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M. Górski3,4, Jeffrey B. Jewell3,

Draft version August 1, 2018

ABSTRACT

As well as primary fluctuations, CMB temperature maps contain a wealth of additional information
in the form of secondary anisotropies. Secondary effects that can be identified with individual objects,
such as the thermal and kinetic Sunyaev-Zel’dovich (SZ) effects due to galaxy clusters, are difficult
to unambiguously disentangle from foreground contamination and the primary CMB however. We
develop a Bayesian formalism for rigorously characterising anisotropies that are localised on the sky,
taking the TSZ and KSZ effects as an example. Using a Gibbs sampling scheme, we are able to
efficiently sample from the joint posterior distribution for a multi-component model of the sky with
many thousands of correlated physical parameters. The posterior can then be exactly marginalised
to estimate properties of the secondary anisotropies, fully taking into account degeneracies with the
other signals in the CMB map. We show that this method is computationally tractable using a simple
implementation based on the existing Commander component separation code, and also discuss how
other types of secondary anisotropy can be accommodated within our framework.
Subject headings: cosmic microwave background — cosmology: observations — methods: statistical

1. INTRODUCTION

Observations of the temperature anisotropies of the
Cosmic Microwave Background (CMB) radiation have
been instrumental in providing high-precision measure-
ments of important cosmological quantities such as the
age, geometry, and energy content of the Universe. But
while the task of characterising the primary anisotropies
may seem essentially complete – as of the Planck 2013
data release, measurements of the temperature autospec-
trum of the CMB are cosmic variance dominated for mul-
tipoles ` . 1500 (Planck Collaboration 2014c) – a wealth
of information remains to be picked out of CMB temper-
ature maps in the form of secondary anisotropies.

Secondary anisotropies are distortions of the primary
CMB signal due to inhomogeneities between the surface
of last scattering and the observer (Aghanim et al. 2008).
Gravitational effects such as weak lensing and the inte-
grated Sachs-Wolfe (ISW) effect have been strongly de-
tected (Das et al. 2011; Planck Collaboration 2014b,d;
Hernández-Monteagudo et al. 2014a), as have scatter-
ing phenomena such as the thermal Sunyaev-Zel’dovich
(TSZ) effect (Birkinshaw et al. 1984; Shirokoff et al. 2011;
Wilson et al. 2012; Planck Collaboration 2014e,f). The
kinetic Sunyaev-Zel’dovich (KSZ) effect, caused by the
Doppler boosting of CMB photons scattered off ionised
gas travelling with a bulk peculiar velocity, has also re-
cently been detected (Hand et al. 2012; Sayers et al.
2013b). These effects variously probe the spatial and
temporal variations of the gravitational potential, the
density field, and the peculiar velocity field on large
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scales, and can therefore furnish tests of dark energy,
modified gravity, and even the inflationary epoch by con-
straining the geometry, expansion and growth history of
the Universe.

The secondary anisotropies are generally dominated
by foregrounds and the primary CMB, so detecting and
characterising them is a delicate process, even with mod-
ern high-resolution data. Detections of secondaries can
be roughly divided into two categories: localised on the
sky (compact), where anisotropies in a given direction
can be identified as being caused by a particular astro-
physical object; and non-localised (diffuse), where a sec-
ondary signal due to the combination of many objects is
detected statistically across a larger region of the sky.

A number of different methods have been used to
measure non-local signals: fitting models to the angu-
lar power spectrum (Fowler et al. 2010; Shirokoff et al.
2011); using some other statistical property of the CMB
map, such as higher-order (non-Gaussian) moments, to
separate off a given signal (Pierpaoli et al. 2005; Wil-
son et al. 2012; Munshi et al. 2013); stacking the signal
from many directions to average down all but the target
signal (Granett et al. 2008; Diego & Partridge 2009; Ko-
matsu et al. 2011); and cross-correlating the CMB map
with tracers (e.g. galaxies) that are uncorrelated with all
but the target signal (Fosalba et al. 2003; Afshordi 2004;
Giannantonio et al. 2006; Ho et al. 2008; Hand et al.
2012; Sherwin et al. 2012; Hernández-Monteagudo et al.
2014b). These all allow small secondary anisotropy sig-
nals to be picked out by essentially combining the signal
from all available pixels into a single statistical quantity.

Detecting localised signals is often a more difficult
prospect. Because astrophysical objects typically sub-
tend small angles on the sky, only a limited number
of pixels are available to provide information about a
given object, making it harder to attain a high enough
signal-to-noise ratio to get a definitive detection. The
limited amount of information also makes it harder to
disentangle other signals from the secondary anisotropy,
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especially if they have similar frequency spectra or
shapes/angular sizes, and there are fewer options for
averaging-down contaminating signals.

Previous approaches to this problem have tended to
rely on a combination of frequency information and an-
gular filters matched to the size/shape of the secondary
anisotropy to try and pick-out its signal, while rejecting
or at least averaging down other signals as much as possi-
ble (Aghanim et al. 2001; Herranz et al. 2002, 2005; Forni
& Aghanim 2005; Melin et al. 2006; Schäfer & Bartel-
mann 2007; Feroz et al. 2009; Mak et al. 2011; Atrio-
Barandela et al. 2012; Carvalho et al. 2012; Melin et al.
2012). Such methods may either be blind, applying filters
of a range of sizes over the entire map, or can apply pa-
rameter estimation techniques to fit parametrised models
to the objects, given prior information on their positions
and/or sizes. These methods work well if the secondary
has a distinctive spectrum and multi-frequency data are
available, but this is not always the case – the KSZ ef-
fect has the same flat spectrum as the primary CMB, for
example, and only a few CMB experiments have more
than one or two frequency bands.

Angular information is also valuable, but most filter-
ing and model fitting techniques are unable to blindly
distinguish signals with similar angular structures. As
such, the estimated signal for an individual object will
retain some level of residual contamination from other
fluctuating components. One example of this is the con-
tamination of the KSZ signal by the primary CMB –
primary anisotropies on the arcminute scales character-
istic of galaxy clusters cannot be fully removed by a filter,
and so will either bias the estimated signal, or must be
treated as an effective source of noise, significantly in-
creasing the statistical errors (Aghanim et al. 2001; Her-
ranz et al. 2005; Feroz et al. 2009; Carvalho et al. 2012).

In this paper we describe a novel method for charac-
terising localised secondary anisotropies, based on apply-
ing Bayesian inference to a physical parametric model of
all relevant signals on the sky. We use the Gibbs sam-
pling technique to efficiently reconstruct the joint pos-
terior distribution of the full sky model, which typically
involves many hundreds of thousands of parameters for
realistic datasets. With the posterior in hand, we can
then marginalise over all other parameters to produce
statistically-robust, unbiased estimates of the properties
of the secondary anisotropies.

Importantly, because all of the signals that contribute
to the CMB map are explicitly modelled, degeneracies
with local fluctuations in other signals can be fully taken
into account. Instead of being treated as random noise,
the fluctuations are reconstructed from the data, allow-
ing them to be cleanly separated from the secondary sig-
nal in a statistical manner. For the primary CMB, this
is equivalent to performing a constrained Gaussian reali-
sation of the anisotropies behind the cluster. The uncer-
tainties associated with this procedure are automatically
propagated in full by the Gibbs sampling scheme.

The paper is organised as follows. In Section 2 we
outline a general Gibbs sampling scheme for estimat-
ing localised signals in the presence of primary CMB
anisotropies, various types of foreground emission, and
noise. We then specialise to a couple of example sec-
ondary anisotropies: the TSZ effect (Section 3), and the
KSZ effect (Section 4), and demonstrate a simple proof-

of-concept implementation of the SZ Gibbs scheme in
Section 5. Examples of other localised signals that can
be accommodated by our framework are discussed in Sec-
tion 6, and we conclude in Section 7.

2. GIBBS SAMPLING OF LOCALISED SIGNALS

Gibbs sampling is a popular Monte Carlo technique
for performing Bayesian inference on complex paramet-
ric models. In this section, we outline a Gibbs sampling
scheme for the joint estimation of CMB anisotropies,
galactic foregrounds, and spatially-localised signals from
multi-frequency full-sky data. This is based on the CMB
analysis framework previously described by Jewell et al.
(2004); Wandelt et al. (2004); Eriksen et al. (2004, 2008),
which allows for straightforward marginalisation over
both CMB and foreground signals by sampling from the
joint posterior distribution of all components.

2.1. Data model

We begin by defining a data model for an observation
of the sky at a given frequency,

d(ν) = B(ν)

Ncomp∑
i=1

Gi(ν)Tiai + n(ν). (1)

In this expression, d is a vector of observed values, dp(ν),
for each pixel p and frequency ν, and n denotes instru-
mental noise. The signal components are broken down
into a set of unknown stochastic amplitudes (ai), an
amplitude-to-sky projection operator (Ti), a frequency-
dependent mixing operator (Gi), and an instrumental
beam convolution operator (B). Note that the index i
runs over both signal types (CMB, foregrounds, SZ am-
plitudes etc.) and individual components within each
signal type (different SZ clusters, CMB harmonics etc.).

Next, we specify the statistical properties of ai and
np(ν). In this paper we assume the signal amplitudes
and noise to be Gaussian, having covariance matrices S
and N respectively. One is often interested in estimating
the signal covariance matrix from the data, so in general
S is unknown and must be jointly estimated with the
rest of the model parameters. The basic structure of
S can often be specified a priori, and parametrised in
terms of a relatively small number of free parameters.
For example, an isotropic, Gaussian CMB component
will have a diagonal signal covariance matrix with the
CMB angular power spectrum coefficients C` along the
diagonal. The noise covariance matrix will be assumed
to be completely known, although in principle it could
also be specified using some parametric model.

To complete the data model, we must define an inven-
tory of relevant signal components and specify the prop-
erties of G and T for each. Depending on the component,
these can also be modelled parametrically, with free pa-
rameters to be estimated from the data; for example,
the frequency mixing matrix of a galactic synchrotron
component might take the form of a power-law spectrum
with an unknown spectral index. We will make no as-
sumptions about the statistical distributions followed by
these additional parameters for the time being; as will
soon become apparent, they are not generally Gaussian.
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2.2. Posterior mapping by Gibbs sampling

Once the data model has been defined, the remaining
problem is to map out the full joint posterior distribution
P (a,S,G,T|d) (where it should be noted that we have
implicitly conditioned on the beam, B, and noise covari-
ance, N). The posterior is unlikely to take the form of
a known analytic distribution that can be sampled from
directly, suggesting the use of a Markov Chain Monte
Carlo (MCMC) method to obtain samples. Owing to
the extremely high dimensionality of the problem (e.g.
there are (`max + 1)2 parameters for the CMB compo-
nent alone), popular MCMC techniques like Metropolis-
Hastings and nested sampling are unsuitable, as they
tend to scale poorly with dimension (Allison & Dunk-
ley 2014). Maximum likelihood techniques are a possible
alternative, although these are by nature approximate
and thus fail to fully propagate statistical uncertainty.

Instead, we will make use of the Gibbs sampling algo-
rithm (which is technically a special case of Metropolis-
Hastings). While it may not be possible to sample from
the joint posterior directly, it is often the case that it
can be broken down into a set of conditional distribu-
tions that are tractable. One can show that iteratively
sampling from the conditionals (Fig. 1) results in a set
of samples that eventually converges to the joint poste-
rior. In other words, by breaking the sampling prob-
lem up into a series of comparatively simpler steps, we
can reconstruct the full posterior distribution without
recourse to approximations or any other “lossy” proce-
dures. This holds even for extremely high-dimensional
parameter spaces if there are high-dimensional joint con-
ditionals that can be evaluated efficiently (for example,
if most parameters can be drawn from a multivariate
Gaussian distribution).

As shown in Fig. 1, Gibbs samplers explore the param-
eter space using a series of orthogonal sub-steps. This is
inefficient for parameters that are strongly correlated, for
which the optimum strategy would be to explore along
the degeneracy direction. As such, care must be taken
to either avoid parametrisations with degenerate param-
eters, or to write down joint conditionals for strongly cor-
related parameters that can be evaluated directly. Oth-
erwise, the chain will spend a long time slowly explor-
ing the strongly correlated subspace, and the resulting
MCMC chain will have a long correlation length, result-
ing in fewer independent samples.

For our problem, the Gibbs scheme is

ai+1 ← P (a|Si,Gi,Ti,d) (2)

Si+1 ← P (S|ai+1,Gi,Ti,d) (3)

Gi+1 ← P (G|ai+1,Si+1,Ti,d) (4)

Ti+1 ← P (T|ai+1,Si+1,Gi+1,d). (5)

One can of course further subdivide the conditional sam-
pling steps using Bayes’ Theorem and other basic statis-
tical relations if necessary. In general, though, it is more
efficient to simultaneously sample as many parameters as
possible in each step, in order to reduce the correlation
length of the chain.

For the remainder of this section, we will show how
each of these Gibbs steps can be sampled in practice.
For a more detailed discussion of the general properties of

(ai, bi)

(ai, bi+1)

(ai+1, bi+1)

(ai+1, bi+2)

a
b

Fig. 1.— Illustration of the iterative sampling procedure that
forms the basis of Gibbs sampling. The algorithm alternately sam-
ples from the conditional distributions of the various parameters –
P (a|bi), then P (b|ai+1) and so on. Each sub-step is in an orthog-
onal direction in parameter space.

Gibbs sampling techniques, see Gelfand & Smith (1990);
Casella & George (1992).

Joint amplitude sampling— Under the assumption that
the likelihood is Gaussian, Eq. (2) reduces to a sin-
gle multivariate Gaussian distribution for all a, meaning
that the amplitude parameters for all components (po-
tentially hundreds of thousands of them) can be sampled
simultaneously. Simplifying the notation for the signal to
s = U · a, with U = BGT, one can see this by writing

P (a|d,S,G,T)∝P (d|a,S,G,T)P (a|S,G,T)

∝ e− 1
2 (d−U·a)TN−1(d−U·a) · e− 1

2a
TS−1a

∝ e−
1
2 (a−d̂)T (S−1+UTN−1U)(a−d̂). (6)

The distribution has covariance
(
S−1 + UTN−1U

)−1

and (Wiener-filtered) mean

d̂ =
(
S−1 + UTN−1U

)−1
UTN−1d. (7)

We have suppressed sums over frequency here; see Erik-
sen et al. (2008) for a derivation of the above in the full
multi-frequency case.

Sampling from this distribution is conceptually
straightforward: one first generates a pair of vectors of
N (0, 1) random variables, (ω0, ω1), and then solves the
linear system Ma = b for a, where

M=S−1 + UTN−1U (8)

b=UTN−1d + S−
1
2ω0 + (UTN−1U)

1
2ω1. (9)

In practice, solving this system is a significant compu-
tational challenge, owing to its high dimensionality and
typically poor conditioning of the matrix operator M.
We discuss this more in Section 5.2; see also Eriksen
et al. (2008) for a detailed discussion of this problem.

A useful feature of the joint amplitude sampling step
is marked by the presence of prior-dependent (S) terms
in Eqs. (8) and (9). These ensure that the solution is de-
fined even in regions where the data have been masked.
Solving the linear system therefore amounts to drawing
a constrained realization of the amplitudes that is sta-
tistically consistent with the available data and other
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parameters of the data model. The availability of ‘un-
cut’ amplitude map samples simplifies subsequent Gibbs
steps that may rely on spherical harmonic analysis, such
as those involving angular power spectrum estimation.

Signal covariance— Eq. (3) can be written as

P (S|d,G,a)∝P (d|S,G,a)P (S|G,a) ∝ P (S|G,a)

=P (a|G,S) · P (S|G)

P (a|G)
∝ P (a|G,S)

=
e−

1
2a
TS−1a√
|S|

. (10)

This is an inverse Wishart distribution for S, assuming
flat priors for S and a. Prior knowledge of the form of
S can be used to further simplify Eq. (10) to one of the
special cases of the inverse Wishart distribution.

Notice that the dependence on the data, d, has
dropped out of Eq. (10). This is because we are now
conditioning on a, which contains all of the information
necessary to estimate S.

General parameters— For Eqs. (4) and (5), a simple
application of Bayes’ Theorem yields

P (G|d,a,S,T)∝P (d|G,a,S,T)P (G|a,S,T)

∝ e− 1
2 (d−U·a)TN−1(d−U·a) · P (G)(11)

P (T|d,a,S,G)∝P (d|T,a,S,G)P (T|a,S,G)

∝ e− 1
2 (d−U·a)TN−1(d−U·a) · P (T).(12)

In this very general notation, the above equations do
not tell us how to sample from these distributions, and
the priors for G and T are left general. This is because
the form of these terms depends on the particular model
chosen for each component. In the following sections
we will consider specific examples (summarised in Table
5.2), for which the above equations simplify significantly.

2.3. CMB component

The CMB signal, s, is a statistically isotropic field that
can be expanded in spherical harmonics, Y`m(n̂) (where
n̂ is a unit vector direction in the sky), such that the
signal in an individual pixel p is

sp =
∑
`m

a`mY`m(n̂p). (13)

We identify the coefficients a`m and spherical harmonic
operator Y`m(n̂p) with the amplitudes (a) and projection
operator (T) for this component respectively. The signal
covariance (S) is given in harmonic space by

〈a`ma`′m′〉 ≡ S = C`δ``′δmm′ ,

which reduces Eq. (10) to a set of inverse gamma dis-
tributions, independent for each `. The mixing operator
(G) is the identity, since the CMB frequency spectrum
is very close to blackbody, and so has a flat spectrum in
brightness temperature.

2.4. Extended foreground components and offset
estimation

Galactic synchrotron, free-free, thermal dust emission,
and other extended foregrounds typically have complex

spatial structures that do not follow simple statisti-
cal distributions like the CMB. As such, it is critical
to include in the analysis some frequency channels for
which these signals dominate – say, below 30 GHz for
synchrotron/free-free or above 353 GHz for dust. It is
then straightforward to reconstruct these components
pixel-by-pixel, although a notable exception is spinning
dust, which does not dominate at any frequency (Planck
Collaboration 2014g), and is consequently subject to con-
siderable degeneracies.

For each component one must write down an explicit
parametrisation of G(ν), based on some small number of
parameters, θp, per pixel. For example, synchrotron is
often modelled in terms of a power law in brightness tem-
perature, fsynch(ν;βs) = νβs , while thermal dust is well
described by a modified blackbody with free emissivity
index and temperature. These parameters may then be
sampled using Eq. (11), which reduces to an effective χ2

mapping of the respective parameters.
In addition to foreground parameters, there are signifi-

cant uncertainties in the absolute offset and dipole terms
of a given CMB map. These degrees of freedom are easily
described in terms of four full-sky templates: one full-sky
constant and three orthogonal dipole modes, each with
an unconstrained overall linear amplitude. The appropri-
ate sampling algorithm in this case is the usual Gaussian
given in Eq. (6), with G(ν, ν′) = δνν′ , S

−1 = 0, and T
listing the four monopole and dipole templates.

2.5. Spatially-localised components

As well as separating foregrounds and other effects
from the primary CMB, we are also interested in de-
tecting and characterising secondary anisotropies. We
will concentrate on the thermal and kinetic Sunyaev-
Zel’dovich effects due to galaxy clusters in subsequent
sections, but for now the discussion is kept general.

Unlike extended foreground components, which are
typically modelled as large coherent structures covering a
sizeable portion of the sky, many secondary anisotropies
are associated with discrete objects, and are therefore
strongly localised. The spatial distribution of the sec-
ondary anisotropy is best captured by specifying a col-
lection of spatial templates of limited size, each centred
around the location of an individual object. Each lo-
calised template will have a separate amplitude associ-
ated with it, although the amplitudes may be correlated
between objects. The shapes and frequency spectra of
the templates may vary from object to object too, so to
account for this one can define parametric spatial and
spectral profiles with parameters that can be tuned (or
sampled) for each object individually.

To define the model for this type of component, one
must also specify the number and positions of its con-
stituent objects, and basic information on the template
for each object, such as its angular size. This requires
a source of prior information, typically in the form of a
catalogue of objects. For SZ clusters, for example, one
could use a catalogue of ‘candidate’ clusters from a blind
SZ detection algorithm (Appendix A), or one of a num-
ber of X-ray cluster catalogues. Clearly, the specification
of the component will only be as complete (and accurate)
as the catalogue used, leading to issues with missing or
duplicated objects, position errors, and the like. We will
return to these problems later.
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Component Type Spectrum G(ν) Spatial dependence T Covariance S Amplitude a

CMB anisotropies 1 Y`m(p) C`δ``′δmm′ a`m

Spatial template (e.g. monopole/dipole) δνν′ Pre-defined template T (p) ∞ Aν′

Pixel-based foreground f(ν;θp) δpp′ ∞ Ap′

Thermal SZ (clusters) x e
x−1
ex+1

− 4 TTSZ(p, n̂j ,θj) ∞ Aj

Kinetic SZ (clusters) 1 TKSZ(p, n̂j ,θj) See Eq. (29) vlosj

TABLE 1
Signal component types, defined by their spectral and spatial dependence.

An object with index j, centred on direction n̂j , has
the projection operator

Tj = Ti(p, n̂j ,θ
T
j ), (14)

where Ti is a parametric spatial profile shared by all ob-
jects of this type of component, and θTj are the profile
parameters for the individual object. For localised sig-
nals, Ti will typically be zero beyond some given angular
distance from n̂j , although this is not compulsory.

Similarly, the frequency mixing operator is given by

Gj = fi(ν,θ
G
j ), (15)

where fi is a shared parametric spectral function and
θGj are the spectral parameters for an individual object.
Each object has a single overall amplitude, aj . Correla-
tions between amplitudes are specified by a single signal
covariance matrix for all objects, i.e.

Si = 〈ajak〉. (16)

In the subsequent sections, we will consider the TSZ
and KSZ effects for galaxy clusters as two specific exam-
ples of localised components.

2.6. Instrumental properties

Finally, we note the ability of our framework to account
for uncertainty in the characterisation of the instrument.
Eq. (1), and many of the expressions that follow, have
been derived under the assumptions of Gaussian instru-
mental noise, linear beam convolution, and correct gain
calibration. These assumptions are reasonable for real
instruments such as Planck, although subject to some
complications. The gain calibration is typically uncer-
tain, but can be accounted for by multiplying (1) by an
additional (constant) parameter per frequency channel
and marginalising over it.

The noise is typically well-approximated as Gaussian,
but can be correlated between neighbouring pixels (e.g.
for Planck). The generalised framework presented above
already accounts for correlated Gaussian noise, but ex-
isting implementations of the joint amplitude sampling
step tend to assume uncorrelated noise; the presence of
off-diagonal components of the pixel-space noise covari-
ance matrix can significantly increase the computational
complexity of solving the linear system, making it diffi-
cult to solve except for with low-resolution pixelisations.
There is no reason why specialised linear solvers could
not be employed to make this more efficient for finer pix-
elisations, however.

Similarly, one typically assumes symmetric beams that
are independent of frequency (Eriksen et al. 2004), and

constant with respect to position on the sky. Again,
this is not a necessary condition of our general frame-
work, but is used to increase the efficiency of the ampli-
tude sampling step, which relies on many evaluations of
the beam-convolved signal model – factoring the beam
out as a constant can considerably reduce the computa-
tional complexity of solving the linear system. The need
for frequency-independent (matched) beams has recently
been relaxed in a computationally-efficient linear solver
(Seljebotn et al. 2014), which could in principle han-
dle asymmetric beams too. Position-dependent beams
add an extra layer of complexity, however. Marginali-
sation over uncertainties in symmetric beam profiles has
been demonstrated within a Gibbs sampling framework
by sampling the coefficients of an eigenmode expansion
of the beam profile (e.g. Planck Collaboration 2014c).

3. THERMAL SZ FROM GALAXY CLUSTERS

The thermal SZ effect is caused by the Compton scat-
tering of CMB photons by hot gas in the intergalactic
medium (Sunyaev & Zeldovich 1972). The CMB gains
energy from the gas, effectively leading to a shift in its
spectrum along the affected line of sight. This is man-
ifested as an apparent decrement in the CMB temper-
ature at low frequencies (ν . 217 GHz), and an incre-
ment at higher frequencies, which distinguishes TSZ from
the flat-spectrum primary CMB signal. As free electrons
dominate the scattering, the magnitude of the shift de-
pends primarily on the integrated electron pressure along
the line of sight. In galaxy clusters, the thermal pres-
sure can be related to the cluster size and mass, and so
the TSZ effect can be used as a way of probing a clus-
ter’s physical properties. This is useful for understand-
ing how structure forms, as well as providing constraints
on cosmological parameters such as the normalisation of
the matter power spectrum (Battye & Weller 2003; Allen
et al. 2011). Another useful property of the TSZ effect
is that the surface brightness is constant as a function
of redshift (Sunyaev & Zeldovich 1972; Rephaeli 1995),
making it possible to detect clusters out to high redshift
(z & 1).

We will assume here that a catalogue of positions, an-
gular sizes, and redshifts of clusters has already been
compiled from a previous blind survey, so that our task
is to accurately characterise the clusters’ properties. This
is particularly critical for the most massive clusters, as
some cosmological tests are extremely sensitive to the lo-
cation of the high-mass cut-off of the cluster mass func-
tion (Matarrese et al. 2000). Note that while blind de-
tection algorithms are capable of providing some infor-
mation on cluster properties, they often rely on simpli-
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fied or approximate treatments of issues such as resid-
ual foreground contamination, statistical error propaga-
tion, overlap between clusters, and so on, so it is im-
portant to perform a more specialised characterisation
post-detection.

3.1. Model definition

Following the discussion in Section 2.5, we begin by
defining a parametric spatial template for the cluster
TSZ signal. The fractional temperature change due to
the thermal SZ effect along a line of sight is given by
(Sunyaev & Zeldovich 1972)

∆T

T
= f(ν)y(n̂) (17)

y(n̂) =
σT
mec2

∫
Pe(n̂, l)dl, (18)

where Pe is the electron pressure, l is a distance along
the line of sight, and f(ν) is the frequency spectrum,

f(ν) = x
ex − 1

ex + 1
− 4; x = hν/kBTCMB, (19)

which can immediately be identified with the mixing op-
erator, G. In our model, we adopt the ‘universal’ pres-
sure profile of Arnaud et al. (2010),

Pe(x) = P̄500(z)
P0(M500/M?)

αp(x)

(c500x)γ [1 + (c500x)
α

]
β−γ
α

, (20)

where x = r/R500 and M? = 3× 1014h−1M�. The pres-
sure at radius R500 in a gravity-only self-similar model is
(Nagai et al. 2007)

P̄500(z) = 1.65× 10−3h(z)
8
3 (M500/M?)

2
3h2 keVcm−3,

and the running of the mass scaling with radius is
well-fit by αp(x) = 0.22 (1 − 8x2/(1 + 8x3)). The
normalisation and shape parameters of the univer-
sal profile have best-fit values of [P0, c500, γ, α, β] =

[8.403h−
3
2 , 1.177, 0.3081, 1.0510, 5.4905], calibrated from

the REXCESS sample of 33 local X-ray clusters at small
radii (Böhringer et al. 2007) and hydrodynamic simula-
tions at large radii.

The pressure profile is fully specified once the char-
acteristic mass, radius, and redshift of the cluster are
given. The TSZ projection operator for a cluster j, with
pressure profile centred about the direction n̂, is then

TTSZ
j (p) = y(p, n̂j ,θ

T
j ), (21)

where the full set of parameters for the spatial profile is
θT = {M500, R500, z, P0, c500, γ, α, β}. We further divide
these into two sets: θS = {P0, c500, γ, α, β} are the profile
‘shape’ parameters, which may be universal, and θP =
{M500, R500, z} are the ‘physical’ parameters, which are
different for each cluster.5 The TSZ profile for a typical
cluster is shown in Fig. 2, as a function of frequency and
effective beam size.

For a sufficiently realistic model of the cluster spatial
profile, there should be no need for a separate amplitude

5The profile depends only on the combination RS = R500/c500
(apart from in the mass scaling, αp), so these two parameters are
degenerate for each cluster unless c500 is assumed to be universal.
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Fig. 2.— Temperature fluctuation due to thermal SZ
(black/grey) and kinetic SZ (red) at 150, 220, and 350 GHz, aver-
aged over a circular top-hat aperture of radius θ. The lines shown
are for a ‘typical’ SZ cluster at z = 0.1, with M500 = 1014M�,
R500 = 1 Mpc, and line of sight velocity v · n̂ = 400 kms−1. The
grey band illustrates the approximate range of temperature fluctu-
ations for the primary CMB. We have defined θ500 = R500/DA(z).

degree of freedom, aj , because Eqs. (17) and (20) would
define a complete mapping between the magnitude of the
TSZ signal, y, and physical cluster parameters such as
M500 and R500. We introduce aj in our model for a few
reasons, however. First of all, the mapping between the
integrated SZ signal and parameters such as the mass is
often defined using a scaling relation, which typically has
an intrinsic scatter of log σ ∼ 10% (e.g. Planck Collabo-
ration 2011a). The amplitude parameter can be used to
model this scatter.

It is also advantageous to be able to keep the cluster
shapes fixed for some applications, since the spatial tem-
plates are time-consuming to compute. From Eq. (20),
one can see that, assuming this profile is correct, there
is an almost one-to-one correspondence between aj and
M500, the parameter of most cosmological interest. The
statistics of aj are also a good proxy for detection sig-
nificance. By holding the shape parameters fixed, but
allowing aj to vary, we can therefore get good estimates
of these quantities with considerably reduced computa-
tional expense.

Finally, despite being one of the more accurate mod-
els available, the universal profile is still a simplification.
Arnaud et al. (2010) find the pressure profiles of the
REXCESS clusters to be scattered about the universal
profile by up to a factor of four at low radii, depending
on how morphologically disturbed the cluster is. The fit
is claimed to be better than 25% at radii greater than
0.2R500 however, although recent SZ observations have
now found a significantly flatter mean pressure profile
at r > R500 (Planck Collaboration 2013; Sayers et al.
2013a). Allowing aj to vary could at least help to reduce
biases in other components of the data model due to this
sort of modelling error (although one must be careful
in choosing which profile parameters are also allowed to
vary, as some are strongly degenerate with aj).



7

3.2. Amplitude sampling

Sampling of the {aj} parameters proceeds jointly with
all other amplitude degrees of freedom, as described in
Section 2.2, but it is instructive to explicitly write out
the linear system for just the CMB and a localised TSZ
component, which we will now do.

From Section 2.2, the data model for a single frequency
may be written as dν = Uν · a + nν , where

a= (aCMB, aTSZ) (22)

Uν =Bν(1 · Y , f(ν)TTSZ) (23)

are symbolic block vectors of the amplitudes and (beam
convolved) mixing/projection operators for each compo-
nent. The TSZ amplitudes are given by the block vector
aTSZ = (a1, a2, · · · , aN ), and the spatial templates by
TTSZ = T = (T1, T2, · · ·TN ), where Tj = T (p, n̂j ,θj).

In this notation, the linear operator (8) can be written

as M = S−1 +
∑
ν Ñ
−1
ν , with

S−1 =

(
S−1

CMB

S−1
TSZ

)
Ñ−1
ν =

(
BTν N

−1
ν Bν BTν N

−1
ν BνTf(ν)

f(ν)(BνT)TN−1
ν Bν f(ν)(BνT)TN−1

ν BνTf(ν)

)
.

We will set S−1
TSZ = 0 in the rest of this paper, but include

it here for the sake of generality. The bottom-right block
of the inverse noise operator contains the TSZ-TSZ term

(Ñ−1
ν,22)jk = f(ν)(BνTj)

TN−1
ν BνTkf(ν). (24)

For j 6= k, this accounts for any overlap between clus-
ters, ensuring that neighbouring clusters do not bias one
another. Finally, the right-hand side of the linear system
(9) can be written as

b =

 S
− 1

2

CMBω0 +
∑
ν B

T
ν

[
N−1
ν dν +N

− 1
2

ν ων

]
S
− 1

2

TSZω1 +
∑
ν f(ν)(BνT)T

[
N−1
ν dν +N

− 1
2

ν ων

]  ,

where ω are randomly-drawn white noise maps.
In principle there is a physical prior on the TSZ am-

plitudes: aj ≥ 0. This violates our assumption that all
amplitude parameters are Gaussian, without which we
would be unable to simultaneously sample large num-
bers of amplitudes efficiently. To resolve this conflict, we
choose a looser interpretation of aj , treating it as a ‘diag-
nostic parameter’ that quantifies detection significance,
and is allowed to go negative.

3.3. Sampling the profile parameters

The TSZ frequency spectrum is completely fixed, so
there are no spectral parameters to sample. This leaves
only the parameters of the spatial profile, θT , defined
above. The conditional distribution for θT is difficult
to sample from analytically due to the dependence of
(21) on a numerical line of sight integration, and the
non-linear functional form of the pressure profile itself.
As such, we fall back on the Metropolis-Hastings algo-
rithm to sample from Eq. (12).6 This is tractable owing

6The shape parameter subspace, θS , could be sampled more
directly by precomputing a set of profiles on a grid of the {α, β, γ}
parameters and then rescaling the profiles with RS , as necessary.

to the reasonably small number of profile parameters for
each cluster, although sampling is relatively slow because
each proposal requires the cluster template to be recalcu-
lated for a new set of parameters. The parameters should
strictly only be sampled one cluster at a time to preserve
the Gibbs scheme, which disallows parallelisation of the
sampling algorithm.

A couple of approximations can be made to speed up
computations. The first involves assuming that all clus-
ters share the same shape parameters, θS (but not the
same physical parameters, θP ). In this case, the cluster
profile recalculation can be parallelised effectively, and
only one set of shape parameters need be sampled per
Gibbs iteration. The shape parameters then represent
some ‘average’ profile for the ensemble of clusters.

The second involves approximating the likelihood for
each cluster to be independent of the profile parameters
of any other clusters, in which case sampling for each
cluster can happen in parallel. This is a good approxi-
mation unless clusters overlap. A possible refinement of
this method would be to sample in parallel for all clus-
ters except those that overlap by more than a pre-defined
amount, for which sampling would instead happen se-
quentially.

3.4. Catalogues and prior information

While recent high-resolution, high-sensitivity CMB ex-
periments have greatly increased the number of clusters
detected using the SZ effect, the majority are detected
only with comparatively low SNR, or are barely resolved.
The CMB data alone are therefore insufficient to strongly
constrain the physical properties of most clusters, and we
must look to other datasets to provide additional infor-
mation. Fortunately, extensive cluster catalogues based
on X-ray and galaxy redshift surveys are available (e.g.
Koester et al. (2007); Piffaretti et al. (2011)), that can be
used to put priors on some of the cluster profile parame-
ters, θT . Prior information is naturally incorporated into
the Gibbs sampling procedure through the P (T) term in
Eq. (12).

Most important from our perspective are the red-
shift, characteristic mass (M500), and scale radius (RS =
R500/c500) of the clusters. Without some prior informa-
tion on these parameters, the profile parameter sampling
method of Section 3.3 can be affected by strong degen-
eracies, depending on exactly which set of parameters
are being sampled. Composite X-ray catalogues such as
MCXC (Piffaretti et al. 2011) provide good estimates of
these parameters for ∼ 1800 clusters, although it should
be noted that the different selection functions for SZ and
X-ray surveys mean that not all SZ clusters are present
in the catalogue. Also, the parameters are typically esti-
mated using scaling relations that are subject to system-
atic uncertainties in calibration, and which may disagree
between SZ and X-ray observations (Planck Collabora-
tion 2011a).

A further requirement for the catalogues used by our
Gibbs scheme is that they are free from duplicate entries.
Eq. (24) shows why this is the case – if cluster k is
actually a duplicate of j, there will be a 100% overlap
between them, leading to large off-diagonal entries in the
TSZ-TSZ block of the linear operator. This can cause
the system to become degenerate, leading to ill-defined
solutions.
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3.5. Contamination from compact sources

Several other source populations are known to contam-
inate the cluster TSZ signal. Infrared-emitting galaxies
are a particularly nefarious contaminant, as they are of-
ten embedded in clusters but are typically not resolved
by CMB experiments (Addison et al. 2012; Hincks et al.
2013), making it difficult to identify them and cleanly
subtract their contribution to the signal. Cold galactic
sources (CGS) in the Milky Way are also problematic, as
they are sometimes found far from the galactic plane and
have similar angular sizes to clusters (Planck Collabora-
tion 2011b), making them susceptible to erroneous iden-
tification as SZ sources at high frequencies, where the
TSZ signal is a temperature increment.

While these objects are in principle distinguishable
from the TSZ effect by their different spectra (e.g. Mon-
tier et al. 2010; Aghanim et al. 2014), failing to account
for them in the data model will result in some of their
emission leaking into other components. This happens
because the sampling algorithm has no way of identifying
unmodelled components, and so simply tries to find the
best fitting parameters of the incomplete model to the
more complicated data, biasing the recovered SZ ampli-
tudes and leaving residuals in other components such as
the CMB map. Unless the contaminants can somehow
be removed or masked, it is therefore necessary to have a
sufficiently flexible component specification for contami-
nants of a signal, as well as the signal itself.

One possibility for dealing with this within our frame-
work is to add a second localised component with the
same spatial distribution as the clusters from the input
catalogue, but with a different profile shape (e.g. the
point source response in the case of unresolved galaxies)
and frequency spectrum. One can then jointly sample
the SZ and IR emission from each source, which would
robustly separate the two contributions assuming a suffi-
cient number of bands are available (auxiliary data from
IR surveys such as IRAS, SCUBA, Herschel, and the
high-frequency Planck HFI channels can also be used).
This would require a reasonably informed choice of the
functional form of the IR spectrum to prevent degenera-
cies with the SZ signal, but would have the advantage
of simultaneously characterising the IR sources. One
could also use this information to reliably distinguish
cold galactic cores from true SZ clusters by means of a
Bayesian model selection analysis,7 although we do not
consider this possibility further here.

4. KINETIC SZ AND PECULIAR VELOCITIES

The kinetic SZ effect is also caused by the Compton
scattering of CMB photons, but this time it is the co-
herent (bulk) motions of the scattering electrons with
respect to the CMB that imprint the signal, which is ef-
fectively just a Doppler shift. This has a flat spectrum
and is therefore not so readily distinguished from the
primary CMB as the thermal SZ effect.

One can use the KSZ effect to probe the cosmologi-
cal peculiar velocity field on large scales. This encodes a
great deal of information about the growth of structure

7We acknowledge the anonymous referee for this suggestion.
Note that similar ideas have also been used to probabilistically dis-
tinguish between different supernova populations in contaminated
Type Ia samples (Falck et al. 2010).

in the Universe, and can be used to constrain dark en-
ergy and modifications to General Relativity out to high
redshift (Bhattacharya & Kosowsky 2008a; Kosowsky
& Bhattacharya 2009; Keisler & Schmidt 2013). The
KSZ effect is also sensitive to other phenomena that
would cause a CMB dipole to be seen in the cluster
rest frame, for example in inhomogeneous cosmological
models that violate the Copernican Principle (Goodman
1995; Garcia-Bellido & Haugbølle 2008; Bull et al. 2012).

Because of the relative weakness of the signal and
its lack of a distinctive spectral signature, the KSZ ef-
fect is susceptible to various systematic errors that can
severely bias peculiar velocity measurements (Aghanim
et al. 2001; Bhattacharya & Kosowsky 2008b). The mea-
sured velocity is also degenerate with the optical depth
of the cluster (Sehgal et al. 2005), so some way of in-
dependently determining this must be found. Our pro-
posed approach is well-suited to addressing these diffi-
cult problems: through careful modelling, judicious use
of prior information, and rigorous propagation of errors,
one can break degeneracies and mitigate biases, even for
extremely weak signals.

4.1. Model definition

For a cluster with bulk peculiar velocity v, the frac-
tional temperature change due to the KSZ effect is (Sun-
yaev & Zeldovich 1980)

∆T

T
=−(v · n̂/c) τ(n̂) (25)

τ(n̂) =

∫
σTne(n̂, l)dl. (26)

The shape of the cluster’s KSZ emission is governed by
the electron number density, ne. We already have a well-
motived parametric form for the electron pressure profile
(Eq. 20), so rather than choosing ne independently, we
use the ideal gas law ne ≈ Pe/kBTe and a ‘universal’
temperature profile (Loken et al. 2002),

T (r) = 11.2

(
R500h

Mpc

)2(
1 + 0.75

r

R500

)−1.6

keV, (27)

to define an ne that is also a function of the TSZ shape
parameters defined in Section 3.1. By taking the TSZ
and KSZ profiles to be governed by the same set of pa-
rameters, we explicitly take into account their common
dependence on the physical properties of the cluster; in-
formation gleaned from the stronger TSZ signal helps
break the degeneracy between the peculiar velocity and
optical depth. The projection operator for the KSZ com-
ponent is then

TKSZ
j (p) = −τ(p, n̂j ,θ

T
j )/c, (28)

and the amplitude parameter is the bulk velocity pro-
jected along the line of sight to the cluster, aj = vj · n̂j .
Since the KSZ effect is just a temperature change along
the line of sight, it has a flat spectral dependence, so
G = 1.

4.2. Velocity correlations

In contrast with the TSZ case, we will not neglect the
signal covariance here. The peculiar velocities of clusters
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are correlated over large scales, with a covariance that
can be calculated from linear cosmological perturbation
theory. While individual cluster velocities are of little
intrinsic interest, velocity correlations can provide infor-
mation on the growth of structure, matter power spec-
trum, and other cosmological parameters (Bhattacharya
& Kosowsky 2007; Macaulay et al. 2012).

The KSZ velocity covariance matrix is given by (Górski
1988; Macaulay et al. 2012)

(SKSZ)jk =

∫
k2dk

2π2
Pvv(k)Fjk(k) + σ2

∗δjk, (29)

where the first term on the right hand side is the line of
sight velocity correlation from linear theory, 〈(vj ·n̂j)(vk ·
n̂k)〉, and the second term is a nonlinear velocity disper-
sion modelled as an uncorrelated noise term with vari-
ance σ2

∗. The window function Fjk depends on the ori-
entation of the pair of clusters (j, k) with respect to the
observer. Different (but equivalent) expressions for Fjk
are given by Dodelson (2003) and Ma et al. (2011). The
velocity power spectrum is related to the matter power
spectrum by

Pvv(k) =κ(zj)κ(zk)P (k, z = 0)/k2 (30)

κ(z) =H(z)f(z)/(1 + z)D(z), (31)

where D(z) is the linear growth factor normalized to
unity today and f(z) = d logD/d log a is the growth rate.

4.3. Velocity covariance matrix amplitude

Given a suitable choice of parametrisation, the cos-
mological functions that enter (30) can be constrained
directly through the Gibbs sampling procedure. As a
simple illustration, consider a parametrisation that has
only the overall amplitude of the matter power spectrum,
APS, as a free parameter. Replacing P (k) 7→ APSPfid(k)
in (30), where Pfid(k) is a fiducial power spectrum, we
can rewrite (3) as

APS←P (APS|G,a,T,d) ∝ P (APS|aKSZ) (32)

∝ exp

(
−1

2
aT

KSZS
−1
KSZaKSZ

)/√
|SKSZ| . (33)

If we set σ∗ = 0, the signal covariance matrix is simply
proportional to the fiducial linear theory velocity covari-
ance matrix, SKSZ = APSSfid, and the pdf reduces to the
inverse gamma distribution,

Γ−1(A;α, β)∝ exp(−β/A) / Aα+1 (34)

∝ exp

(
−1

2
aTS−1

fid a / APS

)/(
A
N/2
PS

√
|Sfid|

)
,

where N is the number of clusters and α = N/2 − 1.
Efficient direct sampling algorithms exist for this distri-
bution (e.g. Eriksen et al. 2004, and references therein).
We do not know of a direct sampler for the general case,
where σ∗ 6= 0, but an alternative method is discussed in
Section 5.4.

5. GIBBS SAMPLER IMPLEMENTATION

Implementing a numerical code to efficiently carry out
the sampling procedure described in previous sections is
tractable but challenging. In this Section we discuss the

computational difficulties associated with the proposed
Gibbs sampling scheme, and suggest solutions for each
of them. Our discussion is partially based on a simple
proof-of-concept implementation for the TSZ effect built
on top of the Commander CMB component separation
code (Eriksen et al. 2004, 2008). Commander already
implements a subset of the proposed Gibbs scheme, and
can be extended in a relatively modular fashion to ac-
commodate a localised TSZ component. It is optimised
for lower-resolution full-sky analyses, however, and lacks
a suitable solver for the high-resolution analysis needed
for TSZ clusters. We therefore use this code as a simple
testbed, and defer full implementation to a later work.

5.1. Full Gibbs scheme for SZ

Combining results from the previous sections, a suit-
able Gibbs scheme for the localised TSZ and KSZ signals
from galaxy clusters is

ai+1 ← P (a|Ci`, AiPS,θ
i
FG,θ

i
SZ,d) (35)

Ci+1
` ← P (C`|ai+1

CMB) (36)

Ai+1
PS ← P (APS|ai+1

KSZ) (37)

θi+1
FG ← P (θFG|ai+1,θiFG,θ

i
SZ,d) (38)

θi+1
SZ ← P (θSZ|ai+1,θi+1

FG ,θiSZ,d), (39)

where a = (aCMB,aFG,aTSZ,aKSZ) are the amplitude
parameters, θFG are the foreground spectral parameters,
and the cluster shape parameters θSZ are those of the
universal pressure profile defined in Section 3.1.

The Commander code already includes (35), (36) and
(38). The amplitude sampling step (35) must be gener-
alised to include the new SZ components, and steps (37)
and (39) need to be implemented from scratch. We focus
only on (35) here, deferring detailed implementation of
the other steps for later work.

5.2. Constrained realisation solver

The computational complexity of the Gibbs scheme is
entirely dominated by the joint amplitude sampling step
(35), which involves solving a large linear system to draw
a constrained realisation of all of the amplitude param-
eters – potentially millions of them. For realistic CMB
data, with millions of multi-frequency pixels, inhomoge-
neous noise, and masked regions, there is a wide spread
in the signal-to-noise ratio per pixel. The eigenvalues of
the linear operator (8) therefore have a large dynamic
range, making the system poorly-conditioned. This,
combined with its high dimensionality, results in unac-
ceptably slow convergence for most linear solvers. With-
out a computationally-efficient global amplitude sam-
pling step, the Gibbs scheme is intractable, so this issue
is of central importance.

There are a number of ways to speed-up the solution
of the linear system. Commander uses a preconditioned
conjugate gradient (PCG) solver, which works by mul-
tiplying both sides of the system by a preconditioning
matrix, Q, and then solving the resulting modified sys-
tem, QMa = Qb. If one can design a preconditioner
such that Q≈M−1, the resulting modified system will
be well-conditioned, and if both Q and QM can be eval-
uated quickly, it can be solved much faster. An efficient
preconditioner for the joint amplitude sampling problem
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Fig. 3.— Distribution of standard scores, (〈ai〉 − ai,in)/σi, for
the TSZ amplitudes of 300 simulated clusters. The mean and stan-
dard deviation for each cluster are calculated from a Gibbs chain
with 575 samples, and the input amplitudes are those used in the
simulation.

was described in Eriksen et al. (2004, 2008), and has
been shown to work well on masked, full-sky, low-noise,
multi-frequency foreground-contaminated CMB data up
to ` ' 200 (Planck Collaboration 2014a), which is suffi-
cient for foreground component separation.

Higher resolution methods are needed to sample SZ
amplitudes, however, as a typical cluster at z & 0.1 sub-
tends only a few arcminutes. Increasing the angular res-
olution by even a factor of 2-4 results in a considerable
hardening of the problem, as the number of pixels re-
quired increases as the square. The noise is also higher at
small scales, further contributing to the poor condition-
ing of the system. The result is that substantially more
sophisticated solvers are required to make the problem
tractable. One such method is the multi-level algorithm
described by Seljebotn et al. (2014). This is capable
of rapidly solving the amplitude sampling system up to
` ≈ 2000, but has yet to be extended to multi-frequency
data with more than just the CMB plus noise.

An alternative is to reduce the complexity of the prob-
lem by working in the flat-sky limit. This is suitable for
experiments such as ACT and SPT, which cover only
a few thousand square degrees; so while their angular
resolution is higher, the total number of pixels is typ-
ically smaller. Importantly, in the flat-sky limit one
also benefits from being able to use Fast Fourier Trans-
forms (FFTs) instead of the slower and more cumber-
some spherical harmonic transforms.

To demonstrate the amplitude sampler, we apply the
existing Commander PCG solver to a basic full-sky sim-
ulation for three frequency channels (143, 217, and 353
GHz), each of which has a primary CMB component,
TSZ signals for 300 clusters, uncorrelated white noise,
and instrumental beam effects. No foreground contam-
ination or masks are included. A Gaussian CMB reali-
sation is drawn using the Planck best-fit angular power
spectrum (Planck Collaboration 2014c). The beam is
chosen to be a uniform 40 arcmin. across all bands,
and the noise covariance for each channel is obtained by
smoothing the noise maps for the corresponding Planck
HFI channels to the same resolution. To compensate for
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Fig. 4.— Ratio of TSZ templates for an example cluster (θ500 '
30′) after beam convolution in spherical harmonic space and pixel
space (Nside = 1024). The ratio is shown as a function of angle
from the center of the cluster, normalised to θ500, and the beam
FWHM (θFWHM ' 14′) is shown as a dotted vertical line. Ringing
artefacts are clearly visible.

the comparatively low resolution of the simulation, we
rescale the angular sizes of all clusters by a factor of 7,
roughly corresponding to the ratio between the width
of our chosen beam (40′) and the Planck HFI beams
(∼ 5′ − 7′). Correspondingly, we scale the amplitudes
of the clusters by 1/72 in order to preserve their inte-
grated flux, and thus the signal-to-noise ratio per cluster.
The clusters are chosen to have the angular distribution
and physical properties of the entries with the largest
θ500 from the Planck SZ catalogue (Planck Collabora-
tion 2014f), except Virgo and Coma which are too large
after rescaling.

Fig. 3 shows the distribution of cluster amplitudes
recovered by running the modified Commander Gibbs
sampler over the simulations. The standard scores (i.e.
the recovered TSZ amplitude minus the amplitude in-
put into the simulation, weighted by the standard de-
viation estimated from the Gibbs chain) are consistent
with the unit Gaussian distribution. This is what one
would expect if the recovered amplitudes are Gaussian-
distributed and unbiased, and the standard deviation has
been estimated correctly (in other words, that the statis-
tical uncertainty has been propagated correctly). Note
that this test has not yet been performed in the presence
of other non-Gaussian foregrounds however, which will
be required to more stringently validate the algorithm
before it is applied to real CMB data.

5.3. Spatial template calculation

The SZ spatial templates for each cluster are calcu-
lated according to Eqs. (17) and (25), both of which
require line of sight integrations. This can be computa-
tionally intensive for high-resolution data, especially as
the templates must be recalculated several times during
the shape-sampling Gibbs step (39). Simple numerical
techniques like spline interpolation of the radial cluster
profile and integrating for many clusters in parallel can
readily be used to speed-up the process, however.

Once calculated, the templates must be convolved with
the instrumental beam in each band. While the convo-
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Fig. 5.— Marginal distributions of APS from simulations with
different signal-to-noise ratios per cluster (for 300 clusters, 5000
samples). As the SNR increases, the marginal distribution con-
verges towards the theoretical inverse gamma distribution for the
given velocity covariance matrix (grey).

lution would be fastest in spherical harmonic domain,
this tends to introduce ringing artefacts, and can bias
the beam-convolved template by a couple of percent at
small radii, where most of the integrated signal is from
(Fig. 4). In turn, this biases the SZ amplitudes. A much
more accurate method is to perform the convolution di-
rectly on a finer grid in pixel space (i.e. each pixel is
subdivided into 4 or 16 sub-pixels, the pixel-space con-
volution is calculated, and then the result is averaged
back onto the coarser grid). This is considerably more
expensive than the spherical harmonic method, so the
beam-convolved templates should be cached if possible.
Fortunately, the convolution can be done independently
per cluster, per band, making it easy to parallelise.

5.4. Velocity covariance matrix amplitude

Current CMB experiments lack the sensitivity to de-
tect the KSZ effect from significant numbers of individual
galaxy clusters, so only statistical detections (e.g. Hand
et al. (2012)) will be possible for the foreseeable future.
Our formalism suggests a natural quantity to use as a
statistic: the velocity covariance, defined in Section 4.2.

To investigate the properties of this statistic, we define
a simplified Gibbs scheme based on steps (35) and (37),
where only the cluster KSZ amplitudes and the velocity
covariance matrix amplitude are free parameters,

a← P (a|APS,d) (40)

APS ← P (APS|aKSZ). (41)

We simulate velocity data, d, for a range of signal-to-
noise ratios by drawing Gaussian realisations of veloci-
ties with covariance SKSZ, and adding white noise with
covariance N = (SNR)−2 × diag(SKSZ), where SNR is
an assumed signal-to-noise ratio per cluster, equal for all
clusters. The velocity covariance matrix is calculated for
the 813 clusters with confirmed redshifts in the Planck
SZ catalogue (Planck Collaboration 2014f); a subset of
these is taken when fewer clusters are needed. For the
sake of simplicity, the non-linear velocity dispersion, σ∗,
is set to zero in these simulations; the qualitative picture
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Fig. 6.— Standard deviation of the velocity covariance matrix
amplitude, σ(APS), estimated from simulations, as a function of
the number of clusters in the catalogue and the detection SNR for
each cluster.

stays the same for non-zero σ∗, however.

One way of quantifying a detection of the KSZ effect
is to use the amplitude parametrisation of the velocity
covariance matrix that was discussed in Sect. 4.3. One
might expect that a constraint on APS that is inconsis-
tent with zero at some confidence level would count as
a detection, but the velocity covariance matrix must re-
main positive definite, and so APS is always greater than
zero with 100% confidence. Furthermore, the distribu-
tion of APS will have finite variance even for perfect,
noise-free observations – a given (finite) set of correlated
peculiar velocities is always consistent with having been
drawn from a finite range of distributions with different
APS. Both of these effects can be seen in Fig. 5, where
the marginal distribution of APS is plotted from simu-
lations for 300 clusters, with varying SNR. As the noise
decreases, the marginal distribution rapidly approaches
the ideal distribution for the given SKSZ. The width of
the estimated distribution, approximated by the stan-
dard deviation, is shown in Fig. 6 as a function of both
SNR and the number of clusters.

A better way of quantifying detection significance is
therefore to compare the estimated marginal distribution
of APS with what would be expected in the ideal case. A
useful measure of the closeness of two distributions is the
Kullback-Leibler divergence (Kullback & Leibler 1951),
also known as the relative entropy or information gain.
For a pair of normalised discrete (binned) distributions,
pi and qi, this is

∆S =
∑
i

pi log(pi/qi), (42)

where the sum is over bins. Since ∆S is not invariant
under qi ↔ pi, we specify that qi is the ideal reference
distribution here. As p approaches q, ∆S → 0, so smaller
∆S denotes a stronger detection. Note that there is no
definitive value of ∆S corresponding to a null detection,
though; any constraint on the velocities, however weak,
provides information on APS, and thus reduces ∆S.

In reality, σ∗ 6= 0, and so Eq. (33) cannot be reduced
to the inverse gamma distribution. One can sample from
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the more general distribution using a simple inversion
sampling algorithm: (1) Evaluate Eq. (33) over a grid
of APS values; (2) integrate the result to find the cu-
mulative distribution function (cdf); (3) draw from the
uniform distribution, u ← U[0, 1]; and finally (4) draw
APS by evaluating the (spline interpolated) inverse cdf
at u, i.e., APS ← cdf−1(u). This method is sufficiently
accurate as long as the APS grid is dense enough, and
is also relatively efficient; while each evaluation of (33)
requires an expensive matrix inversion and determinant
evaluation, these are fast enough for matrices with a few
thousand clusters or smaller, and the evaluation over the
grid can be performed in parallel.

Another problem that arises is the long correlation
length of Gibbs chains in the low SNR limit. In this case,
the sampler spends most of its time exploring the joint
prior, P (aKSZ, APS), and without good data to constrain
the KSZ amplitudes, APS is degenerate with an overall
scaling of all aKSZ. Because the Gibbs scheme alternately
samples from the conditional distributions, it is unable
to move directly along the degeneracy direction, and so
exploration of the joint prior is slow, hence the highly cor-
related samples. This issue can be overcome by adapting
the low signal-to-noise CMB sampling algorithm of Jew-
ell et al. (2009). This alternates between (1) sampling
from the standard conditional distributions, and (2) an
MCMC step based on a deterministic rescaling of the
amplitudes. The MCMC step allows large jumps in APS

in the noise-dominated regime, significantly speeding-up
exploration of the joint prior space, but reduces to the
standard sampling method in the signal-dominated case.

6. APPLICATION TO OTHER LOCALISED
SIGNALS

The sampling scheme proposed in Section 2 is suit-
able for a variety of other types of localised secondary
anisotropy besides the TSZ and KSZ effects. The only
significant modification that is needed is to choose a dif-
ferent parametric form for the spatial profile and fre-
quency dependence, and to source a different catalogue
of positions and (optionally) other properties of the tar-
get objects. In the remainder of this section, we briefly
outline some other types of secondary anisotropy that
may benefit from the careful statistical treatment pro-
vided by our method.

6.1. Integrated Sachs-Wolfe effect

The integrated Sachs-Wolfe (ISW) effect is a temper-
ature change in the CMB caused by the decay of grav-
itational potentials along the line of sight as dark en-
ergy begins to dominate. The expected amplitude of the
ISW effect is predicted to be small compared with the
primary anisotropies, and so it is generally necessary to
cross-correlate CMB sky maps with tracers of large-scale
structure in order to pick out the signal.

While interesting as an independent confirmation of
the existence of dark energy, there have also been recent
claims of a detection of the ISW effect in the direction of
supervoids that is anomalously large compared to ΛCDM
predictions (Granett et al. 2008; Papai et al. 2011; Na-
dathur et al. 2012; Flender et al. 2013). The ISW effect
due to a large supervoid could potentially also explain
the CMB cold spot (Kovács et al. 2014).

6.2. Topological defects

Phase transitions associated with spontaneous symme-
try breaking in the early universe should give rise to topo-
logical defects – the inhomogeneous boundaries between
regions of different vacuum states (Durrer 1999). De-
fects leave discontinuities and other characteristic non-
Gaussian patterns in the CMB, with shapes that depend
on the type of underlying symmetry that was broken.
Most theories predict that only a few defects can be ex-
pected to be visible in the CMB, and so have been in-
voked as possible explanations of rare anomalies such as
the cold spot (Cruz et al. 2005).

There have been a number of searches for evidence
of defects in the CMB, with varying degrees of success
(Jeong & Smoot 2005; Cruz et al. 2008; Feeney et al.
2012). In order to claim that a detected anomaly is in
fact the result of a topological defect, a number of other
potential explanations must first be ruled out; for ex-
ample, a claimed detection of a cosmic texture may also
be plausibly explained by the existence of an interven-
ing cluster or void. The measured temperature profile
of the anomaly can be used as part of a Bayesian model
comparison to try and distinguish between the various
options (Cruz et al. 2008).

6.3. Signatures of pre-inflationary physics

A number of proposed models of pre-inflationary
physics suggest processes that can imprint patterns into
the CMB that are not expected in the standard (Gaus-
sian and isotropic) picture. These patterns typically take
the form of circles, concentric rings, or other simple ge-
ometric shapes in CMB temperature or its variance, su-
perimposed on anisotropies that are otherwise well de-
scribed by a Gaussian random field. Examples of mod-
els which predict such effects include (Wehus & Eriksen
2011): bubble collisions in multiverse scenarios (Feeney
et al. 2013); cyclic cosmologies where primordial black
holes collide (Gurzadyan & Penrose 2010); and models
in which massive particles exist before inflation (Fialkov
et al. 2010). A closed spacetime topology would also give
similar effects (Cornish et al. 1998).

Such theories normally predict a characteristic shape
for the patterns, and often impose other constraints such
as pairing of the shapes, or fixed concentricities. This
makes it possible to construct well-defined spatial profiles
for the expected signal.

7. DISCUSSION

Secondary anisotropies of the CMB are a rich source
of cosmological information – if they can be detected
and characterised accurately. In this paper, we have de-
scribed a Bayesian method to rigorously and reliably dis-
entangle secondary signals in CMB temperature maps
from other effects while simultaneously providing accu-
rate estimates of statistical uncertainty. The basis of
the method is a parametric physical model of the mi-
crowave sky that includes primary and secondary CMB
anisotropies, foreground contamination, and noise. One
can then use a tailor-made Gibbs sampling scheme to ef-
ficiently sample from the full joint posterior distribution
for the model, which may include many thousands, or
even millions, of parameters. After marginalising over
everything else, one is left with a consistent statistical
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determination of the secondary signal. Though compu-
tationally intensive, this method has the key advantages
of avoiding biases due to degeneracies with other signals
(by modelling them), and correctly propagating uncer-
tainties without relying on calibration against simula-
tions or otherwise. The latter is particularly important
for secondaries that are only marginally detected, where
inaccuracies in error estimates could make the difference
between claiming a detection or not.

While our proposed method guarantees statistical self-
consistency, its ability to accurately describe the actual
data depends on the suitability of the chosen model of the
sky. As we discussed in Section 3, the sampling frame-
work is extremely flexible, supporting the sampling of
cluster shape parameters and so on. It is therefore pos-
sible to arbitrarily extend the sky model to be more re-
alistic, incorporating effects such as non-sphericity and
non-thermal pressure support in galaxy clusters for ex-
ample. Introducing additional Gibbs steps can lead to
a significant increase in computational complexity, and
generally increases uncertainties by requiring more pa-
rameters to be marginalised, so these downsides must be
weighed against any expected improvement in accuracy.

In Section 4, we gave an example of using our frame-
work to directly estimate a cosmological statistic – in
this case, the velocity covariance. The advantage of this
method is that the impact of foregrounds and the pri-
mary CMB can be folded directly into the estimated
uncertainty on the statistic, based solely on the avail-
able data. The alternative is to calibrate the statistic
off simulations, which can be computationally intensive
and may lack some effects that are present in the real
data. Mapping-out the full joint posterior distribution,
as we do, also has other advantages; one can marginalise
over the secondary signal to obtain rigorous estimates
of some other signal component. This is of particular
interest in cases where secondary anisotropies are both
contaminants and interesting signals in their own right
– for example, the contamination of the cosmic infrared
background by the thermal SZ effect. Though successful
when applied to the CMB (Planck Collaboration 2014a),
blind component separation methods are less likely to
be useful for this sort of problem, as they tend to mix
together physical foregrounds, leaving only the primary
CMB behind after cleaning.

As discussed in Section 5, our Gibbs sampling method
is computationally intensive, and requires the use of some
clever algorithms to speed it up. We demonstrated the

tools necessary to make the method practical, but the
next step is to construct a full implementation. For the
full sky, the best option is most likely the multi-level
solver of Seljebotn et al. (2014), but in the near term a
flat sky version is a more straightforward prospect. Full
details of a flat-sky implementation, including full nu-
merical validation of the method, are deferred to a forth-
coming paper (Louis & Bull 2015).

The focus of this paper has been on secondary
anisotropies of the CMB, such as the TSZ and KSZ ef-
fects, and the others listed in Section 6, but one could
also consider extending our Gibbs sampling framework to
additional datasets, such as surveys of large scale struc-
ture (LSS). We have already considered a basic way of
doing this in our discussion of the SZ effect, where ex-
ternal cluster catalogues were used to determine the po-
sitions of galaxy clusters on CMB maps. A more so-
phisticated ‘combined’ Gibbs scheme could also sample
parameters of the external cluster survey, such as detec-
tion thresholds or selection functions, or indeed any other
quantity with statistical uncertainty attached. One could
even define a scheme that sampled the density field re-
constructed from galaxy redshift surveys and then cross-
correlated it with the CMB. These possibilities are left
for future work; we only wish to note here that properly
accounting for correlated (physical/nuisance) parameters
between disparate datasets is likely to become more cru-
cial as cross-correlation analyses become more common,
and that Gibbs sampling provides the flexibility to tackle
this problem.
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APPENDIX

BLIND DETECTION OF THE TSZ EFFECT

The Gibbs sampling framework outlined in Section 2 can also be used to perform blind detections of clusters, using
only the frequency dependence of the thermal SZ effect. The most suitable model for blind TSZ detection within our
framework is a pixel-based component (see Section 2.4) with a free amplitude and fixed TSZ spectrum (Eq. 19) in
each pixel. One could also impose a signal covariance matrix based on the TSZ angular power spectrum predicted
from linear theory and simulations, but for experiments with multiple frequency channels there is generally enough
data to make this unnecessary.

While the spectrum of the TSZ effect is rather distinctive, other foreground emission must nevertheless be included
in the data model as well. Otherwise, one runs the risk that a substantial fraction of the unmodelled components
could be misidentified, causing significant contamination of the estimated TSZ signal. The precise definition of these
other components will depend on the frequency coverage of the experiment in question, but for the 70 – 350 GHz
window, where the TSZ signal is largest, the most important contaminants are typically CO emission lines, free-free,
and thermal dust (Planck Collaboration 2014a). Contamination by point sources is also an issue, and so either a point
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source mask or a reliable cross-matching procedure is required as well.
With a data model in hand, one can then use a variation on the Gibbs scheme of Section 2.2 to sample from the joint

posterior. A map of TSZ amplitudes is produced with each Gibbs iteration by virtue of the first step in the scheme (Eq.
2). Once the Gibbs chain has converged, each of these maps will be a sample from the marginal distribution for the TSZ
component – that is, the CMB, galactic foregrounds, and other model parameters are automatically marginalised in
these maps. This procedure directly propagates the uncertainty associated with the component separation procedure
in full, so there is no need to perform simulations to estimate detection significance and the like.

The TSZ marginal maps can then be processed using an existing source finder or filtering technique to try and
identify clusters (e.g. Herranz et al. 2005). Estimates of the noise are given by the standard deviation from the chain
for each pixel, and an effective signal map is given by the mean.
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K. M., & Lawrence, C. R. 2008, ApJ, 676, 10, [arXiv:0709.1058]
Eriksen, H. K. et al. 2004, ApJS, 155, 227,

[arXiv:astro-ph/0407028]
Falck, B. L., Riess, A. G., & Hlozek, R. 2010, ApJ, 723, 398,

[arXiv:1009.1903]
Feeney, S. M., Johnson, M. C., McEwen, J. D., Mortlock, D. J., &

Peiris, H. V. 2013, Phys. Rev. D, 88, 043012, [arXiv:1210.2725]
Feeney, S. M., Johnson, M. C., Mortlock, D. J., & Peiris, H. V.

2012, Phys. Rev. Lett., 108, 241301, [arXiv:1203.1928]
Feroz, F., Hobson, M. P., Zwart, J. T. L., Saunders, R. D. E., &

Grainge, K. J. B. 2009, MNRAS, 398, 2049, [arXiv:0811.1199]
Fialkov, A., Itzhaki, N., & Kovetz, E. D. 2010, JCAP, 1002, 004,

[arXiv:0911.2100]
Flender, S., Hotchkiss, S., & Nadathur, S. 2013, JCAP, 2, 13,

[arXiv:1212.0776]
Forni, O., & Aghanim, N. 2005, EURASIP Journal on Applied

Signal Processing, 2005, 2413
Fosalba, P., Gaztañaga, E., & Castander, F. J. 2003, ApJ, 597,

L89, [arXiv:astro-ph/0307249]
Fowler, J. W. et al. 2010, ApJ, 722, 1148, [arXiv:1001.2934]

Garcia-Bellido, J., & Haugbølle, T. 2008, JCAP, 0809, 016,
[arXiv:0807.1326]

Gelfand, A. E., & Smith, A. F. M. 1990, Journal of the American
Statistical Association, 85, 398

Giannantonio, T. et al. 2006, Phys. Rev. D, 74, 063520,
[arXiv:astro-ph/0607572]

Goodman, J. 1995, Phys. Rev. D, 52, 1821,
[arXiv:astro-ph/9506068]

Górski, K. 1988, ApJ, 332, L7
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