
Simplicial models of social contagion

Iacopo Iacopini1,2, Giovanni Petri3,4, Alain Barrat5,3 & Vito Latora1,2,6,7

1School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United

Kingdom

2The Alan Turing Institute, The British Library, London NW1 2DB, United Kingdom

3ISI Foundation, Via Chisola 5, 10126 Turin, Italy

4ISI Global Science Foundation,33 W 42nd St10036 New York NY, United States
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Abstract

Complex networks have been successfully used to describe the spread of diseases in popu-

lations of interacting individuals. Conversely, pairwise interactions are often not enough to

characterize social contagion processes such as opinion formation or the adoption of novel-

ties, where complex mechanisms of influence and reinforcement are at work. Here we intro-

duce a higher-order model of social contagion in which a social system is represented by a

simplicial complex and contagion can occur through interactions in groups of different sizes.

Numerical simulations of the model on both empirical and synthetic simplicial complexes

highlight the emergence of novel phenomena such as a discontinuous transition induced by

higher-order interactions. We show analytically that the transition is discontinuous and that

a bistable region appears where healthy and endemic states co-exist. Our results help explain

why critical masses are required to initiate social changes and contribute to the understand-

ing of higher-order interactions in complex systems.
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Introduction

Complex networks describe well the connectivity of systems of various nature 1, 2 and are widely

used as the underlying – and possibly multilayered 3– social structure on which dynamical pro-

cesses 4, 5, such as disease spreading 6, diffusion and adoption of innovation 7–9, and opinion

formation 10 occur. For example, when modelling an epidemic spreading in a population 6, the

transmission between infectious and healthy individuals is typically assumed: (i) to occur through

pairwise interactions between infectious and healthy individuals, and (ii) to be caused even by a

single exposure of a healthy individual to an infectious one. Such processes of simple contagion

can be conveniently represented by transmission mechanisms along the links of the network of

contacts between individuals.

When dealing instead with social contagion phenomena, such as the adoption of norms, be-

haviours or new products, or the diffusion of rumors or fads, the situation is more complex. Simple

epidemic-like contagion can suffice to describe some cases, such as easily convincing rumors or

domino effects 11. In other situations, however, they do not provide a satisfactory description, es-

pecially in those cases where more complex dynamics of peer influence and reinforcement mech-

anisms are at work 12. Complex contagion mechanisms have been proposed to account for these

effects. As defined by Centola & Macy 11: “a contagion is complex if its transmission requires an

individual to have contact with two or more sources of activation”, i.e. if a “contact with a single

active neighbor is not enough to trigger adoption”. Complex contagion can hence be broadly de-

fined as a process in which exposure to multiple sources presenting the same stimulus is needed for
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the contagion to occur. Empirical evidence that contagion processes including multiple exposure

can be needed to describe social contagion has been provided in various contexts and experiments

13–17.

Modelling of social contagion processes has been driven by these considerations in several

directions. Threshold models assume that, in order to adopt a novel behavior, an individual needs

to be convinced by a fraction of his/her social contacts larger than a given threshold 11, 16, 18–21.

The processes considered in such models are usually deterministic. Another modelling framework

for social contagion relies instead on generalizations of epidemic-like processes, with stochastic

contagion processes whose rates might depend on the number of sources of exposure to which an

individual is linked to, i.e., with a complex contagion flavor 15, 21–26. All these models are however

still defined on networks of interactions between individuals: even when multiple interactions are

needed for a contagion to take place, in both threshold and epidemic-like models, the fundamental

building blocks of the system are pairwise interactions, structurally represented by the links of the

network on which the process is taking place.

Here, we propose to go further and take into account that contagion can occur in different

ways, either through pairwise interactions (the links of a network) or through group interactions,

i.e., through higher-order structures. Indeed, while an individual can be convinced independently

by each of his/her neighbors (simple contagion), or by the successive exposure to the arguments

of different neighbors (complex contagion), a fundamentally different mechanism is at work if the

neighbors of an individual convince him/her in a group interaction. For example, we can adopt a
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new norm because of two-body processes, which means we can get convinced, separately, by each

one of our first neighbors in our social network who have already adopted the norm. However, this

is qualitatively different from a mechanism of contagion in which we get convinced because we

are part of a social group of three individuals, and our two neighbors are both adopters. In this case

the contagion is a three-body process, which mimics the simplest multiple source of reinforcement

that induces adoption. The same argument can easily be generalized to larger group sizes.

To build a modelling framework based on these ideas, we formalise a social group as a sim-

plex, and we adopt simplicial complexes as the underlying structure of the social system under

consideration (see Figure 1a-b). This simplicial representations is indeed more suited than net-

works to describe the co-existence of pairwise and higher-order interactions. We recall that, in its

most basic definition, a k-simplex σ is a set of k + 1 vertices σ = [p0, . . . , pk]. It is then easy to

see the difference between a group interaction among three elements, which can be represented as

a 2-simplex or “full” triangle [p0, p1, p2], and the collection of its edges, [p0, p1], [p0, p2], [p1, p2].

Just like a collection of edges defines a network, a collection of simplices defines a simplicial

complex. Formally, a simplicial complex K on a given set of vertices V , with |V| = N , is a col-

lection of simplices, with the extra requirement that if simplex σ ∈ K, then all the sub-simplices

ν ⊂ σ built from subsets of σ are also contained inK. Such a requirement, which makes simplicial

complexes a special type of hypergraphs (see Supplementary Note 4), seems appropriate in the

definition of higher-dimensional groups in the context of social systems, and simplicial complexes

have indeed been used to represent social aggregation in human communication 27. Removing this

extra requirement would imply, for instance, modelling a group interaction of three individuals
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without taking into account also the dyadic interactions among them. The same argument can be

extended to interactions of four or more individuals: it is reasonable to assume that the existence

of high-order interactions implies the presence of the lower-order interactions. For simplicity and

coherence with the standard network nomenclature, we call nodes (or vertices) the 0-simplices

and links (or edges) the 1-simplices of a simplicial complex K, while 2-simplices correspond to

the (“full”) triangles, 3-simplices to the tetrahedra of K, and so on (see Figure 1a). Simplicial

complexes, differently from networks, can thus efficiently characterize interactions between any

number of units 28, 29. Simplicial complexes are not a new idea 30, but the interest in them has been

renewed 29, 31, 32 thanks to the availability of new data sets and of recent advances in topological data

analysis techniques 33. In particular, they recently proved to be useful in describing the architecture

of complex networks 34–36 functional 37–39 and structural brain networks 40, protein interactions 41,

semantic networks 42, and co-authorship networks in science 43.

Here, we thus propose a new modelling framework for social contagion, namely a model

of “simplicial contagion”: this epidemic-like model of social contagion on simplicial complexes

takes into account the fact that contagion processes occurring through a link or through a group

interaction both exist and have different rates. Our model therefore combines stochastic processes

of simple contagion (pairwise interactions) and of complex contagion occurring through group

interactions in which an individual is simultaneously exposed to multiple sources of contagion. We

perform extensive numerical simulations on both empirical data and synthetic simplicial complexes

and develop as well an analytical approach in which we derive and solve the mean-field equations

describing the evolution of density of infected nodes. We show both numerically and analytically
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that the higher-order interactions lead to the emergence of new phenomena, changing the nature

of the transition at the epidemic threshold from continuous to discontinuous and leading to the

appearance of a bistable region of the parameter space where both healthy and endemic asymptotic

states co-exist. The mean-field analytical approach correctly predicts the steady-state dynamics,

the position and the nature of the transition and the location of the bistable region. We also show

that, in the bistable region, a critical mass is needed to reach the endemic state, reminding of the

recently observed minimal size of committed minorities required to initiate social changes44.

Results

The contagion model. In order to model a simplicial contagion process, we associate a dynamical

binary state variable x to each of the N vertices of K, such that xi(t) ∈ {0, 1} represents the state

of vertex i at time t. Using a standard notation, we divide the population of individuals into two

classes of susceptible (S) and infectious (I) nodes, corresponding respectively to the values 0 and

1 of the state variable x. In the context of adoption processes, the state I represents individuals

who have adopted a behaviour. At each time t, the macroscopic order parameter is given by

the density of infectious nodes ρ(t) = 1
N

∑N
i=1 xi(t). The model we propose here, the so-called

Simplicial Contagion Model (SCM) of order D, with D ∈ [1, N − 1], is governed by a set of

D control parameters B = {β1, β2, . . . , βD}, whose elements represent the probability per unit

time for a susceptible node i that participates to a simplex σ of dimension D to get the infection

from each one of the subfaces composing σ, under the condition that all the other nodes of the

subface are infectious. In practice, with this notation, β1 is equal to the standard probability of
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Figure 1: Simplicial Contagion Model (SCM). The underlying structure of a social system is

made of simplices, representing d-dimensional group interactions (a), organized in a simplicial

complex (b). c-h Different channels of infection for a susceptible node i in the Simplicial Con-

tagion Model (SCM) of order D = 2. Susceptible and infected nodes are colored in blue and

red, respectively. Node i is in contact with one (c, e) or more (d, f) infected nodes through links

(1-simplices), and it becomes infected with probability β at each timestep through each of these

links. g-h Node i belongs to a 2-simplex (triangle). In g one of the nodes of the 2-simplex is not

infected, so i can only receive the infection from the (red) link, with probability β. In h the two

other nodes of the 2-simplex are infected, so i can get the infection from each of the two 1-faces

(links) of the simplex with probability β, and also from the 2-face with probability β2 = β∆. i

Infected nodes recover with probability µ at each timestep, as in the standard SIS model.
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infection β that a susceptible node i gets the infection from an infected neighbor j through the

link (i, j) (corresponding to the process S + I → 2I). Similarly, the second parameter β2 ≡ β∆

corresponds to the probability per unit time that node i receives the infection from a “full” triangle

(2-simplex) (i, j, k) in which both j and k are infectious, β3 = β� from a group of size 4 (3-

simplex) to which it belongs, and so on. Such processes can be represented as Simp(S, nI) →

Simp((n + 1)I): a susceptible node, part of a simplex of n + 1 nodes among which all other n

nodes are infectious, becomes infectious with probability per unit time βn. Thanks to the simplicial

complex requirements that all subsimplices of a simplex are included, contagion processes in a n-

simplex among which p < n nodes are infectious are also automatically considered, each of the

n + 1 − p susceptible nodes being in a simplex of size p + 1 with the p infectious ones. Notice,

however, that this assumption can be dropped and the contagion model extended to the case of

hypergraphs 45, 46 (see Supplementary Note 4). Figure 1c-h illustrates the concrete example of the

six possible ways in which a susceptible node i can undergo social contagion for an SCM of order

D = 2 with parameters β and β∆. Finally, the recovery dynamics (I → S) is controlled by the

node-independent recovery probability µ (Figure 1i). Notice that the SCM of order D reduces to

the standard SIS model on a network when D = 1, since in this case the infection can only be

transmitted through the links of K.

Simplicial contagion on real-world simplicial complexes. To explore the phenomenology of

the simplicial contagion model, we first consider its evolution on empirical social structures. To

this aim, we consider publicly available data sets describing face-to-face interactions collected by

the SocioPatterns collaboration 47. Face-to-face interactions represent indeed a typical example in
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which group encounters are fundamentally different from sets of binary interactions and can natu-

rally be encoded as simplices. The time-resolved nature of the data allows us to create simplicial

complexes describing the aggregated social structure, as described in Methods. For simplicity, we

only consider simplices of dimension up to D = 2. We consider data on interactions collected in

four different social contexts: a workplace, a conference, a hospital and a high school (see Methods

for details on the data sets).

We simulate the SCM over the simplicial complexes obtained from the four data sets as

described in Methods. In particular, we start with an initial density ρ0 of infectious nodes and we

run the simulations by taking into consideration all the possible channels of infection illustrated

in Figure 1c-h. We stop a simulation if an absorbing state is reached, otherwise we compute the

average stationary density of infectious nodes ρ∗ by averaging the values measured in the last 100

time-steps after reaching a stationary state. The results are averaged over 120 runs obtained with

randomly placed initial infectious nodes with the same density ρ0. Moreover, the different data

sets correspond to different densities of 1- and 2-simplices (see Supplementary Note 1). We thus

rescale the infectivity parameters β and β∆ respectively by the average degree 〈k〉 and by the

average number of 2-simplices incident on a node, 〈k∆〉. We finally express all results as functions

of the rescaled parameters λ = β〈k〉/µ and λ∆ = β∆〈k∆〉/µ.

Figure 2 shows the resulting prevalence curves for the four data sets (see also Supplementary

Note 5). In each panel (b,d,f,h), the average fraction of infected nodes ρ∗ in the stationary state

is plotted as a function of the rescaled infectivity λ = β〈k〉/µ for simulations of the SCM with
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Figure 2: SCM of order D = 2 on real world higher-order social structures. Simplicial

complexes are constructed from high-resolution face-to-face contact data recorded in four different

context: a a workplace, c a conference, e a hospital and g a high school. Prevalence curves are

respectively reported in panels b, d, f and h, in which the average fraction of infectious nodes

obtained in the numerical simulations is plotted against the rescaled infectivity λ = β〈k〉/µ for

different values of the rescaled parameter λ∆ = β∆〈k∆〉/µ, namely λ∆ = 0.8 (black triangles) and

λ∆ = 2 (orange squares). The blue circles denote the simulated curve for the equivalent standard

SIS model (λ∆ = 0), which does not consider higher order effects. For λ∆ = 2 a bi-stable region

appears, where healthy and endemic states co-exist.
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λ∆ = 0.8 (black triangles) and λ∆ = 2 (orange squares). For comparison, we also plot the case

λ∆ = 0, which is equivalent to the standard SIS model with no higher-order effects (blue circles).

We observe two radically different behaviours for the two values of λ∆ 6= 0. For λ∆ = 0.8, the

density of infectious nodes varies as a function of λ in a very similar way to the case λ∆ = 0

(simple contagion), with a continuous transition. For λ∆ = 2 we observe instead the appearance

of an endemic state with ρ∗ > 0 at a value of λc well below the epidemic threshold of the other

two cases. Furthermore, this transition appears to be discontinuous, and an hysteresis loop appears

in a bi-stable region, where both healthy ρ∗ = 0 and endemic ρ∗ > 0 states can co-exist (dashed

orange lines): in this parameter region, the final state depends on the initial density of infectious

nodes ρ0.

The simplicial complexes used in these simulations correspond to various social contexts

and different densities of 1- and 2-simplices, and yield a similar phenomenology. These empirical

structures however exhibit distributions of generalized degrees that are not well peaked around

their average values (see Supplementary Note 1), and do not allow us to systematically explore

size effects. To better understand the phenomenology of the simplicial contagion model, we thus

now explore its behaviour on synthetic simplicial complexes with controlled properties.

Simplicial contagion on synthetic simplicial complexes. A range of models for random sim-

plicial complexes have been proposed so far, starting from the exponential random simplicial

complex, the growing and generalized canonical ensemble 48–50 and the simplicial configuration

models 51 to the simplicial activity driven model 52 generalizing the activity driven temporal net-
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work model 53. While these yield Erdös-Rényi-like models 54, 55 of arbitrary complexity, here we

are interested in models generating simplicial complexes with simplices of different dimension in

which we can control and tune the expected local connectivity, e.g. the number of edges and “full”

triangles a node belongs to. We therefore propose a new model to construct random simplicial

complexes, the RSC model, which allows us to maintain the average degree of the nodes, 〈k1〉,

fixed, while varying at the same time the expected number of “full” triangles (2-simplices) 〈k∆〉

incident on a node. The RSC model of dimension D has D + 1 parameters, namely the number

of vertices N and D probabilities {p1, . . . , pk, . . . , pD}, pk ∈ [0, 1], which control for the cre-

ation of k-simplices up to dimension D. For the purpose of this study we limit the RSC model

to D = 2, which restricts the set of required parameters to (N, p1, p2), but the procedure could

easily be extended to larger D. The model works as follows. We first create 1-simplices (links)

as in the Erdös-Rényi model 56, by connecting any pair (i, j) of vertices with probability p1. Sim-

ilarly, 2-simplices are then created by connecting any triplet (i, j, k) of vertices with probability

p2 ≡ p∆. Notice that simplicial complexes built in this way are radically different from the clique

complexes obtained from Erdös-Rényi graphs54, in which every subset of nodes forming a clique is

automaticaly “promoted” to a simplex. Contrarily, in a simplicial complex generated by the RSC

model proposed here, a 2-simplex (i, j, k) does not come from the promotion of an “empty” trian-

gle composed by three 1-simplices (i, j), (j, k), (k, i) to a “full triangle” (i, j, k). This also means

that the model allows for the presence of (k+1)-cliques that are not considered k-simplices, there-

fore it is able generate simplicial complexes having both “empty” and “full” triangles, respectively

encoding three 2-body interactions and one 3-body interactions (as for instance in Fig. 1b). The
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expected average numbers of 1- and 2-simplices incident on a node, noted 〈k〉 and 〈k∆〉, are easy

to calculate (see Methods). Therefore, for any given size N , we can produce simplicial complexes

having desired values of 〈k〉 and 〈k∆〉 by appropriately tuning p1 and p∆. More details about the

construction of the model and the tuning of the parameters are provided in the “Methods” section,

while the agreement between the expected values of 〈k〉 and 〈k∆〉 with the empirical averages

obtained from different realizations of the model is discussed in Supplementary Note 1.

We simulate the SCM over a RSC created with the procedure described above, with N =

2000 nodes, 〈k〉 ' 20 and 〈k∆〉 ' 6. As for the real-world simplicial complexes, we start with

a seed of ρ0 infectious nodes placed at random and we compute the average stationary density

of infectious ρ∗ by averaging over different runs, each one using a different instance of the RSC

model. Results are shown in Fig.3a, where the average fraction of infected nodes, as obtained by

the simulations, is plotted as a function of the rescaled infectivity λ = β〈k〉 for a (D = 2) SCM

with λ∆ = 0.8 (white squares), λ∆ = 2.5 (filled blue circles) and λ∆ = 0 (light blue circles).

Despite the very different properties of the underlying structure, the dynamics of the SCM on

the RSC is very similar to the one observed on the real-world simplicial complexes. For λ∆ = 0.8

the model behaves similarly to a simple contagion model (λ∆ = 0), with a continuous transition

at λc = 1, the well-know epidemic threshold of the standard SIS model on homogeneous net-

works. When a higher value of λ∆ is considered (λ∆ = 2.5), the epidemic can be sustained below

λc = 1, and both an epidemic-free and an endemic states are present in the region λc < λ < 1,

with appearance of a hysteresis loop (see the filled blue circles in Fig. 3a). In this region, we
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obtain ρ(t → ∞) = 0 for ρ(t = 0) = 0.01, while ρ(t → ∞) > 0 for ρ(t = 0) = 0.4. The

size-dependence of the hysteresis loop is shown in Supplementary Note 2 to be very small. The

dependency from the initial conditions is also further illustrated in Fig. 3b, in which the temporal

dynamics of single runs are shown. The various curves show how the density of infected nodes

ρ(t) evolves when initial seeds of infected nodes of different sizes are considered. Each color

corresponds to a different value of ρ0, with brighter colors representing higher initial densities of

infected individuals. The figure clearly shows the presence of a threshold value for ρ0, such that

ρ(t) goes to the absorbing state ρ(t) = 0 if ρ0 is smaller than the threshold, and to a non-trivial

steady state if the initial density is above the threshold.

Mean field approach. In order to study more extensively this phenomenology as λ∆ and λ vary,

and to further characterize the discontinuous transition, we consider a mean field (MF) description

of the SCM, under a homogeneous mixing hypothesis 57. Given the set of infection probabilities

B ≡ {βω, ω = 1, · · · , D} and a recovery probability µ, we assume the independence between the

states xi(t) and xj(t) ∀ i, j ∈ V , and we write a MF expression for the temporal evolution of the

density of infected nodes ρ(t) as:

dtρ(t) = −µρ(t) +
D∑

ω=1

βω〈kω〉ρω(t)
[
1− ρ(t)

]
(1)

where, for each ω = 1, · · · , D, kω(i) = kω,0(i) is the generalized (simplicial) degree of a 0-

dimensional face (node i), i. e., the number of ω-dimensional simplices incident to the node i

49, 50, and 〈kω〉 is its average over all the nodes i ∈ V . With this approximation we assume that

the local connectivity of the nodes is well described by globally averaged properties, such as the

average generalized degree. We can immediately check that in the case D = 1 we recover the
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a b

Figure 3: SCM of order D = 2 on a synthetic random simplicial complex (RSC). The RSC is

generated with the procedure described in this manuscript, with parameters N = 2000, p1 and p∆

tuned in order to produce a simplicial complex with 〈k〉 ∼ 20 and 〈k∆〉 ∼ 6. a The average fraction

of infected obtained by means of numerical simulations is plotted against the rescaled infectivity

λ = β〈k〉/µ for λ∆ = 0.8 (white squares) and λ∆ = 2.5 (filled blue circles). The light blue circles

give the numerical results for the standard SIS model (λ∆ = 0) that does not consider higher order

effects. The red lines correspond to the analytical mean field solution described by Equation (3).

For λ∆ = 2.5 we observe a discontinuous transition with the formation of a bistable region where

healthy and endemic states co-exist. b Effect of the initial density of infected nodes, shown by the

temporal evolution of the densities of infectious nodes (a single realization is shown for each value

of the initial density). The infectivity parameters are set within the range in which we observe a

bistable region (λ = β〈k〉/µ = 0.75, λ∆ = β∆〈k∆〉/µ = 2.5). Different curves - and different

colors - correspond to different values for the initial density of infectious nodes ρ0 ≡ ρ(0). The

dashed horizontal line corresponds to the unstable branch ρ∗2− of the mean field solution given by

Equation 4, which separates the two basins of attraction.
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standard MF equation for the SIS model, which leads to the well known stationary state solutions

ρ
∗[D=1]
1 = 0 and ρ∗[D=1]

2 = 1 − µ/(β〈k〉). The absorbing state ρ∗[D=1]
1 = 0 is the only solution for

β〈k〉/µ < 1, i.e., below the epidemic threshold. When β〈k〉/µ > 1, this state becomes unstable

while the solution ρ∗[D=1]
2 becomes a stable fixed point of the dynamics. The transition between

these two regimes is continuous at β〈k〉/µ = 1.

Let us now focus on a more interesting but still analytically tractable case in which we extend

the contagion dynamics up to dimension D = 2, so that Equation (1) reads:

dtρ(t) = −µρ(t) + β〈k〉ρ(t)
[
1− ρ(t)

]
+ β∆〈k∆〉ρ2(t)

[
1− ρ(t)

]
(2)

where 〈k∆〉 ≡ 〈k2〉. By defining as before λ = β〈k〉/µ and λ∆ = β∆〈k∆〉/µ, and by rescaling the

time by µ, we can rewrite Equation (2) as:

dtρ(t) = −ρ(t)(ρ(t)− ρ∗2+)(ρ(t)− ρ∗2−) , (3)

where ρ∗2+ and ρ∗2− are the solutions of the second order equation 1− λ(1− ρ)− λ∆ρ(1− ρ) = 0.

We thus obtain:

ρ∗2± =
λ∆ − λ±

√
(λ− λ∆)2 − 4λ∆(1− λ)

2λ∆

. (4)

The steady state equation dtρ(t) = 0 has thus up to three solutions in the acceptable range

ρ ∈ [0, 1]. The solution ρ∗1 = 0 corresponds to the usual absorbing epidemic-free state, in which

all the individuals recover and the spreading dies out. A careful analysis of the stability of this

state and of the two other solutions ρ∗2+ and ρ∗2− is however needed to fully characterize the phase

diagram of the system.
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Let us first consider the case λ∆ ≤ 1. It is possible to show that ρ∗2−, when it is real-valued,

is always negative, i.e., it is not an acceptable solution. Moreover, ρ∗2+ is positive for λ > 1 and

negative for λ < 1. In the regime λ∆ ≤ 1 therefore, if λ < 1, the only acceptable solution to

dtρ(t) = 0 is ρ∗1 = 0; contrarily, for λ > 1, since ρ∗2− < 0 and ρ∗2+ > 0, Equation (3) shows that

dtρ(t) is positive at small ρ(t): the absorbing state ρ∗1 = 0 is thus unstable and the solution ρ∗2+

is stable. As ρ∗2+ = 0 for λ = 1, the transition at the epidemic threshold λ = 1 is continuous.

In conclusion, when λ∆ ≤ 1, the transition is similar to the one of the standard SIS model with

λ∆ = 0.

Let us now consider the case of λ∆ > 1. Then, for λ < λc = 2
√
λ∆ − λ∆, both ρ∗2+ and

ρ∗2− are outside the real domain, and the only steady state is the absorbing one ρ∗1 = 0. Note that

λc < 1, since λ∆ > 1. For λ > λc, we thus have two possibilities to consider. If λ > 1, we can

show that ρ∗2− < 0 < ρ∗2+. Equation (3) shows then that, for small ρ(t), dtρ(t) > 0: as above,

the absorbing state ρ∗1 = 0 is unstable and the density of infectious nodes tends to ρ∗2+ in the large

time limit; if instead λc < λ < 1, we obtain that 0 < ρ∗2− < ρ∗2+. Then, still from Equation (3),

we obtain that dtρ(t) < 0 for ρ(t) between 0 and ρ∗2−, and that dtρ(t) > 0 for ρ(t) between ρ∗2−

and ρ∗2+. As a result, both ρ∗1 = 0 and ρ∗2+ are stable steady states of the dynamics, while ρ∗2− is

an unstable solution. Most interestingly, the long time limit of the dynamics depends then on the

initial conditions. Indeed, if the initial density of infectious nodes, ρ(t = 0), is below ρ∗2−, the

short time derivative of ρ(t) is negative, so that the density of infectious nodes decreases and the

system tends to the absorbing state: ρ(t) −−−→
t→∞

0. On the other hand, if the initial density ρ(t = 0)

is large enough (namely, larger than ρ∗2−), the dynamical evolution Equation (3) pushes the density
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towards the value ρ∗2+, i.e. ρ(t) −−−→
t→∞

ρ∗2+. Since ρ∗2+ > 0, the transition at λc is discontinuous.

We illustrate these results by showing in Fig. 4a the solutions ρ∗1, ρ∗2+ and ρ∗2− as a function of

λ and for different values of λ∆. The vertical line corresponds to the standard epidemic threshold

for the SIS model (λ∆ = 0). Dashed lines depict unstable branches, as given by ρ∗2−. We emphasize

again two important points. First, for λ∆ > 1 we observe a discontinuous transition at λc =

2
√
λ∆ − λ∆, instead of the usual continuous transition at the epidemic threshold. Second, for

λc < λ < 1 the final state depends on the initial density of infectious nodes, as described above:

the absorbing state ρ∗1 = 0 is reached if the initial density ρ(t = 0) is below the unstable steady

state value ρ∗2−; on the contrary, if ρ(t = 0) is above this value, the system tends to a finite density

of infectious nodes equal to ρ∗2+. In other words, a critical mass is needed to reach the endemic

state, reminding of the recently observed minimal size of committed minorities required to initiate

social changes 44.

Figure 4b is a two-dimensional phase diagram showing ρ∗2+ for different values of λ and λ∆.

Lighter colours correspond to higher values of the stationary density of infectious nodes, while the

dashed vertical line corresponds to the epidemic threshold of the standard (without higher order

effects) SIS model, namely λ = 1. For λ∆ ≤ 1 (below the dashed horizontal line) the transition

as λ crosses 1 is seen to be continuous, while, for λ∆ > 1, the transition is clearly discontinuous

along the curve λc = 2
√
λ∆−λ∆ (dash-dotted line). The analytical values of ρ∗2+ are also reported

as continuous red lines in Figure 3a and compared to the results of the simulations, showing in

this way the accuracy of the mean field approach just described. In addition, Figure 3b shows that
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Figure 4: Phase diagram of the SCM of order D = 2 in mean field approximation. a The

stationary solutions ρ∗ given by Equation (4) are plotted as a function of the rescaled link infectivity

λ = β〈k〉/µ. Different curves correspond to different values of the triangle infectivity λ∆ =

β∆〈k∆〉/µ. Continuous and dashed lines correspond to stable and unstable branches respectively,

while the vertical line denotes the epidemic threshold λc = 1 in the standard SIS model that

does not consider higher order effects. For λ∆ ≤ 1 the higher order interactions only contribute

to an increase in the density of infected individuals in the endemic state, while they leave the

threshold unchanged. Conversely, when λ∆ > 1 we observe a shift of the epidemic threshold,

and a change in the type of transition, which becomes discontinuous. b Heatmap of the stationary

solution ρ∗ given by Equation (4) as a function of the rescaled infectivities λ = β〈k〉/µ and

λ∆ = β∆〈k∆〉/µ. The black area corresponds to the values of (λ, λ∆) such that the only stable

solution is ρ∗1 = 0. The dashed vertical line corresponds to λ = 1, the epidemic threshold of

the standard SIS model without higher order effects. The dash-dotted line represents the points

(λc, λ∆), with λc = 2
√
λ∆ − λ∆, where the system undergoes a discontinuous transition.
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the unstable solution ρ∗2− accurately separates the two basins of attractions for the dynamics, i.e.,

it defines the critical initial density of infected ρ0 that determines whether the long term dynamics

reaches the healthy state or the endemic one. Notice that the mean field approach is in fact able to

correctly capture both the position of the thresholds and the discontinuous nature of the transition

for the SCM with λ∆ > 1.

We finally note that, while a general solution for general D with arbitrary parameters {βω}

remains out of reach, it is possible to show that the phenomenology obtained for D = 2 is also

observed for specific cases with D ≥ 3. We consider indeed in the Supplementary Note 3 two

cases: D = 3 with β2 = 0 and general D > 3 with β1 = · · · = βD−1 = 0. In both cases, we

show the appearance of a discontinuous transition in the regime where the simple contagion β1 is

below threshold (i.e., β1〈k〉 < µ): similarly to the case D = 2, this transition occurs as βD, which

describes the rate of the high-order contagion process, increases.

Discussion. In summary, the simplicial model of contagion introduced in this work is able to cap-

ture the basic mechanisms and effects of higher-order interactions in social contagion processes.

Our analytical results were derived in a mean field approximation and indeed quantatively com-

pared to the nondescript simplicial complexes obtained in our random simplicial complex model

(akin to ER simplicial complexes55). However, the framework we introduced is very general and

the phenomenology robust, as seen from the results obtained on empirical data sets. It would be

interesting to investigate the SCM on more general simplicial complexes with for instance hetero-

geneous generalized degree distribution or with community structures, and to consider simplicial
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complexes with emergent properties such as hyperbolic geometry 58–60, or temporally evolving

simplicial complexes 52. Furthermore, given that the SCM can be mapped on a model with hyper-

graphs if the hyperedges of different types are carefully chosen, it would be interesting to study

the behavior of complex contagion processes on more general classes of hypergraphs 61, 62. Finally,

we hope that the idea will be extended from spreading processes to other dynamical systems, for

instance to Kuramoto-like models with higher-order terms. Developing and studying such systems

might allow to better take into account higher-order dynamical effects in real data-driven models.

Methods

Data description and processing. We consider four data sets of face-to-face interactions collected

in different social contexts: a workplace (InVS15) 63, a conference (SFHH) 64, a hospital (LH10) 65

and a high school (Thiers13) 66. In each case face-to-face interactions have been measured with

a temporal resolution of 20 seconds. We first aggregated the data by using a temporal window of

∆t = 5 minutes, and computed all the maximal cliques that appear. Since we limit our study to the

case D = 2, we need to produce a clique complex formed by 1- and 2-simplices. Therefore, we

considered all the 2- and 3-cliques and weight them according to their frequency. Note that while

higher-dimensional cliques are not included in the final simplicial complex, their sub-cliques up

to size 3 are considered in the counting. We then retained 20% of the simplices with the largest

number of appearances. The thresholded simplicial complexes obtained in this way are those used

in Supplementary Figure 6. Their connectivity properties are summarised in Table 1.

To reduce finite size effects, we augmented the thresholded simplicial complexes as follows:
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Dataset Context 〈k〉 〈k∆〉 〈k〉aug 〈k∆〉aug

InVS15 Workplace 16.9 7.0 21.0 7.0

SFHH Conference 15.0 7.6 21.6 7.7

LH10 Hospital 19.1 17.1 25.7 17.5

Thiers13 High school 20.1 10.9 32.0 11.1

Table 1: Statistics of real-world simplicial complexes. Average generalized degree of the four

real-world simplicial complexes constructed from the considered data sets (before and after the

data augmentation).

for each data set we extracted the list of sizes of the maximal simplices, also called facets, and

the list of pure simplicial degrees of nodes. We then duplicated these lists five times and used the

extended lists as input for the simplicial configuration model, described in Ref. 51. The outputs of

this procedure are simplicial complexes with the same statistical properties as the input complex but

of significantly larger size. We used these augmented complexes as substrates for the simulations

shown in Figure 2.

Construction of random simplicial complexes. The random simplicial complex (RSC) model

produces simplicial complexes of dimension D = 2 as follows. Given a set V of N vertices we

connect any two nodes i, j ∈ V with probability p1 ∈ [0, 1], so that the average degree, at this stage,

is (N−1)p1. Then, for any i, j, k ∈ V , we add a 2-simplex (i, j, k) with probability p∆ ∈ [0, 1]. At

this point each node has an average number 〈k∆〉 = (N − 1)(N − 2)p∆/2 of incident 2-simplices

that also contribute to increase the degree of the nodes. The exact contribution can be calculated by
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considering the different scenarios in which a 2-simplex (i, j, k) can be attached to a node i already

having some links due to the first phase of the RSC construction. More precisely, the degree ki

of node i is incremented by 2 for each 2-simplex (i, j, k) such that neither the link (i, j) nor the

link (i, k) are already present; this happens with probability (1 − p1)2. Analogously, if either the

link (i, j) is already present but not (i, k), or vice-versa, the addition of the 2-simplex (i, j, k)

increases the degree of i by 1. Since each case happens with the same probability p1(1 − p1) the

contribution is therefore 2p1(1 − p1). Overall, the degree ki increases on average by 2(1 − p1)

for each 2-simplex attached to i. Finally, for p1, p∆ � 1, we can thus write the expected average

degree 〈k〉 as the sum of the two contributions coming from the links and the 2-simplices, namely

〈k〉 ≈ (N−1)p1 +2〈k∆〉(1−p1). For any given sizeN , we can thus produce simplicial complexes

having desired values of 〈k〉 and 〈k∆〉 by fixing p1 and p∆ as:

p1 =
〈k〉 − 2〈k∆〉

(N − 1)− 2〈k∆〉
(5a)

p∆ =
2〈k∆〉

(N − 1)(N − 2)
. (5b)

Data availability. The SocioPatterns data sets were downloaded from sociopatterns.org/datasets.

Code availability. The code and datasets are available at: github.com/iaciac/simplagion
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1 Generalized degree distributions of empirical and synthetic simplicial complexes

a b

c d

Figure 1: Generalised degree distributions of random simplicial complexes created from real

world data sets (see the data processing method described in the “Methods” section of the main

text). The four panels correspond to different social contexts, namely (a) a workplace (InVS15),

(b) a conference (SFHH), (c) a hospital (LH10) and (d) a high school (Thiers13). The generalised

degrees k1 and k2 = k∆ denote respectively the number of 1-simplices (blue) and 2-simplices

(orange) incident in a node. The vertical dashed lines indicate the corresponding average values.
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Figure 2: Generalised degree distributions of random simplicial complexes (RSC) generated by

the model described in the main text. The generalised degrees k1 and k2 = k∆ denote respec-

tively the number of 1-simplices (blue) and 2-simplices (orange) incident in a node. The vertical

lines compare the average values of 〈k1〉 and 〈k2〉 obtained from multiple realizations of the model

(coloured dashed lines) with the approximated values (continuous grey lines) calculated as de-

scribed in the main text.
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2 Hysteresis and system size

Figure 3: Numerical exploration of the finite size effects on the hysteresis for a SCM of order

D = 2 on synthetic random simplicial complexes (RSC). The RSCs are generated with the pro-

cedure described in the main text, with parameters p1 and p∆ tuned in order to produce simplicial

complexes with 〈k〉 ∼ 20 and 〈k∆〉 ∼ 6. Different panels correspond to different system sizes,

namely (a)N = 500, (b)N = 1000, (c)N = 2000, and (d)N = 4000. Each panel shows the aver-

age stationary fraction of infected individuals plotted against the rescaled infectivity λ = β〈k〉/µ.

The parameter λ∆ = β∆〈k∆〉/µ is set to λ∆ = 2.5, which corresponds to the case in which we

observe a discontinuous transition, with the formation of a a bistable region where healthy and

endemic states co-exist and a hysteresis appears. The two types of orange symbols correspond to

two different values of the initial density of infected individuals for λ∆ = 2.5, namely ρ0 = 0.01

(circles) and ρ0 = 0.4 (squares). The case λ∆ = 0.8, in which we observe a continuous transition

with no hysteresis, is shown for reference (black squares).
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Figure 4: Numerical exploration of the finite size effects on the hysteresis for a SCM of order

D = 2 on synthetic random simplicial complexes (RSC). The two panels refer to two different

values of the initial density of infected individuals, namely (a) ρ0 = 0.4 and (b) ρ0 = 0.01. The

dashed line corresponds to the mean-field result.
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3 Cases of higher dimensions

Case D = 3

Let us consider here a system with maximum dimension of simplices D = 3. In this case the

model has three spreading parameters β1, β2 = β∆ and β3, and the evolution equation for ρ(t)

reads

dtρ(t) = −µρ(t) + β〈k〉ρ(t)(1− ρ(t)) + β2〈k2〉ρ(t)2(1− ρ(t)) + β3〈k3〉ρ(t)3(1− ρ(t)). (1)

Finding the roots of dtρ(t) = 0 yields a polynomial of degree 3, so it is possible to write these roots,

corresponding to stable and unstable fixed points of the dynamics, as functions of the parameters

of the model. The process is however lengthy and cumbersome, and depends moreover on three

parameters, so that the representation of the whole phase diagram is not convenient.

As we want here simply to show that the phenomenology of the appearance of first order

transitions obtained in the case D = 2, is also observed in higher dimensions, we restrict ourselves

for simplicity to the case β∆ = 0, in which we will see that we can avoid writing the explicit

solutions and resort instead to a graphical solution. This case corresponds to the hypothesis that

contagion can occur only either through simple contagion or through cliques of size 4 in which 3

of the nodes are already infectious, and the evolution equation reduces to:

dtρ(t) = −µρ(t) + β〈k〉ρ(t)(1− ρ(t)) + β3〈k3〉ρ(t)3(1− ρ(t)). (2)

Setting λ = β〈k〉/µ, λ3 = β3〈k3〉/µ and rescaling time by µ we obtain:

dtρ(t) = ρ(t)(1− ρ(t))

(
λ+ λ3ρ

2 − 1

1− ρ(t)

)
(3)
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where we can define the functions f1(ρ) = λ + λ3ρ
2 and f2(ρ) = 1/(1 − ρ). The sign of the

temporal evolution of the density of infectious is thus given by the sign of the difference between

f1 − f2. Note that ρ(t) is by definition between 0 and 1 so we need to consider f1 and f2 only

between these limits. In this interval, f1 is positive and increases monotonically from λ for ρ = 0

to λ + λ3 for ρ = 1. Function f2 is also positive and strictly increasing, with f2(0) = 1 and

f2 diverging towards +∞ as ρ → 1−. We also note that the equation f1(ρ) = f2(ρ) yields a

polynomial of degree 3, so it has at most 3 real roots.

Let us first consider the case λ > 1. Then at ρ = 0 we have f1 > f2, and as ρ → 1,

f1 becomes smaller than f2. Therefore, at small ρ, dtρ is positive and hence the state ρ = 0 is

unstable. More in detail, there are two possibilities:

• either there is one single crossing point of f1 and f2, at ρ∗. Then, dtρ(t) > 0 if ρ(t) < ρ∗

and dtρ(t) < 0 if ρ(t) > ρ∗: for any ρ(t = 0) > 0, the system goes to the stationary state

ρ(t → ∞) = ρ∗. This is similar to the usual SIS case with λ3 = 0: the effect of a non-zero

value of λ3 is simply to shift the value of ρ∗.

• or there are three crossing points ρ1 < ρ2 < ρ3. This occurs for certain combinations of

values of λ and λ3. Then for ρ(t) < ρ1, dtρ(t) > 0 so the absorbing state ρ = 0 is again

unstable. The state ρ2 is also seen to be unstable while there are two stable fixed points ρ1

and ρ3: depending on the value of ρ(t = 0), the system will converge to one of these values.

Hence, for λ > 1, the system always reaches a stationary state with a finite fraction of infectious
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nodes, which in some regions of the (λ,λ3) phase diagram, can depend on ρ(t = 0).

Let us now consider the more interesting case λ < 1. Then f1(ρ) < f2(ρ) both for ρ = 0 and

as ρ → 1. Hence f1 − f2 is negative both in 0 and 1, and either 0 or 2 of the roots of the equation

f1(ρ) = f2(ρ) are between 0 and 1. Hence, for ρ ∈ [0, 1], either f1 is always below f2, or the two

functions intersect in 2 points that we call ρ− and ρ+ (ρ− < ρ+):

• in the former case (f1(ρ) < f2(ρ) ∀ρ ∈ [0, 1]), dtρ(t) is always negative so the only station-

ary state is the absorbing one ρ = 0;

• in the latter case, dtρ is positive for ρ(t) between ρ− and ρ+ and negative else, so that

– if ρ(t = 0) < ρ−, dtρ is negative, hence ρ(t) decreases and the system converges to

ρ = 0

– if ρ(t = 0) > ρ−, the system converges towards ρ(t→∞) = ρ+ > 0.

At fixed λ < 1, the former case is obtained at small values of λ3, while the latter is obtained for λ3

large enough. The situation is illustrated in Fig. 5 for λ = 0.5. At the transition λ3 = λc3 between

these two cases, ρ− = ρ+ > 0 (the functions f1 and f2 are tangent in this point): the transition

from ρ(t → ∞) = 0 for λ3 < λc3 to ρ(t → ∞) = ρ+ (if ρ(t = 0) > ρ−) for λ3 > λc3 is thus a

discontinuous one, in a similar way to the case D = 2 discussed in the main text.
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Figure 5: SCM of order D = 3, case λ = 0.5, λ2 = 0: f1(ρ) for various λ3 (<, ≈ and > λc3), and

f2(ρ). f1 is below f2 both at ρ = 0 and as ρ→ 1. The two curves therefore either do not cross (for

λ3 < λc3), are tangent in ρ+ = ρ− (for λ3 = λc3) or cross in two points ρ− and ρ+ (for λ3 > λc3).
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General D, with β1 = · · · = βD−1 = 0

For general D, there is no analytical solution for the stationary values of the density of infectious

nodes. We show here however that, if we consider that contagion can occur only through cliques

of size D + 1, i.e., if all spreading rates β1, β2, . . . , βD−1 are null, there exists a discontinuous

transition between the phase in which the spreading vanishes at low βD and the phase in which

ρ(t→∞) is finite at large βD.

The evolution equation for ρ reads

dtρ(t) = −µρ(t) + βD〈kD〉ρ(t)D(1− ρ(t)). (4)

Defining λD = βD〈kD〉/µ and rescaling time by µ we obtain

dtρ(t) = − ρ(t)
[
1− λDρD−1(t)(1− ρ(t))

]
. (5)

Defining FD(ρ) = 1 − λDρ
D−1(1 − ρ), we see that the sign of dtρ(t) is opposite to the sign of

FD(ρ(t)), so that we need to study the sign of the function FD(ρ) for ρ ∈ [0, 1] (as the density ρ(t)

is by definition between 0 and 1).

We have FD(0) = FD(1) = 1. Moreover, the derivative of FD is

F ′D(ρ) = λD(DρD−1 − (D − 1)ρD−2) = DλDρ
D−2(ρ− (1− 1/D)).

It is thus negative for ρ < 1−1/D and positive for ρ > 1−1/D: FD first decreases as ρ increases,

reaches a minimum at ρ = 1− 1/D and then increases back to 1 as ρ increases to 1. We have thus

two cases:
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• if the minimum, FD(1 − 1/D), is positive, then FD(ρ) > 0 for ρ ∈ [0, 1]: therefore, dtρ(t)

is always negative for any ρ(t) > 0: the density of infectious nodes can only decrease and

the contagion-free state ρ = 0 is the only stable state.

• if instead FD(1 − 1/D) < 0, then, as FD(0) = FD(1) = 1, by continuity the equation

FD(ρ) = 0 has two roots in [0, 1], which we call ρ− and ρ+ (ρ− < ρ+). FD(ρ) is positive for

ρ ∈ [0, ρ−) and ρ ∈ (ρ+, 1] and negative between the two roots. Therefore

– if ρ(t = 0) < ρ−, dtρ(t = 0) is negative, hence ρ(t) decreases and the system converges

to ρ = 0

– if ρ(t = 0) > ρ−, the system converges towards ρ(t→∞) = ρ+ > 0.

The condition to have FD(1 − 1/D) < 0 and hence a non-trivial stationary state can be

written simply as

1− λD(1− 1/D)D−1(1/D) < 0

i.e.,

λD > λcD =
DD

(D − 1)D−1
.

Note that for λD = λcD, ρ− = ρ+ = 1− 1/D is strictly positive, showing that the transition

at λcD is discontinuous.

This shows therefore that for β1 = · · · = βD−1 = 0, we have the same phenomenology for

any D as for the case D = 2 studied on the main text: a discontinuous transition occurs

at λcD = DD

(D−1)D−1 between an absorbing state ρ = 0 and a stationary state with a non-zero

density of infectious individuals ρ+ > 0.
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4 Hypergraphs and simplicial complexes

Hypergraphs are a generalization of the concept of graphs in which the edges, called hyperedges,

can join any number of vertices. Formally, a hypergraph H is the pair of sets (V,E), where V is

a set of vertices, and the set of hyperedges E is a subset of the power set P (V ) of V . Simplicial

complexes are therefore special kinds of hypergraphs, which contain all subsets of every hyper-

edge. A simplicial complex K on the set of vertices V can indeed be seen as a hypergraphH on V

if the latter satisfies the extra requirement that, for each σ ∈ E, and for all ν 6= ∅ such that ν ⊆ σ,

we also have ν ∈ E. Such an extra requirement seems appropriate in the context of models of

social interactions considered in our work, and it also turns useful to keep the model simple and

amenable to analytical solution. However, the SCM can be straightforwardly extended to model

the more general case of complex contagion processes on hypergraphs.
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5 Results on empirical simplicial complexes without data augmentation

Figure 6: SCM of order D = 2 on real-world higher-order social structures without data aug-

mentation. Simplicial complexes are constructed from high-resolution face-to-face contact data

recorded in a workplace (a), a conference (b), and a high school (c). The average fraction of in-

fected nodes in the stationary state obtained numerically is plotted against the rescaled infectivity

λ = β〈k〉/µ for λ∆ = 0.8 (black triangles) and λ∆ = 2.5 (orange squares). The blue circles denote

the simulated curve for the standard SIS model (λ∆ = 0), which does not consider higher order

effects. For λ∆ = 2.5 a bi-stable region appears, where healthy and endemic states co-exist.
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