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Abstract. We present two methods for proving confluence of left-linear
term rewrite systems. One is hot-decreasingness, combining the paral-
lel/development closedness theorems with rule labelling based on a ter-
minating subsystem. The other is critical-pair-closing system, allowing
to boil down the confluence problem to confluence of a special subsystem
whose duplicating rules are relatively terminating.
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1 Introduction

We present two results for proving confluence of first-order left-linear term
rewrite systems, which extend and generalise three classical results: Knuth and
Bendix’ criterion [19] and strong and parallel closedness due to Huet [16]. Our
idea is to reduce confluence of a term rewrite system R to that of a subsystem
C comprising rewrite rules needed for closing the critical pairs of R. In Sec-
tion 3 we introduce the notion of a critical-pair-closing system and present a
confluence-preservation result based on relative termination Cd/R of the dupli-
cating part Cd of C. In Section 4 we introduce hot-decreasingness, requiring that
critical pairs can be closed using rules that are either below those in the peak or
in a terminating subsystem C. For the left-linear systems we consider, our first
criterion generalises Huet’s strong closedness, and the second both his parallel
closedness and Knuth and Bendix’ criterion. Empirical results to assess viability
of our results are reported in Section 5.

In the last decade various classical confluence results for term rewrite sys-
tems have been factored through the decreasing diagrams method [27,29] for
proving confluence of abstract rewrite systems, often leading to generalisations
along the way: e.g. Felgenhauer’s multistep labelling [12] generalises Okui’s si-
multaneous closedness [26], the layer framework [11] generalises Toyama’s modu-
larity [32], critical pair systems [15] generalise both orthogonality [30] and Knuth
and Bendix’ criterion [19], and Jouannaud and Liu generalise, among others [20],
parallel closedness, but in a way we do not know how to generalise to develop-
ment closedness [28]. This paper fits into this line of research.
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Huet’s parallel closedness result relies on the notion of overlap whose geo-
metric intuition is subtle [1,24], and reasoning becomes intricate for development
closedness as covered by Theorem 3. We factor the classical theory of overlaps
and critical pairs through the encompassment lattice in which overlapping redex-
patterns is taking their join and the amount of overlap between redex-patterns
is computed via their meet, thus allowing to reason algebraically about overlaps.

We assume the reader is familiar with term rewriting [8,1,31] in general and
confluence methods [19,16,29] in particular.

2 Preliminaries on decreasingness and encompassment

We recall the key ingredients of the decreasing diagrams method for proving
confluence, see [25,31,29,20], and revisit the classical notion of critical pair, re-
casting its traditional account [19,16,1] based on redexes (substitution instances
of left-hand sides) into one based on redex-patterns (left-hand sides).

Decreasingness Consider an ARS comprising an I-indexed relation → =⋃
`∈I→α equipped with a well-founded strict order�. We refer to {κ ∈ I | ` � κ}

by g`, and to g`∪gκ by g`, κ. For a subset J of I we define →J as
⋃
`∈J→`.

Definition 1. A diagram for a peak b `← a →κ c is decreasing if its closing
conversion has shape b↔∗g` · →=

κ · ↔∗g`,κ · =`← ·↔∗gκ c. An ARS in this setting
is called decreasing if every peak can be completed into a decreasing diagram.

Theorem 1 ([27,29]). An ARS is confluent if it is decreasing. Conversely, every
countable ARS that is confluent, is decreasing for some set of indices I.

For completeness, it even suffices that the set of labels I is a doubleton [10].

Critical peaks revisited We introduce clusters as the structures obtained
after the matching of the left-hand side of a rule in a rewrite step, but before its
replacement by the right-hand side. We use them as a tool to analyse overlaps and
critical peaks. To illustrate our notions we use the following running example.

Example 1. In the TRS R with %(x) :f(f(x))→g(x) the term t = f(f(f(f(a))))
allows the step f(%(f(a))) : t→ f(g(f(a))) and multistep %(%(a)) : t ◦−→ g(g(a)).

Here f(%(f(a))) and %(%(a)) are so-called proofterms, terms representing proofs
of rewritability in rewriting logic [22,31]. The source of a proofterm can be
computed by the 2nd-order substitution src of the left-hand side of the rule
for the rule symbol5 f(%(f(a)))src = f(%(f(a)))J%:=λx.f(f(x))K = f(f(f(f(a)))),
and, mutatis mutandis, the same for the target via tgt. Proofclusters introduced
here, abstract from such proofterms allowing to represent the matching and
substitution phases of multisteps as well, by means of let-expressions.

5 src can be viewed as tree homomorphism [6], or as a term algebra %Lhs(t) = `[x:=t].
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Example 2. The multistep in Example 1 comprises three phases [27, Chapter 4]:

1. letX,Y = λx.f(f(x)), λy.f(f(y)) inX(Y (a)) denotes matching f(f(x)) twice;
2. letX,Y = λx.%(x), λx.%(x) inX(Y (a)) denotes replacing by % twice;
3. letX,Y = λx.g(x), λx.g(x) inX(Y (a)) denotes substituting g(x) twice.

To represent these we assume to have proofterms t, s, u, . . . over a signature com-
prising function symbols f, g, h, . . ., rule symbols %, θ, η, . . ., 2nd-order variables
X,Y, Z, . . ., all having natural number arities, and 1st-order variables x, y, z, . . .
(with arity 0).We call proofterms without 2nd-order variables or rule symbols,
1st-order proofterms respectively terms, ranged over by M , N , L, . . ..

Definition 2. A proofcluster is a let-expression letX = Q in t, where

– X is a vector X1, . . . , Xn of (pairwise distinct) second-order variables;
– Q is a vector of length n of closed λ-terms Qi = λxi.si, where si is a

proofterm and the length of the vector xi of variables is the arity of Xi; and
– t is a proofterm, the body, with its 2nd-order variables among X.

Its denotation JletX = Q in tK is tJX:=QK. It is a cluster if s, t are terms.

We let ς, ζ, ξ, . . . range over (proof)clusters. They denote (proof)terms.

Example 3. Using ς, ζ, ξ for the three let-expressions in Example 2, each is
a proofcluster and ς, ξ are clusters. Their denotations are the term JςK =
f(f(f(f(a)))) = t, proofterm JζK = %(%(a)), and term JξK = g(g(a)).

We assume the usual variable renaming conventions, both for the 2nd-order ones
in let-binders and the 1st-order ones in λ-abstractions. We say a proofcluster ς is
linear if every (let or λ) binding binds exactly once, and canonical [23] if, when
a binding variable occurs to the left of another such (of the same type), then
the first bound occurrence of the former occurs before that of the latter in the
pre-order walk of the relevant proofterm.

Example 4. Let ζ ′ and ξ′ be the clusters letX = λx.f(f(x)) inX(X(a)) and
letX,Y = λyz.f(f(y)), λx.f(f(x)) inY (X(a, f(a))). Each of ς, ζ ′, ξ′ denotes t
in Example 1. The cluster ς is linear and canonical, ζ ′ is canonical but not linear
(X occurs twice in the body), and ξ′ is neither linear (z does not occur in f(y))
nor canonical (Y occurs outside of X in the body).

We adopt the convention that absent λ-binders are inserted linearly and canon-
ically; letX = f(f(x)) inX(X(a)) is ζ ′. Clusters witness encompassment ·D.

Proposition 1. t ·D s iff ∃u,X s.t. JletX = s inuK = t and X occurs once in u.

We define the size ‖t‖ of a proofterm t in a way that is compatible with en-
compassment. Formally, ‖t‖ is the pair comprising the number of non-1st-order-
variable symbols in t, and the sum over the 1st-order variables x, of the square
of the number of occurrences of x in t. Then ‖t‖ > ‖s‖ if t ·. s, where we (ab)use
> to denote the lexicographic product of the greater-than relation with itself,
e.g. ‖g(a, a)‖ = (3,0) > ‖g(x, x)‖ = (1,4) > ‖g(x, y)‖ = (1,2). For a proofcluster
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ς given by letx = s in t its pattern-size VςW is
∑
i‖si‖ (adding component-wise,

with empty sum (0,0)) and its body-size TςU is ‖t‖. Encompassment ·D is at the
basis of the theory of reducibility [6, Section 3.4.2]: t is reducible by a rule `→ r
iff t ·D `. For instance, letX = f(f(x)) in f(X(f(a))) is a witness to reducibility
of t in Example 1. We call it, or simply f(f(x)), a pattern in t.

Definition 3. Let ς be a canonical linear proofcluster letX = s in t with term t.
We say ς is a multipattern if each si is a non-variable 1st-order term, and ς is
a multistep if each si has shape %(x), i.e. a rule symbol applied to a sequence of
pairwise distinct variables. If X has length 1 we drop the prefix ‘multi’.

We use Φ, Ψ,Ω, . . . to range over multisteps, and φ, ψ, ω, . . . to range over steps.
Taking their denotation yields the usual multistep [31,15] and step ARSs ◦−→
and→ underlying a TRS R. These can be alternatively obtained by first applying
src and tgt (of which only the former is guaranteed to yield a multipattern, by
left-linearity) and then taking denotations: JΦsrcK = JΦKsrc and JΦtgtK = JΦKtgt.
Pattern- and body-sizes of multipatterns are compositional.

Proposition 2. For multipatterns ς,ς if ς = ς
[x:=ς]
0 with each variable among

x occurring once in the body of ς0, then VςW =
∑
iςi, and TςU > TςiU for all i,

with strict inequality holding in case the substitution is not a bijective renaming.
Here multipattern-substitution substitutes in the body and combines let-bindings.

Multipatterns are ordered by refinement v.

Definition 4. Let ς and ζ be multipatterns letX = s in t and letY = u inw. We
say ς refines ζ and write ς v ζ, if there is a 2nd-order substitution σ on Y with
wσ = t and JletX = s inYi(yi)

σK = ui for all i, with yi the variables of ui.

Example 5. We have ς v ς ′ with ς ′ is letZ = f(f(f(f(z)))) inZ(a), and ς as in
Example 3, as witnessed by the 2nd-order substitution mapping Z to λx.X(Y (x)).

Lemma 1. v is a finite distributive lattice [7] on multipatterns denoting a 1st-
order term t, with least element ⊥ the empty let-expression let = in t, and great-
est element > of shape letX = t′ inX(x) with x the vector of variables in t.

Proof (Idea). Although showing thatv is reflexive and transitive is easy, showing
anti-symmetry or existence of/constructions for meets u and joins t, directly is
not. Instead, it is easy to see that each multipattern letX = s in t is determined
by the set of the (non-empty, convex,6 pairwise disjoint) sets of node positions
of its patterns si in t, and vice versa. For instance, the multipatterns ς and
ς ′ in Example 5 are determined by {{ε, 1}, {1·1, 1·1·1}} and {{ε, 1, 1·1, 1·1·1}}.
Viewing multipatterns as sets in that way ς v ζ iff ∀P ∈ ς, ∃Q ∈ ζ with P ⊆ Q.
Saying P,Q ∈ ς ∪ ζ have overlap if P ∩Q 6= ∅, denoted by P GQ, characterising
meets and joins now also is easy: ς u ζ = {P ∩Q | P ∈ ς, Q ∈ ζ, and P GQ}, and
ς t ζ = {

⋃
PG | P ∈ ς ∪ ζ}, where PG = {Q∈ ς ∪ ζ | P G∗ Q}, i.e. the sets connected

6 Here convex means that for each pair of positions p,q in the set, all positions on the
shortest path from p to q in the term tree are also in the set, cf. [31, Definition 8.6.21].
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to P by successive overlaps. On this set-representation v can be shown to be a
finite distributive lattice by set-theoretic reasoning, using that the intersection
of two overlapping patterns is a pattern again7. For instance, ⊥ is the empty set
and > is the singleton containing the set of all non-variable positions in t. ut

The (proof of the) lemma allows to freely switch between viewing multisteps and
multipatterns as let-expressions and as sets of sets of positions, and to reason
about (non-)overlap of multipatterns and multisteps in lattice-theoretic terms.
We show any multistep Φ can be decomposed horizontally as φ followed by Φ/φ
for any step φ∈Φ [15,28], and vertically as some vector Φ substituted in a prefix
Φ0 of Φ, and that peaks can be decomposed correspondingly.

Definition 5. For a pair of multipatterns ς, ζ denoting the same term its amount
of overlap8 and non-overlap is ς eζ = Vς uζW respectively ς dζ = Tς tζU, we say
ς, ζ is overlapping if ς u ζ 6= ⊥, and critically overlapping if moreover ς t ζ = >
and JςK = JζK is linear. This extends to peaks s Φ ◦←− t ◦−→Ψ u via Φsrc and Ψ src.

Note ς,ζ is overlapping iff ςeζ 6= (0,0). Critical peaks s φ← t→ψ u are classified
by comparing the root-positions pφ, pψ of their patterns with respect to the prefix
order ≺o , into being outer–inner (pφ ≺o pψ), inner–outer (pψ ≺o pφ), or overlay
(pψ = pφ), and induce the usual [19,16,8,1,25,31] notion of critical pair (s,u).9

Definition 6. A pair (ς ′,ζ ′) of overlapping patterns such that ς ′, ζ ′ are in the
multipatterns ς, ζ with > = ς t ζ, is called inner, if it is minimal among all
such pairs, comparing them in the lexicographic product of ≺o with itself, via
the root-positions of their patterns, ordering these themselves first by �o. This
extends to pairs of steps in peaks of multisteps via src.

Proposition 3. If (φ,ψ) is an inner pair for a critical peak Φ ◦←− · ◦−→Ψ , and
φ ∈ Φ, ψ ∈ Ψ contract redexes at the same position, then φ = Φ and ψ = Ψ .

For patterns and peaks of ordinary steps, their join being top, entails they are
overlapping, and the patterns in a join are joins of their constituent patterns.

Proposition 4. Linear patterns ς,ζ are critically overlapping iff ς t ζ = >.

Lemma 2. If ξ = ςtζ and ς, ζ v ξ are witnessed by the 2nd-order substitutions
σ, τ , for multipatterns ς and ζ given by letX = t inM and letY = s inN , then
for all let-bindings Z = u of ξ, >u = (letX = t inZ(z)σ)t (letY = s inZ(z)τ ).

Lemma 3 (Vertical). A peak s Φ ◦←− t ◦−→Ψ u of overlapping multisteps either
is critical or it can be vertically decomposed as:

s
[x:=s]
0 Φ

[x:=Φ]
0

◦←− t[x:=t]
0 ◦−→

Ψ
[x:=Ψ ]
0

u
[x:=u]
0

for peaks si Φi ◦←− ti ◦−→Ψi ui with ΦeΨ > ΦieΨi and ΦdΨ > ΦidΨi, for all i.

7 This fails for, e.g., connected graphs; these may fall apart into non-connected ones.
8 For the amount of overlap for redexes in parallel reduction pp−→, see e.g. [16,1,24].
9 We exclude neither overlays of a rule with itself nor pairs obtained by symmetry.
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Let Φ, Ψ in s Φ ◦←− t ◦−→Ψ u be given by letX = %(x) inM and letY = θ(y) inN ,
for rules %i(xi) : `i → ri and θj(yj) : gj → dj . Lemma 1 entails that if Φ,Ψ are
non-overlapping their patterns are (pairwise) disjoint, so that the join ΦsrctΨ src

is given by taking the (disjoint) union of the let-bindings: letXY = `g inL for
some L such that LJY :=gK = M and LJX:=`K = N . We define the join10 ΦtΨ and
residual Φ/Ψ by letXY = %(x)θ(y) inL respectively letX = %(x) inLJY :=dK,
where, as substituting the right-hand sides d may lose being linear and canoni-
cal, we implicitly canonise and linearise the latter by reordering and replicating
let-bindings. As one easily checks, then t ◦−→ΦtΨ · Φ/Ψ ◦←− u, giving rise to the
classical residual theory [5,17,4,2,31]. We let φ ∈ Φ abbreviate ∃Ψ.Φ = φ t Ψ .

Example 6. The steps φ and ψ given by letX = λx.%(x) inX(f(f(a))) respec-
tively letX = λx.%(x) in f(f(Y (a))), are non-overlapping, φ, ψ ∈ ζ, φ t ψ = ζ,
and f(f(g(a))) ◦−→φ/ψ g(g(a)), for ζ and % as in Example 3.

Lemma 4 (Horizontal). A peak t Φ ◦←− · ◦−→Ψ s of multisteps either

1. is non-overlapping and then t ◦−→Ψ/Φ · Φ/Ψ ◦←− s, with the rule symbols oc-
curring in Ψ/Φ contained in Ψ (and those in Φ/Ψ contained in Φ); or

2. it can be horizontally decomposed: t Φ/φ ◦←− · φ← ·→ψ · ◦−→Ψ/ψ s for some
peak φ← ·→ψ of overlapping steps φ ∈ Φ and ψ ∈ Ψ .

The above allows to refactor the proof of the critical pair lemma for left-linear
TRSs, such that the critical peaks form the base case of vertical decomposition,
and the induction step uses that joins are closed under composition.

Example 7 ([16]). To show: a left-linear TRS is locally confluent if all critical
pairs are joinable. We proceed by induction on the non-overlap-size φ d ψ of
a peak =

φ← · →=
ψ of empty or single steps, ordered by >. If the steps do not

have overlap, then we conclude by Lemma 4(1). Otherwise, the peak either is
critical in which case we conclude by assumption, or it is not critical, so can be
decomposed as in the second item of Lemma 3 into smaller such peaks =

φi
←·→=

ψi
.

Since these are >-smaller, the induction hypothesis yields them joinable, from
which we conclude by reductions and joins being closed under composition.

3 Confluence by critical-pair closing systems

We introduce a confluence criterion based on identifying for a term rewrite sys-
tem R a subsystem C such that every R-critical peak can be closed by means
of C-conversions, rendering the rules used in the peak redundant.

Definition 7. A TRS C is critical-pair closing for a TRS R, if C is a subsystem
of R and s↔∗C t holds for all critical pairs (s,t) of R.

We phrase the main result of this section as a preservation-of-confluence result.
We write →S/R for �R · →S · �R , and if it is terminating, S/R is said to be
(relatively) terminating. By Cd we denote the set of all duplicating rules in C.

10 This does not create ambiguity with joins of multipatterns since if Φ 6= Ψ , then
JΦK 6= JΨK unless the let-bindings of both are empty, so both are bottom.
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Theorem 2. If C is a critical-pair-closing system for a left-linear TRS R such
that Cd/R is terminating, then R is confluent if C is confluent.

Any left-linear TRS is critical-pair-closing for itself. However, the power of the
method relies on choosing small C. Before proving Theorem 2, we illustrate it
by some (non-)examples and give a special case.

Example 8. Consider the left-linear TRS R:

%1: nats → 0 : inc(nats) %3: inc(x : y)→ s(x) : inc(y) %5: hd(x : y)→ x
%2: d(x)→ x : (x : d(x)) %4: inc(tl(nats))→ tl(inc(nats)) %6: tl(x : y)→ y

Its subsystem C = {%1, %3, %6} is a critical-pair-closing system for R, as the only
R-critical pair induced by %4 and %1 can be C-closed:

tl(inc(nats)) inc(tl(nats)) inc(tl(0 : inc(nats)))

tl(inc(0 : inc(nats))) tl(s(0 ) : inc(inc(nats)) inc(inc(nats))

%4 %1
%1

%3 %6

%6

Note that all C-rules are linear so Cd/R is vacuously terminating. Thus, by
Theorem 2 it is sufficient to show confluence of C. Because C has no critical pairs,
the empty TRS ∅ is a critical-pair-closing TRS for C. As ∅/C is terminating,
confluence of C follows from that of ∅, which is trivial.

Observe how confluence was shown by successive applications of the theorem.

Example 9. Consider the left-linear TRS R:

%1: f(a, a)→ b %3: f(c, x)→ f(x, x) %5: f(c, c)→ f(a, c)
%2: a→ c %4: f(x, c)→ f(x, x)

Although confluent, R does not have any confluent critical-pair-closing subsys-
tem C such that Cd/R is terminating, not even R itself: Because of b being in
normal form in the critical pair induced by b %1

← f(a, a) →%2
f(a, c), any such

subsystem must contain %4, as one easily verifies, but %4 is both duplicating and
non-terminating (looping).

That the condition that Cd/R be terminating cannot be omitted from Theo-
rem 2, can be seen by considering R′ obtained by omitting %5 from R. Although
{%1, %3, %4} is a confluent critical-pair-closing system for R′, it is not confluent.

Remark 1. The example is taken from [15] where it was used to show that de-
creasingness of critical peaks need not imply that of all peaks, for rule labelling.
That example, in turn was adapted from Lévy’s TRS in [16] showing that strong
confluence need not imply confluence for left-linear TRSs.

The special case we consider is that of TRSs that are ARSs, i.e. where all
function symbols are nullary. The identification is justified by that any ARS
in the standard sense [25,31] can be presented as →R for the TRS R having a
nullary symbol for each object, and a rule for each step of the ARS. Since ARSs
have no duplicating rules, Theorem 2 specialises to the following result.
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Corollary 1. If C is critical-pair-closing for ARS R, R is confluent if C is.

Example 10. Consider the TRS R given by c → a′ → a → b and a → a′ → c.
It is an ARS having the critical-pair-closing system C given by the first part
c → a′ → a → b. Since C is orthogonal it is confluent by Corollary 1, so
R is confluent by the same corollary. In general, a confluent ARS may have
many non-confluent critical-pair-closing systems. Requiring local confluence is
no impediment to that: The subsystem C′ of R obtained by removing c → a′

allows to join all R-critical peaks, but is not confluent; it simply is Kleene’s
example [31, Figure 1.2] showing that local confluence need not imply confluence.

Observe that the ARSs R and C′ are isomorphic to the underlying ARSs →R

respectively →R′ of the TRSs in Example 9, when abstracting from the order of
the arguments of f and restricting to the component connected of b.

For Cd/R to be vacuously terminating it is sufficient that all rules are linear.

Example 11. Consider the linear TRS R consisting of ρ1 : f(x) → f(f(x)),
ρ2 : f(x) → g(x), and ρ3 : g(x) → f(x). The subsystem C = {ρ1, ρ3} is critical-
pair-closing and has no critical pairs, so R is confluent.

From the above it is apparent that, whereas usual redundancy-criteria are based
on rules being redundant, the theorem gives a sufficient criterion for peaks of
steps being redundant.This allows one to leverage the power of extant confluence
methods. Here we give but one example, but see our experimental data for many
more examples.

Definition 8. A TRS R is strongly closed [16] if s�R · =
R← t and s→=

R · R�
t holds for all critical pairs (s,t).

Example 12. Consider the linear TRS R:

%1: h(f(x, y))→ f(h(r(x)), y) %2: f(x, k(y, z))→ g(p(y), q(z, x))
%3: h(q(x, y))→ q(x, h(r(y))) %4: q(x, h(r(y)))→ h(q(x, y))
%5: h(g(x, y))→ g(x, h(y))
%6: a(x, y, z)→ h(f(x, k(y, z))) %7: a(x, y, z)→ g(p(y), q(z, h(r(x))))

C = {%1, . . . , %5} is critical-pair-closing for R, since the R-critical peak be-
tween %6 and %7 can be C-closed: h(f(x, k(y, z))) →%1 f(h(r(x)), k(y, z)) →%2

g(p(y), q(z, h(r(x)))). Because C is strongly closed and therefore confluent, see [16,
p. 814] for both the example and the confluence result, we obtain R is confluent.

Remark 2. Neither of the TRSs in Examples 11 and 12 is strongly closed. The
former not, because f(f(x)) �R · =

R← g(x) does not hold, and the latter not
because g(p(y), q(z, h(r(x))))�R · =

R← h(f(x, k(y, z))) does not hold.

Having illustrated the usefulness of Theorem 2, we now present its proof. We
even give two proofs, although both capture the same intuition. The first is
a high-level proof (for the countable case) using the decreasing diagrams tech-
nique, whereas the second factors through a concrete lemma for indexed abstract
rewrite systems. We first provide the intuition underlying both proofs.
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In TRSs there are two types of peaks: overlapping and non-overlapping ones.
As Example 9 shows, confluence criteria only addressing the former need not gen-
eralise from ARSs to TRSs. Note that one of the peaks showing non-confluence
of R′, the one between %2 and %3 (%4), is non-overlapping. Therefore, restricting
to a subsystem without %2 can only provide a partial analysis of confluence of
R′; the (non-overlapping) interaction between C and R − C is not accounted
for, and indeed that is fatal here. The intuition for our proof is that the problem
is that the number of such interactions is unbounded due to the presence of
the duplicating and non-terminating rule %3 (and %4) in C, and that requiring
termination of Cd/R bounds that number and suffices to regain confluence.

Proof (of Theorem 2 by decreasing diagrams). Let C be a critical-pair-closing

system for R such that Cd/R is terminating and→C is countable. Let R̂ = R−C
and Ĉ = C−Cd , so that R̂, Ĉ,Cd forms a partition of (the rules of) R and Ĉ,Cd

of C, and consider the following labellings of steps in a conversion:

– a multistep t ◦−→
R̂
s is labeled by a triple (n,t̂,m) with n denoting the

number of
R̂
◦←−-steps to its left in the conversion (symmetrically, ◦−→

R̂
-steps

to its right for
R̂
◦←−-steps),11 t̂ a term t̂ �R t (a so-called predecessor [29,

Example 18]), andm the maximal length of the development of the multistep;

– C-steps are labelled by any decreasing labelling, which exists by completeness
of decreasing diagrams (Theorem 1) for countable systems.

By � we denote the well-founded order that orders triples for R̂-steps by the
lexicographic product of the greater-than relation >,→+

C/R , and of > again, the

labels for C-step according to the decreasing labeling, and the former above the
latter. We show each local R-peak can be completed into a decreasing diagram,
distinguishing cases on steps and on whether their redexes have overlap.

– A peak of shape
R̂
◦←− · ◦−→

R̂
such that the steps do not overlap can, by

Lemma 4(1), be completed by a valley of shape ◦−→
R̂
·
R̂
◦←−. We conclude

by a decrement in the first component for both multisteps in the valley.

– By Lemma 4(2) an overlapping peak of shape
R̂
◦←−· ◦−→

R̂
can be horizontally

decomposed as
R̂
◦←−·

R̂
←·→

R̂
· ◦−→

R̂
with

R̂
←·→

R̂
an overlapping peak. By C

being critical-pair-closing for R, that peak can be closed by a C-conversion,
so the original peak can be transformed into a conversion of shape

R̂
◦←− ·

↔∗C · ◦−→R̂
, which is seen to be decreasing: the first and second components

of both R̂-multisteps do not change, the first obviously so and the second by
choosing to keep the same predecessors, but their third components decrease
(by having developed one redex each), and C-steps are smaller than R̂-
multisteps;

– A peak of shape
R̂
◦←− · →C such that the steps do not overlap can, by

Lemma 4(1), be completed by a valley of shape�C ·R̂ ◦←−, which is decreasing

for the C-steps as these are by definition ordered below R̂-multisteps. To see

11 Our peak-transformations preserve these numbers for other steps [20, multi-labels].
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decreasingness for the R̂-multistep, first observe that the first component
does not change. Next, we distinguish cases on the type of the C-step.
If it is a Cd -step, i.e. it is duplicating, then by choosing its source as second
component it decreases.
If it is a Ĉ-step, i.e. it is linear, they by choosing to keep the same term
as second component, all three components are the same, resulting in a
decreasing diagram again;

– A peak of shape
R̂
◦←− · →C such that the steps are overlapping can, by the

special case of Lemma 4 where one of the multisteps is a single step, be
horizontally decomposed as

R̂
◦←− ·

R̂
← · →C with

R̂
← · →C an overlapping

peak. Since C is by assumption a subsystem of R, that peak is an R-peak
and we may proceed as in the second item. ut

Instead of relying on completeness of decreasing diagrams, Theorem 1, and
thereby on C being countable for defining the order �, we can instead make
C-confluence explicit in the form of the diamond property of �C:

Lemma 5. Let→A =
⋃
a∈I→a be a relation equipped with a well-founded order

� on a label set I, and let →B be a confluent relation with →B ⊆ �A. The
relation →A is confluent if

1. a←·→b ⊆ (→A ·A←)∪
⋃
{a,b}�mul{a′,b′}(a′←·↔

∗
B ·→b′) for all a, b ∈ I; and

2. a← ·→B ⊆ (�B · a←) ∪
⋃
a�a′(�B · a′← ·↔∗B) for all a ∈ I.

Here �mul stands for the multiset extension of �.

Proof (Sketch). Let� =�B ·�A . We claim that a←·→m
B · nB←·→b ⊆� ·�

holds for all labels a, b and numbers m,n > 0. The claim is shown by well-
founded induction on ({a, b},m + n) with respect to the lexicographic product
of �mul and the greater-than order > on N. Thus, the diamond property of �
follows from the claim and confluence of B. As →A ⊆ � ⊆ �A , we conclude
confluence of A by e.g. [31, Proposition 1.1.11].

Proof (of Theorem 2 by Lemma 5 ). Let I comprise pairs of a term and a natural
number, and define t →(t̂,n) s if t̂ �R t ◦−→R s with n the maximal length of a

development of the multistep,12 and →B = →C, in Lemma 5. As well-founded
order � on indices we take the lexicographic product of Cd/R and greater-
than >. Henceforth the proof and its case analysis of peaks follows the above
decreasing-diagrams-based proof. Because of this, we only present the interesting
case, leaving the others to the reader:

– Suppose s (t̂,n)← t →C u where the steps do not have overlap. Then by
Lemma 4(1), s ◦−→C · R ◦←− u, so s �C · R ◦←− u. Distinguish cases on the
type of the C-rule employed in t→C u.
If the rule is duplicating, then s �C · (u,m)← u for m the maximal length
of a development of the ◦−→R-step from u, and condition 2 is satisfied as
t→Cd

u implies (t̂,n) � (u,m).

12 By the Finite Developments Theorem lengths of such developments are finite [31].
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If the rule is non-duplicating, then s �C · (t̂,n)← u as t̂ �R t →R u by
assumption and the length of the maximal development of the residual mul-
tistep does not increase when projecting over a linear rule. Again, condition 2
is satisfied. ut

4 Confluence by hot-decreasingness

Linear TRSs have a critical-pair criterion for so-called rule-labelling [29,15,35]: If
all critical peaks are decreasing with respect some rule-labelling, then the TRS
is decreasing, hence confluent. We introduce the hot-labelling extending that
result to left-linear TRSs. To deal with non-right-linear rules we make use of a
rule-labelling for multisteps that is invariant under duplication, cf. [12,35].

Remark 3. Näıve extensions fail. Non-left-linear TRSs need not be confluent
even without critical pairs [31, Exercise 2.7.20]. That non-right-linear TRSs need
not be confluent even if all critical peaks are decreasing for rule-labelling, is
witnessed by [15, Example 8] (R′ in Example 9 above).

Definition 9. For a TRS R, terminating subsystem C, and labelling of R −C-
rules into a well-founded order �, hot-labelling L̊ maps a multistep Φ : t ◦−→R s

– to the term t if Φ contains C-rules only; and
– to the set of �-maximal R − C-rules in Φ otherwise.

The hot-order �̊ relates terms by →+
C , sets by �mul, and all sets to all terms.

Note �̊ is a well-founded order as series composition [3] of →+
C and �mul, which

are well-founded orders by the assumptions on C and �. Taking the set of
maximal rules in a multistep makes hot-labelling invariant under duplication.

Definition 10. A TRS R is hot-decreasing if its critical peaks are decreasing
for the hot-labelling, for some C and �, such that each outer–inner critical peak

`← ·→ for label `, is decreasing by a conversion of shape (oi): ↔∗g̊` · p̊g` ◦←−.

Theorem 3. A left-linear TRS is confluent, if it is hot-decreasing.

Before proving Theorem 3, we give (non-)examples and special cases.

Example 13. Taking C = ∅, labelling rules by themselves, and ordering %4 �
%1, %3, %6 in Example 8, the only critical peak {%4}←·→{%1} is hot-decreasing as
→{%1} ·→{%3} ·→{%6} · {%6}←. The peak is outer–inner so the conversion must be
of (oi)-shape ↔∗g̊{%4} · p̊g{%4} ◦←−. It is, so the system is confluent by Theorem 3.

Example 14. Since b is an R-normal form in Example 9, the only way to join the
outer–inner critical peak b %1← f(a, a) →%2 f(c, a) is by a conversion starting
with a step b %1

← f(a, a). As its label must be identical to the same step in
the peak, not smaller, whether we choose %1 to be in C or not, the peak is not
hot-decreasing, so Theorem 3 does not apply. It shouldn’t as restricting to the
non-confluent TRS R′ in Example 9, the only other critical peak is trivial.
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A special case of Theorem 3, is that a left-linear terminating TRS is conflu-
ent [19], if each critical pair is joinable, as can be seen by setting C = R.

Corollary 2. A left-linear development closed TRS is confluent [28, Cor. 24].

Proof. A TRS is development closed if for every critical pair (t,s) such that t is
obtained by an outer step, t ◦←− s holds. Taking C = ∅ and labelling all rules the
same, say by 0, yields that each outer–inner or overlay critical peak is labelled as
t {0}← ·→{0} s, and can be completed as t {0} ◦←− s, yielding a hot-decreasing
diagram of (oi)-shape. We conclude by Theorem 3. ut

The proof of Theorem 3 uses the following structural properties of decreasing
diagrams specific to the hot-labelling. The labelling was designed so they hold.

Lemma 6. 1. If the peak s ` ◦←− t ◦−→κ u is hot-decreasing, then it can be
completed into a hot-decreasing diagram of shape s ↔∗g̊` s

′ ◦−→κ s
′′ ↔∗g̊`κ

u′′ ` ◦←− u′ ↔∗g̊κ u such that the 1st-order variables in all terms in the
diagram are contained in those of t.

2. If the multisteps Φ, Ψ in the peak s Φ ◦←− t ◦−→Ψ u are non-overlapping, then
the valley s ◦−→Ψ/Φ · Φ/Ψ ◦←− u completes it into a hot-decreasing diagram.

3. If the peak s ◦←− t ◦−→ u and vector of peaks s ◦←− t ◦−→ u have hot-
decreasing diagrams, so does the composition s[x:=s] ◦←− t[x:=t] ◦−→ u[x:=u].

The proof of Theorem 3 is as outlined in Example 7, but refining it into an outer
induction based on horizontal decomposition (Lemma 4) decreasing the amount
of overlap (e) between the multisteps, and an inner induction based on vertical
decomposition (Lemma 3) decreasing their amount of non-overlap (d).

Proof (of Theorem 3). We show that every peak s Φ ◦←− t ◦−→Ψ u of multisteps
Φ and Ψ can be closed into a hot-decreasing diagram, by induction on the pair
(ΦeΨ,ΦdΨ) ordered by the lexicographic product of > with itself. We distinguish
cases on whether or not Φ and Ψ have overlap.

If Φ and Ψ do not have overlap, then by Lemma 4(1) we have s ◦−→Ψ/Φ · Φ/Ψ ◦←−
u. This valley completes the peak into a hot-decreasing diagram by Lemma 6(2).

If Φ and Ψ do have overlap, then we further distinguish cases on whether or
not the overlap is critical.

If the overlap is not critical, then by Lemma 3 the peak can be vertically
decomposed into a number of peaks between multisteps Φi, Ψi that have an
amount of overlap that is not greater, Φ e Ψ > Φi e Ψi, and a strictly smaller
amount of non-overlap Φ d Ψ > Φi d Ψi. Hence the I.H. applies and yields that
each such peak can be completed into a hot-decreasing diagram. We conclude by
vertically recomposing them yielding a hot-decreasing diagram by Lemma 6(3).

If the overlap is critical, then by Lemma 4 the peak can be horizontally
decomposed as s Φ/φ ◦←− s′ φ← t→ψ u

′ ◦−→Ψ/ψ u for some peak s′ φ← t→ψ u
′

of overlapping steps φ ∈ Φ and ψ ∈ Ψ , i.e. such that Φ = φ t Φ′ Ψ = ψ t Ψ ′ for
some Φ′, Ψ ′. We choose (φ,ψ) to be inner among such overlapping pairs (see
Definition 6), assuming w.l.o.g. that pφ �o pψ for the root-positions pφ,pψ of
their patterns. We distinguish cases on whether or not pφ is a strict prefix of pψ.
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Ψ

Φ/φ

Φ

φ

D′

∗

∗∗

∗

Ψ̂↑ Ψ̂ ′

Φ̂′

DIH

Φ′ ⊕ Φ̂

Ψ/ψψ

Fig. 1. Outer–inner critical peak construction

If pφ = pψ, then φ = Φ and ψ = Ψ by Proposition 3, so the peak is overlay,
from which we conclude since such peaks are hot-decreasing by assumption.

Suppose pφ ≺o pψ. We will construct a hot-decreasing diagramD for the peak
s Φ ◦←− t ◦−→Ψ u out of several smaller such diagrams as illustrated in Figure 1,
using the multipattern ς = Φsrctψsrc as a basic building block; it has as patterns
those of Φ′ and the join of the patterns of φ, ψ. To make ς explicit, unfold Φ and
Ψ to let-expressions letX = %(x) inM respectively letY = θ(y) inN , for rules
of shapes %i(xi) : `i→ ri and θj(yj) : gj → dj . We let X = X ′X and Y = Y ′Y
be such that X and Y are the 2nd-order variables corresponding to φ ∈ Φ and
ψ∈Ψ for rules %(x) :`→r and θ(y) :g→d. By the choice of (φ,ψ) as inner, φsrc is
the unique pattern in Φsrc overlapping ψsrc. As a consequence we can write ς as
letX ′Z = `′t̂ inL, for some pattern t̂, the join of the patterns of φ,ψ, such that
σ maps Z to a term of shape X(gψ) since φ is the outer step, and τ maps it to
a term of shape C[Y (`φ)], where σ, τ witness Φsrc, ψsrc v ς. That the other 2nd-
order variables are X ′ follows by σ being the identity on them (their patterns
do not overlap ψ), and that these are bound to the patterns `′ by τ mapping
them to 1st-order terms (only Z can be mapped to a non-1st-order term).

We start with constructing a hot-decreasing diagram D̊ for the critical peak
ŝ φ̂← t̂ →ψ̂ û encompassed by the peak between φ and ψ, as follows. We set φ̂

and ψ̂ to letX = %(x) inZ(z)σ respectively letY = θ(y) inZ(z)τ . This yields a
peak as desired, which is outer–inner as pφ̂ ≺o pψ̂ by pφ ≺o pψ, and critical by
Lemma 2, hence by the hot-decreasingness assumption, it can be completed into a
hot-decreasing diagram D̂ by a conversion of (oi)-shape: ŝ↔∗

g̊L̊(φ̂)
ŵ p̊gL̊(φ̂) ◦←− û.

Below we refer to its conversion and multistep as Ψ̂ and Φ̂. Based on D̂ we
construct a hot-decreasing diagram D′ (Figure 1, left) for the peak s Φ ◦←− t→ψ
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u′ by constructing a conversion Ψ̂↑ : s↔∗ w′′ and a multistep Φ′⊕ Φ̂ :u′ ◦−→ w′′,
with their composition (reversing the latter) of (oi)-shape.

The conversion Ψ̂↑ : s ↔∗ w′′ is constructed by lifting the closing conver-
sion Ψ̂ of the diagram D̂ back into ς. Formally, for any multistep Ω̂ given by
let Ẑ = η(w) in L̂ for rules ηk(wk), occurring anywhere in Ψ̂ , we define its lifting

Ω̂↑ to be let Ẑ = η(w) inL[X′,Z:=r′,L̂]. That is, we update ς by substituting13

both Ω̂ (for Z, instead of binding that to t̂) and the right-hand sides r′ in its
body. Because right-hand sides r need not be linear, the resulting proofclusters
may have to be linearised (by replicating let-bindings) first to obtain multisteps.
This extends to terms p by p↑ = J(let = in p)↑K. That this yields multisteps and
terms that connect into a conversion s = ŝ↑ ↔∗

Ψ̂↑ ŵ↑ = w′′ as desired follows by

computation. E.g., s = M [X′,X:=r′,r] = L[X′,Z:=r′,ŝ] = ŝ↑ using that σ witnesses
Φsrc v ς so that M = Lσ and ŝ = JletX = r inZ(z)σK. That the labels in Ψ̂↑ are

strictly below L̊(Φ) follows for set-labels from that lifting clearly does not intro-
duce rule symbols and from that labels of rule symbols in Ψ̂ are, by assumption,
strictly below the label of the rule % of φ. In case Φ is term-labelled, by t, it
follows from closure of →C-reduction under lifting (which also contracts Φ′).

The multistep Φ′⊕ Φ̂ :u′ ◦−→ w′′ is the combination of the multisteps Φ′ (the
redex-patterns in Φ other than φ) and Φ̂, lifting the latter into ς. For Φ̂ : û ◦−→
ŵ given by let X̂ = %̂(x̂) in M̂ , it is defined as letX ′X̂ = %(x)′%̂(x̂) inL[Z:=M̂ ].

Per construction it only contracts rules in Φ′, Φ̂, so has a label in p̊gL̊(Φ̂) by

Φ = φ t Φ′ and the label of Φ̂ is in p̊gL̊(φ̂) by the (oi)-assumption. That Φ′ ⊕
Φ̂ : u′ ◦−→ w′′ follows again by computation, e.g. JletX ′X̂ = r′r̂ inL[Z:=M̂ ]K =

L[X′,Z:=r′,M̂ [X̂:=r̂]] = L[X′,Z:=r′,ŵ] = ŵ↑ = w′′.
Finally, applying the I.H. to the peak w′′ Φ′⊕Φ̂ ◦←− u′ ◦−→Ψ/ψ u yields some

hot-decreasing diagram DIH (Figure 1, right). Prefixing Ψ̂↑ to its closing con-
version between w′′ and u, then closes the original peak s Φ ◦←− t ◦−→Ψ u
into a hot-decreasing diagram D, because labels of steps in Ψ̂↑ are in g̊L̊(Φ),

L̊(Φ) �̊ L̊(Φ′ ⊕ Φ̂) as seen above, and L̊(Ψ) �̊ L̊(Ψ/ψ). The I.H. applies
since Φ e Ψ > (Φ′ ⊕ Φ̂) e (Ψ/ψ): To see this, we define L′ = L[Z′:=`′] and

F ′ = let X̂ = ˆ̀inL′[Z:=M̂ ] and collect needed ingredients (the joins are disjoint):

D = Φsrc = (letX′ = `′ inL[Z:=t̂]) t φsrc = Φ′src t φsrc
E = Ψ src = (letY ′ = g′ inN [Y :=g]) t ψsrc = Ψ ′src t ψsrc

D′ = (Φ′ ⊕ Φ̂)src = (letX ′ = `′ inL[Z:=û]) t F ′
E′ = (Ψ/ψ)src = letY ′ = g′ inN [Y :=d]

Using these one may reason with sets of patterns (not let-expressions as t 6= s′;
the sets are positions in both t,s′) as follows, relying on distributivity:

(D u E) A (D− u E) = (D− u E′) = (D′+ u E′) w (D′ u E′) (1)

where F is the singleton {{p∈φsrc | pψ � p}} having all positions in φ not below
ψ’s root, D− = Φ′src t F , and D′+ = (D′ − F ′) t F . ut
13 For this to be a valid 2nd-order substitution, the 1st-order variables of Ω̂ (L̂) must

be contained in those of t̂, which we may assume by Lemma 6(1).
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Table 1. Experimental results

Thm. 2 (i) Thm. 2 (ii) Thm. 3 dc sc

# proved (# timeouts) 80 (19) 95 (14) 89 (38) 34 (1) 62 (1)

5 Implementation and experiments

The presented confluence techniques have been implemented in the confluence
tool Saigawa version 1.10 [13]. We used the tool to test the criteria on 432 left-
linear TRSs in COPS [14] Nos. 1–1036, where we ruled out duplicated problems.
Out of 432 systems, 224 are known to be confluent and 173 are non-confluent.

We briefly explain how we automated the presented techniques. As illustrated
in Examples 8 and 12, Theorem 2 can be used as (i) a stand-alone criterion and
also as (ii) a generalisation of strong closedness. The condition s →∗R · =

R← t

of strong closedness is tested by s →65
R · =

R← t. For a critical peak s `← · →
t, hot-decreasingness is checked by the disjunction of s →65

g̊` · p̊g` ◦←− t and
s �C · p̊g` ◦←− t if it is outer–inner one, and if it is overlay, the disjunction of

s→65
g̊` · p̊g` ◦←− t and s�C · C� t is used. Order constraints for hot-labeling are

solved by SMT solver Yices [9]. For proving (relative) termination we employ
the termination tool NaTT version 1.8 [34]. Finally, suitable subsystems C used
in our criteria are searched by enumeration.

Table 1 gives a summary of the results.14 The tests were run on a PC equipped
with Intel Core i7-5500U CPU (2.4 GHz) and 8 GB memory using a timeout of 60
seconds. For the sake of comparison we also tested the strong closedness theorem
(sc) and development closedness theorem (dc). As theoretically expected, they
are subsumed by their generalizations.

6 Conclusion and future work

We presented two methods for proving confluence of TRSs, dubbed critical-pair-
closing systems and hot-decreasingness. We gave a lattice-theoretic characterisa-
tion of overlap. Since many results in term rewriting, and beyond, are based on
reasoning about overlap, which is notoriously hard [24], we expect that formal-
ising our characterisation could simplify or even enable formalising them. We
expect that both methods generalise to commutation, extend to HRSs [21], and
can be strengthened by considering rule specialisations.

Example 15. Analysing the TRS R of Example 9 one observes that for closing
the critical pairs only (non-duplicating) instances of the duplicating rules %3 and
%4 are used. Adjoining these specialisations allows the method to proceed: Ad-
joining %3(a):f(c, a)→f(a, a) and %4(a):f(a, c)→f(a, a) to R yields a (reduction-
equivalent) TRS having critical-pair-closing system {%1, %3(a), %4(a), %5}. Since
this is a linear system without critical pairs, it is confluent, so R is as well.

14 Detailed data are available from: http://www.jaist.ac.jp/project/saigawa/19cade/

http://www.jaist.ac.jp/project/saigawa/19cade/
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3. Bechet, D., de Groote, P., Retoré, C.: A complete axiomatisation for the inclusion of
series-parallel partial orders. In: Comon, H. (ed.) Proc. 8th RTA. LNCS, vol. 1232,
pp. 230–240. Springer Berlin Heidelberg, Berlin, Heidelberg (1997)

4. Boudol, G.: Computational semantics of term rewriting systems. In: Nivat, M.,
Reynolds, J. (eds.) Algebraic Methods in Semantics, pp. 169–236. Cambridge Uni-
versity Press (1985)

5. Church, A., Rosser, J.: Some properties of conversion. Transactions of the American
Mathematical Society 39, 472–482 (1936)

6. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez,
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A Proofs omitted from or only sketched in the main text

That having two labels suffices for Theorem 1, is an immediate consequence (give
edges on the tree label 0, others label 1) of the following lemma, which does not
refer to decreasing diagrams.

Lemma 7. Every countable confluent rewrite relation has a spanning forest.15

Proof. Let → be countable and confluent. It suffices to show that if → has a
single connected component, i.e. if ↔∗ relates all objects, then we can construct
a tree ⊆ → that spans → in the sense that →-convertible objects have a
common reduct in the tree: ↔∗ = ∗ · ∗ (and by determinism then have a
least common reduct). Because of the countable confluence assumption, there is
a cofinal reduction [18], i.e. a reduction a0 → a1 → . . . such that for all a, there

15 Trees are connected acyclic deterministic relations, possibly infinite/without root.
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exists i with a � ai. By removing from it any repetitions, we may assume the
reduction does not contain cycles [27, Proposition 2.2.9]. Taking as initial tree
T0 this reduction, its trunk, we construct for each j, the tree Tj+1 by adjoining
to Tj any reduction from the jth (in the countable enumeration) object aj to Tj ,
stopping at the moment we reach Tj (possibly immediately). That a reduction
from each aj to Tj exists holds by cofinality of the trunk T0 (and monotonicity
of the process: Tj ⊆ Tj+1 for all j). To preserve being a tree, we again remove
any repetitions from the adjoined reduction. That this construction is correct,
yields a tree, follows from that the trunk T0 is a straight line by construction,
and that at no stage do we lose determinism: we only adjoin (edges from) nodes
not yet in the tree and do not introduce cycles per construction. ut

Remark 4. The construction is very close to those in the literature. In particular,
the trunk-construction follows [18,27], and the tree-construction follows [10].
Compared to [27,10] the proof does not use a minimal distance argument, only
cycle-removal. Each of the constructions first constructs the trunk and then the
branches of the tree. A question is whether a spanning tree can be constructed
in a single pass.

Proof (of Proposition 1). C[sσ] = C[X(xσ)]JX:=λx.sK with x the vector of vari-
ables in t. ut

Proposition 5. For multipatterns ςi and ζi such that JςiK = JζiK for all i,

ς
[x:=ς]
0 v ζ [x:=ζ]

0 iff ςi v ζi for all i.

Proof. Let ς = ς
[x:=ς]
0 and ζ = ζ

[x:=ζ]
0 . If the 2nd-order substitutions σi witness

ςi v ζi for all i, then
⋃
i σi witnesses ς v ζ (assuming 2nd-order variables

are renamed apart). Conversely, a witnessing substitution σ for ς v ζ, can be
decomposed into σi as to the 2nd-order variables in the bodies of the ζi. ut

Proof (of Proposition 4). For ς, ζ multipatterns, ς t ζ = > entails by Lemma 1
that all positions in ς t ζ are related via the ‘has overlap’ relation for patterns
in ς,ζ. However, if also ς u ζ = ⊥ then all patterns would be disjoint, yielding
either ς = > and ζ = ⊥ or vice versa. This is impossible for patterns, as these
are non-empty. ut

Proof (of Proposition 3). Intuitively, φ, ψ cannot be overlapped from above by
other steps in Φ, Ψ because the root-positions of their contracted redexes are the
same, and not from below because of (φ,ψ) being inner. Formally, by assumption
the root positions pφ and pψ of the contracted redexes are the same. By the peak
between Φ and Ψ being critical, each redex-pattern in Φ overlaps some redex-
pattern in Ψ and vice versa, as each pattern in Φsrc,Ψ src is connected to each
other such pattern in the has-overlap-with relation in their join, as shown in
Lemma 1. Since pφ = pψ, no pattern ω ∈ Φ, Ψ could overlap φ, ψ from above,
i.e. has overlap with them such that pω �o pφ. This means (using as before
that terms are trees and that patterns are convex16) that in fact for every ω,

16 For term graphs this fails. There, due to non-convexity of patterns/left-hand sides,
one may have that part of ω overlaps φ from below but at the same time pω ≺o pφ.
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pφ �o pω. But overlapping φ, ψ strictly from below, i.e. such that pφ=pψ ≺o pω
is also impossible by the choice of φ,ψ being inner. We conclude that ω is φ
or ψ, since Φ and Ψ are multisteps and the steps in a multistep are pairwise
non-overlapping, from which the claim follows. ut

Proof (of Lemma 2). We have JletX = t inZ(z)σK = u = JletY = s inZ(z)τ K
by definition of σ, τ being witnesses to ς, ζ v ξ. If there were to exist a v-
upperbound of letX = t inZ(z)σ and letY = s inZ(z)τ smaller than the top
>u of the refinement lattice for u, say with witnessing substitutions σ′, τ ′, this
would contradict ξ being the join of ς, ζ, as updating σ by mapping the 2nd-
order variables in Z(z) according to σ′, and correspondingly updating τ by τ ′,
would witness an v-upperbound of ς,ζ smaller than ξ. ut

.

Proof (of Lemma 3). Let the multisteps Φ and Ψ be given by letY = %(y) inN
respectively letZ = θ(z) inL, for rules %i(yi):`i→ri and θj(zj):gj→dj . Defining
ς = Φsrc, ζ = Ψ src, and ξ = ς t ζ, we have ς v ξ and ζ v ξ are witnessed (see
Definition 4) by some 2nd-order substitutions σ = [X :=N ] and τ = [X :=L],
with X the 2nd-order variables in the body M of ξ. If the peak is not critical,
either ξ 6= > or t and hence M is not linear. By the assumption that Φ and Ψ
have overlap, M must (as the meet v-relates to it) contain at least one 2nd-order
variable X.

If otherwise only 1st-order variables occur in M , then by assumption it must
be non-linear, so of shape X(w) having some repeated variable. Then we decom-
pose the peak into a linear prefix and a renaming. That is, we choose x to be
linear of the same length n as w, and define Φ0 and Ψ0 as letY = %(y) inX(x)σ

respectively letZ = θ(z) inX(x)τ (linearisations of Φ and Ψ) and Φi, Ψi both
to let = inwi (simply renaming xi into wi).

Otherwise, we can write M as M
[x1:=M1]
0 for terms Mi in which at least one

non-1st-order variable occurs (for instance, let M0 be obtained by replacing one
of the arguments of the head-symbol of M by x1). Then we choose the multi-
steps Φi and Ψi to be letY = %(y) inMσ

i respectively letZ = θ(z) inMτ
i (and

canonising the let-bindings, deleting binders for 2nd-order variables occurring in
the other body, i.e. in M1−i). Again, the decomposed peaks are smaller in size.

By simple computations one verifies that in both cases the decomposed peaks
compose to the original peak. Using Propositions 5 (for compositionality of t
and u) and 2 we compute

Φ e Ψ = V(Φsrc
0 )[x:=Φsrc] u (Ψ src

0 )[x:=Ψ src]W =
∑

i
VΦsrc

i u Ψ src
i W =

∑
i
Φi e Ψi

and similarly ΦdΨ > ΦidΨi for all i. In the 1st-order-variable-only case we con-
clude strict inequality by Φ d Ψ = ‖X(w)‖ = (1,n′) > ‖X(x)‖ = (1,n), ‖wi‖ =
(0,1), for some n′ > n. In the other case, strict inequality follows by the choice
of splitting into M0 in M1 in such a way that both contain at least one non-1st-
order variable symbol. ut

Proof (of Lemma 4). The 1st item holds per construction of residuals as given
above. For the 2nd item, we obtain by Lemma 1, that multipatterns are the join
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of their patterns so that we can write Φ =
⊔
φ∈Φφ and Ψ =

⊔
ψ∈Ψψ, hence by

distributivity Φsrc u Ψ src =
⊔
φ∈Φ,ψ∈Ψφ

src u ψsrc so that Φ and Ψ have overlap iff
some of their constituting steps have overlap. We conclude per construction of
residuals. ut

Proof (of Lemma 5). Defining � = �B ·�A , it suffices (cf. e.g. [31, Proposi-
tion 1.1.11]) to show � has the diamond property, as →A ⊆� ⊆ �A by the
assumption that �B ⊆�A . We claim

a← ·→m
B · nB← ·→b ⊆� ·�

holds for all labels a, b and numbers m,n > 0. From the claim and confluence
of →B we conclude since � ·� ⊆ a← ·�B · B� · →b ⊆ � ·�. The claim
is shown by well-founded induction on ({a, b},m + n) with respect to the lexi-
cographic product of �mul and the greater-than order > on N. We distinguish
cases, depending on whether or not m+ n > 0. If m = n = 0 then

a← ·→m
B · nB← ·→b ⊆ (→A · A←) ∪

⋃
{a,b}�mul{a′,b′}

(a′← ·↔∗B · →b′) ⊆� ·�

by condition 1, and by confluence of →B and the I.H., respectively. Otherwise,
assume w.l.o.g. that m > 0 and consider x a← ·→B y →m−1

B · nB← ·→b z. By
condition 2 applied to a← ·→B and confluence of →B, either

x�B · a← y →m−1
B · nB← · →b z or x�B · a′← ·�B · B� · →b z

for some a � a′. In both cases the I.H. applies, because of a decrement in
the second component respectively a decrease in the first, and we conclude to
x�B ·� ·� z, hence to x� ·� z. ut

Proof (of Lemma 6).

1. Specialising Definition 1 to the hot-labelling, hot-decreasingness of s ` ◦←−
t ◦−→κ u yields a conversion of shape s ↔∗g̊` s

′ ◦−→κ s′′ ↔∗g̊`κ u′′ ` ◦←−
u′ ↔∗g̊κ u, and similarly for the peak vector, where we have used that multi-
steps may be empty so that ◦−→ = ◦−→=, and that due to the properties of
�mul, if Ψ ⊆ Φ then L̊(Φ) �̊ L̊(Ψ), L̊(Φ/Ψ) so that any multistep ◦−→` can
be developed into a reduction �p̊g` of ordinary steps.17

That all variables (which are 1st-order) occurring in the diagram may be
assumed to be contained in the variables occurring in t, say z, follows by
simply substituting the same constant18 19 for all variables not among z
in the diagram. Since steps, conversions, and multisteps are closed under
substitution, this preserves the shape of the diagram, and it even does not

17 We may even assume [12] the multisteps are homogeneous (all rules the same label).
18 If there is no constant in the signature, as fresh constant may be adjoined without

affecting confluence, as confluence is a modular property of TRSs.
19 Of course, if we already know that all peaks can be completed into a decreasing

diagram, then its is obvious, because then the system is confluent.



Confluence by Critical Pair Analysis Revisited 21

change the peak at all: as s,u are obtained from t by rewriting, and rewrite
rules are assumed not to introduce variables, their variables are among those
of t. To see that the diagram is still hot-decreasing, note that if a term p
on the closing conversion is the source of step having a label required to be
�̊-ordered below a source label (i.e. term) of one of the steps Φ, Ψ , i.e. below
t, then t � p from which we conclude that the variables contained in p are
a subset of z, and if it was required to be below a rule label (i.e. set) of one
of these steps, then we conclude since those labels and their order �mul are
invariant under substitution of constants.

2. We show the valley s ◦−→Ψ/Φ · Φ/Ψ ◦←− u completes the peak completes the
peak s Φ ◦←− t ◦−→Ψ u into a hot-decreasing diagram. by considering all
possible distributions of C- and R − C-rules in Φ, Ψ . By Lemma 4(1), the
rule symbols occurring in Ψ/Φ are contained in Ψ , and those in Φ/Ψ are
contained in Φ. We have on the one hand that if Φ contains some rule in
R − C then L̊(Φ) �̊ L̊(Φ/Ψ) since either Φ/Ψ contains such a rule as well
so their sets of maxima are �mul-related, or else we conclude by �̊ ordering
sets above terms. On the other hand, if Φ only contains C-rules then so does
Φ/Ψ and either Ψ contains some rule in R − C and then L̊(Φ) �̊ L̊(Φ/Ψ),

or it does not and then L̊(Φ) �̊ L̊(Φ/Ψ) as their sources are �C-related, as
desired.

3. We distinguish cases on the types of the rules in the composite peak

s[x:=s]
`′ ◦←− t[x:=t] ◦−→κ′ u

[x:=u]

having labels as indicated.
– If either of the multisteps is empty, we conclude trivially;
– If both multisteps only contain C-rules, then first note that the C-

conversions may be further restricted to be of shape s ↔∗g̊t u,20 by
using that a step t→ . . . cannot occur in it. This is seen by considering
what would be to the left of such a step in the conversion: it cannot be
the first step since t 6= s by termination of C; it cannot be preceded by
a step . . .← t as that would have label t, not a smaller one as required
by decreasingness; and not by a step . . . → t as its source cannot be
smaller than t as then →C would be cyclic. Based on this, we construct
the closing conversion21

s[x:=s] ↔∗p̊gs[x:=t] s
[x:=u] ↔∗g̊t[x:=u] u

[x:=u]

It is decreasing as t[x:=t] �̊ s[x:=t] by t �̊ s and closure of non-empty R-
reductions under substitution, and t[x:=t] �̊ t[x:=u] by t �̊ u and closure
of R-reductions under contexts.

– If both contain some (R − C)-rule, then we conclude by the conversion

s[x:=s]↔∗g̊``s
′[x:=s′] ◦−→p̊gκ′s

′′[x:=s′′]↔∗g̊``κκu
′′[x:=u′′]

p̊g`′ ◦←−u
′[x:=u′]↔∗g̊κκu

[x:=u]

20 The conversion is below t (with respect to →+
C ) in the sense of [33,29].

21 The notation, substituting conversions at parallel positions, leaves unspecified the
(sequential) order of the steps of the conversions substituted. Any choice will do.
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obtained by piecewise composing the constituents conversions, which is
decreasing because ` ∪ ` ⊇ `′ �mul `, ` and κ ∪ κ ⊇ κ′ �mul κ,κ.

– If one of them, say Φ, only contains C-steps but the other doesn’t. then
the constituent conversions have shape s↔∗g̊t s

′ ◦−→κ u
′ ↔∗g̊κ u yielding

s[x:=s] ↔∗g̊t[x:=t] s
′[x:=s′] ◦−→p̊gκ′ u

′[x:=u′] ↔∗g̊κκ u
[x:=u]

which is seen to be decreasing by reasoning as in the previous items.

Proof (of measure decrease in the induction step of Theorem 3). We have E′ =
Ψ ′src hence E = E′ t ψsrc as sets of patterns despite t 6= u′; the positions are
in both since ψ is inner so the patterns g′ are not below Y in N .22 Using
distributivity all the time, the strict inequality holds in the line of reasoning (1)
by φsrc ∩ψsrc 6= ∅ = ψsrc ∩F , the first equality by the reasoning above and (φ,ψ)
being inner so that D− u ψsrc = ⊥, the second since, by reasoning as for E, we
have D′ = Φ′src tF ′ since the patterns `′ are not below Z in L by φ being inner,
hence D− = Φ′src t F = D′+, and the final inequality by F u Ψ ′src w F ′ u Ψ ′src

which holds because by Ψ̂ being a multistep from û, F ′contains positions that
are either below the root of ψ but then not in Ψ ′, or in the pattern of φ and then
in F .

We now give the idea how, as an alternative to the set-theoretic reasoning.
one can also directly work on let-expressions to show that the induction measure
decreases, i.e. one can proceed by giving appropriate constructions on multipat-
terns, and then showing that the measure decreases, constructing witnesses by
computation.

For instance, one may define D− as in the main text, but now by a let-
expression, as letX′Z ′ = `′C[z′] inL[Z:=Z′(`φ)] for Z ′, z′ fresh. Here C is E as
defined above, but now constructed from the image C[Y (`φ)] of Z under the 2nd-
order substitution τ witnessing ψsrc v ς, where ς in turn was constructed as the
join of ψ and Φ. For another example, F , the part of the pattern of φ that does not
belong to the pattern of φ, can be constructed by letZ ′ = C[z′] inL[X′Z:=`′Z′(`φ)].

The same reasoning applies, but now by computation on multipatterns. For
instance, using distributivity to decompose Φ, Ψ in their constituent steps, the
inequality on the amount of overlap follows from Vφsrc uψsrcuW > V⊥W = Vφsrc u
⊥W = Vφsrc u ψsrc uD−W with ψsrc uD− = ⊥ by their complementary definition
via C. Similarly, one may proceed from the right.

A difference in the reasoning shows up ‘in the middle’ of the line of reason-
ing (1): since let-expression can only be compared with respect to the refine-
ment order v if they denote the same term, peaks for different terms, as is the
case here, can a priori not be compared. The way around this is to use Propo-
sition 2 to split-off any differing (non-patterns) parts first. For instance, the
amounts of overlap (letX = f(f(x)) inX(f(a))) e (letY = f(f(x)) in f(Y (a)))
and (letX = f(f(x)) inX(f(b))) e (letY = f(f(x)) in f(Y (b))) are clearly the
same; the a and b are innocuous here. That can be implemented for let-expressions

22 In the let-expression representation this follows from Proposition 2 by vertically
decomposing both having as substitute the redex respectively the contractum of ψ.
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by vertically decomposing the let-expression involved. For instance, decompos-

ing the first as (letX = f(f(x)) inX(f(x)))
[x:=(let= in a)]

. Since the total amount
of overlap is the sum of that of the components, the substitutes have no over-
lap, and the prefixes now have the same denotations, we may proceed, and have
recovered the possibilities of the set-theoretic representation on let-expressions.

ut
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