10 11	498	waters, and emended description of the genus Rhodobacter. Int J Syst Evol Micr.
12 13 14	499	2007;57:1984–1987.
15 16	500	
17 18		
19		
20		
21		
22		
23		
25		
26		
27		
28		
29		
30 31		
32		
33		
34		
35		
36		
3/		
20 20		
40		
41		
42		
43		
44 45		
45 46		
40		
48		
49		
50		
51		
52 52		
53 54		
55		
56		
57		
58		24
59		LIDI, http://mc/manuscriptcontrol.com/tout
60		One. http://me.manuscriptcentral.com/tent

Page 25 of 33		Environmental Technology
1		
3 4 5	501	Figure Captions.
6 7	502	Fig. 1. SEM images and EDX spectral intensities. (a) with TiO_2 nanosheets, (b) with
9 10	503	Fe_2O_3 nanosheets, (c) bare carbon-fiber-felt, (d) corresponding EDX spectral
11 12 13	504	intensities.
14 15 16	505	Fig. 2. (a) Polarization curves and power outputs as well as (b) anode potentials of
17 18	506	MFCs with three kinds of anodes.
19 20 21	507	Fig. 3. (a) CV and (b) Nyquist plot of EIS data for the anodes of three MFCs.
22 23	508	Fig. 4. Changes of sulfide and TOC during 48 h operation as well as the generated
25 26	509	sulfate in the anode chambers of three MFCs. The black legend referred to left vertical
27 28 29	510	axis while the red legend referred to the right vertical axis.
30 31	511	
33 34		
35 36 37		
38 39 40		
41 42		
43 44 45		
46 47 48		
49 50		
52 53		
54 55 56		
57 58 59		25
60		URL: http:/mc.manuscriptcentral.com/tent

	Туре	Ace	Chao	Shannon	Simpson	Coverage
-	MFC-TiO ₂	768	760	4.33	0.031	0.996
	MFC-Fe ₂ O ₃	505	493	2.69	0.192	0.996
	MFC-CF	394	375	2.45	0.240	0.995

Table 1. Alpha-diversity of three MFCs employed in this study.

for peer peries only

Phylum	Class	Genus	MFC- TiO ₂ (%)	MFC- Fe ₂ O ₃ (%)	MFC -CF (%)	Phylum	Class	Genus	MF C-Ti O ₂ (%)	MFC- Fe ₂ O ₃ (%)	MF -C (%
	Acidobacteria	norank	0.12	0.17	0.32	Nitrospirae	Nitrospira	norank	0.21	0.01	0.2
Acidobacteria	Holophagae	norank	5.30	5.55	0.00			Gemmata	0.73	0.68	0.00
Acidobacteria	Actinobacteria	uncultured	0.40	0.15	0.46	Dianatamaraataa	Dianatamagastasia	Pirellula	0.96	0.42	1.3
	Thermoleophilia	Gaiella	0.30	0.17	0.44	Planctomycetes	Planciomycelacia	Planctomyces	1.81	1.75	0.00
Armatimonadetes	norank	norank	0.07	0.08	0.07			uncultured	0.47	0.20	1.03
	Bacteroidia		4.41	1.03	0.71			norank	0.18	0.14	0.30
Destantiates	Sphingobacteriia	norank	0.42	0.03	0.00		A 1	Rhodobacter	0.04	0.02	14.8
Bacteroidetes	Sphingobacteriia		0.00	0.22	0.48		Alphaproteobacteria	Delftia	0.78	1.47	1.4
	vadinHA17	norank	0.11	0.17	0.03			Thiobacillus	1.21	0.01	0.00
Candidate division BRC1	norank	norank	1.94	0.46	0.25	Proteobacteria	Deltaproteobacteria	Desulfovibrio	12.97	6.86	4.30
	Anaerolineae	Leptolinea	0.88	0.12	0.00			norank	21.94	47.44	28.0
Chloroflexi	Caldilineae	uncultured	0.98	0.43	0.42		Gammaproteobacteria	Pseudoxanth omonas	0.90	0.00	4.63
	Clastridia	Anaerofustis	0.01	0.00	0.17	Spirochaetae	Spirochaetes	Spirochaeta	0.10	0.05	0.1
Firmicutes	Ciostridia	Incertae_Sedis	0.94	0.05	37.88	Synergistetes	Synergistia	uncultured	3.75	0.09	0.02
	Negativicutes	norank	37.26	31.73	0.03	Others			0.81	0.50	1.9

Figure 3

Supporting Information

Enhanced sulfide removal and bioelectricity generation in microbial

fuel cells with anodes modified by vertically oriented nanosheets

Meng Yang^{a,#}, Yuezhi Zhong^{a,#}, Baogang Zhang^{a,*}, Jiaxin Shi^a, Xueyang Huang^a, Yi Xing^{b,*}, Lin Su^c, Huipeng Liu^a, Alistair G.L. Borthwick^d

^a School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China

^b School of Energy and Environmental Engineering, University of Sciences and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, P. R. China

^c State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China

^d School of Engineering, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, UK

[#] These authors contributed equally to this work.

^{*} Corresponding author. Tel.: +86 10 8232 2281; fax: +86 10 8232 1081.

E-mail: zbgcugb@gmail.com, baogangzhang@cugb.edu.cn (B. Zhang); xing_bkd@163.com (Y. Xing).

