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Abstract 
The adrenal glands are vital endocrine organs responsible for the synthesis and 

secretion of multiple steroids and hormones. They are composed of an inner adrenal 

medulla and an outer adrenal cortex. The human adrenal cortex is further subdivided 

into three distinct zones that differ both morphologically and functionally: the Zona 

Glomerulosa (ZG), the Zona Fasciculata (ZF), and the Zona Reticularis (ZR). In rats, 

another zone has been identified between the ZG and the ZF, termed the 

undifferentiated zone (ZU). This zone has been shown to consist of adrenocortical 

progenitor cells, expressing Sonic Hedgehog and Delta like homologue 1 (Dlk1).  The 

presence and function of the ZU in human adrenals is not known. In this project I 

studied the expression of stem/progenitor and steroidogenic markers in the human 

adrenal cortex and identified a novel cell population in the subcapsular region, which 

is hypothesised to be similar to the ZU in rats. This cell population expressed the 

atypical Notch ligand Delta-like homologue 1 (DLK1) but not steroidogenic markers 

(similar to the rat model), and we termed this as DLK1-cell clusters (DCCs). 

 

Following assessment of DLK1 expression across normal adrenals from foetuses to 

ageing adults, DCCs appear to be of layered continuous appearance in foetuses and 

in younger individuals and become clustered later in life. However, these were found 

to be different entities to aldosterone producing cell clusters (APCCs), which are 

precursors of aldosterone producing adenomas (APAs). Since DLK1 has shown 

involvement in carcinogenesis, I assessed whether it is involved in DLK1 in 

adrenocortical carcinomas (ACCs).  DLK1 was significantly upregulated in all ACC 

samples analysed compared to normal adrenals. Further in vitro experiments using 

human adrenocortical cell line H295R, showed that DLK1-expressing cells possess 

cancer stem cell characteristics. Collectively, these results indicate that DLK1 could 

be a novel marker of cancer stem cells in adrenocortical carcinoma, which could 

potentially be used as a biomarker for identification and treatment. 
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Chapter 1: Introduction 

1.1 Adrenal gland: Structure and Function  

The adrenal glands are vital endocrine organs responsible for the synthesis and 

secretion of multiple hormones and steroids, including adrenaline, aldosterone and 

cortisol. The two adrenal glands differ in size and shape with the left adrenal gland 

being larger and crescent-shaped and the right being smaller in size and pyramidal in 

shape[1]. Each adrenal gland is located on top of each of the kidneys and is composed 

of two distinct organs. These include the adrenal cortex and the adrenal medulla 

(Figure 1.1a)[2, 3]. A thin fibrous tissue composed of mesenchymal cells encapsulates 

the adrenal gland, which serves both as a support structure and, at least in rodents, 

as a stem cell niche able to generate new functional steroidogenic cells during 

embryological development and throughout life [4].  

 

1.1.1 Adrenocortical zonation  

The adrenal cortex, found directly under the capsule, is further subdivided into at 

least three concentric zones; the Zona Glomerulosa (ZG), the Zona Fasciculata (ZF), 

and the Zona Reticularis (ZR). These zones differ both morphologically and 

functionally and are responsible for the production of mineralocorticoids, 

glucocorticoids or androgens. 

 

The ZG is the outermost zone of the adrenal cortex, lying just beneath the capsule 

and accounts for approximately 15% of the adrenal cortex. It consists of cells 

arranged in circular clusters (rosettes) throughout the subcapsular region. These cells 

have a highly basophilic cytoplasm, containing small lipid droplets[1]. The ZF is the 

thickest layer of the adrenal cortex and resides between the ZG and the ZR. It is 

comprised of larger polygonal epithelial cells with a high lipid content, arranged in 

radial columns along the width of the zone. The innermost layer of the adrenal cortex 

is the ZR, which is found between the ZF and the adrenal medulla. This is composed 

of polyhedral cells that are arranged in cords, projecting into different directions, 

giving a mesh-like appearance (Figure 1.1b).  
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However, different species have different zonation patterns as illustrated in Figure 

1.2. The adrenal glands of mice and rats lack the ZR that is normally present in the 

human adrenal. Instead, in the mouse an X-zone is present, the function of which 

remains unclear, with some studies suggesting that it is involved in progesterone 

inactivation[5]. This zone is known to disappear at puberty in male mice and after 

the first pregnancy in females[6].  Although both human and rodent adrenal glands 

consist of a ZG and ZF, there still are some differences in cell organisation of these 

two zones. In the case of the humans, cells from the two zones are more intermixed 

at the ZG-ZF border, whereas in rodents there is a clear separation between the two 

zones.    

 

Finally, recent studies in rats have supported the presence of a new zone, namely the 

ZU, between the ZG and the ZF that is hypothesized to contain adrenocortical 

stem/progenitor cells. In the rat the ZU is further subdivided into the outer and the 

inner ZU, with cells of the outer ZU expressing markers such as Sonic hedgehog (Shh) 

and Dlk1[7, 8]. The subcapsular region of humans is less characterized and 

considered to be more complex than that of rodents[9]. 

Figure 1.1 – Adrenal gland structure. Schematic diagram of the adrenal gland 

illustrating the shape (a) and cell structure and organisation (b) of the adrenal gland. 

ZG=Zona Glomerulosa; ZF=Zona Fasciculata; ZR=Zona Reticularis. 

 
 



19 
 

 

1.1.2 Steroid synthesis 

Steroid synthesis in the adrenal glands is a tightly regulated process (Figure 1.3), 

initiated by the transport of free cholesterol into the cells via the low density 

lipoprotein receptor in humans and the SR-B1 selective transporter in rodents[10, 

11]. Cholesterol is initially cleaved by cholesteryl ester hydrolase and translocated 

from the outer to the inner mitochondrial membrane with the aid of transporter 

enzyme steroidogenic acute regulatory protein (StAR)[12-14]. Initial conversion to 

pregnenolone by side-chain cleavage (encoded by CYP11A1) takes place, followed by 

transport to the smooth endoplasmic reticulum where it is converted to 17OH-

pregnenolone by CYP17 in the ZF and ZR but not the ZG. Furthermore, 3β-

hydroxysteroid dehydrogenase (3βHSD) converts 17OH-pregnenalone to 17OH-

progesterone in the ZF and ZR and pregnenolone to progesterone in the ZG. CYP21 

then converts progesterone to 11-deoxycorticosterone in the ZG, and 17OH 

progesterone to 11-deoxycortisol in the ZF. These are transported back to the inner 

mitochondrial membrane, where 11β-hydroxylase (CYP11B1) in the ZF converts 11-

deoxycortisol to cortisol in humans. Similarly, in the ZG aldosterone synthase 

(CYP11B2) converts 11-deoxycorticosterone to aldosterone. In the ZR, CYP17 along 

with cytochrome b5 lead to conversion of 17OH-pregnenolone to 

dehydroepiandrosterone (DHEA), which can then be converted to DHEA sulfate 

Figure 1.2 – Adrenocortical zonation in humans and rodents.  Schematic diagram 

illustrating the structural and cellular organisation of the adrenal cortex in the mouse 

(a), rat (b) and human (c).   
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(DHEAS) or androsteneidone by sulfotransferase 2A1 (SULT2A1) and 3βHSD, 

respectively. Cyp17 is epigenetically silenced in rodents postnatally [15], hence 11-

deoxycorticosterone is the substrate of Cyp11B1 instead, leading to synthesis and 

production of corticosterone, rather than cortisol. In addition they do not synthesize 

adrenal androgens therefore the ZR does not exist in rodents[1, 16-18].  
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Figure 1.3- Steroid synthesis in the human adrenal cortex. Free cholesterol is transported into the adrenocortical cells, where it is initially 

cleaved and then translocated from the outer to the inner mitochondrial membrane by StAR. Following initial conversion to pregnenolone by 

CYP11A1, subsequent action of multiple enzymes (CYP17, 3βHSD and CYP21) are responsible for further processing. Finally, zonal specific 

enzymes in the ZG (CYP11B2) and ZF (CYP11B1) act on the steroid/hormone precursors to give rise to aldosterone and cortisol, respectively. The 

ZR is only present in humans and is responsible for androgen production, including testosterone. C=Capsule; ZG=Zona Glomerulosa; ZF=Zona 

Fasciculats; ZR=Zona Reticularis; M=Medulla. 
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1.1.3 Zonal specific and medullary functions 

The ZG secretes the mineralocorticoid aldosterone, under the influence of the renin-

angiotensin-aldosterone system (RAAS)(Figure 1.4a)[16].This occurs when secretion 

of the serine-protease renin from the juxtaglomerular cells in the kidneys is triggered, 

either following sympathetic nerve activation, catecholamine accumulation, renal 

artery hypotension or decreased sodium delivery to the distal tubules [19, 20]. Renin 

cleaves angiotensinogen released by the liver into angiotensin I, which is 

subsequently converted to angiotensin II by angiotensin converting enzyme, mainly 

located in the capillaries of the lung[21, 22]. Angiotensin II has a direct effect on 

multiple organs, including the adrenal gland, and acts by binding to its receptor 

Angiotensin I receptor to produce a synergistic effect resulting in an increase in blood 

volume and hence blood pressure. In the adrenal gland, binding of angiotensin II to 

its receptor causes the generation of inositol 1,4,5-trisphosphate and 1,2-

diacylglycerol. This results in activation of a series of cascades and phosphorylation 

events leading to an increase in aldosterone production by the ZG in the adrenal 

cortex[23, 24]. 

  

Aldosterone acts to increase sodium reabsorption and water retention by the kidneys, 

through binding to the mineralocorticoid receptor, thus having a direct effect in 

regulating blood volume and systemic vascular resistance; hence controlling blood 

pressure[21]. Dysregulation of RAAS leading to excess aldosterone secretion causes 

electrolyte imbalance and hypertension. In addition, it has an effect on other tissues 

and can have severe cardiometabolic implications, such as cardiac fibrosis, decreased 

insulin sensitivity and increased adipogenesis[25-27]. 

 

The ZF is responsible for glucocorticoid secretion, mainly cortisol in humans (or 

corticosterone in rodents), under the control of the hypothalamic pituitary adrenal 

axis (HPA axis) as shown in Figure 1.4b. Biological stress, low blood glucose 

concentration or low blood cortisol levels activate the HPA axis and stimulate the 

paraventricular nucleus of the hypothalamus to secrete corticotrophin releasing 

hormone (CRH). This in turn promotes the release of adrenocorticotropic hormone 
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(ACTH) by the anterior pituitary that binds to the melanocortin 2 receptor (MC2R), 

which along with melanocortin 2 receptor accessory protein (MRAP), is almost 

exclusively expressed in the ZF. MC2R being a G-protein coupled receptor, converts 

adenosine triphosphate (ATP) into cyclic adenosine monophosphate (cAMP); the 

function of which is two-fold. It initiates transcription of StAR, CYP11A1 and CYP17A1 

thus favouring cortisol production and activates cAMP-dependent protein kinase 

(PKA), which in turn phosphorylates cholesterlyl ester hydrolases and StAR; thus 

increasing transport of cholesterol to the inner mitochondrial membrane[28-30]. 

 

Cortisol is the main glucocorticoid released by the ZF and has very important and 

widespread multi-organ effects, including metabolic and cardiovascular regulation as 

well as vital anti-inflammatory effects through immune system regulation. Elevated 

cortisol levels lead to an increase in gluconeogenesis in the liver. As a result, there is 

an increase in lipolysis of fat stores to release fatty acids and glycerol, and sometimes 

proteolysis of muscle tissue, in order to provide sufficient amounts of substrates for 

increased glucose synthesis [1, 16]. Both an increase in cortisol levels, as well as an 

increase in glucose and fatty acid formation, exerts a negative feedback effect on the 

HPA axis resulting in an inhibition of CRH and/or ACTH; hence preventing over-

secretion of cortisol. In situations where cortisol is chronically high (ie: during periods 

of chronic stress or in patients with Cushing’s syndrome), metabolic abnormalities 

can occur, as well as altered body fat distribution and increased visceral obesity[31, 

32]. Apart from metabolic regulation, cortisol can have anti-inflammatory properties 

by inhibiting the synthesis and release of specific cytokines including Interleukin-12 

and Interferon gamma and other inflammatory mediators such as histamine, thus 

playing a role in immune system regulation[33]. This regulation can be vital to 

prevent organ damage in situations of excessive inflammation.  In addition cortisol 

can have an effect on the cardiovascular system, by regulating blood pressure, tone 

of the heart and contractility[34]. 

 

The innermost layer of the adrenal cortex, the ZR, appears later in life at around 6-8 

years of age in females and 7-9 years in males in a process called adrenarche. It 

secretes androgen precursors such as, DHEA and DHEA sulfate (DHEAS)[2, 35]. Finally, 
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the adrenal medulla is found in the inner portion of the adrenal gland. It consists of 

polygonal epithelial cells, which are grouped around blood vessels and is responsible 

for the synthesis and secretion of the catecholamines, mainly adrenaline and 

noradrenaline. It is connected to the sympathetic nervous system and therefore it 

controls the body’s ‘fight or flight’ response. 
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Figure 1.4 - Schematic diagram of the Renin-angiotensin-aldosterone system (a) and the hypothalamic pituitary adrenal axis (b) and their 

effects. The RAAS is the main regulator of aldosterone secretion in the adrenal gland. Renin secretion by the kidneys, following either 

sympathetic nerve activation, renal artery hypotension or decreased [Na+] in distal tubules, converts angiotensinogen into angiotensin I. This is 

further processed to Angiotensin II via the action of angiotensin converting enzyme secreted by the pulmonary and renal endothelium. 
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Angiotensin II exerts its effects on a wide range of tissues including the adrenal cortex, where it stimulates aldosterone secretion. Collectively 

the tissues stimulated by Angiotensin II have a synergistic role in regulating blood volume and pressure. The HPA is the main regulator of cortisol 

secretion in the ZF. CRH release by the hypothalamus following a drop in blood cortisol/glucose concentrations or during periods of stress 

stimulates ACTH release by the anterior pituitary, which in turn stimulates the adrenal gland to secrete cortisol. 
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1.2 Adrenal Gland Development 

Developmentally, the adrenal gland originates from two distinct embryological 

organs; the intermediate mesoderm which gives rise to the adrenal cortex and the 

neurectoderm which forms the adrenal medulla[36]. Development of the adrenal 

gland commences with the expression of steroidogenic factor 1 (Sf1), leading to 

mesoderm-derived cells of the coelomic epithelium and the underlying mesonephros 

to coalesce and form the adrenogonadal primordium (AGP). This event occurs at 28 

days post conception (dpc) in humans and embryonic day (e) 9.0 in mice (Figure 1.5).  

  

Each AGP forms between the urogenital ridge and the dorsal mesentery and consists 

of both adrenocortical and gonadal progenitor cells. At 8 weeks of gestation in 

humans and e10.5 in mice, combinations of transcription factors act upon the 

undifferentiated primordial cells and force them to commit towards distinct 

lineages[1, 7, 36, 37]. The majority of these cells will migrate dorsolaterally to form 

the gonadal primordial (GP) which will give rise to the gonads, while those with the 

highest expression of Sf1 will migrate dorsomedially to form the adrenal primordial 

(AP)[38]. Following formation of the AP, at around 48dpc in humans and at e11.5-

e12.5 in mice, the fetal adrenal is invaded by neural crest cells that have migrated 

from the neurectoderm. These neural crest cells will eventually differentiate into 

catecholamine-producing cells to form the adrenal medulla and will have no 

contribution to the adult adrenal cortex[39, 40]. At the same time the fetal adrenal 

becomes encapsulated by a fibrous layer, which forms the adrenal capsule by 52dpc 

in humans and e12.5-e14.5 in mice[41]. 

 

Following encapsulation, the embryonic adrenal cortex continuous to expand rapidly. 

By e14.5 in mice the emergence of a new zone occurs between the capsule and the 

fetal zone (FZ), known as the definitive zone (DZ). This will later become the adult 

adrenal cortex. As the development of the adrenal continues, the DZ grows while the 

FZ regresses. The timing of FZ regression is species-specific; in humans it regresses 

perinatally, while in mice it persists until puberty in males and the first pregnancy in 

females (also known as X-zone in adult mice)[1, 36, 42]. In the last months of 
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gestation in humans adrenocortical cells of the DZ expand and start producing 

cortisol marking the appearance of the ZF of the adrenal cortex.  
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 Figure 1.5 – Adrenal gland development in mice. Schematic diagram illustrating the developmental process leading to adrenal gland 

formation in mice, showing the main events including AGP and DZ formation, and FZ regression. Additionally it highlights the time and 

duration of expression of key factors involved in mouse and human adrenal gland development such as Sf1, Dax1, FAdE, Wt1, Cited2, Pbx1, 

Shh and β-catenin.  
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1.3 Key factors and signalling pathways involved in adrenal development 

1.3.1 Steroidogenic Factor 1 (SF1) 

SF1 is a nuclear receptor encoded by the NR5A1 gene. It has emerged as a master 

regulator of AGP formation and a key factor in the determination of the steroidogenic 

cell fate[37, 41, 43-46]. In mouse models of Sf1 haploinsufficiency (Sf1+/-) a delayed 

hypoplastic adrenal gland developed[47], while in M33 knockout (KO) mice where 

Sf1 expression is half compared to wild type (WT) a similar phenomenon was 

observed[48]. In addition, complete deletion of Sf1 in vivo leads to adrenal and 

gonadal agenesis with postnatal lethality[38].  In human studies it was shown that 

SF1 mutations also have an effect on adrenal and gonadal development leading to 

adrenal insufficiency and developmental abnormalities, respectively. However, in 

the case of humans it seems that the gonads are more sensitive to SF1 loss, compared 

to the adrenal gland where it is reported that primary adrenal insufficiency due to 

SF1 loss is a rare event[49, 50]. On the other hand SF1 over-expression leads to 

increased cell proliferation and neoplasia, which may lead to tumour 

development[51]. 

 

These findings suggest that SF1 gene dosage is critical for normal adrenal and gonadal 

development, with suboptimal SF1 levels leading to dose-dependent impairment and 

too high levels of SF1 leading to aberrant proliferation and possibly 

tumourigenesis[52, 53]. Research into pathways responsible for regulating 

expression of SF1, has revealed important factors that help maintain the optimal 

levels of the protein. Current data indicate that Wilm’s tumour 1 (Wt1) and 

Cbp/P300-Inreracting transactivator, with Glu/Asp-Rich carboxy-terminal domain, 2 

(Cited2) regulate Sf1 expression in the AGP and differentiation of the AP, 

respectively[54, 55]. In addition the fetal adrenal enhancer (FAdE) has been shown 

to be critical in Sf1 modulation. FAdE expression begins at e10.5 in mice and is 

responsible for initiating Sf1 expression in the AGP (Figure 1.5). FAdE acts in a two-
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step mechanism involving an initial FAdE mediated Sf1 expression controlled by the 

transcription complex containing homeobox protein PKNOX1 (Prep1), pre B-cell 

leukeumia factor 1 (Pbx1) and homeobox gene 9b (Hox9b). Following initial 

activation of Sf1, its expression is maintained by the establishment of an 

autoregulatory loop, where Sf1 regulates itself by maintaining FAdE mediated Sf1 

expression[56]. In a study by Zubair et al., 2009, a FAdE-Sf1 transgenic mouse was 

used to investigate the effect of FAdE-induced Sf1 overexpression on adrenal 

development[52]. Their results showed an increase in adrenal size and formation of 

an ectopic adrenal, further supporting the role of Sf1 in cell fate determination in 

vivo. In addition, it highlights the importance of the autoregulatory loop in preventing 

ectopic adrenals from forming[52, 57]. Following e14.5 in mice, Sf1 expression 

regulation is no longer dependent on FAdE and therefore during DZ emergence, Sf1 

regulation is supported by a different definitive enhancer[57]. A similar mechanism 

however has not yet been observed in humans. 

 

1.3.2 DAX1  

DAX1 (dosage-sensitive sex-reversal, adrenal hypoplasia congenital, X chromosome; 

NR0B1) is an atypical orphan nuclear receptor and the gene responsible for X-linked 

adrenal hypoplasia congenital (AHC)[58, 59], as well as dosage-sensitive XY sex-

reversal (DSS)[60]. In humans expression of DAX1/DAX1 is restricted to the adrenal 

glands, hypothalamus, pituitary and testis[61]. 

In the adrenal glands, expression of Dax1/DAX1 occurs in the developing urogenital 

ridge at e10.5 in mice and 33dpc in humans. It continues to be expressed in the 

adrenal primordium, as well as the fetal and adult adrenal cortex and it principally 

serves as a co-repressor of Sf1-mediated steroidogenesis [2]. Studies have shown 

that knockdown of Dax1 results in premature differentiation of adrenocortical 

progenitors in mice, further supporting the role of DAX1 in the maintenance of the 

stem/progenitor cell population in the adrenal cortex. In addition, recent studies 
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have shown that Dax1 and Sf1 SUMOylation both act as co-repressors of FAdE 

mediated Sf1 expression, which is crucial for fetal cortex regression and normal 

adrenal development and function[62]. Regulation of Dax1 is hypothesized to be a 

tightly regulated process in order to maintain a balance between progenitor and 

differentiated cells. Sf1 and Wnt signalling act as co-activators of Dax1 transcription, 

while ACTH leads to Dax1 inhibition and initiation of differentiation of Sf1+ 

progenitor cells[63]. Apart from regulating the stem/progenitor cell pool in the 

adrenal cortex, Dax1 is a key component of transcription factor networks that 

maintain mouse embryonic stem cells in a pluripotent state. This role was supported 

by Dax1 knockdown mouse studies in which embryonic stem cells spontaneously 

differentiate into all three germ layers[64]. 

1.3.3 ACTH and CRH 

As mentioned earlier, both hormones are part of the HPA axis and have an effect on 

adrenal function. CRH release by the hypothalamus regulates production of 

proopiomelanocortin (POMC) by the anterior pituitary that is then converted to 

ACTH. ACTH in turn binds the MC2R receptor on adrenocortical cells to stimulate 

steroidogenesis and ultimately cortisol release[65]. In addition to its effects in 

adulthood, ACTH can play a role in the development and growth of the human fetal 

adrenal gland after 15 weeks of gestation, mainly through stimulation of other 

growth factors such as insulin-like growth factor 2 (IGF2) and fibroblast growth factor 

beta (FGFβ). In addition it is involved in the regulation of steroidogenesis during DZ 

formation[66-68]. 

 

CRH-homologous peptides (UCN1-3) and their respective receptors (CRF1/2) are 

found in both the adult and fetal adrenal gland however they have different 

expression patterns[69, 70]. In addition CRH is produced in vast amounts by the 

human placenta, particularly at the end of gestation. This leads to increased 

production of cortisol and DHEA/DHEA-S in human fetal adrenals and an enhanced 
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sensitivity of the adrenal gland to ACTH[71]. Furthermore, a study has shown that 

chromaffin cells in the medulla might be essential for the stimulatory action of CRH 

on cortisol production, suggesting a potential link between the adrenal cortex and 

the medulla[72]. 

1.3.4 Insulin-like growth factor 1 and 2  

Insulin-like growth factor 1 (IGF1) and IGF2 are expressed in a variety of tissues and 

exert their biological functions by binding to their corresponding receptors, IGF-2R 

and insulin receptor, thus triggering receptor autphosphorylation.  This in turn leads 

to the activation of the MAPK and AKT/PI3K pathways, which regulate cell 

metabolism, proliferation, differentiation and apoptosis[73, 74]. Both IGF1 and IGF2 

are expressed in the adrenal glands, however at different spatial and temporal levels. 

In the developing fetal embryo, IGF2 is predominantly expressed throughout the 

adrenal cortex with minimal IGF1 expression in the capsule. Studies have shown that 

stimulated increase of ACTH secretion from the pituitary results in an increased 

expression of IGF2 and IGFR1 in the fetal adrenal gland. This in turn results in 

increased adrenal size, suggesting that these factors play a crucial role in adrenal 

growth[75]. In the adult human adrenal IGF1 is predominantly expressed, with only 

low levels of IGF2 expression in the peripheral cortex and capsule layer. The presence 

of IGFs stimulate basal and ACTH-induced steroidogenesis[74, 76]. IGF2 expression 

in the human adult adrenal is localised in the stem/progenitor cell compartments, 

suggesting a role of IGF2 in adrenal stem/progenitor cell maintenance. This is further 

supported by studies showing that both IGF2 and fibroblast growth factor (FGF) are 

also important in stem/progenitor cell maintenance of other organs[77, 78].  More 

recently a study showed that knocking down Igfr1 in mice resulted in adrenal 

agenesis, decrease in Sf1 expression in the AGP and failure to form the AP, in addition 

to growth retardation, sex reversal and ovarian development[79]. These results 

suggest that the Igf pathway is essential in both adrenal and gonadal development 

as well as sex determination. 

 



 34 

1.3.5 FGF signaling 

FGF signalling is mediated by the FGF family of proteins and it regulates a number of 

developmental processes, such as anterior-posterior patterning, neurectoderm 

formation and organogenesis. FGFs comprise a large family of secreted glycoproteins 

that act by binding to FGF receptor tyrosine kinases (FGFR1-4) and activate a range 

of pathways, including Ras/MAPK, Akt and PKC activation[80]. Different isoforms of 

Fgf and Fgfr have been detected in adrenals of mouse embryos at e15.5, mainly in 

the capsule and in subcapsular regions of the cortex, suggesting a role of Fgf signaling 

in adrenal development, possibly after AGP development[1]. Mice harbouring a total 

KO of Fgfr2 isoform IIIb had a hypoplastic adrenal with a disorganised capsule and 

decreased expression of side chain cleavage and Cyp11b1 at e16.5. Mice lacking all 

isoforms of Fgfr2 (IIIb and IIIc) in the adrenal cortex exhibited severe hypoplastic 

adrenal glands at birth with a reduced number of cortical cells. However, cortical cells 

in these mice were able to differentiate into steroidogenic cells and achieve proper 

zonation[7]. 

 

1.3.6 Wnt/β-catenin signalling  

Wnt/β-catenin signaling is one of the most important pathways in the regulation of 

tissue development and homeostasis of multiple organs including the adrenal glands. 

β-catenin is a bifunctional protein that regulates cell-to-cell interactions in the 

cytoskeleton, in addition to taking part in canonical Wnt signalling. In the absence of 

Wnt ligand, β-catenin becomes incorporated in the destruction complex 

(Axin/Apc/Gsk3β) where it gets phosphorylated and targeted for degradation[1, 81]. 

However, upon Wnt ligand binding to their respective frizzled receptor the 

degradation complex is prevented and active β-catenin translocates to the nucleus 

where it acts as a transcriptional coactivator for T-cell factor/ lymphoid enhancer-

binding factor (TCF/LEF)[1, 81, 82].  
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Embryonically, active β-catenin is detected as early as e11.5 in the AGP and 

mesonephros of the mouse embryo and by e18.5 it is restricted to the subcapsular 

region of the cortex (ZG) and persists until adulthood, where it mostly but not 

exclusively co-localizes with Cyp11b2[36, 83]. In the human adult adrenal β-catenin 

is found to be expressed in the subcapsular region of the adrenal cortex.  Multiple 

studies have identified a synergistic action between β-catenin and Sf1 in activating 

downstream genes important for adrenocortical development and function, such as 

Dax1, Star, Inha, Hsd3b1 and CYP19a1, thus suggesting a crucial role of β-catenin in 

regulating adrenal development and homeostasis[84, 85]. The importance of β-

catenin in adrenal gland development is supported by a study showing that ablation 

of β-catenin in mice results in embryonic lethality[86]. Disruption of β-catenin 

expression exclusively in steroidogenic cells using a highly penetrant Sf1:cre 

transgene also results in adrenal aplasia in mice at birth, further supporting a crucial 

role of canonical Wnt/β-catenin signalling in normal adrenal gland development[87]. 

The same study also showed that mice bearing the weakly penetrating Sf1:cre 

transgene (approximately 50% effective) have a normal adrenal gland at birth; 

however as the mice age the adrenal cortex decreases in size and steroidogenic 

function is compromised. This failure is possibly due to a loss of the adrenocortical 

progenitor cells in the cortex.   

 

1.3.7 Shh signalling 

Sonic hedgehog (Shh) is a secreted protein that belongs to the Hedgehog family of 

cell-fate regulators, comprised of two additional homologs, the Indian hedgehog 

(Ihh) and the Desert Hedgehog (Dhh). Hedgehog signaling pathway is key in 

organogenesis in the human embryo, as well as tissue homeostasis and regeneration 

in adulthood. Therefore, perturbation of this pathway, results in developmental 

abnormalities, disruption of homeostasis and in some cases tumourigenesis [88-91]. 

Each mammalian Hh homolog has distinct functions and different expression 

patterns.  Shh in particular is expressed in the early stages of embryonic development 
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in multiple organs including the adrenal glands. The second homolog Dhh is mostly 

expressed in the gonads and neural sheaths, while Ihh expression is restricted to the 

primitive endoderm and pre-hypertrophic chondrocytes[92-94]. 

 

These Hh proteins act by binding to their main receptor, Patched 1 transmembrane 

binding protein (Ptch1), in addition to other more recently discovered co-receptors; 

Cdo (cell adhesion molecule-related/downregulated by oncogenes), Boc (brother of 

Cdo/bioregional Cdon-binding protein) and Gas1 (growth arrest specific 1) found on 

the target cells[95-97]. This releases the repressive action of Ptch1 on Smoothened 

(Smo), a 7-transmembrane G-protein coupled receptor, which leads to its 

phosphorylation and accumulation within the primary cilium. Phosphorylated Smo 

stimulates Gli1 expression by recruiting proteins to antagonize the repressive action 

of Sufu (Suppressor of Fused) on Gli. Finally, this results in the accumulation of Gli2 

and Gli3 in their transcriptionally active forms which leads to subsequent initiation 

of transcription of target genes in the Hh pathway[94, 98-100]. In the absence of Hh 

proteins, Ptch1 inhibition of Smo remains, preventing association of Smo with cell 

membrane. In addition Hh negative regulator Sufu binds to Gli proteins, thus 

inhibiting their nuclear localization and transcription. As a result Gli2 is mostly 

proteolytically degraded, whereas Gli3 and remaining Gli2 are cleaved into a 

transcriptionally inactive form, repressing the expression of downstream Hh target 

genes. 

 

In the developing adrenal gland, Shh expression is detected at e11.5 in the AP of the 

mouse embryo just after separation from the AGP (Figure 1.5) [98, 101]. Shh along 

with its downstream effectors (Gli1, Gli2 and Gli3) continue to be expressed 

throughout development and persist during adulthood. In the adult mouse adrenals, 

Shh is expressed in subcapsular non-steroidogenic cortical cells, co-localizing with Sf1 

but not with any of the differentiation markers expressed in functional ZG or ZF cells 

(Cyp11b2 and Cyp11b1, respectively). Similarly, in the adult rat adrenal cortex, Shh 
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is expressed in a continuous manner in the ZU region, an area hypothesized to 

comprise of stem/progenitor cells suggesting a role of Shh in adrenocortical 

maintenance and homeostasis [101, 102]. 

 

Finally, multiple studies have shown that Shh is essential for normal adrenal gland 

development, as inactivation/deletion of Shh in Sf1-expressing cells of the mouse 

adrenal cortex, results in adrenal hypoplasia, decreased proliferation and a thinner 

capsule[103]. In addition, although conditional Shh knockouts in mice lead to 

significantly reduced adrenal size, adrenocortical zonation and differentiation of the 

medulla seem to be unaffected[101, 103, 104]. Collectively, these results support a 

significant role of Shh for proper adrenal development, but suggest that Shh doesn’t 

have a role in initiation of differentiation into the different adrenocortical zones. 

 

1.4 Mechanisms governing adrenocortical homeostasis and maintenance 

1.4.1 Stem/progenitor cell populations 

The presence of a stem/progenitor cell niche in the adrenal glands has been long 

hypothesized and there have been multiple studies focusing on the identification of 

such population. Initial studies in the rat have reported that removal of the inner 

content of one of the adrenal glands (ZF and medulla) leads to the complete 

restoration of that adrenal cortex six weeks later. These results suggest the presence 

of a progenitor population in the adrenal capsule and/or subcapsular region that is 

able to regenerate the adrenal cortex[105]. In addition transplantation studies in 

mice have supported the presence of a progenitor population in the adrenal cortex 

[106, 107]. It has also been demonstrated in multiple studies that newly formed 

adrenocortical cells are centripetally displaced to give rise to all 3 differentiated 

zones until they reach the cortico-medullary border where they become senescent 

and then apoptotic[108]. More recent lineage tracing studies have solidified the 

notion of centripetal migration of the outer cortical cells into cells of the inner zones 

of the adrenal cortex. [101, 109]. 
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It is now well established that the adrenal gland has two main sites where stem or 

progenitor cells reside. The Gli1+/Sf1- stem cell population in the capsule and the of 

Shh+/Sf1+/Cyp11b2- adrenocortical progenitor cells in the subcapsular region of the 

adrenal cortex (Figure 1.6). Lineage tracing studies in mice used an inducible Shh-Cre 

recombinase with a fluorescent reporter to mark Shh+ cells and their progeny. These 

studies showed that marked cells were in clusters and restricted in the subcapsular 

region of the adrenal cortex. Longer tracing periods showed that these cells and their 

descendants migrate centripetally to form radial stripes giving rise to cells of all 

cortical zones of the adrenal cortex. While Shh+ cells give rise to steroidogenic cells 

in the adrenal cortex, studies have also shown that Cyp11b2+ cells (ZG) can also give 

rise to Cyp11b1+ cells (ZF) through lineage conversion (Figure 1.6) [101, 110].  

 

In addition to giving rise to differentiated cells of the adrenal cortex, Shh+ progenitor 

cells can communicate with stem cells residing in the capsule. It has been shown that 

Shh+ cells target the overlying Gli1+ capsular cells. Genetic lineage tracing 

experiments have demonstrated that Gli+ cells in the capsule respond to Shh signal 

by delaminating into the cortex, while losing their responsiveness to Shh. They first 

become Gli1-/Sf1+/Shh+ cells, and later differentiate fully into cells of either the ZG 

or ZF (Figure 1.6)[98, 101, 109]. Indeed, both Gli1 and Shh cells can give rise to 

steroidogenic cells during adrenal development and in the adult gland. However, in 

the absence of Shh signaling functional adrenal glands can still be formed, suggesting 

that a founder population of adrenocortical cells must exist to overcome the loss of 

Shh signaling. This founder population is thought to be the original Sf1+ cells from 

the AGP[57]. 
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Over the years additional capsular cell populations have been identified as regulators 

of adrenocortical maintenance and homeostasis apart from the Gli1+ stem cells. 

These include cells expressing Wilms tumour protein homolog (Wt1) or cells 

expressing transcription factor 21 (Tcf21) [55, 111]. Lineage tracing experiments 

following capsular Wt1+ cells and their descendants have provided evidence that 

these cells can also give rise to steroidogenic cells as well as Gli1+ cells of the capsule, 

Figure 1.6 – Stem and/or progenitor cell populations in the adult 

adrenal gland.  Schematic diagram illustrating stem cell populations 

(Gli1+, Wt1+ and Tcf21+ cells) found in the capsule and their progeny, 

as well as highlighting the interaction between cortical progenitor cells 

(Shh+) with capsular stem cells (Gli1+). Solid arrows show progeny, 

while dashed arrow shows signalling. CC=Capsular cells; Cap=Capsule, 

ZG=Zona glomerulosa; ZF=Zona fasciculata. 
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suggesting a role of Wt1 in the activation of Gli1 transcription (Figure 1.6). Studies 

following the fate of Tcf21+ cells have shown that these cells begin to express Tcf21 

at E9.5 and by E14.5 Tcf21+ cells are restricted to the capsule. Lineage tracing studies 

have shown that during development Tcf21+ cells and their descendants could give 

rise to Sf1- capsular cells as well as steroidogenic cells in the cortex. However, in the 

adult Tcf21+ cells only give rise to steroidogenic cortical cells (Figure 1.6) [111]. 

Collectively these data show that the capsule consists of multiple stem cell 

populations and suggests a role of these in the maintenance and regeneration of 

stem/progenitor or differentiated adrenocortical cells.  

 

1.4.2 Signaling pathways and key factors 

Several factors and signalling pathways that play a role in adrenal gland development 

are also responsible in maintaining a proper balance between adrenocortical 

progenitor maintenance, cell proliferation and differentiation. These factors are 

present in specific areas within the adrenal gland, where stem/progenitor cells reside 

and act as protective microenvironments that regulate stem cell proliferation and 

differentiation. This is a crucial regulatory mechanism to ensure a normal functioning 

adrenal gland throughout life. Components that have been identified within the 

stem/progenitor cell niche include Wnt ligands and growth factors (such as 

epidermal growth factor (EGF) and FGF). In addition, the extracellular matrix (ECM) 

has proven very important in providing additional structural and zone-specific 

support. 

 

Wnt/β-catenin pathway has been described earlier as an important modulator of 

adrenal gland development (Section 1.3.6). In addition to its role during embryonic 

development it also has a crucial role in adrenocortical maintenance and zonation 

[112-114]. In fact Wnt4, a transcriptional target of Wnt/β-catenin signaling has been 

found to be expressed in the ZG of the adult mouse adrenal cortex.  During 

development Wnt4 is required for proper ZG differentiation and aldosterone 
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production[115]. In the adult, mouse studies have shown that inhibition of Wnt4 

expression and subsequent inactivation of the canonical Wnt pathway, by PKA, leads 

to ZG-to-ZF lineage conversion [116]. Therefore, Wnt4 acts as an autocrine activator 

of Wnt/β-catenin signaling and is essential for proper adrenocortical zonation. 

Alternatively, Wnt/β-catenin constitutive activation leads to an expansion of the 

capsular stem cell and subcapuslar progenitor cell populations leading to tumour 

formation (Discussed further in Section 1.6)[4, 117].  

 

In addition, R-spondins (Rspo) are secreted proteins, which play an important role in 

modulating Wnt/β-catenin signalling pathway[118]. Functionally, Rspo can interact 

with members of the Lgr family of GPCRs, known markers of stem/progenitor cells. 

Binding of Rspo to Lgr receptors results in the inactivation of Rnf43 and Znrf3 

ubiquitin ligases (negative regulators of Wnt), preventing internalization of Frizzled 

receptors and promoting Wnt signaling [119, 120].  Rspo1 and Rspo3 were found to 

be expressed in the adrenal capsule in mice at e12.5 and their expression was 

maintained throughout adulthood. In the adult, Rspo1 and Rspo3 expression in the 

capsule is restricted to Wt1+ and Gli1+ cells, respectively, suggesting a role of the 

two in the regulation of stem/progenitor cell niche. Knockout studies have shown 

that Rspo1 loss leads to no observable effects on the adrenal glands. However, 

genetic loss of Rspo3 resulted in major defects, including cortical atrophy, loss of 

canonical Wnt target genes (Axin2, Wnt4), loss of functional ZG (along with loss of 

ZG specific markers), a decrease in Shh+ (cortical progenitors) or Gli1+ cells (capsular 

stem cells) and a marked decrease in mitotic activity. The results from this study 

show that Rspo3 is a crucial regulator of Wnt and Shh pathways in the adrenal gland, 

thus supporting a role of Rspo3 in stem/progenitor cell maintenance and functional 

zonation[110, 121]. 

 

Moreover, growth factors such as FGFs are also proven to be essential for tissue 

homeostasis by regulating cell proliferation, differentiation, migration and 
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metabolism[122]. In vivo, different FGF ligands and their respective receptors are 

present in the adrenal cortex and overlying capsule, coinciding with the 

stem/progenitor cell niches. In the mouse embryo, Fgf1 is expressed in the adrenal 

cortex at E15.5, while Fgf2 and Fgf9 are expressed in the capsule region along with 

their respective receptors. Adrenocortical cells expressing Fgf2 also express Shh, 

suggesting that Fgf2 is an important regulator of adrenocortical progenitor cells[7, 

102]. In vivo studies have shown that Fgf2 significantly enhances cell growth of 

adrenocortical cells that have been implanted under the kidney capsule, supporting 

the role of Fgf signaling in adrenal maintenance[123]. In addition as mentioned 

earlier knockout of Fgfr2-IIIb only or both Fgfr2-IIIb and Fgfr2-IIIc results in 

embryonic lethality. Evaluation of the embryonic adrenal glands following total 

Fgfr2-IIIb knockout has shown significant defects in the adrenal capsule, with an 

increased number of Gli1-positive cells, in addition to a hypoplastic cortex. The 

adrenal cortex had a reduced steroidogenic differentiation activity, as well as a 

markedly reduced capsular Dlk1-expression [7, 110]. All together these data support 

the importance of Fgf in adrenocortical homeostasis and maintenance and introduce 

Dlk1 as a mediator of a proposed homeostatic cross-talk between the capsular and 

adrenocortical cells. 

 

1.4.3 The Extracellular Matrix  

The ECM is a three-dimensional cellular network consisting of extracellular proteins 

including collagens, laminin, fibronectin, as well as bioactive compounds (growth 

factors, morphogens). It is responsible for providing structural and biochemical 

support for the surrounding cells within a tissue. Cells interact with the ECM, by 

binding on membrane-bound adhesion molecules, called integrins[110, 124]. 

Depending on the interaction between cells with these integrins, as well as the 

different factors that make up the ECM, different transcriptional programs can be 

triggered leading to proliferation, differentiation or stem cell maintenance [125, 126]. 

Therefore, the ECM has proven to be crucial in determining cell fate within organ 
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systems, with the adrenal gland being no exception. Within the human fetal adrenal, 

ECM components are differentially expressed between the different zones with 

laminin, collagen IV and fibronectin being found in the definitive, transitional and 

fetal zone[110, 127]. In vitro experiments have shown the influence that each of 

these components has on differentiation or stem cell maintenance of the adrenal 

gland, which reflects the phenotype of the zone they are present in. For example, 

collagen IV and laminin were shown to inhibit differentiation and promote 

proliferation [128]. In conclusion, the ECM is not only a support structure for the cells, 

but also a major determinant of cell fate regulating stem cell maintenance and 

differentiation. 

 

1.5 Delta like protein homologue 1 (DLK1) 

1.5.1 Structure and function 

Dlk1/DLK1 gene, found on mouse chromosome 12 and human chromosome 14, is a 

maternally imprinted gene, coding for a 65kDa transmembrane glycoprotein and 

belongs to the family of EGF-like homeotic proteins[129, 130]. It consists of six EGF-

like repeats at the extracellular N-terminus, a juxtamembrane region, a single 

transmembrane domain and a short cyoplasmic tail [131-133]. Therefore, it is 

structurally very similar to other EGF-like repeat containing proteins, such as EGF and 

transforming growth factor-α (TGF-α), which act through either the EGF or Notch 

receptor to regulate cell fate and differentiation, particularly during 

embryogenesis[132]. 

 

Various DLK1 splice variants have been identified in different species, as a result of 

alternative splicing. Six isoforms have been identified in the mouse (DLK1-A, -B, -C, -

C2, -D, -D2), while four isoforms have been identified in humans, as shown in Figure 

1.7[133-135]. Proteolytic cleavage of DLK1 by TNF-α-converting enzyme (TACE) at 

the juxtamembrane region, results in the release of a 50kDa soluble and active 

protein with potential paracrine targets[132]. The larger splice forms of DLK1 (DLK1-
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A and DLK1-B) contain two proteolytic cleavage sites resulting in 25kDa and 50kDa 

proteins while the remaining shorter forms (DLK1-C, -C2, -D, -D2), lack the cleavage 

at the juxtamembrane region, giving rise to the 25kDa secreted form only, which is 

biologically inactive[134, 136, 137]. 

 

Most of what we know about DLK1 comes from studies in the adipose tissue. Several 

studies have shown that Dlk1 is highly expressed in preadipocytes, and absent in 

mature adipocytes making it a suitable preadipocyte marker[131]. It has been 

demonstrated that Dlk1 is a strong inhibitor of adipogenesis both in vitro and in vivo, 

and acts by preventing Sox9 downregulation through upstream activation of the 

Mitogen activated protein kinase (MAPK) pathway [131, 138-141]. Following 

expression of Sox9, it then directly binds to the promoter region and inhibits the 

expression of pro-adipogenic transcription factors CCAAT-enhancer-binding protein 

β (C/EBPβ) and CCAAT-enhancer binding protein δ (C/EBPδ), thus having a negative 

effect on adipogenesis[131, 142]. In order for adipocyte differentiation to occur, 

downregulation of Dlk1 was necessary, establishing Dlk1 as not only a preadipocyte 

marker, but also a key regulator of differentiation. It is important to note that only 

the cleaved 50kDa Dlk1 protein (Dlk1-A and Dlk1-B), was found to inhibit 

adipogenesis, while the remaining forms (Dlk1-C and Dlk1-D), as well as the 

membrane bound Dlk1 had no effect on adipogenesis. 
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Figure 1.7 – Human DLK1 splice variants. Schematic diagram showing the structure 

of the different DLK1 splice variants and their proteolytic cleavage sites (red arrows). 

DLK1-A and DLK1-B contain two proteolytic cleavage sites and following proteolysis, 

two different proteins can be generated, including the 50kDa soluble and bioactive 

protein. DLK1-C and DLK1-D only contain one cleavage site resulting in the inactive 

form of the protein (25kDa).  

 



 46 

1.5.2 Potential DLK1 – associated signaling pathways and interactions 

Even though DLK1 has been established as a potent inhibitor of adipocyte 

differentiation, not much is known about its expression and function in other organ 

systems. In fact, studies aimed at elucidating the mechanism of action of DLK1, 

mainly in adipogenesis, have yielded contradictory results. While some studies 

support the notion that DLK1 acts via activation of the MAPK pathway (mentioned 

above), others state that DLK1 possibly acts by interacting with the Notch signaling 

pathway or fibronectin.  

 

Notch signalling is an evolutionary conserved pathway with an important role in the 

regulation of cell-fate, cell proliferation and cell death during development. In 

mammals there are four different Notch receptors (NOTCH1-4) and ligands for these 

receptors include delta like (DLL1, DLL3, DLL4) and Jagged (JAG1, JAG2). Both the 

receptor and its ligands are transmembrane proteins containing a large extracellular 

domain mainly composed of EGF-like repeats. Notch ligands also include a Delta, 

Serrate and LAG-2 (DSL) domain, essential for ligand-receptor interaction[143, 144]. 

Given the structural similarity of DLK1 and Notch ligands, in their EGF-like 

extracellular domain, it was suggested that DLK1 could potentially exert its effects by 

interacting with the Notch receptor. However, DLK1 does not contain a DSL domain, 

and conflicting results regarding DLK1 and Notch receptor interaction have emerged 

in the literature with some studies favouring such interactions and others not[138, 

145, 146]. Taking into account the potential inhibitory action of DLK1 on Notch 

signaling, it might be that DLK1 has a role in regulating Notch signaling by competing 

with the canonical ligands and thus preventing premature Notch dependent 

differentiation. 

 

Finally, some studies have revealed an interaction between DLK1 and fibronectin, 

resulting in inhibition of adipocyte differentiation (REF: PMID:201457810). 

Fibronectin is a major regulator of the ECM and interacts with different types of 
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integrin receptors, thereby initiating a cascade of phosphorylation events of 

downstream kinases, as well as activating the MAPK signaling. As a result fibronectin 

can affect cell shape and growth, cell migration and cell differentiation. In a study by 

Sul and colleagues, it was shown that fibronectin is a DLK1 interacting protein 

following a yeast two hybrid assay. They further confirmed that the inhibitory effect 

of DLK1 on adipocyte differentiation is partly due to this DLK1-Fibronectin interaction. 

They described that DLK1 binds to the C-terminal region of fibronectin, which then 

activates integrin signaling and downstream MEK/ERK activation (MAPK pathway 

activation), eventually resulting in inhibition of adipocyte differentiation.  

 

1.5.3 Role of DLK1 in the adrenal gland of rodents 

DLK1 is abundantly expressed in the embryo, while its expression significantly 

decreases in the adult. In the mouse embryo, Dlk1 is expressed in the fat, liver, lung, 

pancreas, vertebrae, muscle, pituitary gland and the adrenal gland both at an mRNA 

and protein level[141, 147-150]. Dlk1 KO studies performed in mice display a 

relatively mild phenotype including growth retardation, excess fat accumulation and 

skeletal malformation[151]. On the other end, Dlk1 overexpression in mice results in 

reduced adipocity and decreased expression of adipocyte markers and adipocyte-

secreted factors, with mice suffering from hypertriglyceridemia, decreased insulin 

sensitivity and reduced tolerance to glucose[139, 152]. In the adult mouse, Dlk1 

expression is mainly restricted to the pituitary and adrenal glands (especially 

medulla) with expression in the liver being limited to progenitor cells[153]. In 

adulthood, Dlk1 is thought to have a role in cell-renewal and homeostasis, possibly 

by regulating the differentiation potential of stem cells. DLK1 is also expressed in 

relatively undifferentiated tumour cells, thus possibly having a role in tumour 

formation and differentiation[154, 155]. Dlk1 is expressed in the subcapsular region 

in the rat adrenal, specifically in the outer ZU[8]. As mentioned earlier, it is 

hypothesized that this subcapsular ZU region consists of progenitor/relatively 

undifferentiated cells, which are also expressing Shh, and only partially expressing 
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Cyp11b2. It was also demonstrated that Dlk1 could induce Gli1 expression in a β1-

integrin and ERK1/2 – dependent mechanism and that Dlk1 (and Shh) expression is 

inversely correlated to the size of the ZG in remodeling experiments (low Na+ diet vs 

captopril) [8]. This is in keeping with the notion that Dlk1 could maintain 

adrenocortical progenitor cells in an undifferentiated state, as it does in 

preadipocytes[156]. 

 

1.5.4 Association with tumourigenesis  

Given the role of DLK1 in stem cell regulation and tissue homeostasis, some research 

was focused in identifying whether DLK1 has a role in tumourigenesis. In fact, studies 

reported enhanced DLK1 expression in different types of tumours; namely 

neuroblastomas, gliomas, breast cancer, colon cancer, pancreatic cancer as well as 

in pituitary tumours and some neuroendocrine tumours[154, 157, 158]. A study by 

Yun et al., (2012), investigating the role of DLK1 in regulating cancer cell 

differentiation in vivo using neuroblastoma xenograft models, suggested a role of 

DLK1 in maintaining the undifferentiated cancer stem cell-like character[155]. 

Another study focusing on hepatocellular carcinoma, has identified DLK1 expression 

in 17 liver cancer cell lines ranging from 0.18%-10.22% of the total population and 

showed that DLK1+ hepatocellular carcinoma cells are more resistant to 

chemotherapy.  

 

1.6 Signaling pathways and key factors involved in adrenal tumourigenesis 

Research aimed at unveiling the molecular mechanisms of tumour initiation and 

progression has identified that dysregulation of signalling pathways involved in 

normal adrenal development and adrenocortical homeostasis plays a crucial role in 

human adrenal disease and ACC. Factors like SF1, SHH, β-catenin and growth factors 

are some key proteins most commonly associated with tumourigenesis and will be 

discussed here. 
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Sf1’s role in adrenocortical growth and differentiation, as well as findings showing an 

enhanced adrenocortical proliferation in Sf1 overexpressing mice, suggest that 

dysregulation of Sf1 could play a role in tumour initiation and progression[51]. In fact 

studies have found SF1 to be significantly upregulated in ACCs and its involvement in 

tumourigenesis is further supported by mouse studies in which Sf1 overexpression 

led to highly proliferating capsular cells and eventually tumour formation [51, 159, 

160]. Sf1 expression is currently used to determine the adrenocortical origin of the 

tumour and can act as a prognostic marker in patients with ACC[161]. 

 

One of the most commonly mutated genes associated with multiple cancers is 

CTNNB1 (β-catenin). In addition to tumourigenesis, dysregulation of the Wnt/β-

catenin pathway leads to developmental abnormalities in the fetus. Mutations in the 

Wnt/β-catenin pathway have been associated with multiple cancers in different 

tissues. For example in familial adenomatous polyposis, a disease characterized by 

cancer in the large intestine and rectum, inactivating mutations in the APC gene 

leading to β-catenin accumulation in the nucleus, have been shown to be the 

molecular basis of the disease[162, 163]. Multiple studies investigating the 

involvement of Wnt/β-catenin in adrenocortical tumourigenesis have revealed that 

nuclear β-catenin accumulation and activating β-catenin CTNNB1 point mutations 

were present in both adrenocortical adenomas (ACAs) and ACCs[164-166]. In 

addition, inactivating Axin2 mutations (part of β-catenin destruction complex) have 

also been described in adrenocortical tumours[167]. Mouse studies with adrenal 

specific APC inactivation, have shown that these mice develop adrenal hyperplasia 

and adenomas at 30 weeks of age. These studies confirm that Wnt activation has an 

important role in early adrenal tumourigenesis that can lead to malignant 

transformation[168]. 
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The IGF pathway, in particular IGF2 has been shown to be involved in tumourigenesis, 

with overexpression of IGF2 and modification of the IGF2/H19 locus being identified 

in sporadic ACC. In fact, studies have shown that 80-90% of these ACCs have almost 

100-fold increased expression of IGF2 compared to normal or ACAs[169-171]. In 

addition high levels of IGF2 expression in both benign and malignant adrenal tumours 

have been associated with a 5-fold increased risk of recurrence and a shorter survival 

(184,191). IGF2 is a maternally imprinted gene and therefore only expressed from 

the paternal gene. However, loss of imprinting results in upregulation of IGF2, a 

phenomenon often observed in Beckwith-Wiedemann syndrome (BWS)[172, 173]. 

BWS is a genetic disease that increases the risk of childhood cancers including ACC. 

In addition IGF2 is found to be upregulated in both pediatric and sporadic adult ACC 

 

Finally, mutations in Shh signaling pathway have been identified in many cancers 

such as glioblastomas, pancreatic cancer and medulloblastomas [4, 174]. As 

mentioned earlier Shh is involved in the development and maintenance of the 

adrenal gland, however a link between Shh+ or Gli1+ cells and ACC formation and/or 

maintenance is not clear. Interestingly, profiling studies of ACCs do not show any 

upregulation of Gli and Shh compared to ACA and normal adrenals[175].  

 

1.7 Adrenocortical tumours 

Cancer development occurs following accumulation of multiple genetic changes at 

the DNA level that lead to the dysregulation of genes controlling cell cycle or cell 

proliferation. Mutations in specific genes can be common amongst different types of 

tumours, however there are also mutational events that are unique for specific 

cancers. Identification of these genes is important in providing a better 

understanding of the molecular mechanisms and signalling pathways that are critical 

in tumour development. This will lead in the development of better and more 

effective biomarkers and therapeutic strategies. 
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In most tissues, tumours formed can be classified as either benign or malignant 

depending on their invasiveness and ability to metastasize. In the case of the adrenal 

glands, benign tumours or ACAs are mostly incidentalomas that are commonly found 

in the general population. On the other hand, ACCs are rare malignant tumours with 

a poor clinical outcome (Discussed in Section 1.7.2). The frequency of ACAs is 

significantly higher than that of ACCs, suggesting that a greater number of mutations 

need to accumulate for a lesion to develop into a carcinoma as opposed to an 

adenoma. This is also in agreement with the hypothesis that an adenoma is part of 

the process of tumour progression, whereby accumulation of additional mutations 

leads to malignant tumour or carcinoma formation (multistage tumourigenesis). 

However, a different theory suggests that adenomas and carcinomas are completely 

different entities[176]. 

1.7.1 Adrenocortical adenoma 

Adrenocortical adenomas are benign tumours of the adrenal cortex, are often 

asymptomatic and diagnosed incidentally (80%). However, in approximately 20% of 

cases they can present with Cushing’s syndrome or primary aldosteronism[177, 178]. 

Recent efforts have been made to identify key signalling pathways mutated in 

adrenocortical adenomas. In the case of cortisol-producing adenomas, the PKA 

signalling pathway is often affected, with mutations in PRKAR1A (cAMP-dependent 

protein kinase type I-alpha regulatory subunit) and GNAS1 (stimulatory G-protein 

alpha subunit) identified in a small percentage of these adenomas so far [178, 179]. 

Genome-wide profiling of 22 ACAs also showed an upregulation of genes involved in 

cortisol secretion and steroidogenesis, as well as cholesterol metabolism[178, 180] 

 

Primary aldosteronism on the other hand results in excess aldosterone secretion as 

the name suggests and can be subdivided into eight subtypes including Familial 

hyperaldosteronism Type I (FH-I), FH-II and FH-III[181]. FH-I is an autosomal 

dominant inherited disorder, caused by the genetic defect leading to unequal 
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recombination of CYP11B1 and CYP11B2, thus resulting in a hybrid CYP11B gene 

(5’region of CYP11B1 and 3’end CYP11B2). This results in aldosterone synthesis under 

ACTH stimulation[182].FH-II is another inherited form of primary aldosteronism, 

which is caused by either an aldosterone producing adenoma (APA) or bilateral 

adrenal hyperplasia. Genetic cause of FH-II is yet to be identified[183]. In the case of 

FH-III however, the underlying cause of the disease has been found to be an 

inactivating mutation in KCNJ5, a gene encoding a G-protein activated inward 

rectifier K+ channel 4[183, 184]. This results in increased adrenal cell proliferation 

and aldosterone production. 

 

In addition to KCNJ5, which accounts for approximately 40% of all sporadic APAs, 

exome sequencing has identified additional somatic mutations present in APAs[185]. 

These include ATP1A1, encoding Na+/K+ ATPase alpha subunit, and ATP2B3, encoding 

the plasma membrane Ca2+ ATPase, which account for a total of 8% of cases[186].  

Perturbation of the function of these two ATPases due to the somatic mutations in 

ATP1A1 and ATP2B3, eventually leads to higher levels of cell depolarization, resulting 

in increased aldosterone secretion[178, 186]. As mentioned earlier, Nishimoto et al., 

(2015) has shown that these mutations are not only found in APAs, but are also found 

in aldosterone producing cell clusters (APCCs), but not adjacent cortical cells, in 

healthy human adrenal tissue. This finding is of particular interest as it suggests that 

APCCs appearing in healthy individuals are likely to be precursors of APAs[187]. 

 

1.7.2 Adrenocortical carcinoma 

1.7.2.1 Epidemiology and key features 

ACCs are rare but aggressive tumours of the adrenal cortex, with an annual incidence 

of 0.7-2 per million and a poor prognosis[188, 189]. A highest relative incidence has 

been observed in children compared to adults, with 1.3% of all childhood cancers and 

only 0.02-0.2% of adult cancers being ACCs[190-192]. In addition in both childhood 

and adult cancers the ratio of female to male patients with ACC ranges from 1.5-
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2.5:1[192, 193]. Evidence of genetic predisposition has been reported, with ACCs 

often being associated to Li-Fraumeni syndrome and BWS arising from mutations in 

TP53 and IGF2, respectively[188].  

 

ACCs are usually large, heterogeneous tumours measuring more than 6cm in 

diameter at diagnosis. Their surface ranges from brown to orange/yellow depending 

on their lipid content and tissue necrosis is almost always present. Expression 

markers such as SF1 and KI67 have proven useful in the identification and 

determination of ACCs. A key histological feature that discriminates an ACC from an 

ACA is the presence of tumoural invasion in ACCs. This can occur in different forms, 

either direct invasion of the tumour capsule, invasion of the tumour capsule into the 

extra-adrenal soft tissue or direct invasion of the lymph nodes and blood vessels [188, 

194].  

 

1.7.2.2 Diagnosis and Prognosis 

Initial diagnosis to determine the presence of an ACC, includes biochemical and 

imaging analysis. Biochemical tests are performed to measure steroid hormones 

produced by the tumour and this is dependent upon clinical symptoms of the patient. 

For example, patients with cortisol secreting tumours will have suppressed ACTH and 

elevated levels of cortisol, following an 8am blood test. Diagnosis of hypercortisolism 

is established mainly following a dexamethasone suppression test[195]. Additional 

biochemistry tests to screen for aldosterone, DHEAS and testosterone levels are also 

used in practise. However, in some cases signs and symptoms of steroid excess can 

be absent, and instead elevated levels of a number of hormone precursors are 

observed. In these cases a urine steroid analysis is the most sensitive method to 

diagnose ACCs[188].  

 

In addition to biochemical tests, imaging techniques provide useful information 

regarding the appearance, invasiveness and origin of tumours, further confirming 
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ACC appearance. Contrast enhanced computer tomography (CT) and magnetic 

resonance imaging (MRI) scans are the most commonly used diagnostic imaging tools 

for initial imaging, staging and follow up analysis of the tumours[195]. As mentioned 

earlier, ACCs are usually large and heterogeneous, with signs of internal 

haemorrhage, necrosis and calcification in some cases. These are all features that 

distinguish an ACC from an ACA. In addition, following CT or MRI scans some ACCs 

also show signs of metastases to the liver, lungs or lymph nodes in addition to 

invasion into adjacent organs; characteristics that are absent in ACAs. Finally, after 

initial diagnosis a positron emission tomography (PET) scan is usually performed to 

confirm the diagnosis of a malignant lesion and/or establish the origin of the 

tumour[188].  

 

ACC prognosis is poor and as mentioned earlier usually has a maximum of 5 year 

disease survival. However, prognosis is dependent on the stage of the cancer, the 

resection status (R0,R1,R2,Rx) and the proliferation index. Survival is greatly 

dependent on the staging of the ACC, where chance of 5 year survival being 66-82% 

for stage I, 64% for stage II, 24-50% for stage III and 0-17% for stage IV[194, 196-198]. 

Following surgery to remove the tumour in ACC, complete resection (R0) is 

associated with better prognosis, while macroscopic (R2) or unknown (Rx) resection 

are correlated with the worst prognosis[189]. Finally, measuring the proliferation 

index with Ki67 and mitotic count has proven an important factor of predicting 

recurrence in patients following surgery and a critical prognostic marker of 

survival[197, 199].  

 

1.7.2.3 Current treatment options  

Currently, the only approach to treating ACC is complete tumour resection and 

adjuvant therapy with/without the adrenolytic agent mitotane chemotherapy to 

decrease the chance of recurrence[188, 194]. Treatment is dependent on the stage 

of ACC as summarised in Figure 1.7, where Stage I and Stage II tumours are 
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considered organ specific or localised, while Stage III and Stage IV tumours are 

invasive and/or metastatic, respectively with a poor prognosis[194]. In the case of 

localised ACC, complete surgical resection is the first line of treatment, followed by 

adjuvant mitotane treatment to decrease the risk of recurrence. Patients with Stage 

I/II ACC undergoing surgery that have a Ki67 index <10% can be enrolled in ADIUVO, 

a randomised mitotane trial. In Stage III ACC, where cancer can be more invasive, and 

surgery leads to incomplete resection of the tumour, patients also undergo 

treatment with the adrenolytic agent mitotane and in some cases also undergo 

radiation therapy to reduce the risk of local recurrence[188, 194]. In patients with 

Stage IV metastatic ACC treatment options are considered palliative and are 

restricted to chemotherapy or radiotherapy with/without mitotane administration. 

Depending on the extent of tumour metastases, surgery can also be performed in 

some cases. Continuous surveillance to monitor disease progression is essential and 

depending on whether disease is stable or not different treatment options are 

suggested as shown in Figure 1.8. Finally, a study showed that response rate of 

patients with metastatic ACC to mitotane was 24% at best, suggesting that current 

treatments are not ideal and highlighting the need for better and more targeted 

treatment options[200]. 

 

To this end, attempts at identifying new potential drug therapies for ACC have been 

directed to targeting EGFR, vascular endothelial growth factor (VEGF) and IGF2 

pathways. Both EGFR and VEGF were targeted in clinical trials of ACC, as they 

represent important mediators of cell proliferation and angiogenesis, thus 

supporting tumour growth and metastasis. Additionally, these two factors have been 

long established as being involved in tumorigenesis and therefore have been a target 

for various chemotherapeutic treatments for multiple cancers[201]. EGFR is a 

tyrosine kinase receptor belonging to the ErbB family of receptors, which play an 

important role in multiple biologic responses via activation of intracellular signalling 

pathways (MAPK and PI3K-Akt pathways in the case of EGFR). Mutations in EGFR 
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result in its constitutive active and leads to tumour growth, metastasis, inhibition of 

apoptosis and angiogenesis[202]. EGFR overexpression has been described in 

numerous cancer tissues including pancreatic cancer, breast cancer, non-small-cell 

lung cancer as well as in over 50% of ACCs[203-205]. Moreover, in vitro studies have 

demonstrated that EGFR levels in ACC tissues have been positively correlated with 

tumour growth and metastasis. Additionally, EGFR overexpression in tumour cells 

results in increased synthesis of angiogenic and anti-apoptotic factors including 

VEGF[201]. VEGF is expressed in many cell types including the adrenal glands and 

plays a role in haematopoiesis, wound healing, and organ development. VEGF is 

found to be overexpressed in tumour tissues and functions to support tumour 

growth, proliferation and angiogenesis[206]. Therefore, cancer therapies targeting 

VEGF can have a negative effect its pro-angiogenic and anti-apoptotic properties, 

therefore affecting tumour microenvironment and restricting tumour growth. 

Unfortunately, in the case of ACC treatment, results from trials using drugs targeting 

either EGFR or VEGF were not very successful, despite promising in vitro data[207, 

208]. In the case of the IGF2 pathway, when using IMCA12 (cixutumumab), a fully 

humanized IGF-1R antibody alone there was no observable effect on disease 

progression in patients with ACC[178, 209]. However, when the same drug 

(cixutumumab) was combined with temsirolimus, an inhibitor of IGF-1R targets, this 

resulted in maintaining a stable disease in 42% of the patients in the trial[209]. These 

results suggest that new agents identified to treat ACC, will possibly have beneficial 

effects in combination therapies rather than single agent therapies. Thorough 

investigation of molecular pathways leading to ACC would also be beneficial for the 

discovery of new and more effective treatment options. 
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1.7.2.4 Genomic analysis of ACCs 

In recent years, genome-wide expression profile studies, microRNA and methylation 

profiling of ACCs in patient cohorts, has identified frequently mutated genes and 

other molecular interactions in ACCs, thus providing a better molecular 

characterisation of the disease. Exome-sequencing and single nucleotide 

polymorphism analysis, as well as studies employing next generation sequencing 

have also identified a number of mutations in genes driving ACC (Summarised in 

Table 1.1)[199, 210-213]. The main drivers identified are involved in Wnt/β-catenin 

Figure 1.8- Therapy strategies for ACC management. Flow chart summarising the 

different treatment options based on type, severity and recurrence of ACCs. 
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pathways and/or cell cycle regulation. More specifically the most common mutations, 

each accounting for 15-20% of ACCs investigated are inactivating mutations in ZNRF3 

(Wnt/β-catenin), CTNNB1 (Wnt/β-catenin) and TP53 (cell cycle). Both ZNRF3 and 

CTNNB1 are involved in the regulation and/or activation of Wnt/β-catenin signaling. 

Wnt signaling pathway is involved in cell growth, proliferation and differentiation 

both during embryogenesis and in adulthood. Mutations in these two genes lead to 

aberrant activation of the Wnt pathway, which results in tumorigenesis. Both these 

genes are known to be commonly mutated in ACCs as well as multiple other cancers. 

ZNRF3 is a cell-surface transmembrane E3 ubiquitin protein ligase, and along with 

RNF43 acts as a negative regulator of Wnt signal. It associates with the Wnt receptor 

complex and targets the receptor components Frizzled and LRP6 for degradation, 

thus inhibiting Wnt signalling[120]. Rspo1 and Rspo3 are natural antagonists of this 

action, thus restoring Wnt signalling (Section 1.4.2). Genetic mutations in 

ZNRF3/RNF43 and RSPO1/RSPO3 have been associated with multiple cancers and 

hold great promise as predictive biomarkers and potential downstream therapeutic 

cancer targets[214]. In the case of ACC, ZNRF3 has been recently identified as one of 

the most commonly mutated genes, with inactivating mutations occurring in 

approximately 20% of cases (Table 1.1). CTNNB1 encodes for β-catenin, an important 

component of the Wnt-signaling. Briefly, in the canonical Wnt pathway and upon 

activation, free β-catenin in the cytoplasm translocates to the nucleus where it binds 

TCF, displacing co-receptors and enabling downstream target genes to be expressed 

(previously discussed in Section 1.6). Similar to TP53, mutations in CTNNB1 have also 

been identified in multiple cancers. More specifically, in the case of ACCs, activating 

somatic mutations in CTNNB1 have been found in more than 10% of cases (Table 1.1). 

TP53 is a tumour suppressor gene encoding a 393aa transcription factor, which in 

response to cellular stress can exert antiproliferative functions including cell cycle 

arrest, DNA repair or apoptosis[215]. Somatic TP53 mutations have been found in 

multiple types of cancers, while germline mutations in TP53 have been associated 

with a predisposition to early onset cancers such as Li Fraumeni syndrome[216]. In 
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the adrenal glands, inactivating TP53 mutations account for approximately 23% of 

ACCs, usually as a result of missense substitution. This leads to a significant loss of 

DNA binding and transactivation capacity resulting in an altered cell cycle[216]. In 

addition to inactivating mutations, high-level amplifications, homozygous deletions 

as well as somatic copy number alterations have also been identified in various 

studies and summarised in Table 1.1 below. In addition to Wnt/β-catenin pathway 

and cell cycle regulation, mutations in genes involved in histone modification and 

regulation of telomere length have also been identified[210]. 

  

Despite an overall poor prognosis, the outcome of patients with ACC is 

heterogeneous. Genomic and transcriptomic analysis have identified two molecular 

subgroups predictive of distinct ACC outcomes and survival on patients. These were 

termed C1A and C1B groups, corresponding to poor and good prognosis, respectively. 

It was shown that the C1A group displayed multiple mutations and DNA methylation 

alterations whereas the C1B group only showed specific deregulation of two 

microRNA clusters[199]. However, more recently Zheng et al., introduced a new 

more detailed classification of ACCs based on molecular and methylation signatures 

(Table 1.2). They divided ACCs into three groups namely CoCI, CoCII and CoCIII; where 

the majority of CoCI were classified as C1B and most of CoCII and CoCIII were 

classified as aggressive C1A. ACCs are classified into the three groups based on 

different properties, including methylation phenotype, disease progression, 

proliferation as highlighted in Table 1.2[210]. 

 

In conclusion, these studies have led to the identification of genomic alterations 

commonly observed in ACCs, paving the way for the discovery of specific markers of 

ACC as well as markers that can be associated to the different ACC outcomes and 

therefore more accurate prognosis. In addition, identifying these alterations and the 

pathways they are affecting might be crucial in the discovery of new therapeutic 

targets of ACC.



 60 

Table 1.1 Most common mutations in ACC 

Gene Role Mutation type Somatic/ 
Germline 

Effect Average 
Occurrence 

Reference 

ZNRF3  Negative regulator of 
Wnt/β-catenin pathway 

Inactivating mutations/ 
Homozygous deletions 

Somatic Activation of  
Wnt/β-catenin pathway 

17.5% [199, 210, 
213] 

CTNNB1 Gene encoding β-catenin Activating mutations Somatic Activation of  
Wnt/β-catenin pathway 

13% [199, 210, 
211, 213] 

APC Negative regulator of 
Wnt/β-catenin pathway 

Inactivating mutations Germline Activation of  
Wnt/β-catenin pathway 

4.1% [199, 210, 
211] 

KREMEN1 Wnt repressor  Homozygous deletion Somatic Activation of Wnt/ β-catenin 
pathway 

7.3% [213] 

MED12 Encodes mediator 
complex subunit 12; 
interacts with β-catenin 

Inactivating mutations Somatic Disturb transcription of β-
catenin target genes 

5% [199] 

TP53 Encodes p53, positive 
regulator of apoptosis, 
cell cycle arrest, DNA 
repair 

Inactivating mutations Somatic 
(Germline) 

Altered cell cycle 22.7% [199, 210, 
211, 213] 

CDKN2A Tumour suppressor 
gene, acts via p53, pRB 

Inactivating mutations/ 
Homozygous deletions 

Somatic Altered cell cycle 13.6% [199, 210, 
211] 

RB1 Encodes pRB; negative 
regulator of cell cycle 

Inactivating mutations/ 
Homozygous deletions 

Somatic Altered cell cycle 7% [199, 210, 
211] 
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Gene Role Mutation type Somatic/ 
Germline 

Effect Average 
Occurrence 

Reference 

MDM2 E3 ubiquitin ligase; 
negative regulator of p53 

High level amplification Somatic Altered cell cycle 4% [199, 210, 
211] 

CCNE1 Encodes G1/S specific 
cyclin-E1; Important for 
G1 to S-phase transition 

High level amplification Somatic Altered cell cycle 5.7% [210] 

CCND2 Encodes cyclin D2; 
required for G1/S 

High level amplification Somatic Altered cell cycle 7% [211] 

CDK4 Oncogene; Inhibits pRB High level amplification Somatic Altered cell cycle 5.3% [199, 210, 
211] 

MEN1 Chromatin remodelling; 
Transcriptional regulator 

Inactivating mutations Somatic 
(Germline) 

Chromatin remodelling  9.3% [199, 210, 
211] 

DAXX Chromatin remodelling; 
Telomere lengthening; 
apoptosis 

Inactivating mutations Somatic Abnormal chromatin 
remodelling & telomere length 

6.5% [199, 211] 

ATRX Chromatin remodelling; 
Telomere lengthening; 

Inactivating mutations  Somatic Abnormal chromatin 
remodelling & telomere length 

4% [199] 

TERT Reverse transcriptase of 
telomerase complex 

High level amplification Somatic Abnormal chromosome 
telomere length 

9.6% [199, 210] 

TERF2 Maintains telomere 
length 

High level amplification Somatic Abnormal chromosome 
telomere length 

6.6% [210] 
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Gene Role Mutation type Somatic/ 
Germline 

Effect Average 
Occurrence 

Reference 

PPKAR1A Negative regulator 
subunit of PKA 

Inactivating mutations/ 
Homozygous deletions 

Somatic 
(Germline) 

Activation of PKA 11% [210] 

RPL22 Encodes 60S ribosomal 
protein L22 

Inactivating mutations/ 
Homozygous deletions 

Somatic Unknown 7.7% [210] 

NF1 Encodes neurofibromin; 
Tumour suppressor gene 

Inactivating mutations/ 
Homozygous deletions 

Somatic Abnormal cell growth 10.9% [210, 211] 

NF2 Tumour suppressor gene Inactivating mutation Somatic Abnormal cell growth 5% [213] 
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Table 1.2 - Classification of ACCs 

Description CoCI CoCII CoCIII 

Disease progression 7% 56% 96% 

Tumour stage 75% I/II 47% III/IV 52% III/IV 

CIMP Low Intermediate  High 

Proliferation rate (Ki67) Low Intermediate High 

Steroid phenotype Mostly low Mostly high High 

Whole Genome 
Doubling Score 

0-1 0-2 0-2 

IGF2 Expression High High High 

CTNNB1 mutation rate Low Intermediate High 
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1.8 Project hypotheses 

We believe that a better characterisation of the human adrenal cortex and 

identification of different cell populations that exist within the adrenocortical region 

will provide a better understanding of human adrenal development, function, and 

tumorigenesis. 

 

Previous work in rodents has identified an undifferentiated zone in the adrenal 

cortex expressing Dlk1 and Shh (See section 1.1). However, this ZU has not yet been 

characterised in humans. Given the similarities between rodents and human 

adrenocortical zonation, we hypothesise that an ZU might also exist in human 

adrenal glands.  

 

DLK1 is involved in maintaining cells in an undifferentiated state in human adipose 

tissue (See section 1.5), we therefore hypothesise that DLK1 could potentially act as 

a marker of adrenal progenitor cells in the ZU of humans. Finally, DLK1 is involved in 

tumorigenesis in other human tissues (See section 1.5), and may also be involved in 

adrenal tumorigenesis in humans.  
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1.9 Aims and Objectives 

1. Characterise human adrenocortical zonation to provide a better understanding of 

structural organisation of cells and their function. 

 

2. Identify whether a ZU exists in the subcapsular region of the human adrenal glands, 

by looking at the expression of DLK1 and other known steroidogenic markers 

(CYP11B1, CYP11B2, CYP17). 

 

3. Study the expression and localisation patterns of DLK1 in normal and tumorigenic 

adrenal glands, and explore the potential of DLK1 as a biomarker of human ACCs. 

 

4. Evaluate whether DLK1+ cells could represent cancer stem cells in H295R human 

adrenal cancer cell lines. 

 

5. Investigate the involvement of capsular Dlk1+ cells in adrenocortical homeostasis 

and tumorigenesis in mice, using adrenocortical tumour mouse models and the 

Dlk1CreERT2/+; RosaTm/Tm transgenic mouse model. 
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Chapter 2: Materials and Methods 

2.1 Human adrenal collection ethics 

 All human adrenal collections and studies performed and presented as part of this 

project were approved under the “Genetics of endocrine tumours” ethics 

(reference:  06/Q0104/133).  

2.2 Paraffin embedding of adult adrenals 

Adrenal glands collected were fixed in 4% paraformaldehyde (PFA) (Acros Organics, 

416780010) overnight at 4oC and then washed with phosphate buffered saline (PBS) 

solution (Oxoid, BR100) for 1 hour. Following PBS washes the adrenals were 

dehydrated in a series of ethanol washes, 50%, 70%, 90% and 100% (Fischer Scientific, 

E/0650/17) for 1 hour each, on a rotating plate (Stuart, analogue tube roller SRT6). 

Adrenals were then incubated in xylene (Fischer Scientific, X/0250/17) twice for 5 

minutes, and 10 minutes incubation before being placed in a container with melted 

paraffin (VWR, 361077E) for overnight incubation at 56oC. The following day adrenals 

were placed in the embedding cassettes (VWR, 18000-244) filled with melted 

paraffin and were allowed to set at room temperature. Frontal sections of paraffin 

embedded adrenals were cut at 6-8μm using a rotary microtome (Thermo scientific, 

902100A) and serial sections were transferred onto superfrost plus glass slides (VWR, 

48311-703) covered with ddH2O, and heated at 56oC on a hotplate (Thermo scientific, 

E181SL) for 30-60 minutes or until sections were flat. Finally, excess water was 

removed; sections were allowed to dry at 37oC and stored at room temperature.  

 

2.3 Sucrose-cryopreserved and OCT-embedded adrenals 

Human and mouse adult adrenals collected were fixed in 4% PFA overnight at 4oC, 

followed by a PBS wash for 1 hour. They were then incubated in filtered 30% sucrose 

solution (Fisher Scientific, S/8560/60) overnight or until tissue sunk to the bottom of 

the tube. Finally, specimens were transferred in a container filled with liquid optimal 

cutting temperature compound (OCT) (VWR, 361603E), orientated and placed on dry 

ice until the OCT solidified. Embedded specimens were stored at -80oC. Frontal 

sections of OCT embedded adrenals were cut at 14-18μm using a cryostat (Leica 

GM1510S) and serial sections were mounted on superfrost plus glass slides. Sections 
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were incubated at room temperature overnight and then stored at -80oC. 

 

2.4 Snap frozen and OCT embedded adrenals 

Mouse and human adrenals were snap-frozen on dry ice or in liquid nitrogen, 

immediately after collection. Frozen tissues were then transferred into a container 

with OCT medium, orientated and placed on dry ice until OCT solidified. Once frozen 

embedded adrenals were stored at -80oC until sectioned. Sections were cut at 14-

18μm using a cryostat and serial sections were mounted on superfrost plus glass 

slides and stored at -80oC immediately after cutting. 

 

2.5 Fluorescent Immunohistochemistry on fresh frozen sections 

Sections previously stored at -80oC, were immediately fixed in 4% PFA for 15 minutes 

on ice, followed by three washes in PBS-0.1% Triton X-100 (PBS-Triton) for 10 

minutes each. If antibody used required antigen unmasking, slides were incubated in 

10mM Citrate Buffer pH 6.0 (see Section 2.19.5) for 30 minutes in a water bath at 

95oC and then allowed to cool for 20 minutes at room temperature before blocking 

for non-specific binding. If no antigen unmasking was required slides were directly 

blocked for non-specific binding by incubating slides in blocking solution consisting 

of 10% goat serum (Sigma-Aldrich, G9023) in PBS-Triton for 1 hour. Following 

blocking, slides were incubated with primary antibody diluted in PBS-Triton (Table 

2.1) overnight at room temperature. The following day, slides were washed three 

times in PBS-Triton for 10 minutes each and incubated with secondary antibodies 

diluted in PBS-Triton (Table 2.2) for 1 hour at room temperature. Additional 10-

minute washes were performed and slides were finally incubated with 4,6-

Diamidino-2-phenylindole (DAPI) (Sigma-Aldrich, D9542) diluted 1:1000 in PBS-Triton 

for 1 minute at room temperature. Finally, slides were washed with PBS-Triton three 

times for 10 minutes each and mounted with glass cover slips (VWR, 631-0137) using 

PBS:Glycerol (Sigma-Aldrich, G5516) solution at a ratio of 1:3. Fluorescent antibody 

staining of the tissues was visualised using a Leica DM5500B automated upright 

microscope. Tissue sections were stored at 4oC. 
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2.6 Fluorescent Immunohistochemistry on paraffin sections 

Sections were initially de-paraffinised with three xylene incubations for 10 minutes 

each at room temperature, followed by rehydration steps of 10 minutes each from 

100% ethanol to H2O (100%, 90%, 70%, 50% and H2O).  Sections were then washed 

in PBS-Triton three times for 10 minutes each. At this point if the antibody used 

required antigen unmasking, slides were incubated in 10mM Citrate Buffer pH 6.0 for 

30 minutes in water bath at 95oC and then allowed to cool for 20 minutes at room 

temperature before blocking for non-specific binding. Following unmasking, slides 

were incubated in blocking solution consisting of 10% goat serum in PBS-Triton for 1 

hour, to prevent non-specific binding. Following blocking, slides were incubated with 

the primary antibody diluted in PBS-Triton (Table 2.1) overnight at room temperature. 

The following day, slides were washed three times in PBS-Triton for 10 minutes each 

and incubated with the secondary antibody diluted in PBS-Triton (Table 2.2) for 1 

hour at room temperature. Additional 10-minute washes were performed and slides 

were finally incubated for 1 minute with DAPI diluted 1:1000 in PBS-Triton at room 

temperature. Finally, slides were washed with PBS-Triton three times for 10 minutes 

each and mounted with glass cover slips using PBS:Glycerol (1:3) solution. 

Fluorescent antibody staining of the tissues was visualised using a Leica DM5500B 

automated upright microscope. Tissue sections were stored at 4oC. 

 

 2.7 Chromogenic Immunohistochemistry with DAB on paraffin sections 

Sections were de-paraffinised in xylene incubations, washed in 100% ethanol and 

incubated in 3% H2O2 (Sigma Aldrich, 21,676-3) diluted in methanol (Fischer Scientific, 

M/4000/PC17) for 30 minutes at room temperature to block endogenous peroxidase 

activity. Following peroxidase treatment sections were rehydrated in decreasing 

concentrations of ethanol (100%, 90%, 70% and 50%) for 10 minutes each, followed 

by incubation in H2O for 10 minutes and washes in PBS-Triton. At this point if the 

antibody used required antigen unmasking, slides were incubated in 10mM Citrate 

Buffer pH 6.0 for 30 minutes in water bath at 95oC and then allowed to cool for 20 

minutes at room temperature before blocking for non-specific binding. Following 

unmasking, slides were incubated in blocking solution consisting of 10% goat serum 

in PBS-Triton for 1 hour, to prevent non-specific binding. Following blocking, slides 
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were incubated overnight with the primary antibody diluted in PBS-Triton (Table 2.1) 

at room temperature. Slides were then washed with PBS-Triton and incubated with 

the biotinylated secondary antibody (Table 2.3) diluted in PBS-Triton for 2 hours at 

room temperature. Following secondary antibody incubation, slides were washed in 

PBS-Triton three times for 10 minutes each and at the same time Avidin-Biotin 

Complex (ABC) was prepared according to manufacturer’s instructions (Vector labs, 

PK-6100) and allowed to incubate at room temperature for at least 30 minutes 

before use. Following washes slides were incubated with ABC for 1 hour and then 

washed three times with PBS-Triton. Finally, sections were developed with 3,3’-

diaminobenzidine substrate according to manufacturer’s instructions (Vector labs, 

SK-4105). Once staining developed, reaction was stopped by placing slides in diethyl 

pyrocarbonate (DEPC)-H2O. Slides were finally dehydrated in increasing 

concentrations of ethanol (50%, 70%, 90% and 100%) and then xylene incubations 

three times for 5 minutes each and mounted using Vectamount mounting medium 

(Vector labs, H-5000). Chromogenic antibody staining was visualised using a Leica 

DM5500B microscope. 
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Table 2.1 - Primary Antibodies for fluorescent and chromogenic IHC 

Antibody Species Reactivity Host Supplier Catalogue Number Dilution Requires AUM 

CYP11B1 Human  Rat Gomez-Sanchez N/A 1:100 Yes 

CYP11B2 Human Mouse Gomez-Sanchez N/A 1:100 Yes 

CYP11B2 Mouse/Rat Rabbit Gomez-Sanchez N/A 1:100 Yes 

CYP17A1 Human/Mouse/Bovine Rabbit Gift N/A 1:500 No 

DLK1 (H-118) Human/Mouse/Rat Rabbit Santa-Cruz sc-25437 1:500 No 

DAB2 (H-110) Human/Mouse/Rat Rabbit Santa-Cruz sc-13982 1:200 No 

GFP Human/Mouse/Rat/Rabbit Chicken Abcam ab13970 1:100 No 

SF1 (A-1) Human/Mouse Mouse Santa-Cruz sc-393592 1:200 Yes 

VILIP1 Human/Mouse/Rat Rabbit Abcam ab151741 1:100 No 

β-catenin Human/Mouse/Chicken/ 

Canine/Bovine 

Mouse Sigma-Aldrich C7082 1:200 No 
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Table 2.2 - Secondary Antibodies for fluorescent IHC 

 

Table 2.3 – Secondary Antibodies for chromogenic IHC 

Antibody Species Reactivity Host Supplier Catalogue Number Dilution 

Alexa Fluor 488 Mouse IgG Goat Invitrogen A11029 1:1000 

Alexa Fluor 568 Mouse IgG Goat Invitrogen A11004 1:1000 

Alexa Fluor 488 Rabbit IgG Goat Invitrogen A11008 1:1000 

Alexa Fluor 568 Rabbit IgG Goat Invitrogen A11036 1:1000 

Alexa Fluor 488 Rat IgG Goat Invitrogen A11006 1:1000 

Antibody Species Reactivity Host Supplier Catalogue Number Dilution 

Biotinylated  Mouse IgG Goat Vector BA-9200 1:500 

Biotinylated Goat IgG Horse Vector BA-9500 1:500 

Biotinylated Rabbit IgG Goat Vector BA-1000 1:500 

Biotinylated Rat IgG Goat Vector BA-9401 1:500 
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2.8 Hematoxylin and Eosin staining  

Sections were incubated with Hematoxylin Solution Gill No.3 (Sigma, GHS332) for 2 

minutes and then washed under running water for 2 minutes. Following washes 

sections were incubated in 1% acid alcohol (1% hydrochloric acid (Fisher Scientific, 

A481-212) in 70% ethanol) for 1 minute and washed in water for an additional minute. 

Sections were then dipped in 0.2% ammonia solution (concentrated ammonium 

hydroxide (Sigma-Aldrich, 320145) diluted in distilled water) 10 times and washed 

for 5 minutes under running water. Slides were then incubated in 80% ethanol for 1 

minute followed by eosin (National diagnostics, HS 402) incubation for 30-45 seconds. 

Sections were further dehydrated in 95% ethanol twice and 100% ethanol for 1 

minute each followed by 2 xylene incubations for 3 minutes each. Following staining 

and dehydration steps, sections were mounted with Vectamount (Vector, H-5000). 

 

2.9 Human DLK1 probe preparation for in situ hybridization 

2.9.1 Amplification and isolation of gene of interest 

Primers for the human DLK1 gene were designed and ordered from Sigma Aldrich 

(FW:5’-AAATGGATTCTGCGAGGATG-3’; REV:5’-CAGGCCCGAACATCTCTATC-3’). The 

human DLK1 gene was amplified by Polymerase chain reaction (PCR) using human 

adrenal cDNA as a template. PCR master mix for this reaction was prepared as shown 

in Table 2.4. PCR cycle included an initial 2-minute hot start, followed by 35 cycles of 

94oC for 30 seconds, 52oC for 30 seconds, 68oC for 90 seconds with final extension at 

68oC for 10 minutes. PCR products were then run on a 1% agarose gel and bands 

corresponding to the gene of interest were extracted using the QIAGEN Gel 

Extraction Kit (QIAGEN, 28706). 
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Table 2.4 –PCR Master Mix 

Reagent Volume, μl 

Taq Buffer (New England Biolabs, M0273X) 2.5 

dNTPs (New England Biolabs, N0447S) 0.5 

Primers (F+R) 1 

Taq Polymerase (New England Biolabs, M0273X) 0.5 

ddH2O 19.5 

Sample (added individually) 1 

Total  25 

 

2.9.2 Gel Extraction 

Following gel electrophoresis, appropriate bands were excised from the gel for DNA 

extraction using QIAquick Gel Extraction Kit (QIAGEN, 28706). Excised bands were 

placed in an eppendorf, weighed (max. 400mg) and 3 volumes of Buffer QG were 

added to 1 volume of gel (100mg gel corresponds to 100μl). Samples were incubated 

at 50oC for 10 minutes (or until gel was completely dissolved). Then 1 volume of 100% 

isopropanol (Fisher Scientific, 67-63-0) was added to the sample, mixed and the 

sample was transferred to a QIAquick spin column placed in 2ml collection tube (both 

provided in the Kit) and centrifuged for 1 minute at high speed. Following this, 500μl 

of Buffer QG were added to each column and centrifuged for another minute (flow-

through discarded). Columns were washed with 750μl Buffer PE allowed to stand for 

2-5 minutes and centrifuged for another minute discarding the flow-through. 

Columns were re-centrifuged for a second time to remove any residual buffer. To 

elute DNA, columns were transferred into a clean 1.5ml microcentrifuge tube and 

30μl of Buffer EB or DNAse/RNAse free H2O (Sigma, W4502) were added to each 

column, allowed to stand for 1 minute, and then centrifuged for another minute. 

Concentration of DNA collected was measured using a nanodrop (Thermo Fisher, 

Nanodrop ND-1000) and samples were stored at -20oC until use. 
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2.9.3 Ligation and Transformation 

The DNA band extracted and purified above was then ligated in the PGEM T-Easy 

vector (Promega, A1360) (Appendix I). 3μl of the insert, 1μl of the vector, 5μl of 2X 

ligation buffer and 1μl of T4 ligase were mixed together and incubated on ice at 4oC 

overnight. The next day transformation was performed, where 2μl of ligation product 

was added to 65μl of competent bacterial cells and incubated on ice for 20 minutes, 

followed by 1-minute incubation at 42oC and a further 2-minute incubation on ice. 

Then 900μl of Super Optimal broth with Catabolite repression  (SOC) medium (Sigma-

Aldrich, S1797) were added to the bacteria-ligation mix followed by a further 1-hour 

incubation at 37oC. Following the incubation period, the tube was centrifuged at high 

speed for 20 seconds and 600μl of the supernatant were removed. The remaining 

300μl were mixed and plated on agar plates coated with Ampicillin (Sigma, A0166), 

IPTG (Sigma-Aldrich, I6758) and X-gal (Thermo Fisher, B-1690) and incubated upside 

down at 37oC overnight in a bacterial incubator. The next day colonies were picked 

for a mini- or midi-prep. A mini-prep was initially performed when cloning a new gene 

of interest for DNA sequencing, while a midi-prep was performed for DNA extraction. 

 

2.9.4 Mini-prep for Sanger Sequencing 

Mini-prep was performed on bacterial colonies collected and grown overnight at 

37oC in 5ml LB media using the QIAprep Spin miniprep Kit and following 

manufacturer’s instructions (Qiagen, 27106). Overnight grown bacterial cells were 

harvested by centrifugation at 8,000rpm for 3 minutes, re-suspended in 250μl Buffer 

P1 and transferred to a microcentrifuge tube. 250μl Buffer P2 (lysis buffer) were 

added and tubes were mixed thoroughly by inverting 4-6 times. Then 350μl of Buffer 

N3 (neutralization buffer) were added to each sample, mixed by inverting the tube 

4-6 times and centrifuged for 10 minutes at 13,000rpm. Following centrifugation 

800μl of supernatant were added to the provided QIAprep spin columns and 

centrifuged for 60 seconds discarding flow-through. Columns were then washed with 

750μl Buffer PE and centrifuged for a further 60 seconds discarding flow-through. 

Columns were re-centrifuged for an additional minute to remove excess buffer. 

Finally, columns were transferred into a clean 1.5ml microcentrifuge tube, 50μl of 

ddH2O were added and tubes were allowed to stand for 1 minute before being 
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centrifuged for another minute to elute DNA. Following mini-prep, samples were 

digested with a suitable enzyme, EcoRI in this case, to linearize the vector and DNA 

was sent for sequencing. Once the reagents were added (Table 2.5), the samples 

were incubated at 37oC for 3 hours. A negative control was also included by addition 

of 2μl of sample and 18μl of ddH2O. Following incubation both uncut (negative 

control) and cut vector were run on a 1% agarose gel and bands were gel extracted 

and purified (see Section 2.9.2). Concentration of DNA was measured for each 

sample using a nandrop and adjusted to 100ng/μl before being sent for Sanger 

sequencing. 

 

Table 2.5 – Enzyme digestion with EcoRI 

Reagent Volume, μl 

CutSmart Buffer (New England Biolabs, B7204S) 2 

EcoRI-HF (New England Biolabs, R3101S) 1 

DNA 5 

ddH2O 12 

Total  25 

 

2.9.5 Midi-prep for probe preparation 

Midi-prep was performed using QIAGEN Plasmid Midi Kit (Qiagen, 12145), on 

bacterial colonies that have successfully incorporated the vector (and insert) 

transformed as confirmed by DNA sequencing (Section 2.9.4). Bacterial cells from 

overnight cultures at 37oC in 200ml LB medium, were harvested by centrifugation at 

6000xg for 15 minutes at 4oC and the pellet was re-suspended in 4ml Buffer P1. Then 

4ml Buffer P2 were added to each sample, mixed thoroughly by inverting the tube 4-

6 times and incubated for 5 minutes at room temperature. 5ml of pre-chilled Buffer 

P3 were then added to each sample, mixed and incubated on ice for 15 minutes. 

Following incubation samples were centrifuged at 14,000-18,000xg for 30 minutes at 

4oC, followed by a further centrifugation of the supernatant at 20,000g for 15 

minutes at 4oC. At the same time, QIAGEN-tip (provided with the kit) were 

equilibrated by addition of 4ml Buffer QBT, which was allowed to flow through by 
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gravity. The supernatant of the second centrifugation was then added to the 

equilibrated tips and washed twice with 10ml of Buffer QC. Following the two washes, 

5ml of Buffer QF were added to the tips and DNA was eluted in a new 15ml tube. 

Then DNA was precipitated following addition of 3.5ml isopropanol to the eluted mix 

and centrifugation at 15,000xg for 30 minutes at 4oC. The supernatant was removed 

and the DNA pellet washed with 2ml of 70% ethanol and centrifuged at 15,000xg for 

10 minutes. Following centrifugation, the supernatant was removed and the pellet 

was air-dried for 5-10 minutes. Finally, DNA was re-dissolved in 200μl of 

RNAse/DNAse free water. DNA concentration was measured using a nanodrop and 

5μg were used for the digestion to get the sense and antisense mRNA for in situ 

hybridization, using the appropriate restriction enzymes with their corresponding 

buffer (Table 2.6). The digestion mix was incubated at 37oC for 2.5-3 hours including 

a negative control (x μl sample + 20-x μl ddH2O). Finally, the samples were run on a 

1% agarose gel and the bands excised for DNA purification (see Section 2.9.2). 

 

Table 2.6 – Enzyme digestion for ISH probes 

Reagent Volume, μl 

4-CORE Buffer C or B (Promega, R9921) 3 

SacII or SpeI (Promega, R6221 or R6591) 1 

DNA X (5μg) 

ddH2O 16-x 

Total  20 

 
 
2.9.6 In vitro transcription 

Following DNA purification of the sense and/or antisense, 1μg DNA (or maximum 

volume 16μl) was used for in vitro transcription to obtain the cRNA probes. DNA was 

mixed with 5X Transcription Buffer (TB) (Roche, 11465384001), RNA digoxigenin 

labeling mix (Roche, 11277073910), 1,4-dithiothreitol (Invitrogen, P/N y00147), 

RNAse inhibitor (New England Biolabs, M0314S) and T7 RNA polymerase (Roche, 

10881767001) or Sp6 RNA polymerase (Roche, 10810274001) for either the sense or 

the antisense (Table 2.7) depending on the results from the sequencing, and 
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incubated at 37oC for 3 hours. Following incubation, 1.5μl were removed from the 

mix and collected as ‘pre’ in 10μl of ddH2O. DNAse mix was prepared as shown in 

Table 2.8 and 14μl were added to each sample and incubated at 37oC for 40 minutes. 

After incubation 1.5μl of DNAse treated sample was collected as ‘post’ and both ‘pre’ 

and ‘post’ (DNAse treatment) samples were run on a 1% agarose gel to ensure that 

there was no DNA contamination following treatment. 

 

Table 2.7 - In vitro transcription  

Reagent Volume, μl 

Sample (SacII or SpeI) x (1μg, max 16μl) 

5X TB 6 

RNA Digoxigenin labeling mix 2 

DTT 3 

RNAse inhibitor 1 

Enzyme 2 

ddH2O (16-x) 

Total 30 

 

Table 2.8 - DNAse mix 

 

2.9.7 Precipitation and post-precipitation 

Following DNAse treatment, samples were mixed with 46μl ddH2O, 3.2μl 0.5M 

Ethylenediaminetetraacetic acid (EDTA) (Sigma Aldrich, E9884), 2.5μl 4M lithium 

chloride (Sigma-Aldrich, 43,137-0) and 250μl ethanol and incubated overnight at -

Reagent Volume, μl 

DTT 1.5 

5X TB 3 

DNAse I 1.5 

ddH2O 8 

Total 14 
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20oC. The next day, samples were centrifuged for 20 minutes at 4oC and the 

supernatant was removed. The pellet was washed with 300μl of 70% ethanol and 

centrifuged for a further 20 minutes at 4oC. The supernatant was removed and the 

pellet was allowed to air dry before being re-suspended in 100μl of ddH2O. RNA 

concentration was measured using a nanodrop, aliquoted at 800ng/μl and stored at 

-80oC until use. 

 

2.10 In situ hybridization (ISH) on paraffin embedded sections 

Paraffin sections were de-paraffinised in xylene and then rehydrated in decreasing 

ethanol concentrations (100%, 90%, 79% and 50%) and final incubation in DEPC-H2O. 

Sections were then fixed in 4% PFA on ice and washed in DEPC-PBS-Tween twice for 

10 minutes. The slides were then treated with proteinase K (Section 2.20.8) for 16 

minutes at 37oC in a water bath and washed twice with DEPC-PBS-Tween. Following 

washes slides were incubated again in 4% PFA and washed twice in DEPC-PBS-Tween 

for 10 minutes each. Sections were acetylated by incubating in solution containing 

0.1% triethanolamine (Sigma-Aldrich, 90279), 0.25% acetate anhydride (Sigma-

Aldrich, 320102) in DEPC-PBS-Tween for 10 minutes, followed by additional washes. 

Hybridization buffer (see Section 2.19.9) was then added on the slides, and slides 

were covered with parafilm (Sigma-Aldrich, P7793) and incubated at 56oC for 2 hours 

in the oven. Saturation solution (see Section 2.19.10) was added at the bottom of the 

tray to prevent evaporation. Following incubation with the buffer, probes targeting 

the desired gene were added on each slide and incubated in the oven at 56oC 

overnight. Probes were used at a concentration of 800ng/ml and were heated at 85-

90oC for 3 minutes, vortexed and kept on ice for 1 minute before use. The following 

day saline sodium citrate buffer (SCC) washes of 2X, 1X, 0,2X and 0.05X (National 

Diagnostics, EC-873) were performed as described in Table 2.9. Following SCC 

incubations, slides were washed with RNAse A buffer for 10 minutes at room 

temperature, before being treated with RNAse A solution (Invitrogen, 12091-021) 

(25μl of RNAse A solution in 50ml RNAse Buffer) at 37oC for 30 minutes. Sections 

were then washed twice in Maleic acid buffer (see section 2.19.11) for 10 minutes 

and then incubated in blocking buffer (consisting of 10% blocking buffer at 1:200 and 

Anti-digoxigenin (Roche, 11093274910) at 1:2000, both diluted in Maleic acid buffer 
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overnight at 4oC. The next day slides were washed with PBS-Tween twice for 10 

minutes and then incubated in alkaline phosphatase (NTMT) Buffer pH 9.0 for 10 

minutes before being developed. Developing solution was prepared by adding 50μl 

of NBT/BCIP (Roche, 11681451001) and 1 drop of Levamisole (Vector, SP-5000) in 

every 5 ml of NTMT Buffer. Sections usually developed after a few hours and if not, 

developing solution was changed and slides were incubated at 4oC overnight. 

 

Table 2.9 – SCC Washes  

 

2.11 In situ hybridization on fresh frozen sections 

Same procedure was followed as described in Section 2.10 above but without de-

paraffinisation and dehydration steps. 

 

2.12 Cell Culture 

2.12.1 Culture of HEK293 cell line 

Cells were initially seeded at 3-6x103 cells/cm2 in Dulbecco’s Modified Eagle’s 

medium (DMEM) (Sigma-Aldrich, D5796), supplemented with 10% Fetal bovine 

serum (FBS)(Sigma-Aldrich, F2442) and 1% Penicillin-streptomycin (Sigma-Aldrich, 

P4458). Cells were passaged when they reached 70-80% confluent. To split cells, 

medium was initially removed and cells were washed with PBS (Sigma-Aldrich, 

D8662) twice. Trypsin-EDTA (Sigma-Aldrich, T4174) was added to the flasks 

(0.5ml/T75) for 5 minutes at 37oC. Two volumes of medium were added to stop 

trypsin reaction and cells were collected in a 15ml tube and centrifuged at 1000g for 

5 minutes. Supernatant was removed and pellet was re-suspended in 1ml medium. 

SCC wash 20X SCC H2O - Tween Incubation 

2X 5ml 45ml 20’ at room temperature 

2X 5ml 45ml 15’ at 65oC oven 

1X 2.5ml 47.5ml 15’ at 65oC oven 

0.2X 0.5ml  49.5ml 15’ at 65oC oven 

0.05X 125μl 50ml 15’ at 65oC oven 
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At this stage cells were counted if needed to set up experiments otherwise they were 

replated in T75 flasks (ratio 1:5). Cell stocks were prepared by trypsinizing cells as 

described above and then re-suspending the pellet in 1ml of freezing medium (95% 

HEK293 medium and 5% DMSO (ChemCruz, 67-68-5)) instead of normal HEK293 

medium, and transferred into a cryovial (Sigma-Aldrich, V7884). Cryovials were 

placed in a freezing container (Sigma-Aldrich, BCS-405) and stored at -80oC to freeze 

down gradually before being transferred to liquid nitrogen for long-term storage. 

 

2.12.2 Culture of H295R cell line 

Cells were seeded at 1-1.5x105cells/cm2 in DMEM/F-12 HAM (1:1) + GlutaMAX (Gibco, 

31331-028) supplemented with 2.5% NuSerum (Scientific lab, 355100), 1% Insulin-

Transferrin-Selenium (Scientific lab, 354352) and 1% Penicillin-streptomycin. Cells 

were passaged when they reached 80-90% confluency. To split cells medium was 

initially removed and cells were washed with PBS twice. Trypsin was added to the 

flasks (0.5ml/T75) for 5 minutes at 37oC. Two volumes of medium were added to stop 

the reaction and cells were collected in a 15ml tube and centrifuged at 1000g for 5 

minutes. Supernatant was removed and pellet was re-suspended in 1ml medium. At 

this stage cells were counted if needed to set up experiments otherwise they were 

re-plated in T75 flasks (ratio 1:3). Cell stocks were prepared by trypsinizing cells as 

described above and then re-suspending pellet in freezing medium [95% H295R 

medium (+7.5% NuSerum) + 5% DMSO] and transferred into cryovials. Cryovials were 

placed in a freezing container and stored at -80oC to freeze down gradually before 

being transferred to liquid nitrogen for long-term store. 

 

2.12.3 H295R spheroid formation 

H295R cells were plated at 4-5x103 cells per well in ultra-low attachment 6 well plates 

(Corning, CLS3471-24EA) in spheroid medium (DMEM/Nutrient Mixture F-12 Ham 

(Sigma-Aldrich, D8062) supplemented with recombinant human basic fibroblast 

growth factor (20 ng/mL) (Sigma-Aldrich, HBFGF-RO), B-27 (ThermoFisher Scientific, 

0080085-SA), N-2 supplements (ThermoFisher Scientific, 17502-048), and 

recombinant human epidermal growth factor (20 ng/mL) (Sigma-Aldrich, E9644)). 
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Medium was added twice a week and cells were passaged at two weeks. Briefly 

medium was collected in a 15ml Falcon tube and allowed to stand for 30 minutes for 

the spheroids to form a pellet at the bottom due to gravity. Supernatant was then 

removed and 2 drops of trypsin were added to dissociate cell clusters for 2-3 minutes. 

Then 1ml of medium was added to re-suspend the pellet. Cells were counted using a 

Neubauer improved hemocytometer (Sigma-Aldrich, BR717805) and re-plated in a 

new ultra-low adherence 6 well plate at 4-5x103 cells per well. 

 

2.12.4 Generation of DLK1 over-expressing H295R cell line  

2.12.4.1 Vector preparation 

Primers to amplify human DLK1 gene were designed and ordered from Sigma Aldrich 

to be used for cloning the gene into pCMVHA (Appendix II) and pCMVTag4 vectors 

(Appendix III)(Table 2.10). PCR amplification was performed using human adrenal 

cDNA as a template. General PCR cycle was used with an initial 2 minute hot start, 

followed by 35 cycles of 94oC for 30 seconds, 52oC for 30 seconds, 68oC for 90 seconds 

with final extension at 68oC for 10 minutes. PCR products were then run on a 1-1.5% 

agarose gel and bands corresponding to the gene of interest were extracted using 

the QIAGEN Gel Extraction Kit (See Section 2.9.2). Following gel extraction both the 

vector and the insert were incubated with restriction enzymes (REs) (Table 2.10) for 

1 hour at 37oC and treated with alkaline phosphatase for 30 minutes prior to ligation 

(Negative controls were incubated with ddH2O only). Following RE digestion samples 

were run on a gel and desired bands gel extracted for the ligation process. The 

linearized plasmid vector DNA and DNA fragment were mixed at a ratio of 1:4 in a 

total volume of 10μl with 1 volume of ligase also added using the Takara DNA ligation 

Kit, Version2.1 (6022). Solution was incubated at 16oC for 1 hour. For transformation 

100μl of supercompetent bacteria were added to the ligation reaction and incubated 

on ice for 30 minutes followed by 2-minute incubation at 42oC and further 2-minute 

incubation on ice. Then they were incubated for 1 hour at 37oC, plated on ampicillin 

plates and allowed to form colonies overnight at 37oC. Colonies from the overnight 

bacterial incubation were collected for a mini-prep (See Section 2.9.4) to test 

whether they contain the correct vector+insert, by cutting with the same REs that 
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were used for cloning. If the colony has taken up the vector with the insert then that 

colony will be used for the midi-prep (See Section 2.9.5) to collect high concentration 

of DNA. 

 

Table 2.10 – Primer sequences and Restriction enzymes used for cloning 

 

2.12.4.2 Lentiviral preparation 

To obtain lentiviral particles, the insert (HA-DLK1-FLAG) previously prepared (Section 

2.12.4.1) was cloned into a pHIV-EGFP (Appendix IV) (Table 2.10). Then HEK293T cells 

were plated in separate 100mm dishes at a density of 3x106 cells/dish and cells were 

transfected once they reached 70-80% confluency. One hour before transfection 

complete medium was changed to serum-free medium. Transfection samples were 

prepared by mixing 10μg of pHIV-EGFP with 3.2μg of psPAX2 (Addgene, 12260) and 

1.8μg of pMD2.G (Addgene, 12259) (packaging and envelope expressing plasmids), 

as well as 100μl polyethylenimine (PEI) agent in 1ml serum-free medium/well. 

Samples were vortexed and incubated at room temperature for 10 minutes before 

being added to each dish dropwise. Medium was changed to complete medium 2 

hours later. (Lentivirus containing empty vector was also used as a control). Medium 

from transfected cells was collected 24 and 48 hours later and kept in a 50ml Falcon 

tube. Following both collection time-points, medium collected was centrifuged at 

50,000g (25,000rpm) in a Beckman Coulter Optima XL-70 Ultracentrifuge, for 2 hours 

at 16oC and pellet was re-suspended in 150μl of sterile PBS. This was then aliquoted 

and kept at -80oC until it was used. 

 

Vector Primer Sequence Restriction Enzymes  

pCMVHA FW-cggaattcagATGACCGCGACCGAAGCC EcoRI 

RW-ccgctcgagTTAGATCTCCTCGTCGCC XhoI 

pCMVTag4 FW-cgcggatccACCATGTACCCATACGATG BamHI 

RW- ccgctcgagGATCTCCTCGTCGCCGGC XhoI 

pHIV-EGFP FW-gctctagaACCATGTACCCATACGAT XbaI 

RW-cgcggatccCTACTTATCGTCGTCATCCTT BamHI 
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2.12.4.3 Lentiviral infection of the H295R cell line 

H295R cells were plated in a 6 well plate at a seeding density of 3x105. Once they 

reached 80% confluency they were infected with the lentiviral particles prepared 

above and polybrene at 8μg/ml (Merck Millipore, TR-1003-G). Twelve hours later the 

medium was changed to complete H295R medium and 2 days later cells were 

checked for GFP expression indicating success of infection. GFP positive cells were 

sorted using the fluorescence activated cell sorter machine (FACS Calibur) and GFP 

positive cells were expanded. In addition cells were also infected with an empty 

vector as a negative control. 

 

2.12.5 Cell preparation for fluorescence activated cell sorting (FACS)  

Cells were initially trypsinized and collected in 1ml of medium. Cells were then 

counted using a hemocytometer and appropriate volumes (cell numbers) were 

separated to different tubes for subsequent staining (5x105 for the isotype control 

and at least 1x107 for DLK1 antibody staining). Once separated, falcons were 

centrifuged at 1000rpm for 5 mins, re-suspended in 500μl of FACS Buffer (1.5% 

bovine serum albumin (Sigma-Aldrich, A2058), 5% FBS and 1% penicillin-

streptomycin) and transferred to a new eppendorf. Cells were washed in FACS buffer 

twice, by aspirating supernatant, re-suspending in FACS buffer and centrifuging. 

Following washes, DLK1 conjugate and isotype control antibodies were added at a 

volume of 5μl for every 1x106cells and added to the respective eppendorfs. DAPI was 

also added at 1μg/ml to stain live cells. Cells were incubated for 30 minutes on ice 

and vortexed at 10 minute intervals. Following incubation, cells were washed 3 times 

in FACS buffer and following final wash cells were resuspended in at least 500μl (1ml 

for every 1x106cells) of FACS buffer and transferred into FACS tubes to be sorted. 

Following FAC-sorting, cells were collected for qPCR analysis or re-plated for further 

in vitro experiments. 

 

2.12.6 Cell Survival Assays 

Cells were plated in a 96 well plate at 4x103 cells per well. Once they reached 70-80% 

confluency they were treated with chemotherapeutic drugs, mitotane (Sigma-Aldrich, 

53-19-0), doxorubicin (Sigma-Aldrich, D2975000), cisplatin (Sigma-Aldrich, 
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C2210000), 5-Flurouracil (Sigma-Aldrich, F0250000)(Table 2.11) for 72 hours. Drugs 

were dissolved in DMSO or ethanol. Control wells included untreated cells and wells 

with medium or vehicle only (no cells). Following 72-hour drug treatment, 10μl of 

cell counting 8 solution (CC8, Sigma-Aldrich, 96992) were added in each well and 

plates were incubated for 1-2 hours or until a colour change was observed. Plate was 

read on a Multiskan FC Microplate Photometer (Thermo Scientific, 51119000) at a 

wavelength of 450nm. Percentage of cell survival for each drug concentration group 

was calculated by initially subtracting the average reading of medium- or vehicle-only 

wells from the reading of all other groups and then converting the new readings 

(after subtraction) of the concentration groups as a percentage of the untreated 

control (which was normalized to 100%). Graphs were plotted as % cell survival to 

log concentration of the drugs and LD50 for each drug was determined.  

 

Table 2.11 – Drug concentrations for Cell survival Assays 

 

2.12.7 Drug treatment for flow cytometry analysis of H295R cells 

H295R cells were plated in a 6 well plate at 0.3x106 cells/well. Once they reached 70-

80% confluency they were treated with chemotherapeutic drugs for 24 hours (short 

term) or 1 week (long term). Mitotane treatment was performed at 30μM (short 

term) and 15μM (long term), doxorubicin at 2μM (short term) and 1μM (long term), 

and 5-Flurouracil at 40μM (long term). Drugs were dissolved in DMSO or ethanol. 

Wells with untreated cells were used as a negative control. Following short or long 

term treatment cells were collected for flow cytometry analysis and stained with 

DLK1 conjugate or isotype control as described in Section 2.12.5. Flow cytometry 

analysis was performed using the BD LSRFortessa to determine the percentage of 

DLK1+ cells in the samples to be tested.  

Chemotherapeutic drug Concentrations used, μM 

Mitotane 5, 10, 15, 20, 22.5, 25, 30, 35, 40, 45 

Doxorubicin 0.5, 1, 1.5, 2, 3, 4, 5, 6, 6.5, 7 

Cisplatin 5, 10, 20, 25, 30, 40, 50, 60 

5-Flurouracil 10, 30, 40, 60, 70, 100, 120  
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2.12.8 Cell proliferation assay 

Initially, known numbers of H295R cells, ranging from 0-1.5x105 cells, were plated in 

separate wells in a 96 well plate, to produce a standard curve for cell proliferation 

experiments. Half a day after plating, cells were treated with cell counting 8 solution 

for an hour and OD value was measured on Multiskan FC Microplate Photometer. To 

create a standard curve, the OD value for each well was plotted against the known 

number of cells it corresponded to and an equation for the line of best fit was 

produced. This was used to determine unknown cell numbers in the cell proliferation 

assays performed. DLK1+ and DLK1- FAC-sorted H295R cells were immediately plated 

in 96 well-plates at a density of 3x103 cells/well. Cells were plated in triplicate. Each 

day different wells were treated with cell counting 8 solution for 1 hour and OD value 

was measured using a Multiskan FC Microplate Photometer. Line equation was used 

to derive the number of cells for each OD value measured. This was done for 7 days 

and a graph of cell numbers against time (Days) was plotted for each cell population 

(DLK1+ and DLK1-).  

 

2.12.9 Colony formation assay 

DLK1+ and DLK1- FAC-sorted H295R cells were immediately plated in 6 well-plates at 

a density of 3x103 cells/well. These were cultured for 3 weeks, after which the 

number of colonies in each plate was counted manually.  

 

2.12.10 Immunocytochemistry 

Cells were washed two times in PBS and fixed in 4%PFA for 15 minutes on ice. 

Following fixation cells were washed again with PBS 3 times for 10 minutes each and 

blocked with 10% goat serum in PBS-Triton for 1 hour at room temperature. Then 

they were incubated with primary antibody (Table 2.1) diluted in PBS-Triton 

overnight at room temperature. The next day cells were washed with PBS-Triton 3 

times for 10 minutes and incubated with secondary antibody at a 1:1000 dilution 

(Table 2.2) for 2 hours at room temperature. Cells were washed again with PBS and 

incubated with DAPI for 1 minute, after which they were washed with PBS and 

viewed under the inverted microscope. 
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2.13 RNA Extraction 

RNA from tissue or cell samples was extracted using the Qiagen RNeasy Mini Kit 

(Qiagen, 74106). Initially, 350μl or 600μl of buffer RLT were added to either cell or 

tissue samples respectively, after which the samples were scraped and collected in 

an eppendorf tube. If tissue samples were used, lysates were centrifuged for 3 

minutes at high speed and supernatant was removed before adding 1 volume of 70% 

ethanol. If cell samples were used, 1 volume of 70% ethanol was added directly 

without centrifugation. Then 700μl of sample were transferred to an RNeasy Mini 

spin column in a 2ml collection tube and centrifuged for 15 seconds at 8000xg. After 

centrifugation 700μl buffer RW1 were added to each sample and centrifuged for 15 

seconds at 8000xg. At this point samples were treated with RNase free DNase set 

(Qiagen, 79254). 10μl of DNase I and 70μl of RDD buffer were added to each sample 

and incubated for 15 minutes at room temperature. Following this treatment 

samples were washed with 700μl buffer RW1 for 15 seconds at 8000xg. Then 500μl 

buffer RPE were added to each sample in the columns and centrifuged for 2 minutes 

at 8000xg discarding the flow through. Columns were then transferred to a clean 

eppendorf tube and RNA was eluted by addition of 30μl RNase/DNase free water and 

RNA concentration was measured using a nanodrop. 

 

2.14 RNA to cDNA conversion 

For RNA to cDNA conversion, 1μg of RNA was used. The appropriate volume of RNA 

(to make 1μg) was mixed with 1μl/μg random primers (New England Biolabs, S1330S) 

and made up to 15μl total volume by addition of RNase/DNase free water. Samples 

were incubated at 70oC for 5 minutes in a PCR machine. Following incubation 2μl of 

10x M-MLV reaction buffer, 1μl 10mM dNTPs, 1μl M-MLV Reverse transcriptase 

(New England Biolabs, M0253S) and 1μl RNase inhibitor (New England Biolabs, 

M0314S) were added per sample and placed in a PCR machine. Retro-transcription 

cycle included 25-minute incubation at 25oC, 90 minutes at 42oC and 15 minutes at 

70oC. The cDNA was then stored at -20oC until use. 
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2.15 Quantitative real time PCR (RT-qPCR) 

For gene expression measurements cDNA (1μl) was used as template for quantitative 

real time PCR using a SYBR Green PCR Master Mix (Invitrogen, 4309155). A 1X 

reaction was made up of 1μl template, 5μl SYBR Green, 0.5μl forward and 0.5μl 

reverse primers, 3μl H20. Each sample was amplified in triplicates. The reaction was 

initiated at 55 °C for 2 min followed by the activation and pre-denaturation step at 

95 °C for 10 min. The run was made up of 40 cycles of 15s at 95 °C and 1 min at 60 

°C. Following RT-qPCR, mRNA levels were measured using the ΔΔCt method, where 

GAPDH was used as the endogenous control gene for normalisation. 

 
2.16 Protein Extraction 

For protein extraction cells were plated in 6 well plates at a density of 3x105 cells/ 

well. Once the cells reached 80% confluency they were used for protein extraction. 

Initially cells were washed with PBS two times and 200μl RIPA buffer (Sigma-Aldrich, 

R0278) with protease inhibitor (Roche, 04693159001) were added in each well. Cells 

were scraped off, collected in an eppendorf and incubated on ice for 20 minutes. 

Following incubation, they were centrifuged at high speed for 10 minutes, 

supernatant was collected and heated for 5 minutes at 95oC. Finally, 1 volume of 

2xLaemmli Buffer (Sigma-Aldrich, S3401-1VL) was added and samples were either 

used directly for further analysis or stored at -20oC. 

 

2.17 Western Blot Analysis 

Both the resolving and the stacking gels were prepared manually and allowed to set 

(Table 2.12 and 2.13, respectively). Once the gels were prepared, 25μl to 40μl of each 

sample (described in section 2.16) were added per well along with a 3.5μl of a 

PageRuler Plus prestained protein ladder (ThermoScientific, 26619). Gels were 

placed in the tank filled with 1X running buffer [prepared from 10X stock including 

10g sodium dodecyl sulfate (Sigma-Aldrich, L3771), 30.3g TRIS-Base (Fisher, BP152-

5) and 144g glycine (VWR, 444495D) dissolved in 1L ddH2O] and allowed to run at 

200V/400mA for 45-60 minutes. Proteins were then transferred on a nitrocellulose 

blotting membrane (GE Healthcare, 10600002). Gels along with the nitrocellulose 

blotting membrane and blotting paper (Bio-Rad, 1703965) were dipped in 1X transfer 
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buffer (prepared from 10X stock including 30g TRIS-Base and 144g glycine dissolved 

in 1L ddH2O), placed on the transfer machine and run at 15V/0.8A for 45 minutes 

(1gel) or 1 hour (2 gels). After the transfer, the nitrocellulose blotting membranes 

were soaked in ponceau red staining (0.1% ponceau S (VWR, IC19064410), 5% acetic 

acid (Fisher Scientific, 64-19-7) in ddH2O) to visualise the protein bands and then 

washed under running ddH2O. Membranes were incubated for 1 hour in 5% milk 

powder dissolved in PBS-Tween, after which they were washed with PBS-Tween 2 

times for 10 minutes and incubated overnight with the primary antibodies diluted in 

blocking buffer at room temperature (Table 2.14). The next day membranes were 

washed 2 times with PBS-Tween for 10 minutes and incubated with secondary 

antibodies (Table 2.15) diluted in PBS-Tween for 1 hour at room temperature in the 

dark. Following incubation with secondary antibody the membranes were washed 

with PBS-Tween 2 times for 10 minutes and then viewed using Licor Odyssey Infrared 

Imager. 

Table 2.12 – 10% Resolving gel preparation  

 

Table 2.13 – Stacking gel preparation 

 

Reagents Volume 

Acrylamide 6.7 ml 

ddH2O 8.3 ml 

Resolving Buffer 5 ml 

APS (Sigma-Aldrich, A3678) 150 μl 

Temed (Sigma-Aldrich, T9281) 30 μl 

Reagents Volume 

Acrylamide 800 μl 

ddH2O 3.8 ml 

Stacking Buffer 325 μl 

APS  50 μl 

Temed  5 μl 
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Table 2.14 – Primary antibodies for Western Blot 

Antibody Species Reactivity Host Supplier Catalogue Number Dilution 

HA Human  Mouse Sigma-Aldrich H3663 1:1000 

Flag Human Mouse Sigma-Aldrich F1804 1:1000 

DLK1 (H-118) Human/Mouse/Rat Rabbit Santa-Cruz sc-25437 1:500 

DLK1 (N-18) Human Goat Santa-Cruz Sc-8623 1:500 

 

 

Table 2.15 – Secondary antibodies for Western Blot 

Antibody Supplier Catalogue Number Dilution 

IRDye 680RD donkey anti-goat LI-COR 926-68074 1:10000 

IRDye 680RD goat anti-mouse LI-COR 926-68070 1:10000 

IRDye 680RD goat anti-rabbit LI-COR 926-68071 1:10000 

IRDye 800CW goat anti-rabbit LI-COR 926-3211 1:10000 
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2.18 In vivo mouse work 

2.18.1 Animal maintenance  

All animal procedures were carried out in accordance to the regulations and 

recommendations provided in the Animals (Scientific procedures) Act 1986 of the UK 

Government (PPL:70/8597; PIL: IC636FF3C). Mice were maintained on a 12 hour 

light: dark cycle with constant access to water and food. Axin2Cre:ERT2/+ mice and 

RosaYFP/YFP mice were purchased from Jackson laboratories. These mice were crossed 

to produce Axin2CreERT2/+;RosaYFP/YFP mice for lineage tracing studies.  

 

2.18.2 Genotyping 

Litters following breeding of the two mouse lines, were genotyped between P10-P20. 

Tissue samples from the ears of the mice to be genotyped were collected at P10 for 

DNA extraction. This was performed by addition of 20μl of ddH2O and 5μl of 

DNAreleasy solution (Anachem, LS02) into the Eppendorf tube containing the sample. 

DNA extraction of each sample was performed using a PCR machine. DNA extraction 

program included initial incubation at 95oC for 2 minutes, followed by 65oC for 1 hour, 

96oC for 2 minutes, 65oC for 1 minute, 96oC for 30 seconds and final incubation at 

72oC for 5 minutes. Samples were then used for further PCR analysis to identify which 

ones had the required Axin2CreERT2/+; RosaYFP/YFP genotype using 2 different PCR 

protocols (Cre PCR and Rosa26-YFP PCR). Specific primer sequences were designed 

to either recognize Cre gene transcript or differentiate between Wild type (Rosa+/+), 

heterozygous (RosaYFP/+) and homozygous mutant (RosaYFP/YFP) Rosa locus (Table 

2.16). 
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Table 2.16 – Primer sequences for genotyping 
 

 

For Cre PCR, a DNA master mix and an enzyme mix were prepared separately (Table 

2.17). Initially 12μl of DNA master mix, 1μl of DNA sample and 1 drop of mineral oil 

were added in 0.5ml microcentrifuge tubes and placed in PCR machine. PCR program 

included initial denaturation step at 94oC for 2 minutes, followed by 1 minute at 85oC 

(at which point reaction was paused and 8μl of the enzyme mix were added), 

followed by 30 cycles of 94oC for 30 seconds, 63oC for 30 seconds and 72oC for 45 

seconds; with a final step of 72oC for 5 minutes. Samples were then run on a 2% 

agarose gel at 120V for 40 minutes and PCR products were viewed using a UV 

Transilluminator (Uvitec). Samples from mice that have the Cre allele (Cre+) 

produced a single product at approximately 400bp while samples from mice that did 

not have the Cre allele (Cre-) produced no product. For the Rosa-YFP PCR, a single 

DNA master mix was prepared (Table 2.18) and tubes were placed in the PCR 

machine. PCR program included an initial denaturation step at 94oC for 3 minutes 

followed by 35 cycles of 94oC for 30 seconds, 58oC for 30 seconds and 72oC for 1 

minute with a final step at 72oC for 2 minutes. Samples were then run on a 3% 

agarose gel at 120V for 40 minutes and PCR products were viewed using a UV 

Transilluminator. Positive YFP/YFP samples produced a single product of 

approximately 320bp while heterozygote YFP/+ samples produced two products of 

320bp and 600bp. Wild type samples with no YFP expression produced a single 

product at 600bp. Negative controls were also used for both PCR containing Master 

Mix and water but no sample. Positive adult mice as well as some of the negative 

mice were embedded, sectioned and analysed by IHC as described in Sections 2.2-

2.7.  

Primer name Sequence 

Cre A GATGCAACGAGTGATGAGGTTCGC 

Cre B ACCCTGATCCTGGCAATTTCGGC 

Rosa-Wt GGAGCGGGAGAAATGGATATG 

Rosa-Com  AAAGTCGCTCTGAGTTGTTAT 

Rosa-Mut  AAGACCGCGAAGAGTTTGTC 
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Table 2.17 – Cre PCR Master Mix reagents per sample 

 
 

Table 2.18 – Rosa-YFP PCR Master Mix reagents per sample 

 
 

2.18.3 Lineage tracing experiments in adult mice  

Adult mice were injected with 0.2mg/g tamoxifen (Sigma-Aldrich, T5648) in 3 

consecutive doses and then culled 2 weeks later for adrenal collection. Adult mice 

were genotyped as described in section 2.18.1 and only the ones with the desired 

Reagent DNA mix/μl Enzyme mix/μl 

Taq polymerase Buffer 1.2 0.8 

MgCl2 0.72 0.48 

CreA 1 - 

CreB 1 - 

dNTPs  - 0.16 

Taq polymerase - 0.16 

ddH2O 8.08 6.4 

Sample DNA (added individually) 1.0 - 

Total 13 8 

Reagent Volume/μl 

Taq polymerase Buffer 2.5 

Rosa-WT 0.5 

Rosa-Com 0.5 

Rosa-Mut 0.5 

dNTPs  0.5 

Taq polymerase 0.125 

ddH2O 18.375 

Sample DNA (added individually) 2.0 

Total 25 
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genotype were used for subsequent experiments, while some of the remaining were 

kept as negative controls. 

 
2.19 Solutions 

2.19.1 4% Paraformaldehyde solution (PFA) 

Solution was prepared by dissolving 40g of PFA (Acros Organics, 416780010) in 1L 

ddH2O in fume hood. Once dissolved 10 tablets of PBS (Oxoid, BR100) were added 

(1tablet per 100ml ddH2O) and Sodium hydroxide (NaOH) pellets (Sigma-Aldrich, 

221465) were added until solution was clear. This was aliquoted in 50ml tubes and 

stored at -20oC until further use. 

 

2.19.2 PBS Solution 

PBS was prepared by dissolving 10 PBS tablets (Oxoid, BR100) in 1L dd H2O. The 

solution was autoclaved before use. Following autoclaving 1ml of either Triton X-100 

(Sigma-Aldrich, T8787) or Tween20 (Sigma-Aldrich, P9416) was added to 1L of 

autoclaved PBS to make up PBS-Triton or PBS-Tween, respectively. 

 

2.19.3 DEPC-H2O 

To prepare DEPC-H2O, 1ml of DEPC (Sigma-Aldrich, D5758) was added in 1L of ddH2O 

and incubated at 37oC for 2-3 hours. Following incubation, solution was autoclaved. 

Finally, 1ml of either Triton X-100 or Tween20 was added to 1L of autoclaved DEPC 

H2O to make up DEPC H2O -Triton or DEPC H2O-Tween, respectively. 

 

2.19.4 DEPC-PBS 

To prepare DEPC-PBS, normal PBS was prepared as in Section 2.19.2. Once tablets 

were fully dissolved, 1ml of DEPC was added in 1L of PBS solution and incubated at 

37oC for 2-3 hours. Following incubation, solution was autoclaved and then 1ml of 

either Triton X-100 or Tween20 was added to 1L of autoclaved DEPC-PBS to make up 

DEPC-PBS-Triton or DEPC-PBS-Tween, respectively. 
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2.19.5 Citrate Buffer  

For antigen unmasking 1.05g of Citric acid monohydrate (Fisher Scientific, 10345410) 

was weighed and dissolved in 500ml ddH2O to make up 10mM Citrate buffer. Once 

dissolved the pH was adjusted to 6.0 following addition of NaOH. 

 

2.19.6 LB Media preparation 

For LB media preparation 25g of LB Broth (Sigma-Aldrich, L3022) were dissolved in 

1L ddH2O and autoclaved immediately. 

 

2.19.7 LB Agar plate preparation with Ampicillin 

For LB Agar plate preparation 25g of LB Broth (Sigma Aldrich, L3022) and 12g of LB 

Agar (Sigma Aldrich, A9915) were dissolved in 1L ddH2O and autoclaved immediately. 

Once autoclaved solution was allowed to cool down before adding Ampicillin (Sigma 

Aldrich, A5354) at 100μg/ml. This was then poured into plates working close to a 

flame and allowed to set. 

 

2.19.8 Proteinase K treatment 

Proteinase K treatment included 5ml 0.5M EDTA pH8.0, 5ml TRIS pH 7.5, 40ml DEPC 

H2O and 50μl Tween. 

 

2.19.9 Hybridization Buffer 

50ml hybridization buffer were prepared by adding 25ml formamide (Sigma-Aldrich, 

F9035), 5ml 3M DEPC NaCl, 100μl 0.5M EDTA pH 8.0, 100μl 10%SDS, 2.5g 5% Dextran 

Sulfate (Sigma-Aldrich, D8906), 1ml Denhardt’s 1X (Sigma Aldrich, D2532) and 125μl 

Salmon sperm DNA (Thermo Fisher, 15632-011). 

 

2.19.10 Saturation solution 

Saturation solution included Formamide, DEPC H2O and DEPC SCC 20X at a ratio of 

2:1:1. 
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2.19.11 Maleic Acid Buffer 

To prepare this buffer, 11.61g of Maleic Acid (Sigma-Aldrich, M0375) along with 8.7g 

of NaCl were dissolved in 1L ddH2O and the pH was adjusted to 7.5. Solution was 

autoclaved and 1% Tween was then added. 

 

2.19.12 Tamoxifen preparation 

For the injections 40g of Tamoxifen (Sigma-Aldrich, T5648) powder were dissolved in 

1800μl Corn oil (Sigma-Aldrich,C8267) and 200μl of 100% pure Ethanol to make up 

20mg/ml stock solution. The solution was vortexed and kept on the roller for at least 

30 minutes before use. For adult mice 0.2mg tamoxifen were injected per gram of 

mouse body weight. Aliquots were stored at -20oC. 
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Chapter 3: Appearance and characterisation of DLK1 Cell clusters in 
the human adrenal cortex 
 
3.1 Introduction 

Adrenal glands are vital endocrine organs composed of the capsule, adrenal cortex 

and adrenal medulla. The cortex is the largest part of the adrenal gland and is 

subdivided in at least three distinct zones responsible for synthesizing and secreting 

hormones and steroids. These hormones have significant effects on metabolic 

homeostasis, blood pressure regulation as well as other aspects involved in 

controlling normal development and homeostasis. It is therefore important that the 

process of hormone synthesis is tightly regulated, since dysregulation of this process 

may lead to adrenal insufficiency or tumour formation. 

 

Through studies in rodents we have gained insight into adrenocortical zonation, 

homeostasis and maintenance, including the more recently identified ZU in rat 

adrenals[102]. The ZU of rats is located between the ZG and the ZF, with cells in that 

region expressing both Shh and Dlk1. Studies have confirmed the presence of stem 

cell populations in the adrenal capsule in rodents and have established a cross talk 

between Shh+ cells in the cortex and Gli1+ capsular cells during adrenal regeneration 

of cortical zones[8, 102]. Although multiple studies have uncovered important 

cell/stem cell populations and unveiled homeostatic mechanisms in rodents, little is 

known about what happens in the human adult adrenal gland. Most of what is known 

about human adrenocortical zonation revolves around enzymes involved in the 

synthesis and secretion of mineralocorticoids and glucocorticoids; the main function 

of the adrenal glands. As such we know that the various members of the cytochrome 

p450 family involved in steroid synthesis will be expressed in the adrenal gland in 

their respective adrenocortical zones, including CYP11B1, CYP11B2, CYP11A1, CYP17 

and StAR (as previously described in Section 1.1.2, Figure1.3).  In addition, SF1 is 

known to be expressed in all steroidogenic cells of the adrenal cortex, while SOAT1 

and DAX1 have been found to be expressed in some areas of the human adrenal 

cortex. However, additional studies in the human adrenal gland are required in order 

to provide a better understanding of human adrenocortical zonation and identify 
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genes/proteins that are expressed in adrenocortical cell populations. 

 

In our study, we hypothesize that like rodents, a progenitor cell population also exists 

in the human adrenal cortex. Therefore the main aim of this chapter is to better 

characterize the subcapsular region of the human adrenal cortex and possibly 

identify a progenitor cell population in the human adrenal glands. 

 

Tools available to use in order to mark and identify known cell populations include 

the use of antibodies targeting proteins solely expressed by specific types of cells in 

the adrenal gland. Two of these antibodies include those targeting the enzymes 

CYP11B1 and CYP11B2, the development of which has significantly improved human 

adrenal gland research. CYP11B1 and CYP11B2 represent the terminal enzymes in 

the synthesis of cortisol in the ZF and aldosterone in the ZG, respectively, and are the 

best markers to distinguish functional ZF and ZG in adrenal tissue sections. Given 

their high homology in amino acid sequence (93%) (Figure 3.1), it has been 

historically difficult to produce specific and reliable antibodies against the two 

proteins. Recently, two independent groups have successfully developed antibodies 

(polyclonal and monoclonal) targeting these proteins individually[9, 217].  

Preparation of these antibodies is key to achieve the aim of the first part of the 

project, as it would allow us to accurately and efficiently mark cell populations in the 

human adrenal cortex expressing either CYP11B2 or CYP11B1. In addition, this would 

enable us to identify cell populations that express neither protein and thus might 

represent a novel cellular compartment within the adrenal cortex. 
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Figure 3.1 – Alignment of human CYP11B2 and CYP11B1 amino acid sequences. 

Protein sequences for hCYP11B2 (NCB1 accession: NP_000489.3) and hCYP11B1 

(NCBI accession: NP_000488.3) were obtained and aligned on NCBI. Letters in 

black represent fully conserved residues between the two proteins, while 

residues in red represent the ones that are different between the two proteins. 

Highlighted residues in green show the ones used for immunisation to develop 

respective antibodies.  
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In addition, other enzymes involved in steroidogenesis, including CYP17, could 

represent useful tools in identifying and confirming the presence of specific 

adrenocortical cell populations. Multiple research studies have also identified 

Visinin-like protein 1 (VILIP1) and Disabled 2 (DAB2) as markers of the ZG in 

rodents[218, 219]. 

 

VILIP1 is a calcium-sensor protein encoded by VSNL1. It is involved in the regulation 

of intracellular calcium-dependent signalling pathway, including cAMP-, cGMP- and 

MAPK signalling[218, 220, 221]. Changes in intracellular calcium concentration by the 

mitochondria, has a number physiological and pathological effects on multiple organ 

systems including the ZG cells of the adrenal cortex[222-224]. Aldosterone secretion 

by the ZG can be modulated by a number of activators, including Angiotensin II, ACTH, 

potassium levels and intracellular calcium concentration [23, 24, 225]. In fact studies 

have shown that increased calcium concentration in the mitochondria positively 

correlates with the rate of aldosterone synthesis[221, 226, 227]. The link between 

VILIP1 – calcium regulation and calcium concentration – aldosterone synthesis, along 

with the fact that VILIP1 was found to be expressed in the ZG of rat and developing 

mouse adrenal glands, makes it an interesting factor to study in humans. In fact it 

was suggested that VILIP1 does not only represent ZG cells in the rat, but rather a 

mixed population of ZG and ZU cells [220]. DAB2 is a mitogen-responsive 

phosphoprotein, with a potential role as a tumour suppressor. Previous studies have 

demonstrated the presence of DAB2 in the ZG of rodents and more recently in 

normal human adrenals and suggested a link between DAB2 and CYP11B2 

expression[219, 228]. These results are suggestive of a role of DAB2 in aldosterone 

biosynthesis, as well as DAB2 being a marker of ZG. 
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3.1.1 Hypothesis 

We hypothesise that characterising the human adrenal cortex will provide a better 

understanding of human adrenal development, function, and tumorigenesis. 

Previous work in rodents has identified an ZU in the adrenal cortex and we 

hypothesise that an ZU might also exist in human adrenal glands.  

3.1.2 Aims 

1. Develop and test antibodies targeting human CYP11B1 and CYP11B2 to mark the 

human ZF and ZG, respectively. 

2. Study the subcapsular region of the human adrenal cortex and identify potential 

cell populations that could represent the ZU, by co-staining of CYP11B2 with DLK1, 

DAB2, or VILIP1. 

3. Investigate the expression pattern of DLK1 in the human adrenal cortex according 

to age and gender, using IHC staining. 
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3.2 Developing antibodies for zonal specific markers 

For the purpose of our project we initially aimed at developing our own antibodies 

to target human CYP11B2 and CYP11B1 proteins expressed in the ZG and ZF, 

respectively. Antibodies were designed following the method used by Nishimoto et 

al., [217]. Briefly, peptides corresponding to amino acid residues 80-90 of each 

protein (RYNLGGPRMVC for CYP11B2 and RYDLGGAGMVC for CYP11B1) were used 

for immunization (Figure 3.1). Peptide synthesis and injection in two rabbits, as well 

as sera collection and purification were done at Thermofisher. Extensive testing of 

various bleeds and purified fractions by Western Blot on cells transfected with 

vectors encoding CYP11B1 and CYP11B2 (Appendix I) and immunohistochemistry on 

human adrenal sections (with different antigen unmasking procedures) showed that 

the antibodies produced were not recognizing either protein. These experiments 

were always performed in parallel with monoclonal antibodies to CYP11B1 and 

CYP11B2, which were provided by our collaborator Prof. Gomez- Sanchez (University 

of Mississipi, USA). These antibodies show great specificity and successfully mark the 

ZG (CYP11B2) and ZF (CYP11B1) of the human adrenal cortex as shown in Figure 3.2b 

and also in previous reports [9]. Therefore, these antibodies were subsequently used 

for the current project.  

 

Following CYP11B2 staining on human adrenals, we observed two different 

organization types of ZG cells in the subcapsular region; the classical layered-

continuous, with large portions of subcapsular and adjacent rosettes uninterruptedly 

stained with CYP11B2 (Figure 3.2d), and random bigger clusters, known as 

aldosterone producing cell clusters, APCCs (Figure 3.2c)[187, 217]. In addition, when 

double-staining with either CYP11B1/CYP11B2 (Figure 3.2b) or CYP17/CYP11B2 

(Figure 3.2a), we observe a clear area of cells that are negative for both ZG (CYP11B2) 

and ZF (CYP17/CYP11B1) markers (Figure 3.2a/b). Therefore, our results confirm the 

presence of a subpopulation of cells in the subcapsular region of the adrenal gland, 

which does not express any steroidogenic enzymes. This is also in line with our 

hypothesis that an undifferentiated zone exists in the human adrenal glands, since 

the identified subpopulation does not express differentiation markers and therefore, 

might consist of undifferentiated adrenocortical progenitor cells. The next step was 
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to characterize the subcapsular region of the adrenal cortex with the purpose of 

classifying these distinct cell clusters.  

3.3 Investigating the subcapsular region of the human adrenal cortex 

3.3.1 Expression pattern of VILIP1 and DAB2 in the human adrenal cortex 

Following immunohistochemical analysis for DAB2 and VILIP1 on normal human 

adrenal sections, we observed a layered-continuous expression of the two proteins 

in the subcapsular region of the adrenal gland (Figure 3.3). The two proteins were 

Figure 3.2 – Expression of zonal specific markers. Immunofluorescence analysis of 

zonation markers staining for ZG and ZF with either CYP11B2 and CYP17 (a) or 

CYP11B2 and CYP11B1 (b) on human adult adrenals (age range of samples 

analysed: 40-56 years old). Representative images of the samples are shown. 

Double negative area marked here as ZU appears in both (a) and (b). The bottom 

panels show the two different patterns of CYP11B2 expression appearing as either 

clustered cells/APCCs (c) or as a continuous layer of cells (d). n=3. Scale 

bars:100μm. Cap=Capsule; APCC=Aldosterone producing cell clusters. 
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selected as they were previously found to be expressed in the subcapsular/ZG region 

of rodents[219, 220, 229].  

 
Double staining of DAB2 and CYP11B2 (Figure 3.4a-e), showed that all the cells that 

where positive for CYP11B2 were also DAB2 positive, however approximately 60% of 

DAB2+ cells were negative for CYP11B2 (Figure 3.4e). Finally, immunostaining for 

CYP11B2 and VILIP1 (Figure 3.4f-j), showed that most of the cells where either 

CYP11B2+ or VILIP1+ with only minimal co-localisation of the two proteins which 

accounted for approximately 10% and 25%, respectively (Figure 3.4j).  

 

Figure 3.3 – Subcapsular localisation of DAB2 and VILIP1 in the human adrenal 

cortex.  Immunofluorescence analysis of DAB2 (a) and VILIP1 (b) on human adrenal 

sections (age range of samples analysed: 40-56 years old) showing subcapsular 

expression of the two proteins. n=3. Scale bars: 100μm. Cap=capsule. 
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Figure 3.4 – CYP11B2 co-localisation with DAB2 and VILIP1. Double immunofluorescence analysis of CYP11B2 with DAB2 (a-d) and CYP11B2 with 

VILIP1 (f-i) on human adrenal glands (age range: 40-56 years old), showing full and partial co-localisation with CYP11B2, respectively.  Graphs on 

the right, are showing the stained area (%) of either single or double positive cells immunostained with CYP11B2 and DAB2 (e) or CYP11B2 and 

VILIP1 (j). Error bars represent standard error of the mean. For each double staining, n=3. Scale bars: 100μm. Cap=capsule. 
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However, since both proteins (VILIP1 and DAB2) displayed continuous subcapsular 

expression with some co-localisation with CYP11B2, we assumed that cells 

expressing these proteins could not solely represent the undifferentiated (double 

negative) cell population observed in Section 3.2.  

 

3.3.2 Appearance of DLK1 cell clusters 

Given expression of DLK1 in the ZU of rat adrenal glands, we thought that it could be 

a promising candidate that could mark progenitor cells in the human adrenal gland[8].  

 

Here we showed that DLK1 was expressed in the subcapsular region of both human 

adult adrenals and human fetal adrenals (HFA) at the mRNA level (Figure 3.5). 

However, expression pattern of DLK1 differs between adult and fetal adrenals. We 

observed a uniform and continuous subcapsular DLK1 mRNA expression in the HFA 

in all embryonic stages investigated (10-33 weeks). In contrast, in the adult adrenal 

DLK1 expression was mainly clustered and islets of DLK1+ cells were seen throughout 

the adrenal cortex (Figure 3.5a). This data was supported by IHC analysis for DLK1 on 

human adult adrenal glands, which also show that DLK1 was expressed in clusters 

throughout the cortex (Figure 3.6). Given the similarity in the expression pattern of 

DLK1 to that of CYP11B2, we performed a double immunofluorescent analysis to 

confirm whether the two proteins are expressed in the same cell populations. Results 

following double IHC, clearly show that the two proteins are in fact never co-

expressed throughout the human adrenal cortex (Figure 3.6).  Therefore, we have 

shown that clusters of DLK1 expression are not the same as APCCs and have termed 

these as DLK1 Cell clusters (DCCs).  
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Figure 3.5 – DLK1 localisation in the human and fetal adrenal cortex. Results 

following in situ hybridization targeting DLK1 mRNA expression in the human adult 

adrenal (50 years old) (a) and the HFA at 10 weeks (b), 16 weeks (c), 20 weeks(d) and 

33 weeks (e) of gestation showing subcapsular DLK1 expression in both human adult 

and fetal adrenal, albeit with different expression patterns. n=3. Scale bars: 100μm. 

Cap=capsule. 
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We next investigated the expression pattern of DLK1 across a number of normal 

human samples from donors of different ages (ranging from newborn babies to 70 

year olds). For this purpose we collected a number of normal human adrenal samples 

from different biobanks. Following adrenal collection we wanted to investigate 

whether there are any differences in DLK1 expression between different samples 

based on age and gender. We used a total number of 23 adrenal glands and 

separated them into different age classes. We determined age classes based on two 

factors; the number of samples we had per age group and ages with known adrenal 

differences. For example one known adrenal difference is the change in CYP11B2 

expression pattern in individuals with 40 or more years of age [230]. Details of the 

normal adrenal samples collected and the age group they belong to are shown in 

Table 3.1.  

Figure 3.6 – DLK1 and CYP11B2 represent distinct cell populations in the adrenal 

cortex. Results following double immunofluorescent analysis for DLK1 and 

CYP11B2 (a,b) in human adult adrenals (age range: 40-56 years old) showing that 

the two proteins are never co-localised. n=3. Scale bar=100μm. Cap= Capsule; 

APCC=Aldosterone producing cell clusters; DCC=DLK1 cell clusters. 
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Table 3.1 – List of adrenal samples collected for analysis 

Sample name Gender Age Group Adrenal description Cause of death/Reason for surgery Biobank 

33160413 Female 0-2 Normal Pneumonia IMIB 

33160409 Male 0-2 Normal  Pulmonary haemorrhage  IMIB 

33160407 Female 0-2 Normal  Macrosomia, aspiration of amniotic fluid IMIB 

33160411 Male 0-2 Normal Diaphragmatic hernia IMIB 

15P3200885 Male 16-25 Normal Arrhythmia secondary to congenital heart disease  IDIS 

A2-C15016_049 Male 16-25 Normal Cirrhosis BioBANC 

A2-C15016_057 Female 26-40 Normal Retroperitoneal undiferenciated neoplasia BioBANC 

A2-C15016_060 Male 26-40 Normal Renal carcinoma BioBANC 

A2-C15016_064 Male 26-40 Normal Renal carcinoma BioBANC 

A2-C15016_065 Female 26-40 Normal Pheochromocytoma BioBANC 

A2-C15016_050 Female 26-40 Normal Surgery due to traumatism BioBANC 

A2-C15016_075 Male 41-50 Normal N/A BioBANC 

A2-C15016_073 Male 41-50 Normal Renal carcinoma BioBANC 

A2-C15016_072 Female 41-50 Normal Neurofibroma BioBANC 

A2-C15016_066 Male 41-50 Normal Cystic Kidney Disease BioBANC 
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Sample name Gender Age Group Adrenal description Cause of death/Reason for surgery Biobank 

A2-C15016_085 Female 51-60 Normal Renal carcinoma BioBANC 

A2-C15016_077 Male 51-60 Normal Renal carcinoma BioBANC 

A2-C15016_076 Male 51-60 Normal Myelolipoma BioBANC 

A2-C15016_089 Male 61-70 Normal Renal carcinoma BioBANC 

A2-C15016_093 Male 61-70 Normal Renal carcinoma BioBANC 

A2-C15016_090 Male 61-70 Normal Renal pelvic urothelial carcinoma BioBANC 

A2-C15016_086 Male 61-70 Normal Renal carcinoma BioBANC 

A2-C15016_094 Female 61-70 Normal Acquired renal cystic disease and renal carcinoma BioBANC 
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Following classification of the normal adrenal samples we performed IHC staining for 

DLK1 on each sample. We observed that staining with DLK1 resulted in two different 

expression patterns, a subcapsular continuous expression and a clustered expression 

(DCCs). We were also able to see a correlation between different expression patterns 

and age, with individuals of a younger age (Age group:0-2 and 16-25) having a 

continuous subcapsular DLK1 expression pattern (Figure 3.7a,b), while older 

individuals (Ages: 41-70) had a more clustered DLK1 expression pattern across the 

adrenal cortex, with some signs of a continuous pattern in some cases (Figure 3.7d-

f). Finally, individuals belonging to age group 26-40 had a mixed pattern of mostly 

continuous DLK1 expression with some DCCs as well (Figure 3.7c, DCCs not shown), 

suggesting that DCCs start appearing between the age of 26 and 40.  
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Figure 3.7 – DLK1 expression pattern changes with age. Results following IHC analysis for DLK1 expression in human adrenals of patients with 

different ages, showing a change in DLK1 expression pattern with increasing age, from a continuous to a patchy expression. Images above are 

representative of the cohort in their respective age group with (a) 0-2, (b) 16-25, (c) 26-40, (d) 41-50, (e) 51-60 and (f) 61-70 years old.                 For 

each age group n=2-5. Scale bars: 500μm. 

 



 112 

 

Following our initial observation suggesting that the cortex remodels to generate 

DCCs as we age, we wanted to further analyse and confirm whether this change or 

transformation was significant, taking into consideration all the samples. This was 

done by comparing DLK1 staining, expression pattern changes and DCC size between 

all age groups. Initially, panoramic images of all samples stained with DLK1 were 

taken and further analysed either using panoramic viewer software or Halo image 

analysis software to determine DLK1 staining levels and size of DCCs. We initially 

measured the DLK1+ cells that are found in a continuous layer against those found in 

a clustered manner, using Halo image analysis software as shown in Figure 3.8. Briefly, 

we selected 10 random equal areas to be analysed per sample. Halo analysis would 

calculate the number of cells stained in each square and produce a report with the 

raw data. To interpret the data we determined whether cells that were counted were 

part of a cluster or continuous pattern and added the totals of those numbers to a 

table as shown in Figure 3.8. Finally, the total number of cells stained was calculated 

to determine the percentage of cells in continuous versus clustered pattern for each 

sample. For example, calculations showed that for Sample A2-C15016_057 (36 year 

old female) 82.6% of DLK1+ cells were arranged in a continuous manner, while the 

remaining 17.4% were arranged in clusters.  The percentages corresponding to the 

remaining samples are summarised in Table 3.2 and presented in Figure 3.9. 
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 Figure 3.8 – Halo Image Analysis and Interpretation of sample A2-C15016_057. 

Figure showing results following Halo image analysis for one sample and the process 

used to interpret the results to determine %patchy and %continuous DLK1 expression. 
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Table 3.2 – Details of analysis of DLK1+ cells arranged in either clusters or 
continuous pattern in normal human adrenal samples. 

 

Figure 3.9 shows a summary of the results following analysis, which confirms a strong 

correlation between clustered DLK1 expression and increased age. From the graph it 

is evident that younger age groups (Age:0-2 and Age:16-25) only show a continuous 

DLK1 expression pattern throughout the adrenal cortex, with the expression 

transforming to a clustered pattern in the older age groups. In age group 26-40 DCCs 

start appearing, accounting for a mean of 36% (ranging from 0-71% as shown in Table 

3.2) of total DLK1 staining. A peak increase in DCC appearance was seen in the 

succeeding age group of 41-50 year olds, where an average of 70% (range of 50-100% 

shown in Table 3.2) DLK1+ cells were arranged in clusters. This increase was 

statistically significant when compared to the two youngest age groups of 0-2 and 

16-25 years old. In the remaining age groups of 51-60 and 61-70 years of age, DCC 

appearance was significantly higher, compared to the three younger age groups of 

0-2, 16-25 and 26-40 year olds, accounting for approximately 80-95% of total DLK1 

staining (Table 3.2). In addition in some of the samples from donors of age between 

41-70, the continuous pattern of DLK1 expression was completely lost and we could 

only observe DCCs throughout the adrenal cortex.   

 
 

Age Group %DLK1 in clusters %DLK1 continuous 

0-2 0, 0, 0, 0 100, 100, 100, 100 

3-15 N/A N/A 

16-25 0, 0 100, 100 

26-40 69.8, 17.4, 0, 58.5, 71.2, 0 30.1, 82.6, 100, 41.5, 28.8, 100 

41-50 100, 88.5, 66.6, 49.7 0, 11.5, 33.5, 50.3 

51-60 100, 100, 73.7 0, 0, 26.3 

61-70 100, 100, 93, 50.5, 76.3 0, 0, 7, 49.5, 23.7 
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However, there was no observable difference in DCC appearance from 40 years 

onwards, neither in the % of DLK1+ cells appearing in clusters nor in the actual 

average number of DCCs appearing per adrenal gland (Figure 3.9 and Figure 3.10a). 

In addition, even though there are no DCCs appearing in age group 16-25 years old 

(as opposed to the older age groups), this was not statistically significant when 

comparing the number of DCCs to the older age groups. This is probably due to 

having a lower n number in the 16-25 year old group (n=2).  I believe that is solely 

the reason, as in the case of age group 0-2 (higher n number), DCC number was 

significantly lower when compared to the older age groups of 41-70 years old (even 

Figure 3.9 – DLK1 expression pattern changes with increasing age. Graph showing 

results following DLK1 expression analysis on human samples from donors of different 

ages. The above results highlight the appearance of DCCs at around 26-40 years of 

age. Most importantly these results show a significant increase in the percentage of 

DLK1+ cells appearing in clusters with increasing age, confirming that DLK1 expression 

pattern transforms from a layered continuous to a clustered expression with 

increasing age.  Error bars represent standard error of the mean. Statistical analysis 

was performed using a two-way ANOVA on graphpad Prism and statistical significance 

is denoted as * (p<0.05), ** (p<0.01), *** (p<0.001) and **** (p<0.0001). For each 

age group n=2-5. 
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though the number of DCCs appearing in each adrenal in age group 0-2 is exactly the 

same as in 16-25). We then measured the area of DCC from each sample and plotted 

this against the age of individuals to which the DCCs belong to, as shown in Figure 

3.10b. The dot plot in Figure 3.10b shows a significant positive correlation between 

DCC area and age, with a Pearson’s correlation coefficient of r=0.5852, meaning that 

DCC area increases with increased age. Additionally, even though the DCC area 

increases with increasing age it seems that there is a trend that the overall DLK1+ 

area (clustered and continuous) decreases slightly with increasing age, however not 

significantly (Figure 3.10c).  
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Figure 3.10 – DLK1 quantification in normal human adrenal cortex reveals differences between age groups. Figure showing results following 

quantitative analysis of the number of DCC appearance (a), DCC size (b) as well as percentage of total DLK1 staining (c) on normal human adrenal 

samples of varying ages. DCC size is shown in dotplot b, with each dot representing the area of one DCC measured, where more than one dot 

can correspond to the same sample.  Error bars represent standard error of the mean. Statistical analysis was performed using one way anova 

(a), Pearson correlation test (b) and Kruskal Wallis test (c) where significance is denoted as * (p<0.05) and ** (p<0.01). For each age group n=2-

5. 
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Finally, we examined whether there were any differences in gender within the 

different age groups with respect to DLK1 expression pattern. Instead of organising 

our samples in 6 different age groups, we now pooled some of the groups together 

and ended up comparing DLK1 expression pattern differences between males and 

females in 3 age groups (0-25!, 26-40 and 41-70). The reason we pooled 0-2, 16-25 

as 0-25 and 41-50, 51-60, 61-70 as 41-70 was to increase the n number for males and 

females within one group to make the analysis more accurate. Of note is that 0-25!, 

only represents ages that fall between 0-2 and 16-25, but not ages between 3-15. 

We pooled those specific groups because as shown in Figure 3.9 there were no 

significant differences in DLK1 expression pattern between them (with respect to 

age). Therefore, we know that if we observe differences between males and females 

within the group it will be an accurate observation and difference of age will not have 

affected the results.  

 

Following the comparative analysis between males and females within the age 

groups (Figure 3.11), there was no observable difference in DLK1 expression pattern 

between males and females in age groups 0-25! and 41-70. All adrenals in the former 

had a continuous-layered expression of DLK1 in all males and females tested, while 

in the latter an average of 79.6% DLK1+ cells in males and 93.6% DLK1+ cells in 

females, were arranged in clusters. In both cases, there was no stastistical difference 

between males and females. In age group 26-40 even though it seems that in females 

a lower percentage of DLK1+ cells is arranged in clusters (average of 8.7%) as 

compared to males (average of 50.04%), there was still no significant difference 

between the two following statistical analysis. Therefore, it seems that there are no 

differences in DLK1 expression pattern with respect to gender. 
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Figure 3.11 – Comparing DLK1 expression pattern between males and females in 

the same age group. Graph showing results following comparative analysis of DLK1 

expression in males and females within the age groups (0-25!,26-40 and 41-70). The 

above results show that there seems to be a difference in DLK1 expression pattern, 

females bearing less patchy expression as compared to males, however the other 

two groups seem to have similar expression patterns between males and females. 

Error bars represent standard error of the mean. Statistical analysis was performed 

using an unpaired t-test on graphpad prism and showed no statistical significance. 

For each group n=2-9. 
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3.4 Discussion 
 
In this first part of my project, I aimed to better characterise zonation in the human 

adrenal cortex. In doing so I have confirmed the presence of two staining patterns 

for CYP11B2 previously reported: the layered continuous as well as the clustered 

expression of CYP11B2 (APCCs) [187]. These clusters, but not adjacent adrenocortical 

cells, were previously found to harbour mutations that are commonly found in 

aldosterone producing adenomas (APAs) and therefore it was hypothesized that 

APCCs might represent precursors of APAs[187]. 

 

We have also shown that although both VILIP1 and DAB2 are expressed in the 

subcapsular ZG of the human adrenal cortex, only DAB2 is expressed in 100% of 

CYP11B2+ cells; with VILIP1 and CYP11B2 almost never being co-expressed. These 

results are in accordance with previous studies reporting the expression and role of 

these two proteins with respect to adrenal function in rodents. In the case of Vilip1, 

it could play an indirect role on aldosterone synthesis, in that it is involved in calcium 

regulation, which then has an effect on aldosterone synthesis, rather than regulating 

aldosterone synthesis directly. Additionally, previous studies have suggested that 

cells expressing Vilip1 could represent a mixed population of ZG and ZU cells in 

rodents, supporting our finding that VILIP1 and CYP11B2 are rarely co-expressed in 

the ZG, but are rather found in close proximity[220]. In the case of DAB2, we 

observed that all CYP11B2+ cells in the adrenal cortex are also positive for DAB2.  This 

finding could suggest a direct role of DAB2 in aldosterone biosynthesis. Previous 

studies have also shown a positive correlation between the expression of the DAB2 

and CYP11B2[219]. In a study looking at human adrenals with aldosterone producing 

adenomas it was shown that DAB2 expression was more heterogeneous as opposed 

to normal adrenals, with DAB2 overexpression significantly correlating to increased 

CYP11B2 mRNA expression in these patients, thus further supporting our 

findings[228].  

 

Most importantly, we have identified a new cell population within the human adrenal 

cortex, expressing the Notch atypical ligand DLK1. Similar to CYP11B2, DLK1 was 
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expressed in the subcapsular region of the human adrenal cortex, both in a layered 

continuous and/or clustered manner. However, although the two proteins had a 

similar expression pattern, they were never co-localised. Therefore, we concluded 

that these two proteins represent distinct cell populations within the human adrenal 

cortex. In addition, if we take into consideration the role of DLK1 in adipocytes, the 

expression of Dlk1 in the rat ZU[8, 131], as well as the fact that DLK1+ cells do not 

express CYP11B2 (steroidogenic marker), it is possible that the DLK1+ cell population 

might represent adrenocortical progenitor cells and hence the ZU in the human 

adrenal cortex. However, in order to confirm this, we would need to perform 

immunofluorescent studies to confirm that DLK1+ areas in the adrenal cortex are not 

co-expressing any steroidogenic markers (CYP11B1 and CYP11B2). 

 

Assessment of DLK1 expression in a series of physiologically normal human adrenal 

glands confirmed the subcapsular expression of DLK1, as either layered continuous 

expression, clustered expression or a combination of the two patterns. Finally, we 

aimed to identify whether there was a pattern that could explain the two different 

expression forms. We investigated, whether there was any correlation of DLK1 

expression pattern with either age and/or gender. Interestingly, this difference in 

DLK1 expression pattern across different adrenals was significantly correlated with 

age but not gender. We showed that in adrenals from younger donors (0-30 years 

old), DLK1 expression appears layered continuous, while this continuous expression 

slowly transformed into a clustered DLK1 expression (DCCs) with increasing age. 

Therefore, in human adrenals of 30+ years of age we observed increasing numbers 

of DCCs as compared to samples from younger donors. It is important to note that 

the peak of DCC occurrence in the samples analysed was in the 41-50 age range. This 

age range correlates with the second peak occurrence of ACCs (the first being in the 

first decade of life) [231, 232]. This correlation is of significance, as it might suggest 

a link between appearance of DCCs and ACC occurrence. The finding that clustered 

DLK1 expression was not correlated with gender, is also in line with the lack of 

significant difference in the prevalence of ACCs in males and females in previous 

studies. As mentioned previously, mutations in genes encoding for ion 

channels/pumps commonly found in APAs are also present in APCCs, implying that 
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APCCs might be precursor cells of APAs[187]. In addition, similar to our observations 

on DLK1 expression, other researchers have shown that CYP11B2 expression also 

changes with age from a subcapsular layered continuous expression to a more 

clustered expression pattern (APCC) [233].  

 

Taking into account the similarities between DLK1 and CYP11B2 in their expression 

pattern in human adrenal glands, their expression pattern changes with age, in 

addition to the correlation of DCC appearance with ACC second peak occurrence in 

humans and the role of DLK1 in pre-adipocytes; has led us to speculate whether there 

is indeed a link between DCC appearance and ACC incidence in humans.  
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Chapter 4: DLK1 as a potential marker of cancer stem cells in the 
adrenal gland  
 

4.1 Introduction 

4.1.1 Adrenocortical carcinoma and correlation to DLK1 

Adrenocortical carcinoma is a rare neoplasm with an incident rate of approximately 

1-2 cases/1 million/year[231, 234, 235]. ACC can occur at any age, but has a bimodal 

peak incidence, with the first peak occurring at childhood (first decade) and the 

second peak occurring in the fourth to fifth decade in life [236, 237]. ACC has an 

overall poor prognosis and at the moment prognostic factors are based on tumour 

stage at the time of diagnosis. Treatment of ACC is dependent on tumour stage and 

type as described earlier in section 1.7.2.3, with surgical resection and adjuvant 

chemotherapy (ADIUVO or mitotane) being the most common line of treatment. 

However, it is reported that most of the ACC patients undergoing even complete 

resection, still present with local or distant recurrence [231]. Recent efforts have 

been made to identify germline/somatic mutations that are most common in ACCs 

and might aid diagnostic and treatment procedures in the future. These include 

mutations in CTNNB1, TP53 and ZNRF3 among others as previously highlighted in 

Table 1.1 (Section 1.7.2.4). 

 

DLK1 has been previously reported to play a role in numerous cancer types including 

some neuroendocrine tumours (previously described in Section 1.5.4). However, it is 

not yet known whether DLK1 is involved in adrenocortical carcinoma. Although little 

is known about DLK1 expression in human adrenal, it has been shown to have a role 

in maintaining the undifferentiated state of adipocytes[238]. In addition, our group 

reported that i) Dlk1 is expressed in rat cortical non-steroidogenic cells (Shh-

secreting and possibly Wnt receiving cells), ii) its expression is modulated by 

remodelling of the gland triggered by the activation/inactivation of the renin-

angiotensin-aldosterone axis, a process likely involving the recruitment of 

stem/progenitor cells, and iii) Dlk1 itself functionally interacts with Shh in activating 

Gli1 cells in the capsule of rat adrenals in a β1 integrin-dependent fashion [8].  
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In the previous chapter, I have clearly shown that the human adrenal cortex remodels 

itself to generate clusters of DLK1+ cells (DCCs) as we age, in a similar manner to 

APCCs.  As stated earlier, it is possible that DCCs might be precursors of ACCs, 

although this still needs to be proven[187]. Considering all the above, we hypothesize 

that DLK1 might have a direct or indirect role in ACC development and/or 

maintenance. 

 

4.1.2 Common chemotherapeutic agents  

4.1.2.1 Mitotane  

Mitotane [1,1 dichloro-2(o-chlorophenyl)-2-(p-chloro-phenyl)ethane or o,p’-DDD] is 

an adrenal-specific cytotoxic agent and the only approved drug for the treatment of 

ACC  both in adjuvant chemotherapy and in metastatic ACC [239] [231]. Mitotane is 

not the active compound, however it is metabolised in the liver to produce the 

therapeutic metabolites leading to adrenolysis. Briefly, mitotane is hydroxylated in 

the mitochondria and transformed into the active compound acyl chloride, which will 

either act on target cells and cause cell lysis or be converted into an acetic acid 

derivated for renal excretion[235]. Evidence for its efficiency comes from 

retrospective data of patients with ACC undergoing mitotane treatment, showing 

that response rates vary between 13-31%. Overall survival following mitotane 

treatment remains controversial, with some studies showing an increase in survival 

rate in specific patient groups while others show no difference [193, 196, 240, 241]. 

However, even though mitotane treatment might not increase survival rate, it may 

delay recurrence[242]. The reason that the response rates are so variable and 

relatively low might stem from the fact that mitotane requires metabolic activation 

to act and therefore response rates are dependent on the ability of each individual 

to metabolise mitotane within the given therapeutic window for mitotane. Dosing 

regimens for mitotane are largely unknown, however it was shown that mitotane 

plasma levels of 14-20mg/l have produced a significant response in patients. Plasma 

levels that exceed 20mg/l have been associated with significant toxicities (such as 

nausea, vomiting, memory loss and dizziness), while plasma levels below 14mg/l 

show limited therapeutic potential. Mitotane can have a significant impact on drug 
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metabolism and affect drug-drug interactions, as well as glucocorticoid metabolism 

due to induction of hepatic cytochrome P450 enzyme 3A4 (CYP3A4) [231, 235]. 

 

Recent efforts focusing on the mechanism of action of mitotane have identified 

Sterol-O-Acyl Transferase 1 (SOAT1) as the main target of mitotane in adrenocortical 

cells [239]. SOAT1 or ACAT1 is mainly expressed in the endoplasmic reticulum and 

plays an important role in cellular cholesterol homeostasis [243]. Sbiera et al., have 

shown that mitotane treatment inhibits SOAT1 activity with an IC50 of 21μm (7mg/L). 

The blockage of SOAT1 leads to the accumulation of fatty acids, oxysterols and free 

cholesterol in cells with high steroidogenic activity. This in turn causes a buildup of 

toxic steroids activating the stress response in the endoplasmic reticulum and 

subsequent cell death[239]. 

 

4.1.2.2 Doxorubicin 

Doxorubicin is an anthracycline, antineoplastic drug, commonly used in the 

treatment of multiple cancers including lung, ovarian, breast, thyroid and gastric 

cancers as well as non-Hodgkin and Hodgkin’s lymphoma, sarcoma, multiple 

myeloma and paediatric cancers [244, 245]. It can act either by DNA intercalation 

and disruption of DNA repair or by damaging cell membranes via accumulation of 

free radicals. However, limitations associated with doxorubicin treatment include 

cardiotoxicity and high drug resistance in patients[246-248], thus limiting its use. The 

fact that the mechanism of action of cardiotoxicity and the anticancer action are 

thought to be different, give hope for the development of better treatments with 

reduced adverse effects[246].  

 

4.1.2.3 5-Fluorouracil 

5-FU is an antimetabolite drug, widely used for the treatment of breast cancer, 

colorectal cancer and head/neck cancers [249]. It is most effective for the treatment 

of colorectal cancers, specifically when used in combination with other 

chemotherapeutic agents such as irinotecan and oxaliplatin [250, 251]. 5-FU is an 

analog of uracil and therefore is taken up by the cells via facilitated transport, where 

it is converted into its active metabolites (fluorodeoxyuridine monophosphate, 
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fluorodeoxyuridine triphosphate and fluorouridine triphosphate), which disrupt RNA 

synthesis and inhibit thymidylate synthase activity [251]. However, similar to other 

chemotherapeutic agents limitations include adverse side effects and 

chemoresistance. 

 

4.1.2.4 Cisplatin 

Cisplatin is a well-known chemotherapeutic drug clinically proven to be effective 

against multiple types of cancers including breast, testicular, ovarian, prostate, head 

and neck, bladder gastric cancers and leukaemia [252-254]. It is also used for 

recurrent childhood brain tumours [255]. It exerts its effects by targeting DNA repair 

mechanisms leading to DNA damage and apoptosis in cancer cells. However, like 

other chemotherapeutic agents, cisplatin’s limitations include high levels of toxicity 

and in some cases resistance. To overcome these problems cisplatin is mostly used 

in combination therapies and efforts have been made to synthesize similar 

compounds that would be less toxic and more effective [253]. 

 

All three chemotherapeutic agents mentioned above, have been and/or are currently 

tested as chemotherapeutic agents for the treatment of ACC alone or as part of a 

combination regimen, in clinical trials. 

 

4.1.3 Cancer and cancer stem cells 

Over the years and with the aid of cancer research and advanced molecular 

techniques (whole genome sequencing and RNA sequencing) we have gained 

valuable insight into the development of different types of cancers [256, 257]. A 

cancer appears when a significant amount of mutations occurs, leading to aberrant 

cell growth and function. Research aimed at dissecting the key mutations that drive 

cancer development, has revealed a number of mutations that are most commonly 

associated with a particular type of cancer (eg. CTNNB1, TP53 and ZNRF3 in ACC 

[199]) or known to increase the risk of cancer (eg. BRCA1 and BRCA2 in breast cancer). 

However, due to the heterogenic nature of cancer, it has proven difficult to pinpoint 
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or distinguish the specific driving mutations that have an impact on cancer 

development and progression.  

 

Tumour initiation, progression and maintenance are very complex and diverse 

processes and can vary between individuals. This variability results in cancer 

treatment outcome, recurrence rates and survival being different between patients 

with the same type and stage of cancer. It is important to note that despite clinical 

advances in cancer treatments, a number of patients still fails to respond to therapy, 

leading to disease progression or recurrence and overall decreased survival [258, 

259]. The fact that cancer is not a homogeneous mixture but rather composed of a 

heterogeneous combination of distinct subclones arising through branching 

evolution, is an important aspect to consider when looking at tumour resistance and 

recurrence [260, 261]. In fact when individual cell clones, taken from a metastatic 

melanoma mouse model, were injected into syngeneic hosts, varying degrees of 

metastasis were observed, with only a fraction of the cells being able to form a 

metastasis in the hosts [262]. This shows the great functional variability that exists 

between subclones of the same tumour, supporting their heterogenic nature.  In 

addition to tumour heterogeneity, the tumour microenvironment (TME) plays an 

indispensable role in the development and maintenance of cancer as well as drug 

resistance. Strong evidence also suggests that non-genetic determinants, including 

developmental pathways and epigenetic modifications can also contribute to cancer 

heterogeneity [263-265].  

 

4.1.4 Cancer stem cell models and chemotherapy 

Cancer stem cells arise from normal stem cells whose function becomes impaired, 

resulting in these cells to divide and differentiate uncontrollably leading to tumour 

formation. For this to occur it is thought that stem cells need to undergo at least two 

of the following changes: (i) Stem cell microenvironment disturbance, (ii) mutations 

in genes that control cell metabolism, cell cycle, key signalling pathways (e.g., Wnt, 

Shh) (iii) amplification of cell populations that have acquired advantageous altered 

molecular phenotypes which give rise to tumour heterogeneity and metastasis[266] 
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(Klonisch et al., 2008). Recent evidence suggests that high mutation rates in cancer 

stem cells contribute to tumour heterogeneity and represent the main cell 

population responsible for chemotherapeutic resistance, leading to therapy failure, 

cancer recurrence and metastasis in patients[267-269]. 

 

Advancements in identifying key stem cell populations within the tumour is key to 

understanding how chemoresistance, tumour development and tumour recurrence 

occurs in patients. There are currently two standing stem cell model hypotheses; the 

hierarchical and the dynamic CSC model. The initial hypothesis of the hierarchical 

cancer stem cell model, states that within a tumour exists a small population of cells 

(termed cancer stem cells) that has the ability to self-renew and differentiate into 

mature tumour cells. In this model CSCs follow the function of normal stem cells in 

normal tissues, meaning that they both display multi-lineage potential and also have 

the ability to self-renew (Figure 4.1) [267]. Alternatively the dynamic stem cell model 

suggests that the interchange of cancer stem cells to tumour cells can occur both 

ways. This means that the tumour microenvironment can influence both cancer stem 

cells to become mature tumour cells, as well as tumour cells to dedifferentiate to 

cancer stem cells (Figure 4.1) [270-273].  
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Figure 4.1 – Cancer stem cell models. Schematic diagram showing the heterogenic 

nature of cancer tissue (top) and the two main cancer stem cell models. The original 

hierarchical CSC model (left) shows that CSCs differentiate into progenitor cells which 

then give rise to terminally differentiated cells in a unidirectional fashion. The 

dynamic CSC model (right) shows that CSCs differentiate to progenitor cells and then 

differentiated tumour cells. However, in this model differentiated tumour cells can 

de-differentiate into progenitor and then stem cells, after receiving specific signals 

from the microenvironment. In the latter model, differentiation and de-

differentiation of cells is highly dependent on tumour microenvironment.   

 
 
The hierarchical stem cell model is widely accepted, and multiple studies confirm the 

existence and isolation of such populations within different types of tumours[266, 
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274-277]. These subpopulations of cancer stem cells have a tumourigenic capacity in 

vivo in mice and in vitro and exhibit a high expression of stem/progenitor cell 

genes/markers such as β-catenin, NOTCH, OCT3/4 AND SHH [266, 267, 278]. For 

example in pancreatic cancer, cells expressing surface markers CD44+, CD24+ and 

epithelial specific antigen, have been shown to have tumourigenic abilities in vivo in 

contrast to the remaining cancer cells. In human hepatocellular carcinoma and 

colorectal cancer CD133+ cells, but not CD133- cells have been shown to self-renew 

and differentiate and in the case of colorectal cancer generate tumours when 

injected in mice in vivo, thus representing cancer stem cells[274, 278]. These are just 

some examples of stem cells identified and isolated in cancers and additional 

researchers have identified markers expressed solely in stem cell populations[266]. 

 

4.1.5 Hypothesis 

In humans, DLK1 plays a role in maintaining pre-adipocytes in their undifferentiated 

state and DLK1 expression levels are also implicated in tumorigenesis in other human 

tissues (See Section 1.5). Combined with our finding that clustered DLK1 expression 

in the cortex of human adrenal glands correlates with second-peak incidence of ACC 

(See Chapter 3), we hypothesize that DLK1 could potentially be involved in the 

formation and/or maintenance of ACCs.  

 

4.1.6 Aims 

1. Determine the expression levels of DLK1 in tissue samples of patients with ACCs, 

ACAs, and normal adrenal glands.   

2. Explore whether DLK1 could be involved in the formation and/or maintenance of 

ACCs by evaluating whether DLK1+ cells display characteristics similar to cancer stem 

cells in vitro.   
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4.2 DLK1 expression in human adrenocortical carcinoma 

To address the first aim of this chapter, we collected ACC samples from biobanks, 

details of which can be found in Table 4.1. Following DLK1 immunostaining on the 

samples, we observed a heterogeneous pattern of DLK1 expression (Figure 4.2). 

Unlike in normal tissues where DLK1 expression pattern was subcapsular continuous 

and/or patchy (see chapter 3.3.2); in ACCs there was no particular pattern within the 

samples. It is worth stating at this point, that the normal zonation and cell 

organisation normally observed in physiologically normal adrenal cortices was 

generally absent or difficult to observe in ACCs.  As can be seen in Figure 4.2 some of 

the samples show subcapsular expression of DLK1 (Figure 4.2b-d), while in others 

expression occurs throughout the tissue (Figure 4.2a,e-i). In addition, unlike in 

normal adrenal glands, (see Chapter 3.3.2) in ACCs there didn’t seem to be any 

correlation of DLK1 expression pattern with age, in the samples analysed (Figure 4.2).  

 

Figure 4.2 – DLK1 is highly expressed in adrenal glands of ACC patients. Results 

following immunostaining for DLK1 on human ACC samples from patients aged 1-70 

years old, showing a heterogeneous expression of DLK1 in all samples analysed. n=9. 

Scale bars: 5000μm. 

36 y.o 
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Table 4.1 – List of human adrenocortical carcinoma samples collected for analysis 

Sample name Gender Age  Sample type Diagnosis/Surgery Biobank 

A2-C15016_014 Female 46 Carinoma Adrenocortical carcinoma Biobanc 

A2-C15016_012 Female 26 Carinoma Adrenocortical carcinoma Biobanc 

A2-C15016_013 Male 33 Carinoma Adrenocortical carcinoma Biobanc 

A2-C15016_011 Female 51 Carinoma Adrenocortical carcinoma Biobanc 

33160763 Female 36 Carinoma Adrenocortical carcinoma N/A 

33150007 Male 1 Carinoma Adrenocortical carcinoma N/A 

Sample 1 Female 70 Carinoma Adrenocortical carcinoma IRBleida 

Sample 2 Male 38 Carinoma Adrenocortical carcinoma IRBleida 

Sample 3 Male 45 Carinoma Adrenocortical carcinoma IRBleida 
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In order to ensure that this observation was specific to carcinoma tissue, we collected 

adrenocortical adenoma (ACA) samples from biobanks (details shown in Table 4.2). 

Following DLK1 immunostaining of the adenoma tissues we observed minimal DLK1 

staining (Figure 4.3), similar to or less than what we observed in normal human 

adrenals.  

 
 
Figure 4.3 – DLK1 expression is minimal in adrenal glands from patients with ACA. 

Results following immunostaining for DLK1 on human ACA samples from patients 

aged 24-75 years old, showing low levels of DLK1 expression in all samples analysed. 

Images shown are representative of all samples analysed. n=10. Scale bars: 5000μm 

(a-d) and 500μm (a’,b’).  
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Table 4.2 List of human adrenocortical adenoma samples collected for analysis 

Sample name Gender Age  Sample type Diagnosis/Surgery Biobank 

A2-C15016_017 Female 59 Aldosterone adenoma  Cortical adenoma  Biobanc 

A2-C15016_018 Female  75 Non-secreting adenoma Cortical adenoma  Biobanc 

A2-C15016_019 Female 67 Aldosterone adenoma Cortical adenoma  Biobanc 

A2-C15016_024 Male 46 Aldosterone adenoma Cortical adenoma  Biobanc 

A2-C15016_026 Female 48 Aldosterone adenoma Cortical adenoma  Biobanc 

A2-C15016_030 Female 24 Aldosterone adenoma Cortical adenoma  Biobanc 

A2-C15016_031 Female 42 Aldosterone adenoma Cortical adenoma  Biobanc 

A2-C15016_034 Male 67 Adenoma Cortical adenoma  Biobanc 

A2-C15016_035 Female 55 Aldosterone adenoma Cortical adenoma  Biobanc 

A2-C15016_037 Female  44 Aldosterone adenoma Cortical adenoma  Biobanc 
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Finally, we performed quantitative analysis of DLK1 staining where we measured the 

area of DLK1 staining as a percentage of the total adrenal cortex area for all 

conditions (normal adrenal glands, ACA and ACC) as illustrated in Figure 4.4. The 

analysis showed a significant overexpression of DLK1 in ACC samples as compared to 

both normal and ACA tissue. No significant difference in DLK1 expression was 

observed in ACA as compared to normal adrenal glands.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

Figure 4.4 – DLK1 is overexpressed in ACCs. Results following quantitative 

analysis to measure DLK1+ area as a percentage of total adrenal cortex area 

in normal (n=23), ACA (n=10) and ACC (n=9) samples showed a significant 

overexpression of DLK1 in ACCs as compared to both normal and ACA. Error 

bars represent standard error of the mean. Statistical analysis was 

performed using one-way ANOVA and statistical significance is denoted as 

***(p<0.001) and ****(p<0.0001). 
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4.3 Do DLK1+ cells possess cancer stem cell-like characteristics? 

DLK1 is not only expressed in adrenal glands of patients with ACC, but is also 

expressed at a higher degree than both normal and adenoma tissue. Therefore, it is 

possible that DLK1 or DLK1+ cells might play a role in carcinoma formation and/or 

maintenance. To study the role of DLK1 in ACCs further, we used the H295R cell line, 

which is a human adrenocortical carcinoma cell line. 

 

First, we showed that immunofluorescence analysis of DLK1 expression in H295R 

showed small clusters of positive cells, representing roughly 3-5% of the total cell 

population. In addition, DLK1+ cells were always arranged in clusters, surrounded by 

a majority of DLK1- cells, as can be seen in Figure 4.5.  

 

 

Figure 4.5 – DLK1 is expressed in the H295R cell line. Representative image taken 

after immunostaining of H295R cells for DLK1, showing that only small population of 

cells expresses DLK1. n=3. Scale bar=100μm.  
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Given DLK1’s potential role in ACCs, and its known function in preventing cell 

differentiation in pre-adipocytes, we hypothesised that DLK1+ cells could act as 

cancer stem cells in ACCs.  

 

Spheroids are described as unique 3D culture systems developed to more accurately 

mimic tumour microenvironment in vitro, as compared to 2D culture, greatly aiding 

cancer research [279]. Spheroids are a commonly used model to study cancer 

development and progression, with several studies showing that spheroids also 

exhibit an increased expression of specific cancer cell biomarkers (depending on cell 

origin), higher proportion of cancer stem cells, and higher survival rates following 

chemotherapeutic treatment. These studies have also highlighted spheroids as an 

accepted model for studying cancer stem cells in vitro [280, 281, 282, 283, 284].  

 

We investigated whether the percentage of DLK1+ cells changed when H295R cells 

were cultured as spheroids. We established spheroid colonies from H295R cells, as 

shown in Figure 4.6a. Two-week old spheroids expressed DLK1 widely as observed 

with immunofluorescence (Figure 4.6b), in contrast to the adherent (2D) state (Figure 

4.5). To quantify the expression of plasma membrane DLK1, flow cytometry analysis 

for DLK1, showed a significant increase in the percentage of DLK1+ cells in the 

spheroid state as compared to adherent (2D) state (Figure 4.6c,d) from 7.5% (2D) to 

35% (spheroids), confirming immunofluorescent data. 
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The number of cells expressing DLK1 was found to be increased in the spheroid 

model, suggesting that DLK1 could be a marker of cancer stem cells. To further 

determine whether DLK1+ cells possessed stem cell-like characteristics, we assessed 

whether DLK1+ cells express other known stem cell markers. To do this we generated 

H295R cells over-expressing DLK1 (H295R-DLK1) through lentiviral infection. Control 

cells were infected with an empty vector (H295R-Control) (Appendix IV). H295R-DLK1 

significantly over-expressed DLK1 (Figure 4.7.a), confirming success of infection. We 

performed a gene expression analysis to evaluate expression levels of NANOG, 

CTNNB1, DAX1 and CYP17 in DLK1+ against DLK1- cells. NANOG is a known embryonic 

Figure 4.6 – DLK1 is enriched in a cancer stem cell model. H295R cells were cultured 

in suspension in low adherent plates for 2 weeks to form spheroids (a). Results 

following immunofluorescence analysis on cultured spheroids show an increased 

DLK1 expression (b). Flow cytometry analysis on H295R adherent (2D) culture and 

H295R spheroid culture shows significant upregulation of DLK1 in the latter (c, d). 

Error bars represent standard error of the mean. n=3. Statistical analysis was 

performed using unpaired t-test with statistical significance denoted as 

***(p<0.001). 
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stem cell marker and in the adult, is expressed in the skin, lung and testis. 

Additionally, it was also found to be expressed in human endometrial 

adrenocarcinoma samples at the protein level[285]. CTNNB1 is expressed in all 

tissues, including the adrenal gland and encodes the β-catenin gene, which is 

responsible for stem cell maintenance and cell-renewal.  Finally, DAX1 (NR0B1) is 

expressed throughout the hypothalamic pituitary gonadal axis, mainly in the adrenal 

glands and testis, and has a pivotal role in the normal development and function of 

steroidogenic tissues[286]. 

     

Following gene expression analysis we showed that stem cell/progenitor markers 

NANOG (Figure 4.7b) and CTNNB1 (Figure 4.7c) were significantly upregulated in 

H295R-DLK1 by approximately 15-fold and 30-fold, respectively, as compared to 

H295R-Control. Expression of DAX1 (another potential specific marker of 

adrenocortical progenitor cells), was increased by 5-fold in H295R-DLK1 compared to 

H295R-Control (Figure 4.7d), while expression of CYP17 (an adrenal differentiation 

marker) was halved in H295R-DLK1 as compared to H295R-Control (Figure 4.7e). This 

shows that DLK1+ cells have an increased expression of stem cell markers and a 

decreased expression of differentiation markers, compared to the remaining H295R 

population and could possibly represent cancer stem cells. We could have also 

performed a protein expression analysis of stem cell and differentiation markers in 

vivo in ACC patient samples with respect to DLK1 staining, to confirm results. 

However as opposed to the gene expression analysis, this approach was not possible 

due to the limited availability of suitable, functioning antibodies.  
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Figure 4.7 - H295R cells overexpressing DLK1 exhibit increased gene expression of 

stem cell markers. Results following RT-qPCR analysis of H295R-Control cells and 

H295R-DLK1 for SC (b-d) and differentiation markers (e) show that SC markers are 

upregulated in the H295R-DLK1 cell line while CYP17 (e) is downregulated as 

compared to control cell line. Error bars represent standard error of the mean. n=3. 

Statistical analysis was performed using unpaired t-test with statistical significance 

denoted as *(p<0.05). 

NANOG mRNA Expression β-CATENIN mRNA Expression 

CYP17 mRNA Expression DAX1 mRNA Expression 

DLK1 mRNA Expression 
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Additionally, we assessed whether DLK1+ cells possess any stem cell characteristics, 

such as high proliferation rates and clonogenicity. To do this we collected H295R cells 

and FAC-sorted them based on DLK1 expression. Details of the FAC-sorting, including 

gates used and percentages of cells collected are shown in Figure 4.8 below. 

 

 
Figure 4.8 – Fluorescence activated cell sorter settings and purity controls. Figure 

shows the settings and gates assigned to sort H295R cells into DLK1+ and DLK1- (a) 

as well as quality controls to check purity of DLK1- (b) and DLK1+ (c) cells collected 

after sorting. 

 
 
Following FAC-sorting of the H295R DLK1+ and DLK1- cells, collected cells were plated 

for the colony formation and cell proliferation assays. Colony formation assays 

showed that DLK1+ cells had a significantly increased clonogenic capacity as compare 

to DLK1- cells (Figure 4.9a). Following 3 weeks of culture DLK1+ cells formed an 

average of 500 colonies from single cells while DLK1-cells an average of 
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approximately 380 colonies. In addition, we showed that DLK1+ cells had a higher 

proliferation rate, which was evident on the 4th to 5th day of culture when compared 

to DLK1-. The difference in proliferation rate was clearer at later time points and in 

fact was significantly higher in DLK1+ when compared to DLK1- after 6 and 7 days of 

culture (Figure 4.9c). Based on our observations we can conclude that DLK1+ cells 

show an increased expression of stem cell genes and exhibit increased clonogenic 

and proliferative capacity compared to DLK1- cells. These results suggest that DLK1+ 

cells could possess stem cell-like characteristics, highlighting DLK1 as a potential 

future marker of cancer stem cells in ACCs. However, additional studies would be 

required to validate this hypothesis.  
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Figure 4.9 – DLK1+ H295R sorted cells display increased proliferation and colony formation compared to DLK1- H295R sorted cells. Results 

following colony formation assays (a) and cell proliferation assays(c) on DLK1+ and DLK1- cells depicting differences between the two populations 

with the former being more proliferative and having a significantly higher capacity of forming colonies from single cells. For the cell proliferation 

assays a standard curve(b) was constructed by plating known number of cells and measuring their OD values. These values were then plotted on 

the graph b shown above to form a standard curve from which we derived the approximate cell numbers corresponding to the OD values 

measured in the cell proliferation assays. Error bars represent standard error of the mean. For each assay n=3 Statistical analysis was performed 

using unpaired t-test (a) and a two way ANOVA (c), with statistical significance denoted as *(p<0.05), ***(p<0.001) and ****(p<0.0001). 
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4.4 DLK1+ cells are less responsive to chemotherapeutic treatments in vitro 

Another key characteristic of cancer stem cells is their inherent resistance to 

common chemotherapeutic drugs in some cases. Chemotherapeutic resistance is 

described as the ability of cancer cells to withstand the chemotherapeutic effects 

including apoptosis or growth inhibition [287, 288]. Here, we investigated whether 

there was any relationship between DLK1 expression and chemoresistance in H295R 

cells. This could highlight DLK1 as a possible prognostic marker of ACCs and also 

suggest DLK1+ cells could potentially be isolated to further study chemoresistance in 

ACCs, aiding drug development.  

 

Initially we treated H295R cells with increasing concentrations of mitotane, 

doxorubicin, 5-FU and cisplatin to derive the LD50 of each drug as shown in Figure 

4.10 and 4.11. Mitotane and doxorubicin showed an LD50 of 29μM (Figure 4.10a) and 

3.7μM (Figure 4.10c), respectively. The remaining two drugs were not as effective 

and an LD50 could not be calculated (Figure 4.11a,c). Comparing individual drug 

concentrations of mitotane we observed that with the lower concentrations (5-20 

μM) there was no significant difference in cell viability compared to vehicle, however 

significant decrease in cell viability was observed at higher mitotane concentrations 

(Figure 4.10b). In the case of doxorubicin, we observed a significant decrease in cell 

viability even at the lowest concentrations used, with the exception of 0.5μM 

compared to vehicle treatment (Figure 4.10d). 

 

 

 

 

 

 

 

 

 

 



 145 

 

 

 

 

 

Figure 4.10 – H295R cell line response to 72-hour chemotherapeutic treatment 

with mitotane or doxorubicin. Figure showing results following 

chemotherapeutic treatment of H295R with increasing concentrations of either 

mitotane (a,b) or doxorubicin (c,d). Cell viability was measured after 72 hours and 

LD50 values where calculated; LD50 =29.0μm for Mitotane (a) and an LD50=3.7μm 

for doxorubicin. Graphs (b) and (d) show % cell survival normalized to either 

vehicle for each concentration of drug used. Error bars represent standard error 

of the mean. For each drug n=3. Statistical analysis was performed using a one 

way ANOVA with significant difference being denoted as * (p<0.05), ** (p<0.01) 

and ****(p<0.0001).  
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As shown in Figure 4.11a even at the highest concentration of 140 μM of 5-FU, more 

than 50% of cells were still viable. Despite the fact that LD50 was not reached, we still 

observed a significant decrease in cell viability in all treatment groups as compared 

to vehicle (Figure 4.11b). In the case of cisplatin H295R cells appeared to be non-

responsive (Figure 4.11c), therefore we did not include this drug in future 

experiments. 

Figure 4.11 – H295R cell line response to 72-hour chemotherapeutic treatment with 

5-Fluorouracil or cisplatin. Figure showing results following chemotherapeutic 

treatment of H295R with increasing concentrations of either 5-FU (a,b) or cisplatin 

(c,d). Cell viability was measured after 72 hours, however LD50 values could not be 

calculated due to lack of sufficient cell death even with the highest concentrations of 

5-FU (a) and cisplatin (c). Graphs (b) and (d) show % cell survival normalized to vehicle 

for each concentration of drug used. Error bars represent standard error of the mean. 
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For each drug n=3. Statistical analysis was performed using a one way ANOVA with 

significant difference being denoted as ** (p<0.01) and ****(p<0.0001). 

 
After establishing the LD50 values we investigated whether surviving cells were 

enriched in DLK1 expression. We treated cells with mitotane and doxorubicin for 24 

hours (short term) and 1 week (long term), in addition to 5-FU treatment for 1 week 

only. Following treatment, we performed flow cytometry analysis to evaluate the 

number of viable cells that were expressing DLK1 (DLK1+ cells). Following mitotane 

treatment we observed no difference in the % of cells that were DLK1+ after 24 hours, 

but we did observe a 5-fold increase in the % DLK1+ cells following 1-week mitotane 

treatment as compared to vehicle control (Figure 4.12). This increase however was 

not statistically significant. In the case of doxorubicin there was a significant 6-fold 

and 40-fold increase in the % of DLK1+ cells compared to vehicle following short and 

long-term treatment, respectively (Figure 4.12). Finally, long term treatment with 5-

FU also resulted in a significant increase in the % of DLK1+ cells by approximately 20-

times compared to the vehicle control (Figure 4.12).  

 

 

 
 

 

 

 

 

 

 

 

Figure 4.12 – Percentage of DLK1+ cells increases following chemotherapeutic 

treatment with Mitotane (M), Doxorubicin (D) and 5-Fluorouracil (5-FU). Flow 

cytometry results following short term (24 Hours) and/or long term (1 week) 

chemotherapeutic treatment with 30μM (24 hours) and 15μM (1 week) mitotane, 

2μM (24 Hours) and 1μM (1 week) doxorubicin and 40μM (1 week) 5-FU, showed an 
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increase in the number of DLK1+ cells in all treatment groups as compared to the 

vehicle control. Error bars represent standard error of the mean. For each group n=3. 

IC=Isotype control; V=Vehicle. Statistical analysis was performed using one way 

ANOVA to compare treatment groups to control group and significance is denoted as 

**(p<0.01) and ****(p<0.0001). 

 
 
The increase in the percentage of DLK1+ cells following chemotherapeutic treatment 

suggests that cells expressing DLK1 are more likely to survive chemotherapeutic 

treatment, evading their cytotoxic effects. In order to further study the effect of 

chemotherapy on DLK1+/DLK1- cells, we FAC-sorted DLK1+ and DLK1- H295R cells, 

as described previously in Figure 4.8. Collected cells were treated with increasing 

concentrations of mitotane for 24, 48 and 72 hours. Following treatment, cell viability 

of the cells was measured, and a cell-survival curve was constructed. We observed 

that in all 3 times points the LD50 values of DLK1+ cells were always significantly 

higher than those of DLK1- cells (Figure 4.13), meaning that a higher concentration 

of mitotane was required to kill 50% of DLK1+ cells compared to DLK1- cells. For 

example, following 24 hours of treatment DLK1+ cells showed an LD50 value of 

30.76μM, while DLK1- cells had a significantly lower LD50 value of 24.47μM. 

 

Finally, comparing cell survival of DLK1+ and DLK1- cells for individual concentrations 

of mitotane, we observed that there was a significant difference in cell survival 

between the two at lower concentrations of mitotane (5,10,20μM) after 24-hour 

treatment (Figure 4.14a).   No significant difference was observed at higher mitotane 

concentrations. In addition, the significant difference in cell survival between DLK1+ 

and DLK1- cells seems to not only be concentration dependent but also time 

dependent. As can be seen in Figure 4.14b and 4.14c, which show cell survival after 

48 and 72 hours treatment, there doesn’t seem to be a significant difference in cell 

survival for mitotane concentrations of 10μM and 20μΜ.   However, significant 

increase in DLK1+ cell survival following 5μM mitotane compared to DLK1- remains 

for all time points analysed (Figure 4.14). This suggests that DLK1+ cells are less 
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sensitive to chemotherapy compared to DLK1- cells, resulting in an increased ability 

to survive following treatment.  

  

Figure 4.13 – DLK1+ H295R sorted cells display increased resistance to mitotane 

compared DLK1- sorted H295R cells. Figure showing comparative results following 

chemotherapeutic treatment of H295R FAC-sorted cells (DLK1+ Vs DLK1-) with 

increasing concentrations of mitotane. Cell viability was measured after 24 (a), 48 

(c) and 72 (e) hours and LD50 values where calculated as shown in the respective 

graphs. Figures b,d and f display the LD50 value of each cell population (DLK1+ and 

DLK1-) for each time period and show a significant increase in the LD50 values for 

DLK1+ cells, as compared to DLK1- cells. Error bars represent standard error of the 

mean. For each time-point n=3. Statistical analysis was performed using an unpaired 

t-test and significance is denoted as *(p<0.05) and **(p<0.01). 

 

c d 
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Figure 4.14 – DLK1+ H295R sorted cells show partial resistance to mitotane in a time and dose dependent fashion . Results following mitotane 

treatment of DLK1+ and DLK1- cells at 24 (a), 48(b) and 72(c) hours of treatment, show significantly increased cell survival of DLK1+ at lower 

mitotane concentrations as compared to DLK1- cells. Error bars represent standard error of the mean. For each time point n=3. Statistical analysis 

was performed using a two-way ANOVA with additional multiple comparisons tests. Statistical significance is denoted as **(p<0.01) and 

***(p<0.001). 
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4.5 Discussion 

Following the correlation of peak incidence of DCC occurrence and the second peak 

incidence of ACCs in humans at the age of 40-50 years old, we have now looked at 

the association between DLK1 expression and ACCs. In ACC sample tissues from 

human patients, expression pattern of DLK1 was heterogeneous, sometimes being 

clustered throughout the adrenal cortex and other times being expressed 

subcapsularly in a continuous manner. However, there was no observable pattern of 

DLK1 expression correlating to age or gender in the ACC samples analysed (unlike 

previously observed in normal adrenals). It has been demonstrated that in specific 

cancers like hepatoblastomas or gastrointestinal stromal tumours, DLK1 expression 

levels are associated with the disease outcome, making DLK1 a prognostic marker for 

those types of cancers [289, 290]. However, due to the lack of pre and post-operative 

patient details or pathological and/or histological reports of the tumour tissue, we 

were unable to study any potential correlation with disease outcome in the ACC 

samples. 

 

Overall, DLK1 expression was significantly higher in ACC tissue as compared to 

control and ACA tissues, indicating that DLK1 expression level increase is specific to 

carcinoma only. This observation suggests that DLK1 could serve as a potential 

biomarker of ACC. However, to validate this hypothesis, more human ACC samples 

and patient histories would need to be gathered and analysed. Moreover, it would 

be valuable to look into the correlation of DCCs and ACC, and establish whether there 

is indeed a functional link between the two. We could investigate this by analysing 

the expression pattern of DLK1 in a greater number of samples, and performing a 

mutational analysis (for common ACC mutations) in DCCs and adjacent tissue in 

normal samples. 

 

When culturing the H295R cells in a 3D environment to create spheroids, these 

spheroids were found to be enriched in DLK1+ cells, compared to adherent H295R 

cells. As spheroids are commonly used as a cancer stem cell model, we postulate that 

DLK1 could potentially be expressed in cancer stem cells in ACCs. Furthermore, DLK1 
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overexpressing/DLK1+ H295R cells showed increased expression of stem cell markers 

compared to DLK1 control cells, as well as higher clonogenic and proliferation 

abilities in vitro. Interestingly, DLK1 has been shown to be a marker of cells with 

cancer stem cell properties in different tumours, such as hepatocellular carcinoma 

and neuroblastoma, thus highlighting a potential role for DLK1 in tumour initiation 

and progression [291]. 

 

Cancer stem cells are also thought to be chemo-resistant, with the ability to evade 

the effects of chemotherapeutic agents. Therefore, we performed chemotherapeutic 

drug treatment to evaluate the response of H295R cells. Focusing on mitotane (gold 

standard of ACC treatment) and doxorubicin treatment, as these were the two drugs 

that H295R cells responded to, we showed that surviving cells were enriched in 

DLK1+ cells with % of DLK1+ cells increasing from 0.7% in control/ vehicle to 3.4% 

and 28.6% in mitotane- and doxorubicin- treated cells, respectively. This observation 

is further supported by cell survival curves following mitotane treatment of H295R 

DLK1+ and DLK1- cells for 24, 48 and 72 hours. We showed that LD50 values of DLK1+ 

were significantly higher compared to DLK1-, with actual values being 30.76μM 

(24hours), 18.9μM (48 hours), 15.06μM (72 hours) for DLK1+ and 24.47μM (24 hours), 

13.24μM (48 hours), 9.94μM (72 hours) for DLK1-. This indicates that a higher 

concentration of mitotane is required to kill 50% of H295R DLK1+ cells as opposed to 

DLK1- cells, suggesting that DLK1+ cells are more resistant/less responsive to 

chemotherapy.  

 

In this chapter we have shown that a population of DLK1-expressing cells exists in 

ACCs, and DLK1+ cells from a cancer cell line exhibit increased stem cell gene 

expression, higher clonogenicity, increased proliferative abilities, and reduced 

sensitivity to chemotherapy in vitro. These characteristics are in line with stem cell-

like properties, and suggest that DLK1+ cells might represent cancer stem cells in 

ACCs. However, further studies would be required to validate this hypothesis, such 

as DLK1 knockout studies demonstrating a causative link between DLK1 expression 

and chemoresistance. 
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Chapter 5: Is Dlk1 involved in mouse adrenocortical regeneration and 
adrenocortical tumours? 

5.1 Introduction 

5.1.1 Mouse models of adrenocortical tumours 

Mouse models have been extensively used in research to recapitulate human body 

functions and pathogenesis in order to aid the understanding of how different organ 

systems work and unveil the molecular mechanisms involved in their development 

and dysregulation, leading to normal function and tumourigenesis, respectively.  

 

Multiple studies have indicated that there are several mouse models that can 

generate adrenocortical tumours and thus can be used to explore the molecular and 

cellular mechanisms leading to the development of these tumours. These models can 

occur naturally (either rare spontaneous forms or gonadectomy-induced) in certain 

mouse strains or by developing genetically engineered mice[292]. In susceptible 

mouse strains (DBA/2J, CE/J, C3H, NU/J, BALB/c and B6D2F1) prepubertal 

gonadectomy (GDX) has been shown to induce ACTs, which are hypothesized to arise 

from progenitor cell compartments within the adrenal glands[292-294]. However, 

not all strains are susceptible to GDX, with C57BL/6 being one of them. In GDX-

sensitive strains or genetically modified GDX models the signalling between the 

gonads and the hypothalamic-pituitary axis is disrupted, resulting in an increase in 

gonadotropin hormones (LH and FSH), a decrease in inhibin production and adrenal 

gland activation of gonadal specific transcription factors (Gata4)[294-296]. 

 

Combined GDX with genetic manipulation of inhibin-α (Inha), which is either whole 

body Inha KO or transgenic expression of oncogenic SV40 from the Inha promoter 

(Inha/TAg), can lead to adrenal tumour formation[297](Table 5.1). Inhibin is a 

member of the TGFβ superfamily of cell signaling proteins, responsible for cell 

growth, differentiation and apoptosis. Loss of adrenal inhibin results in constitutive 

activation of downstream TGFβ effector proteins leading to tumourigenesis[292]. 

Different variations similar to the Inhα KO mouse model have been developed since, 

including Inhibin/TAg (Inhα /TAg) and Inhα/TAg; LHβ-CTP transgenic mice [298, 299], 
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which develop adrenocortical tumours, as well as Inhα/TAg; hpg (also lacking the 

GnRH receptor) which do not develop any tumours following GDX[300] (Table 5.1). 

 

The 21-hydroxylase GATA4 (21-OH-Gata4) mouse model is a transgenic model with 

ectopic Gata4 expression in the ZG, driven by 21-hydroxylase, and represents an 

additional ACT model. The GATA family of transcription factors, including GATA 4 and 

GATA 6, are important in the development, cellular reprogramming and 

differentiation pathways; with GATA 4 and GATA 6 expression driving gonadal and 

adrenal differentiation, respectively [292, 301]. In this ACT mouse model, adrenal 

neoplasia occurs both in intact and GDX mice[302](Table 5.1). 

 

Table 5.1 – GDX induced ACT mouse models 

Mouse model Gene Promoter Phenotype 

Inhα KO Inhibin-α  Whole-

body 

Intact: Ovarian & testicular 

tumours 

GDX: Adrenal tumours 

Inhα/TAg SV40  6kb 

Inhibin-α 

Intact: Granulosa & Leydic tumours 

GDX: Adrenocortical tumours 

Inhα/Tag;LHβ-

CTP 

SV40 

 LH-β & hCG-β 

chimeric 

protein 

6kb 

Inhibin-α 

LH-α 

Intact: Granulosa & ACT in females. 

Leydic cell tumours in males. 

GDX: ACAs  

Inhα/Tag;hpg SV40 

GnRH 

6kb 

Inhibin-α 

Intact: No tumours 

GDX: No tumours 

21-OH-Gata4 Gata4 6.4kb 

Cyp21a1 

Intact: Adrenal neoplasia 

GDX: Adrenal neoplasia 

 

5.1.2 Lineage tracing techniques to study progenitor cell compartments in mice 

Lineage tracing tools like the Cre-lox mouse model have been developed whereby 

specific cells of genetically engineered mice can be traced both spatially and 

temporally. The Cre-lox mouse is a genetically engineered mouse with a Cre or a 

tamoxifen-inducible CreERT2 gene incorporated after a cell-specific promoter. For 

the purpose of this project we will be using the Tg(Dlk1-cre/ERT2)26.10Ics 
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(DLK1CreERT2/+) mouse model; meaning that CreERT2 will only be expressed in cell 

types that express Dlk1. CreERT2 is a fusion protein that consists of Cre recombinase 

and a mutant form of the human oestrogen receptor (ERT2). This receptor allows for 

temporal cytoplasmic expression of Cre recombinase, which upon tamoxifen 

administration becomes active and translocates to the nucleus. Without tamoxifen 

administration Cre recombinase is expressed in cells and remains in its inactive state 

in the cytoplasm (Figure 5.1). 

 

The Cre-lox system can be used for lineage tracing when a Cre-lox mouse is crossed 

with a genetically modified mouse that contains a reporter gene, after a stop codon 

that is flanked by loxP sites. For the purpose of this project we will be using the 

DLK1CreERT2/+;RosaTm/Tm, developed by crossing the DLK1CreERT2/+ mouse with the 

B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J ( RosaTm/Tm)(kindly provided by 

Prof. Fiona Watt, King’s College London) to perform lineage tracing of Dlk1+ 

progenitor cells and their progeny over a specific period of time. As shown in Figure 

5.1, once Cre recombinase is activated, it translocates to the nucleus where it binds 

loxP sites and excises the stop codon allowing for the reporter gene to be expressed. 

In this way all cells that express the active Cre, as well as all their progeny from that 

point onward will be expressing the red fluorescent. 
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Figure 5.1 – Inducible Cre-lox system. Schematic diagram illustrating the series of events occurring following tamoxifen injection in Dlk1 

expressing (middle panel) and non-Dlk1 expressing (bottom panel) cells of Dlk1CreERT2/+;RosaTm/Tm mouse.  
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The Gt(ROSA)26Sortm1(CAG-Brainbow2.1)Cle/J (R26R-Confetti) mouse model is a more 

complex version of the Rosa26Tm/Tm, which allows for ubiquitous expression of more 

than one fluorescent protein. When Dlk1CreERT2/+ transgenic mouse is crossed with 

the R26R-Confetti mouse to generate the Dlk1CreERT2/+;R26R-Confetti transgenic 

mouse model (kindly provided by Prof. Fiona Watt, King’s College London), the active 

Cre recombinase can now bind to a number of different loxP sites to perform either 

excision or inversion of the flanked DNA, resulting in a number of different outcomes 

as shown in Figure 5.2. In this case Dlk1+ cells can either express green, blue, red or 

yellow fluorescent protein depending on the type of Cre recombination. The progeny 

of each cell will retain the colour of the parent and the fact that different parent cells 

can express different fluorescent proteins allows for clonal analysis of the cell 

population. 
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Figure 5.2 – R26R-Confetti transgenic mouse model. Schematic diagram showing inversion(1-3) and excision (4,5) recombination events of DNA 

segments flanked by loxP sites following Cre activation resulting in four different outcomes (expression of either RFP, CFP, GFP and YFP). 

Schematic diagram (b) illustrates the events following Cre activation, where Dlk1+ cells can express 1 of 4 colours, resulting in all their progeny 

expressing the same colour as the parent. Over time the number of cells arising from the same parent cell and thus expressing the same FP will 

increase exponentially and allow for clonal analysis of different cell populations. 
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5.1.3 Hypothesis 

We hypothesise that Dlk1+ capsular cells might be involved in adrenocortical 

maintenance in mice, and could potentially lead to the generation of adrenocortical 

tumours. 

 
 

5.1.4 Aims 

1. Evaluate whether Dlk1 expression is localised in the region of adrenocortical 

hyperplasia in mouse models of ACTs, using IHC. 

2. Investigate the involvement of Dlk1+ cells in adrenocortical cell maintenance, 

using the Dlk1CreERT2/+;RosaTm/Tm lineage tracing mouse model. 
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5.2 Dlk1 expression in mouse models of ACT 

Adrenocortical tumorigenesis in mice is thought to begin with hypertrophy of 

capsular cells, generating capsular/subscapular hyperplasia, which over time extends 

into the cortex altering the cytoarchitecture and zonation, and forming tumours. 

Therefore, we aimed to study the expression of Dlk1 in mouse models of ACT. For 

this purpose, we used the DBA and Inha/Tag mouse models (sections were kindly 

provided by Dr. Rahman alongside their controls), both of which are models of ACT 

and exhibit subcapsular hyperplasia (Figure 5.3). Immunohistochemical analysis of 

Dlk1 in control (Wild type) mice resulted in abundant Dlk1 expression in the adrenal 

medulla and capsule (as expected) (Figure 5.3a, a’). In both ACT mouse models, Dlk1 

was again mainly localised in the adrenal medulla and capsule only and not expressed 

in regions of adrenocortical hyperplasia/tumours (Figure 5.3b, b’, c, c’). In the DBA 

model we could observe a few cells within the adrenal hyperplasia, that possibly 

express low levels of Dlk1, however the vast majority of the cells were negative 

(Figure 5.3b’).  

 

These results might initially suggest that Dlk1 cells are not the cells of origin in these 

models of ACTs. However, it might still be possible that cells found in the areas of 

adrenal hyperplasia could derive from Dlk1+ cells in the capsule that migrate in the 

cortex, and act as tumour initiating cells, while losing expression of Dlk1. In order, to 

prove this hypothesis we first sought to investigate the fate of Dlk1 capsular cells in 

normal physiological and pathological conditions to show whether these cells can act 

as adrenocortical precursors. 
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Figure 5.3 – Dlk1 expression in mouse models of adrenocortical tumours. 

Immunohistochemical analysis of Dlk1 expression in normal adrenal of wild type mice 

(a,a’) and two ACT mouse models, the DBA (b,b’) and Inha/Tag (c,c’), exhibiting 

adrenocortical hyperplasia (b,b’,c,c’). Black arrows are showing areas of Dlk1 

expression. n=3, Scale bars 250μm (left panels) and 50μm (right panels).  
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5.3 Lineage tracing of DLK1 capsular cells in the mouse adrenal gland 

To investigate whether capsular Dlk1 cells are able to delaminate from the capsule 

and migrate into the cortex to become steroid-producing cells, we used the 

Dlk1CreERT2/+;RosaTm/Tm to trace these progenitors over time. This model was 

generated at King’s College London in Fiona Watt’s group, by crossing the Tg(Dlk1- 

DLK1CreERT2/+ mouse with the RosaTm/Tm mouse, as shown in Figure 5.4.  
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Mice were injected at P0 and the adrenals were collected when the mice were 2 

years old as shown in Figure 5.5a. We collected the mouse adrenals and performed 

immunostaining for tomato expression to mark all Dlk1+ cells at time of injection as 

well as their progeny.  Following immunohistochemistry, we observed that patches 

of cells in the cortex were positive for the staining (Figure 5.5 c,e,f), confirming that 

Dlk1+ cells originally found in the capsule can indeed give rise to Dlk1- cells in the 

cortex under normal physiological condition. In addition, the adrenal medulla was 

also stained, as expected. However, even after a two-year chase, there were still vast 

areas of the adrenal cortex that were negative, which shows that they did not 

descend from Dlk1+ capsular cells in the adult mouse. This suggests that additional 

stem/progenitor cell populations are responsible for adrenocortical self-renewal.  

 

Additionally we wanted to use the DLK1CreERT2/+;R26R-Confetti transgenic mouse, to 

investigate the migration of individually marked DLK1+ cells in the cortex. As 

explained earlier this mouse model will allow for clonal analysis and tracing of DLK1+ 

cells from the capsule. Following three months chase (performed at KCL), we 

obtained the adrenals of the DLK1CreERT2/+;R26R-Confetti mice for analysis. As shown 

in Figure 5.6 only a few medullary cells were fluorescent. We could not observe any 

fluorescent cells in the capsule or cortex of these adrenals. This result is probably due 

to the low recombination efficiency, as indicated by low number of cells expressing 

the fluorescent proteins in the medulla (region of high Dlk1 expression). However, 

optimization of this technique will provide with a very useful lineage tracing mouse 

model. 

 

 

 

 

Figure 5.4 – Generation of the Dlk1CreERT2/+; RosaTm/Tm transgenic mouse model. 

Schematic diagram depicting the individual mouse models used and crosses 

performed to generate the final transgenic mouse model for the lineage tracing 

experiments of Dlk1+ cells. 
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Figure 5.5 - Lineage tracing of Dlk1+ cells in the mouse adrenal gland. Schematic 

diagram (a) showing a timeline of tamoxifen injection at P21 and mouse adrenal 

collection 2 years later. Results following 2 years of chase show expression of 

tomato marking capsular Dlk1 cells (red arrows) and cortical descendants (black 

arrows) (c,e,f). Negative controls (b,d) show no tomato expression. n=3. Scale bars: 

500Μμ (b,c) and 75μM (d,e,f). M=medulla. 
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Figure 5.6 - DLK1CreERT2/+;R26R-Confetti transgenic mouse model as a promising adrenal progenitor cell tracing tool. Results 

following 3 months chase of the DLK1CreERT2/+;Rosa26-Confetti mouse showing a few cells expressing either GFP/YFP or RFP in the 

adrenal medulla (indicated by white arrows). It is clear from the figure that poor FP expression is due to very low percentage of 

recombination events. n=3. Scale bar:50μM. M=medulla; C=cortex. 
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5.4 Discussion 

In mouse models of ACC, we did not observe Dlk1 expression in the adrenocortical 

hyperplasia region of the cortex (representing pre-cancerous lesions). This suggests 

that the proliferating capsular cells leading to hyperplasia are not Dlk1+. However, 

based on these results we cannot rule out the possibility that capsular Dlk1+ cells 

delaminate into the cortex, lose Dlk1+ expression, and give rise to Dlk1- cells that are 

involved in the adrenal hyperplasia in ACT mouse models. To assess this possibility, 

we could trace Dlk1+ progenitors in ACT mouse model strains that are sensitive to 

gonadectomy-induced adrenal tumours (used here) and crossing them with a 

lineage-tracing mouse model (also used here). This would allow us to trace Dlk1+ 

cells and their progeny following gonadectomy, and investigate whether the capsular 

Dlk1+ cells would be involved in the formation of adrenal hyperplasia.   

 

We could not obtain a lineage tracing ACT mouse model due to project license and 

time restrictions. Therefore, we used the DLK1CreERT2/+;RosaTm/Tm mouse model to 

investigate whether Dlk1+ capsular cells migrate into the cortex. Following 2 years of 

chase, we observed stained cells in the cortex, supporting our hypothesis that Dlk1+ 

cells might give rise to adrenal tumours (even though we could not observe Dlk1 

staining in the hyperplastic region). The importance of this finding is two-fold. Firstly, 

the fact that Dlk1+ cells can give rise to different types of cortical cells suggests that 

it could be possible for the cells that form part of the adrenocortical hyperplasia, to 

have risen from Dlk1+ cells in the capsule. Secondly, we have potentially identified a 

previously unreported capsular stem cell population able to give rise to 

adrenocortical progenitor cells in the mouse. However, it should be noted that these 

experiments are limited to long-term traces only, as these were the only mice 

available when they were obtained from King’s College. While Dlk1 is not expressed 

in the cortex under normal physiological conditions, we could perform additional 

shorter traces (as a negative control) to verify the origin of the cells stained in the 

cortex.  
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The molecular mechanisms underlying adrenal gland regeneration and maintenance 

in the mouse are not fully characterised. Identifying the molecular pathways and key 

elements involved in adrenocortical maintenance will provide a better 

understanding of adrenal gland pathogenesis and tumour formation. The current 

model of adrenocortical regeneration suggests that Gli1+ cells in the capsule receive 

signals from Shh+ cells in the subcapsular region, to delaminate into the capsule and 

become Shh+/Gli1- adrenocortical progenitor cells. These progenitor cells then 

differentiate into ZG and then ZF cells by centripetal unidirectional differentiation to 

repopulate the adrenal cortex upon demand [101, 109] (Figure 5.9). The exact 

mechanism that causes these Dlk1+ cells to delaminate in the cortex is not known, 

yet it would be interesting to evaluate whether capsular Dlk1+ cells represent the 

same population of cells as Gli1+ cells. Unfortunately, we were unable to verify this 

hypothesis due to the lack of reliable antibodies targeting Gli1. 

 

In conclusion, we show that Dlk1+ capsular cells could represent progenitors of 

adrenocortical steroidogenic cells in mice, building on the current model of Gli1+ 

cells being the main stem cell population involved in adrenal regeneration.  
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Chapter 6 – Conclusion and Future work 

6.1 Characterisation of DCCs in human adrenal glands  

Adrenal glands are vital endocrine organs essential for survival. Research providing 

insights into the function and disease of these organs is crucial for understanding 

how adrenal glands work, what mechanisms are involved in adrenal pathogenesis, 

and how to restore adrenal functionality. Adrenocortical carcinoma is one of the 

most serious, yet rare adrenal diseases with an incidence rate of 1-2 per million per 

year, and a median overall survival of 5 years. Given that human adrenal research is 

limited, the aim of this project was two-fold:  

- To better characterise the human subcapsular region of the adrenal cortex, 

focusing on the identification of progenitor cell populations. 

- To evaluate DLK1 expression in the adrenal cortex and potential involvement 

in ACC formation and maintenance. 

 

We have shown here that in contrast to rodents, human adrenocortical zonation is 

more complex. We have confirmed the presence of CYP11B2+ cells in the ZG as either 

clustered APCCs or continuous, as previously described by Nishimoto and colleagues; 

and confirmed the expression of CYP11B1 and CYP17 in the ZF [187, 303] (Figure 6.1). 

Furthermore, we have identified a unique region in the subcapsular region of the 

human adrenal cortex that does not express steroidogenic enzymes CYP11B2 and 

CYP11B1, and hypothesised that this cell population could represent the human ZU.  

 

In an attempt to characterise the ZU, we have shown that aldosterone producing 

cells (CYP11B2+) cells also express DAB2 (Figure 6.1). In addition, we demonstrated 

that VILIP1 is expressed in the subcapsular region, predominantly in cells that do not 

express CYP11B2 (Figure 6.1). We were unable to evaluate the presence of cell 

populations expressing both VILIP1 and DAB2, since both antibodies for VILIP1 and 

DAB2 were from the same host. Given that CYP11B2+ cells also express DAB2, we 

hypothesise that the minority of cells expressing both VILIP1 and CYP11B2 will also 

express DAB2. However, VILIP1 or DAB2 do not represent suitable markers of the ZU 

due to their partial co-expression with CYP11B2 (which is expressed in the ZG). This 
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does not exclude the possibility that some ZU cells might be positive for either of the 

two proteins, but it concludes that VILIP1 and DAB2 are not exclusively present in the 

ZU.  

 

We also showed that DLK1 is also expressed in the subcapsular region of the human 

adrenal cortex either in a continuous-layered manner or clustered (DCCs), similar to 

CYP11B2 expression. However, following double immunostaining of CYP11B2 and 

DLK1, we demonstrated that the two proteins are not co-expressed and thus 

represent distinct cell populations in the subcapsular region (Figure 6.1). DLK1 

expression in the subcapsular region of the human adrenal cortex has not been 

described previously.  

 

Studies in rodents have identified DLK1 expression in the adrenal capsule in mice and 

the ZU region in rats (located between the ZG and the ZF). DLK1+ cells in rodents 

have been shown to represent stem or adrenocortical progenitor cells in the adrenal 

glands of mice and rats, respectively. Other than this, little is known about the 

function of DLK1 in the adrenal gland. Research in adipose tissue has identified DLK1 

as a pre-adipogenic marker, that acts to maintain progenitor cells in an 

undifferentiated state[131]. Combined with the finding that DLK1 is not co-expressed 

with steroidogenic enzyme CYP11B2 (marking ZG cells) in the human adrenal cortex, 

we speculate that the novel DLK1+ cell population we have identified here in the 

subcapsular region, could potentially represent the adrenocortical progenitor cells of 

the ZU in humans.   
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Figure 6.1 – Characterisation of subcapsular region in the human adrenal gland 

showing presence of DCCs. Schematic diagram illustrating the cell organisation and 

cell populations identified in the subcapsular region of the adrenal gland. The figure 

shows the presence and location of known cell populations including CYP11B2+, 

CYP11B1+ and CYP17+ and APCCs, in addition to the newly identified cell populations 

we present here including DAB2+, VILIP1+, CYP11B2/DAB2+, CYP11B2+/VILIP1+, 

DLK1+ cells and DCCs. 

 

Additional analysis on DLK1 expression revealed that the expression pattern of DLK1 

was age-dependent. Specifically, younger individuals showed a continuous 

expression of DLK1 until the age of 25, after which a transition from layered 

continuous to clustered expression was observed.  Individuals of 40 years of age or 

more were found to have a statistically significant higher number of DCCs as opposed 

to younger individuals (Figure 6.2). DCC formation occurrence showed no significant 

correlation with gender. Notably, this increase in DCC appearance in individuals over 

40 years of age correlated to the second peak incidence of ACC, which occurs in 

individuals aged 40-50 years. This was an interesting finding and we wanted to 

investigate whether there was any relationship between DCC appearance in the 

adrenal glands and ACC formation. 
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Figure 6.2 – DLK1 expression transitions from continuous to clustered expression 

with increasing age in human adrenal glands. Schematic diagram showing DLK1 

expression change from continuous expression in young individuals (left) to a mixed 

DLK1 expression (continuous and clustered) in 26-40 year olds (middle) and a 

predominant clustered expression, with formation of DCCs in aged individuals (40+ 

years old). 

 

6.2 DLK1 as a potential biomarker for ACC formation  

In addition to the correlation between DCC appearance and ACC second peak 

incidence, we showed that DLK1 expression is significantly higher in ACC (approx. 

40%) as compared to normal adrenals (approx. 5%) and adrenals from patients with 

ACA (approx. 2%).  This shows that DLK1 is specifically overexpressed in ACCs, which 

suggests that DLK1 expression might have a direct or indirect role in carcinoma 

formation and/or maintenance. We hypothesised that DLK1 might be a potential 

biomarker for ACC and that DLK1+ cells might represent cancer stem cells.  DLK1 

represents a prognostic biomarker in other types of cancer such as hepatocellular 

carcinoma and offers a promising candidate for the development of novel therapies 

aiming to target cancer stem cells[157, 158, 304]. 

 

Our in vitro studies show that DLK1 is enriched in spheroids, an accepted cancer stem 

cell model (see Section 4.3 for details on spheroids). Moreover, increased colony 

formation and cell proliferation are also in line with the hypothesis that DLK1+ cells 

have cancer stem cell-like properties in vitro. This was in accordance with previous 

studies by Xu and colleagues, focusing on hepatocellular carcinoma, which also use 

spheroid models and colony formation and proliferation assays, to conclude that 
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DLK1+ cells do indeed possess cancer stem cell properties[157]. Additionally, gene 

expression profiling of the H295R cell line overexpressing DLK1 showed an increased 

expression of stem cell markers and a decrease in the expression of steroidogenic 

markers. A potential future experiment to confirm that DLK1+ cells represent a 

population of cancer stem cells, could include mouse studies looking at the 

tumorigenic ability of isolated human adrenal DLK1+ and DLK1- cells in vivo. 

 

We also showed that treatment of H295R (an adrenocortical carcinoma cell line) with 

chemotherapy shows an enrichment in DLK1 following treatment. This suggests that 

cells expressing DLK1 are more likely to survive treatment and are more resistant to 

the effects of chemotherapy compared to cells that do not express DLK1. In addition, 

comparative analysis of DLK1+ and DLK1- H295R sorted cells showed a significant 

increase in the LD50 values of the drugs when treating DLK1+ H295R cells as opposed 

to DLK1-. Importantly, our observations do not directly show a causal link between 

DLK1+ cells and the effect of chemotherapy, but rather a correlation between the 

two. In order to demonstrate whether DLK1 plays a direct role in chemoresistance, 

future work could involve generating a DLK1-knockout H295R cell line and investigate 

to what extent this cell line remains resistant to chemotherapy. 

 

6.3 Potential role of DCCs in ACC formation 

In the previous sections we have described the appearance of DCCs in normal human 

adrenals, predominantly in individuals of 40 years of age or more. The timing of this 

transition corresponds to the second peak incidence of ACCs in humans. Notably, the 

transition from a continuous expression pattern to a clustered pattern with 

increasing age, was similar to the CYP11B2 expression pattern change observed in 

human adrenals previously described by Aiba and Fujibayashi[230]. Moreover, 

research focusing on these CYP11B2 clusters (APCCs) in normal human adrenals has 

shown that these APCCs harbor mutations most commonly found in APAs. Therefore, 

APCCs are now considered as a potential pre-cursor population of APAs[187, 305] 

(Figure 6.3).  
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Given that DCC formation also correlates with second peak incidence of ACCs, and 

DLK1+ cells appear to possess some cancer stem-cell like characteristics in vitro; we 

postulate that DCCs in normal adrenal glands might accumulate mutations that are 

commonly found in ACCs, ultimately leading to ACCs (See Figure 6.3).  

 

 

Figure 6.3 – Working model showing how DCCs could be precursors of ACCs in a 

similar way APCCs are suggested precursors of APAs. Schematic diagram showing 

the common APA mutations identified in APCCs of normal adrenals, making them a 

suggested APA precursor (right). In addition, this diagram shows our working 

hypothesis that DCCs in normal adrenals could be ACC precursors that over time 

accumulate mutations commonly found in ACCs (left). 

 
To validate the hypothesis that DCCs could lead to ACCs, future work could include 

an analysis geared towards assessing the prevalence of genetic mutations in DCCs in 

genes commonly mutated in ACCs (e.g., ZNRF3, CTNNB1, TP53, CDKN2A, MEN1, TERT, 

PPKAR1A and NF1).  A comparison of genomic DNA from DCCs and adjacent tissue 

from normal adrenals could indicate whether these mutations are more common in 

DCCs, which would be in line with the hypothesis that DCCs could be a precursor of 

ACCs.  

 

Furthermore, it could prove useful to gain further insights on the gene expression 

profile of DLK1+ cells. Future experiments could include sorting DLK1+ and DLK1- 
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primary cells from normal and adrenocortical carcinoma tissue, for RNA sequencing 

analysis. If DLK1 is involved in tumour initiation/pathogenesis, a detailed analysis of 

the transcriptome could shed light on the mechanisms involved in this process and 

its potential role in chemoresistance.  

 

6.4 In vivo mouse models of adrenal tumours 

Finally, our in vivo research in mouse models was aimed at studying whether Dlk1 

could be in involved in tumour initiation and/or progression. We used in vivo cancer 

models displaying adrenal hyperplasia, and showed that Dlk1 is not expressed in the 

hyperplastic region.  

 

Notably, this finding did not exclude the possibility that capsular Dlk1-expressing cells 

migrate into the cortex to form the hyperplasia and cease to express Dlk1. In line 

with this potential scenario, we showed that Dlk1+ capsular stem cells do indeed give 

rise to differentiated steroidogenic cells of the adrenal cortex through lineage-tracing 

experiments. However, this only indicates that Dlk1-expressing cells give rise to cells 

in the adrenal cortex but not necessarily adrenal hyperplasia. To demonstrate 

whether Dlk1+ capsular cells give rise to adrenal hyperplasia in cancer mouse models, 

a potential future experiment could be to generate a Dlk1 lineage tracing cancer 

mouse model by crossing the cancer mouse models (e.g., DBA and Inha/Tag) with a 

DLK1CreERT2/+;RosaTM/TM  transgenic mouse. This would allow Dlk1 tracing concurrently 

with cancer induction upon gonadectomising the mice. As a result, this would 

confirm whether Dlk1+ capsular cells and their progeny give rise to adrenal tumours 

in cancer mouse models. 

 

Collectively, our data suggests that DLK1 could serve as a possible biomarker for ACC, 

while DLK1+ cells could act as a potentially novel target for ACC treatments. However, 

additional research is required to confirm our results and further elucidate the 

potential role of DLK1+ both in normal adrenals and ACCs.  
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Chapter 7 – Sgpl1-/- transgenic mouse as a disease model to study 

primary adrenal insufficiency 

 

7.1 Introduction 

Primary adrenal insufficiency (PAI) is a condition where the adrenal glands fail to 

produce adequate levels of hormones (aldosterone or cortisol), and is most 

commonly congenital in children. PAI can present alone or in combination with other 

comorbidities; it is associated with reduced life expectancy and can be life-

threatening if undetected. The main mechanisms of the disease include ACTH 

resistance, adrenal dysgenesis, defects in steroid biosynthesis, cholesterol synthesis 

disorders, and metabolic disorders[306, 307]. 

 

The Metherell group’s (our internal collaborator) main area of interest revolves 

around adrenal insufficiency syndromes and they have identified a number of genes 

responsible for these syndromes within their cohort of patients (n>350)[308-312]. 

However, even after thorough investigation, the underlying genetic cause of 38% of 

cases in this cohort remained unknown. In a recent project that formed part of our 

collaboration, they identified novel loss-of-function homozygous mutations in SGPL1 

as the cause of primary adrenal insufficiency and steroid-resistant nephrotic 

syndrome in a subset of their patient cohort (n=8, 5 different families) (Table 

7.1)[313].   

 

This study is the first report that identified SGPL1 deficiency in humans as being 

involved in adrenal disease. SGPL1 encodes sphingosine-1-phosphate lyase (SGPL1), 

an ER enzyme which plays an important role in sphingolipid catabolism by mediating 

the irreversible cleavage of the lipid-signaling molecule sphingosine-1phosphate 

(S1P), thus regulating the flow of sphingolipid biochemical intermediates. (Figure 7.1). 

S1P in turn regulates cell migration, differentiation and survival, as well as other 

complex physiological processes.  Overall, sphingolipids play important roles as 

either structural cell components or signaling molecules[313]. 
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Table 7.1 - SGPL1 mutations identified in PAI patient cohort 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 – Sphingolipid breakdown pathway highlighting the role of SGPL1. 

Schematic diagram showing that SGPL1 regulates the flow of the sphingolipid 

biochemical intermediates (in bold) and carries out the final irreversible degradation 

step in the pathway. 

 

Patient Gender Ethnicity Age at last review SGPL1 mutation 

1* Male Pakistani 5 years c.665G>A; p.R222Q 

2 Male  Pakistani 8 years c.665G>A; p.R222Q 

3 Male Pakistani 3 years c.665G>A; p.R222Q 

4 Male Saudi 3.6 years c.665G>A; p.R222Q 

5* Female Turkish 5.9 years c.1633_1635delTTC; 
p.F545del 

6* Male Peruvian 8.4 years c.261+1G>A; 
p.S65Rfs*6 

7* Female Peruvian 2.4 years c.261+1G>A; 
p.S65Rfs*6 

8* Female Spanish 17.5 years c.7dupA; p.S3Kfs*11 

* Patients also presented with steroid-resistant nephrotic syndrome.  
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With regards to the adrenal gland, sphingolipids have been shown to control the 

steroid hormone biosynthesis within the gland. Specifically, sphingolipid 

intermediates ceramide and sphingosine were shown to reduce steroidogenesis in 

vitro[314-316], whereas S1P can induce expression of multiple steroidogenic 

factors[317]. However, it was also shown that abnormal accumulation of S1P in the 

cytosol can induce apoptosis[318]. 

 

Mutations in upstream components of the sphingolipid pathway can therefore lead 

to harmful accumulation of lysosomal sphingolipid species, associated with a number 

of conditions known as sphingolipidoses. In the case of SGPL1, mutations identified 

were loss-of function mutations. This resulted in the cytosolic accumulation of S1P 

and ceramide species in these patients supporting the notion that this disease alters 

sphingolipid metabolism. All patients in this cohort, harboring the SGPL1 mutations, 

presented with PAI and focal segmental glomerulosclerosis and five of these patients 

also presented with steroid-resistant nephrotic syndrome. Additionally, extra-

adrenal and -renal effects were described in most patients, while in 3 patients 

neurodegenerative disorders associated with accumulating sphingolipid metabolites 

were observed.  In normal individuals SGPL1 is ubiquitously expressed in human 

tissues, with moderate expression in the adrenal cortex and the kidneys. A similar 

expression pattern is observed in rodents, making them a suitable in vivo model.  
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7.2 Hypothesis  

SGPL1 is highly conserved between species, with human and mouse SGPL1 sharing 

84% identity and 92% similarity. Since the mutations identified in our human cohort 

were loss-of function SGPL1 mutations, we hypothesize that Sgpl1-/- mice could 

provide a mouse model to study SGPL1 insufficiency-induced disorders in humans 

(e.g., adrenal insufficiency, steroid-resistant nephrotic syndrome). 

 

7.3 Main Aims  

1. Collect kidneys and adrenal glands from Sgpl1-/- transgenic mice and WT controls. 

2. Analyse the histology and steroidogenic profile of the adrenal glands in Sgpl1-/- 

transgenic mice and WT controls. 

3. Analyse the histology of the kidneys in Sgpl1-/- transgenic mice and WT controls. 
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7.4 Materials and Methods 

7.4.1 Paraffin embedding of mouse kidneys and adrenals 

Kidneys and adrenals from Sgpl1+/+ and Sgpl1-/- mice were collected, fixed in 4% PFA 

overnight at 4oC and then washed with PBS solution for 1 hour. Following PBS washes 

the adrenals were dehydrated in a series of ethanol washes, 50%, 70%, 90% and 

100% for 1 hour each, on a rotating plate. Adrenals were then incubated in xylene 

twice for 5 minutes, and 10 minutes incubation before being placed in a container 

with melted paraffin for overnight incubation at 56oC. The following day adrenals 

were placed in the embedding cassettes filled with melted paraffin and were allowed 

to set at room temperature. Frontal sections of paraffin embedded adrenals were 

cut at 6μm using a rotary microtome and serial sections were transferred onto 

superfrost plus glass slides covered with ddH2O, and heated at 56oC on a hotplate  

for 30-60 minutes or until sections were flat. Finally, excess water was removed; 

sections were allowed to dry at 37oC and stored at room temperature.  

 

7.4.2 Hematoxylin and Eosin staining 

Mouse adrenal sections were incubated with Hematoxylin Solution Gill No.3 for 2 

minutes and then washed under running water for 2 minutes. Following washes 

sections were incubated in 1% acid alcohol (1% hydrochloric acid in 70% ethanol) for 

1 minute and washed in water for an additional minute. Sections were then dipped 

in 0.2% ammonia solution (concentrated ammonium hydroxide diluted in distilled 

water) 10 times and washed for 5 minutes under running water. Slides were then 

incubated in 80% ethanol for 1 minute followed by eosin incubation for 30-45 

seconds. Sections were further dehydrated in 95% ethanol twice and 100% ethanol 

for 1 minute each followed by 2 xylene incubations for 3 minutes each. Following 

staining and dehydration steps, sections were mounted with Vectamount and 

visualised using a Leica DM5500B microscope. 

. 
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7.4.3 Chromogenic immunohistochemistry of Sgpl1+/+ and Sgpl1-/- mouse 

adrenals 

Sections were de-paraffinised in xylene incubations and washed in a series of 100% 

in decreasing ethanol concentrations (100%, 90%, 70% and 50%) for 10 minutes each, 

followed by incubation in H2O for 10 minutes. Following the rehydration procedure, 

the sections were incubated in 3% H2O2 diluted in PBS for 30 minutes at room 

temperature to block endogenous peroxidase activity. Following peroxidase 

treatment sections washed in PBS-Triton. At this point if antigen unmasking was 

required, slides were incubated in 10mM Citrate Buffer pH 6.0 for 30 minutes in 

water bath at 95oC and then allowed to cool for 20 minutes at room temperature 

before blocking for non-specific binding. Following unmasking, slides were incubated 

in blocking solution consisting of 10% goat serum in PBS-Triton for 1 hour, to prevent 

non-specific binding. Following blocking, slides were incubated overnight with the 

primary antibody diluted in PBS-Triton (Table 7.1) at room temperature. Slides were 

then washed with PBS-Triton and incubated with the biotinylated secondary 

antibody (Table 7.) diluted in PBS-Triton for 2 hours at room temperature. Following 

secondary antibody incubation, slides were washed in PBS-Triton three times for 10 

minutes each and at the same time Avidin-Biotin Complex (ABC) was prepared 

according to manufacturer’s instructions (Vector labs, PK-6100) and allowed to 

incubate at room temperature for at least 30 minutes before use. Following washes 

slides were incubated with ABC for 1 hour and then washed three times with PBS-

Triton. Finally, sections were developed with 3,3’-diaminobenzidine substrate 

according to manufacturer’s instructions (Vector labs, SK-4105). Once staining 

developed, reaction was stopped by placing slides in diethyl pyrocarbonate (DEPC)-

H2O. Slides were finally dehydrated in increasing concentrations of ethanol (50%, 

70%, 90% and 100%) and then xylene incubations three times for 5 minutes each and 

mounted using Vectamount mounting medium (Vector labs, H-5000). Chromogenic 

antibody staining was visualised using a Leica DM5500B microscope
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Table 7.2 - Primary Antibodies for chromogenic IHC 

Antibody Species Reactivity Host Supplier Catalogue Number Dilution Requires AUM 

CYP11B2 Mouse/Rat Rabbit Gomez-Sanchez N/A 1:200 Yes 

CYP11A1 Human/Mouse/Rat Rabbit Cell Signaling D8F4F 1:200 No 

SGPL1 Human/Mouse Rabbit Abcam 105183 1:200 No 

 
 
Table 7.3 - Secondary Antibodies for chromogenic IHC 

 

Antibody Species Reactivity Host Supplier Catalogue Number Dilution 

Biotinylated Rabbit IgG Goat Vector BA-1000 1:500 
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7.5 Results 

We collected both Sgpl1-/- (n=3) and WT mice (n=3) and isolated both adrenal glands 

and kidneys, to investigate their phenotype. It is of note that Sgpl1-/- mice were born 

normally but most died within the first couple of weeks after weaning, for unknown 

reasons. 

7.5.1 Sgpl1-/- mouse adrenal histology 

Initially, we aimed to investigate whether there were any differences in the adrenal 

gland histology between the Sgpl1-/- mice and WT Sgpl1+/+ mice (control), and if so 

whether these phenotypic differences resembled the adrenal disease observed in 

patients with SGPL1 mutations. Following histological investigation of the adrenal 

gland with H&E staining we showed that in the adrenal glands of Sgpl1-/- mice, cortical 

zonation was compromised and less defined, particularly between the ZG – ZF and ZF 

– X-zone regions (Figure 7.2b, c) as compared to WT Sgpl1+/+ (Figure 7.2a). This 

observation was consistent in both male and female mice. Additionally, cells in the 

ZF of Sgpl1-/- mice appeared smaller and contained fewer lipid droplets with a higher 

degree of eosinophilia (Figure 7.2b’, b’’,c’,c’’) as compared to cells in the control WT 

Sgpl1+/+  mice (Figure 7.2a’,a’’). 
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Figure 7.2 - Adrenals from Sgpl1-/-mice show histological abnormalities compared 

to WT mice.  Results following H&E staining of Sgpl1+/+ (a,a’ and a’’) and Sgpl1-/- 

(b,b’,b’’,c,c’ and c’’) mice show a less defined morphological zonation in the case of 

Sgpl1-/- mice (b,b’,c and c’) as compared to Sgpl1+/+ mice (a,a’). Additionally the 

characteristic lipid droplets normally found in the ZF and visible here as large areas in 

the cytoplasm devoid of eosin staining (depicted by yellow arrows in a’ and a’’) are 

significantly reduced in Sgpl1-/- mouse adrenals (b’,b’’,c’ and c’’). n=3. Scale bars: 

100μm (left panels); 25μm (middle panels); 5μm (right panels). Cap=Capsule. 

 
Once we established that there were differences in the zonation and cell composition 

between the two mice, with Sgpl1-/- mice presenting an abnormal adrenocortical 

structure, we went on to investigate whether there were also differences in 

steroidogenesis. It is known that sphingolipid intermediates can have a negative 

effect in the expression of steroidogenic enzymes and this was indeed a pathological 

effect observed in our human cohort[313]. Additionally, following profile expression 

analysis of CYP11A1 and CYP11B2 we observed a clear difference in the expression 

pattern of the two proteins. IHC analysis of CYP11A1 showed a reduced expression 
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of CYP11A1 in Sgpl1-/- mice, which was mainly localised in the inner adrenal cortex 

(Figure 7.3b), in contrast to Sgpl1+/+ mice that presented normal CYP11A1 expression 

throughout the adrenal cortex (Figure 7.3a). Additionally, in the case of CYP11B2 both 

mice showed a subcapsular expression of the protein, localised in the ZG region. 

However, in the case of Sgpl1-/- mice we observed a subcapsular continuous pattern 

of CYP11B2 (Figure 7.3d), rather than the classical pattern of subcapsular clusters of 

CYP11B2 found in WT Sgpl1+/+ mice (Figure 7.3c). Therefore, our results suggest that 

steroidogenesis is indeed disrupted in the Sgpl1-deficient mouse models. 

 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 7.3 – Adrenals from Sgpl1-/- mice show abnormal steroidogenic expression 

compared to WT mice. Results following IHC analysis for CYP11A1 (a,b) AND CYP11B2 

(c,d) expression in Sgpl1-/- (b,d) and Sgpl1+/+ (a,c) show a different pattern of 

expression for the two enzymes. In Sgpl1-/- mice CYP11A1 expression is reduced (b) 

compared to Sgpl1+/+ adrenals (a) and the characteristic patchy expression of 

CYP11B2 seen in normal Sgpl1+/+ mice (c) is lost and appears in a continuous manner 

in Sgpl1-/- mouse adrenals (d). n=3. Scale bars: 100μm (top panels); 25μm (bottom 

panels).  
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7.5.2 Sgpl1-/- mouse kidney histology 

Finally, we aimed to characterize the kidney histology of these mice to identify any 

phenotypic differences when compared to WT Sgpl1+/+mice. Following H&E on kidney 

sections from both Sgpl1-/- and Sgpl1+/+mice we observed a normal kidney histology 

Sgpl1+/+mice (Figure 7.4a,b,b’) in the case of and a pathological histology in the case 

of Sgpl1-/- mice (Figure 7.4c,d,d’). The latter showed mesangial hypercellularity and 

proteinaceous casts in the kidney tubules, with overall histological appearance 

supporting a glomerular phenotype. 

 
 

 
 
Figure 7.4 - Histological features of the kidneys differ in Sgpl1-/- and Sgpl1+/+mice. 

Results following H&E staining of Sgpl1+/+ (a, b, b’) mice show normal cortical 

histology (a) and glomeruli with open capillary loops and normal cellular content, 

depicted here by yellow arrowheads (b and b’). H&E staining in kidneys of Sgpl1-/- 

mice (c, d, d’) show mild hypercellularity with glomerular hypertrophy, depicted here 

by yellow arrowheads (d and d’) with large protein casts in the tubules (white 

arrowheads in d and d’). 
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7.6 Discussion 

The scope of this chapter was to evaluate whether Sgpl1-/- mice could provide a 

mouse model to study the SGPL1 insufficiency induced disorders (PAI and steroid-

resistant nephrotic syndrome)[313]. SGPL1 mutations were identified in a cohort of 

eight patients with PAI and/or steroid-resistant nephrotic syndrome, with no other 

known mutations associated to PAI. Apart from adrenal pathology and nephrotic 

syndrome some of these patients also presented with other diseases including 

icthyosis, primary hypothyroidism, neurological symptoms and cryptorchidism as 

summarised in Table 7.4[313].  

 

We have shown that unlike in humans, Sgpl1 deficiency in mice leads to death within 

2 weeks after birth. However, with regards to the adrenal glands we have shown that 

in the Sgpl1-/- mouse both adrenal gland zonation and steroidogenesis are impaired 

and have demonstrated a loss of vacuolization in the ZF. These findings are consistent 

with the biochemical finding of adrenal hormone insufficiency that occurs in humans 

with SGPL1 mutations described in Prasad et al., 2017[313] Additionally, we 

demonstrated that Sgpl1-/- mice have renal defects with the histological changes in 

the kidney, in agreement with the human biopsy results presented in our paper and 

summarised in Table 7.4 below[313]. Therefore, we have demonstrated that both the 

adrenal and kidney phenotype observed in the Sgpl1-/- mice, is consistent with the 

pathological histology presented in PAI patients with SGPL1 mutations. Table 7.4 

shows the collective data of both our group and the collaborator summarising the 

clinical phenotype observed in these patients and the Sgpl1-/- mice. 
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Table 7.4 – Comparison of Sgpl1-/- mouse phenotype with clinical findings in the patients 

 Adrenal 

pathology 

Nephrotic 

disease 

Ichthyosis* Primary 

hypothyroidism* 

Neurological 

disorder* 

Lymphopenia* Dyslipidemia* 

Patient 1* + + - - - - - 

Patient 2* + - - - - - - 

Patient 3* + - - - - - - 

Patient 4* + - - - - + - 

Patient 5* + + + + + + - 

Patient 6* + + + + + - + 

Patient 7* + + + + + - + 

Patient 8* + + + + - - + 

Sgpl1-/- mice + + - - - + + 

*Data supporting these findings was collected and analysed by other members of the collaboration and described in detail in Prasad et al., 2017. 

+, feature reported; -, feature not reported.  
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In conclusion, we have collectively shown that there are similarities in the clinical 

phenotypes of Sgpl1-/- mice and SGPL1-deficient patient cohort investigated in the 

Prasad et al., 2017 paper. It was demonstrated that both the human cohort and the 

Sgpl1-/- mice presented with adrenal disease (PAI in humans), while nephrotic 

syndrome, icthyosis, disordered lipid metabolism and lymphodepletion occurred in 

all Sgpl1-/- mice and some of the patients. In contrast, the neurological defects and 

hypothyroidism presented in some patients were not observed in mice[313]. Finally, 

we have shown here that the Sgpl1-/- mouse model displays similar characteristics to 

the PAI and kidney resistant nephrotic syndrome occurring in SGPL1 deficient 

patients, and could therefore potentially represent a suitable in vivo model to study 

some aspects of the disease. 
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Appendix I: PGEM T-Easy Vector Map 
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Appendix II: pCMVHA Vector Map 
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Appendix III: pCMVTag4 Vector Map 
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Appendix IV: pHIV-EGFP Vector Diagram 
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Appendix V: Western blots testing human CYP11B2 and CYP11B1 
antibodies developed at Thermofisher. 
 

 
Figure V: Poor specificity of CYP11B2 (left) and CYP11B1 (right) antibodies 

developed. Western blots performed on HEK293 cells transfected with vectors 

encoding either CYP11B2 (left) or CYP11B1 (right), show that CYP11B2 and CYP11B1 

antibodies developed are not specific in targeting their respective proteins. 
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Appendix VI: Western blots testing human lentiviral infected H295R 
over-expressing cell line. 
 

 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 


