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ABSTRACT

We present a multi-level solver for drawing constrained Gaussian realizations or finding the max-
imum likelihood estimate of the CMB sky, given noisy sky maps with partial sky coverage. The
method converges substantially faster than existing Conjugate Gradient (CG) methods for the same
problem. For instance, for the 143 GHz Planck frequency channel, only 3 multi-level W-cycles re-
sult in an absolute error smaller than 1µK in any pixel. Using 16 CPU cores, this translates to a
computational expense of 6 minutes wall time per realization, plus 8 minutes wall time for a power
spectrum-dependent precomputation. Each additional W-cycle reduces the error by more than an
order of magnitude, at an additional computational cost of 2 minutes. For comparison, we have
never been able to achieve similar absolute convergence with conventional CG methods for this high
signal-to-noise data set, even after thousands of CG iterations and employing expensive precondition-
ers. The solver is part of the Commander 2 code, which is available with an open source license at
http://commander.bitbucket.org/.

Subject headings: Methods: numerical — methods: statistical — cosmic microwave background

1. INTRODUCTION

Apart from a substantial kinematical dipole, the cos-
mic microwave background (CMB) radiation is observed
to be isotropic to around one part in 104. Below this
level, there are random fluctuations over a wide range
of angular scales. The prevailing ‘concordance’ cosmo-
logical model explains these anisotropies as the imprints
of Gaussian-distributed, statistically-isotropic perturba-
tions of spacetime that were generated during an infla-
tionary epoch in the early Universe. Correlations be-
tween the fluctuations provide a wealth of information
about inflation and the subsequent growth of structure,
and so being able to accurately measure and characterize
them is of paramount importance to modern cosmology.
As detector technology has improved, it has become

possible to probe smaller and smaller angular scales
with ever-increasing noise sensitivities. The resulting im-
provement in resolution and signal-to-noise ratio presents
a formidable computational challenge, as one must now
reliably reconstruct the CMB sky to high accuracy over
tens of millions of pixels, while simultaneously taking
into account complexities of the data such as inhomo-
geneous noise, foreground contamination, and regions of
missing/masked data.
Consider an observed map of the CMB, for instance

similar to those provided by the WMAP (Bennett et al.
2012) and Planck (Planck 2013a) experiments. The ideal
CMB map would consist of an error-free value at every
single position on the sky. In reality this is of course not
possible, because of instrumental imperfections (such as
noise and beam smoothing) and strong foreground con-
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tamination from astrophysical sources; there will always
be uncertainties in a real CMB map. Therefore, rather
than aiming to extract “a single true CMB sky map”, a
more realistic solution is to compute an ensemble of many
possible CMB skies, each of which is both noise-free, full-
sky, and statistically consistent with the observed data.
This idea has already been implemented for CMB analy-
sis purposes in terms of a Gibbs sampling framework, as
described by Jewell et al. (2004); Wandelt et al. (2004);
Eriksen et al. (2004, 2008a).
An underlying assumption in this line of work is that

both the CMB sky and instrumental noise are random
Gaussian fields with covariance matrices S and N, re-
spectively. In most applications – following the basic in-
flationary prediction – one additionally assumes that the
CMB field is isotropic, so that the CMB covariance ma-
trix can be specified in terms of a simple angular power
spectrum, Cℓ. Of course, this power spectrum is not
known a priori, but must instead be estimated from the
data, and indeed, this is usually the main goal for most
CMB experiments.
The Gibbs sampling framework provides a well-

structured mathematical solution to this power spec-
trum estimation problem, by establishing the full joint
Bayesian posterior distribution of the CMB sky and
CMB power spectrum. This is found by iteratively sam-
pling from the (more tractable) conditional distributions
according to a simple algorithm: 1) Make an arbitrary
initial ‘guess’ for the CMB power spectrum; 2) draw a
CMB sky map compatible with the data and the assumed
power spectrum; 3) draw a power spectrum compatible
with the sky sample that was just drawn; and 4) iterate.
The resulting set of sky and power spectrum samples will
(after some burn-in period) converge to the true joint
posterior distribution.
Although simple to write down, this algorithm is also

computationally rather expensive due to step (2), which
essentially amounts to solving a large linear system with
one or more random terms on the right-hand side, cor-
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responding to different realizations. We will refer to this
system as the constrained realization (CR) system. The
same linear system can also be solved for the maximum
likelihood CMB sky map estimate, which is sometimes
referred to as the Wiener-filtered map. Since the degrees
of freedom of the CR system scale with the number of
pixels, brute force solutions are out of bounds except
for very low-resolution data sets. However, it is compu-
tationally feasible to multiply an arbitrary vector with
the system matrix by repeatedly changing basis functions
(i.e. spherical harmonic transforms), so that the system
can be solved using iterative linear equation solvers. The
main problem is to optimize the convergence rate of these
solvers to produce a solution in a timely manner.
Commander (Eriksen et al. 2004), the CMB Gibbs

sampler mentioned above, solves the CR system through
the Conjugate Gradient (CG) method, using a combina-
tion of a block preconditioner on large angular scales and
a diagonal preconditioner on small angular scales. While
this approach was successful for analyzing WMAP ob-
servations (O’Dwyer et al. 2004; Eriksen et al. 2007a,b,
2008b), the higher signal-to-noise level of data from more
recent experiments like Planck effectively halts conver-
gence of the solver. Indeed, as we will see in Section 2.4,
the number of CG iterations intrinsically scales with the
signal-to-noise ratio of a given data set, limiting the util-
ity of CG for data sets such as these. To produce the
low-ℓ power spectrum likelihood for the Planck mission,
for example, the data had to be downgraded to low angu-
lar resolution and a substantial amount of regularization
noise added (Planck 2013b). Even then, several thou-
sands of CG iterations were required for convergence. To
go to full angular resolution with this scheme is simply
not computationally feasible.
A somewhat better approach was described by Smith

et al. (2007), who applied the CG method recursively,
such that a CG solution on a coarse grid was used as the
preconditioner for CG on a finer grid. We are not aware
of any head-to-head comparisons of this method versus
the one described by Eriksen et al. (2004), but our un-
derstanding is that, although it is faster, it still scales
with the signal-to-noise ratio of the data set, and there-
fore does not inherently fix the fundamental convergence
problems for high-sensitivity, high-resolution analysis.
More recently, Elsner & Wandelt (2012, 2013) intro-

duced a stationary iterative method for solving the CR
equation. They did not quote the usual statistics for con-
vergence, such as total reduction in residual and error,
however. Not knowing the accuracy of their solution, we
are unable to compare the efficiency of their method di-
rectly to ours. While they do quote the change in the
χ2 statistic of the posterior probability density between
successive iterations, iterative methods (and stationary
methods in particular) are vulnerable to breaking down
in terms of convergence rate well before reaching true
convergence. Also, the χ2 explicitly ignores large scales
under the mask. While there certainly are applications
where this is acceptable, CMB Gibbs sampling is not
one of them, since it explicitly iterates between consider-
ing the CMB signal a sample from the posterior, which
mostly ignores the masked area, and a sample from the
prior, which gives equal weight to the masked area.
In this paper we present a new solver for the CR sys-

tem that is radically different from the CG approach, and

instead builds on the multi-level (or multi-grid) frame-
work. These algorithms are best known in the astro-
physics community as solvers for elliptical partial dif-
ferential equations (PDEs), although they are in fact
more generally applicable to solving many types of linear
systems (Brandt 2001). We apply multi-level theory to
the CR equation (although the algorithm is not entirely
traditional), and show that the resulting algorithm con-
verges to the exact solution with only a handful of iter-
ations even for the most sensitive Planck channel. Most
importantly, and contrary to the CG solver, the conver-
gence rate is nearly independent of the signal-to-noise
ratio of the data set.
Multi-level methods have been explored before in the

CMB community for the purposes of map-making. Doré
et al. (2001) described a standard multi-grid method for
map-making, although it was eventually unable to com-
pete with standard CG and approximate map-makers.
Grigori et al. (2012) also presented a promising two-level
CG preconditioner for map-making based on the domain-
decomposition method in Havé et al. (2013). The map-
making equation is different from CR equation, however,
in that one does not solve for the CMB signal under a
mask. As we will see in Section 2.4, it is this feature in
particular that makes convergence difficult to achieve on
the CR system.

2. EXPLORING THE CR LINEAR SYSTEM

2.1. Matrix notation for spherical harmonic transforms

The details of changing between pixel domain and
spherical harmonic domain are usually glossed over in
the literature. Since we will be solving a large linear sys-
tem that couples signals on all scales — from individual
pixels to the full sky — it is of the utmost importance
to be precise about how these conversions are performed.
If implemented incorrectly, even small pixel-scale errors
can lead to overall divergence of the entire method.
There is no perfect grid on the sphere, and in choosing

a particular one, a number of trade-offs must be con-
sidered. In our current implementation we adopt both
the HEALPix1 pixelization (Górski et al. 2005) and the
Gauss-Legendre spherical grid (Reinecke 2011, and refer-
ences therein). The HEALPix software package contains
routines that are useful for our pixel domain computa-
tions, while the latter is required for accurate evaluation
of Equation (2) below.
Given such a grid on the sphere (by which we mean

a set of positions n̂i on the sky), we can use spheri-
cal harmonic synthesis to transform a field expressed in
spherical harmonic basis, with coefficients sℓm, to a field
sampled on the sphere,

ŝ(n̂i) =

ℓmax∑

ℓ=0

ℓ∑

m=−ℓ

sℓmYℓm(n̂i). (1)

We will write this operation in matrix form as ŝ = Ys,
where Y encodes the value of the spherical harmonics
evaluated at each n̂i of the chosen grid. Note that Y

is not a square matrix, as spherical grids need to over-
sample the signal to faithfully represent it up to some
bandlimit ℓmax. In typical applications there are between

1 http://healpix.sourceforge.net
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30% and 100%more pixels along the rows ofY than there
are spherical harmonic coefficients along the columns.
For the purposes of our method, it will turn out that we
need to under-pixelize the signal instead, so there will be
more columns than rows in Y.
The opposite action of converting from pixel basis to

harmonic basis is spherical harmonic analysis, which gen-
erally takes the quadrature form

sℓm =

∫

4π

Y ∗

ℓm(n̂)ŝ(n̂)dΩ ≈

Npix∑

i=1

Y ∗

ℓm(n̂i)wiŝ(n̂i), (2)

where wi combines quadrature weights and pixel area.
Similar to the synthesis case, this operation can be writ-
ten in matrix form as s = Y

T
W ŝ, where Wij = wiδij .

A crucial feature of our method is the ability to (for the
most part) avoid spherical harmonic analysis, however.
Instead, we will rely on adjoint spherical harmonic syn-
thesis, Y

T , which simply appears algebraically as the
transpose of Y.
Note that, unlike in the case of the more famous dis-

crete Fourier transform, Y is not a square orthogonal
matrix, and synthesis and analysis differ by more than
transposition and a scale factor. One may in some situ-
ations have that YT

WY = I, but this depends on both
ℓmax, Npix and the spherical grid.
The action of applying Y, Y

T , Y
T
W or WY to a

vector is in general referred to as a spherical harmonic
transform (SHT). Carefully-optimized libraries are avail-
able that perform SHTs in O(ℓmaxNpix) time; we use the
libsharp library (Reinecke & Seljebotn 2013).

2.2. Data model

We now define our data model, and assume from the
beginning that the CMB is Gaussian and isotropic (e.g.
Planck 2013c). Following the notation of Eriksen et al.
(2004), it is convenient to define the CMB signal to be a
vector s of spherical harmonic coefficients, in which case
the associated covariance matrix S is given by

Sℓm,ℓ′m′ = δℓℓ′δmm′Cℓ,

where Cℓ is the CMB power spectrum.
Using the notation of the previous section, the model

for the observed sky map pixel vector, d, is

d = YobsBs+ n, (3)

where B denotes beam-smoothing and the pixel window
function, n is Gaussian instrumental noise, and the sub-
script of Yobs indicates projection to the pixelization of
the map d.
We assume a symmetric instrumental beam, so that

the beam matrix B is a diagonal matrix given by
Bℓm,ℓ′m′ = bℓpℓδℓℓ′δmm′ , where bℓ is the instrumental
beam and pℓ the pixel window function of the observed
grid. We also assume white instrumental noise, such that
the noise covariance matrix, N, is diagonal. We discuss
the likely impact of asymmetric beams and correlated
noise in Section 5.
Discretization of the model is done simply by picking

some ℓmax for the s vector. The noise vector n is related
to the map-making process, averaging the noise of time-
ordered data (TOD) that fall within the same pixel, and
so is inherently discrete rather than being a discretization

of any underlying field. As already mentioned above,
no spherical harmonic analysis of d (and therefore n) is
required when solving the CR system; rather, one solves
for the projected s, and so the noise treatment is always
perfectly consistent with the assumed model.

2.3. The CR linear system

Given the data model above, we are interested in ex-
ploring the Bayesian posterior distribution p(s|d, Cℓ), the
CMB signal given the data and CMB power spectrum.
Let us first define

A ≡ S
−1 +BY

T
obsN

−1
YobsB, (4)

where in what follows we will refer to the first term as
the prior term, and the second as the inverse-noise term.
It can be shown that if we now solve the CR system

Ax = BY
T
obsN

−1
d, (5)

the solution x will be the maximum likelihood estimate of
s. Alternatively, if particular random fluctuation terms
are added to the right-hand side of Eq. (5), the solution
x will instead be samples from the posterior (Jewell et
al. 2004; Wandelt et al. 2004). Since bℓ → 0 as ℓ in-
creases, the diagonal prior term will at some point dom-
inate the dense inverse-noise term, so that truncation at
sufficiently high ℓmax does not affect the solution of the
system.
As stressed in Section 2.1, Y

T
obs denotes spherical

harmonic adjoint synthesis, and not spherical harmonic
analysis. Pixels that are masked out, typically due
to strong foreground contamination, are simply missing
from the data vector d, and so the corresponding rows
are not present in Yobs. This means Yobs is not an or-
thogonal matrix, but that is not a concern since we never
perform spherical harmonic analysis of pixels on the ob-
servation grid. The solution x is still well-defined every-
where on the sky due to the prior term S

−1. This is typ-
ically implemented by introducing zeroes in N

−1 rather
than removing rows of Yobs, which has the statistical in-
terpretation of giving those pixels infinite variance. The
two interpretations are algebraically equivalent.

2.4. Eigenspectrum and CG performance

The CR system in Equation (4) is symmetric and pos-
itive definite, which suggests the use of the Conjugate
Gradient (CG) algorithm. For the behavior of CG and
other Krylov methods, we are primarily interested in
the eigenspectrum after preconditioning (Shewchuk 1994,
and references therein), i.e. the eigenspectrum of MA,
where M ≈ A

−1. To illustrate the fundamental problem
with the CG algorithm for the application considered
here, we show in Figure 1 the eigenspectrum of a low-
resolution setup, using a diagonal preconditioner. This
case corresponds to a simulation of the 143 GHz Planck
frequency map (Planck 2013a), downgraded to an angu-
lar resolution of 5.4◦, bandwidth-limited at ℓmax = 95,
and with a mask applied that removes 40% of the sky.
The overall shape of the spectrum appears to be mostly
independent of the resolution, with a significant fraction
of degrees of freedom found in the tails. This behavior is
representative of that found in real-world cases.
The problematic feature is the exponential drop in the

eigenvalues seen to the left of the figure. Theoretical
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Figure 1. Eigendecomposition of the CR system using a diagonal
preconditioner. Top panel: The eigenvalues of diag(A)−1A for the
143 GHz Planck channel with a mask covering 40% of the sky,
smoothed with a 5.6◦ FWHM beam and truncated at ℓmax = 95.
Bottom panel: A selection of eigenvectors corresponding to very
low eigenvalues. The structure of the mask (bottom) is clearly
visible in the eigenvectors.

results indicate that the CG search needs at least one
iteration per eigenvalue located in exponentially increas-
ing parts of the eigenspectrum (Axelsson & Lindskog
1986a,b). This leads to extreme degradation of CG per-
formance, which is indeed what has been observed with
Commander on high-resolution, high-sensitivity data.
The exponential spectral feature is due to large-scale

modes under the mask. For all but the smallest an-
gular scales, the N

−1 term dominates by many orders
of magnitude, so that the S

−1 term is hardly seen at
all. However, vectors that only build-up signal under the
mask after beam-smoothing will only see the S

−1 term
of the matrix, as the N

−1 term vanishes in that case.
The eigenvectors corresponding to the smallest eigenval-
ues are therefore characterized by having large scales lo-
calized within the mask. Moreover, the solution under
the mask is constrained by the values at the mask edge,
meaning the N−1 term takes effect, and this constraint is
harder closer to the edges. The result is an exponentially-
falling eigenspectrum, rather than separated clusters of
eigenvalues that CG could more easily deal with.
Phrased differently, for data having a high signal-to-

noise ratio, the pixels near the edge of the mask carry
a large predictive power on the signal inside the mask
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Figure 2. Effect of the error smoother/approximate inverse M̂.
Top: Relative error ‖xℓ−xtrue,ℓ‖/‖xtrue,ℓ‖. For each iteration, the
error smoother developed in Section 3.5 is applied on a HEALPix
Nside = 512 grid. The error smoother is only able to get closer to
the solution for some part of the frequency spectrum, and quickly
stagnates since no improvement is made to the larger or smaller
scales. Bottom: The left patch shows the initial error when starting
at x = 0, while the right patch shows the error after the first
iteration. The remaining large scale errors can be represented on
a coarser grid. This observation leads to the multi-level algorithm.

— a signal that must be reconstructed by the CG al-
gorithm by navigating through a nearly degenerate sys-
tem. In total, the CG convergence rate is determined
by a combination of the overall signal-to-noise ratio and
the size and shape of the mask. We have been unable
to achieve proper convergence with this method for the
signal-to-noise ratio of a Planck-like experiment, for ex-
ample, independent of preconditioners or number of it-
erations; downgrading and adding regularization noise is
required to produce robust results.

3. THE MULTI-LEVEL SOLVER

3.1. Motivation for a multi-level method

The matrix A of Equation (4) is defined in spherical
harmonic domain, and describes the coupling strength
between pairs of (ℓ,m) and (ℓ′,m′). Except in unreal-
istic scenarios with very simple instrumental noise and
mask, we have found no pattern in the magnitudes of the
matrix coefficients Aℓm,ℓ′m′ that is consistent enough to
be exploited in a solver.
By moving to pixel domain, however, we can create

such an exploitable pattern in the magnitudes of the
matrix coefficients. In Section 3.3 we will construct a
corresponding pixel-domain matrix Â that is localized,

in the sense that Âij has small magnitude (less than 1%

of Âii) unless pixels i and j are very close together on
the sphere.
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It is no surprise that the N
−1 term of Equation (4)

enjoys this property, since we have assumed that instru-
mental noise is uncorrelated between pixels. When it
comes to the S

−1 term, we note that 1/Cℓ is roughly
proportional to ℓ(ℓ + 1), at least for ℓ . 1000. These
are the eigenvalues of the Laplacian on the sphere, with
Y being the corresponding eigenbasis. Therefore we can
hope that a projection of S

−1 to pixel domain should
be close to a Laplacian. The Laplacian is often approx-

imated with a matrix where Âij = 0 unless pixel i and
j are neighbors or i = j. While our case will be less
perfect, it still suggests that multi-level methods can be
very efficient, since those are highly successful for PDEs
involving the Laplacian.
In Section 3.5, we exploit the localization properties

in pixel domain to develop an approximate inverse M̂ ≈
Â

−1. Figure 2 demonstrates the use of this approximate
solver as part of a simple stationary method

x← x+ M̂(b− Âx), (6)

where we initialize x ← 0 and then iteratively update

the solution. Note that if we replace M̂ with diag(A)−1,
Eq. (6) represents what are known as Jacobi iterations.

The problem that is evident from Figure 2 is that M̂

will only make improvements to one part of the frequency
spectrum — namely, the highest frequencies that can be
represented on the grid used. This is the typical case
when multi-level methods are applied; iterations of the
form of Equation (6) are usually only efficient at re-
solving the relations between pixels/elements that are

strongly coupled, which, when Â is localized, translates
to resolving the solution at highest frequencies. Little or
no improvement is made between pixels that are weakly

or indirectly coupled in Â, so that no improvement is
made to the coarser scales. Put another way, the er-
ror, e ≡ x − xtrue, has its high-frequency components
reduced, while the low frequencies are left relatively un-

affected. The approximate inverse M̂ is therefore dubbed
a smoother in multi-level terminology. We will use the
term error smoother to distinguish it from the act of ap-
plying a low-pass filter (which is instead called restriction
in this context).
The key is now to project the matrix A to pixel grids

at different resolutions, producing a set of matrices Âh,

where h is a level indicator. For each Âh we construct a

corresponding error smoother M̂h ≈ Â
−1
h that resolves

the errors in one region of the frequency spectrum only.
Using these levels together, we arrive at a method that
converges very well over the entire frequency spectrum.

3.2. The multi-level algorithm

In this section we give a brief overview of multi-level
theory, together with the specification of our algorithm.
For a more detailed introduction to multi-grid methods,
consult one of the number of standard texts (e.g. Hack-
bush 1985). Ingredients of multi-level algorithms are:

1. A set of bases to project the linear system into in
order to work on different parts of the solution.
Usually these form a hierarchy of levels from finest
to coarsest, so that each level solves for different
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Figure 3. Effect of filters in harmonic domain for the top five
levels. For each level H, starting from the original system of Equa-
tion (4) at the top, we plot the transfer filter fH

h,ℓ (dotted blue),

the filtered prior (f̃H
ℓ )2/Cℓ (solid black), and an approximation

to the diagonal of the inverse-noise term (dashed red). Functions
are normalized to an arbitrary scale (see Figure 4 for the absolute
scale). Note how the prior term on the pixel levels looks superfi-
cially similar to wavelets/needlets in harmonic domain (Scodeller
et al. 2011, and references therein). The real-space transform is
also similar to wavelets/needlets (not plotted).
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Figure 4. Same as Figure 3, but all levels plotted together with
a logarithmic scale and with absolute normalization. We plot the
filtered prior (f̃H

ℓ )2/Cℓ (solid), and the diagonal of the inverse-
noise term for 26 µK constant RMS and no mask (dashed). This
noise level corresponds to the average of the RMS map of the 143
GHz Planck band. The levels are: The original system (black),
Nh

side = 1024 (red), Nh
side = 512 (blue), Nh

side = 256 (orange), and

Nh
side = 128 (green). Note the effect of the filters on the signal-to-

noise ratio; harmonic scales go from being data-dominated to noise-
dominated at the point where the solid and dashed lines intersect.
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frequencies of the solution. It is customary to label
levels relatively, using h for the current level and
H for the coarser level.

2. A way to transfer vectors between the different lev-
els. The restriction operator, IHh , takes a vector
from a finer level to a coarser level, while the in-
terpolation operator I

h
H works in the opposite di-

rection. For symmetric systems, one often takes
I
h
H = (IHh )T .

3. One linear operator (left-hand-side matrix) for each
level. For the case where interpolation is chosen to
be transposed restriction, these are often defined
recursively as

AH = I
h
HAh(I

h
H)T (7)

for the projection of a fine matrix Ah to a coarser
matrix AH .

4. An error smoother Mh for each Ah that removes
the higher frequencies of the error on level h, as
discussed in the previous section.

Multi-level algorithms are often implemented on a grid
or a tessellation in real space, with a sparse linear op-
erator, and using averages of neighboring points as the

restriction operator IHh . In our case, Âh on each level is
not sparse, and, at least without approximations, multi-

plying ÂH = I
h
HÂhI

H
h with a vector would be computa-

tionally very expensive on the coarser levels as it would
require interpolating back to the highest-resolution grid.
To avoid this cost, we instead define our levels in spher-

ical harmonic domain. Let f̃h
ℓ be a spherical harmonic

low-pass filter that emphasizes one part of the frequency
spectrum, and define Fh to be a diagonal matrix with
elements f̃h

ℓ . We then define

Ah ≡ FhAF
T
h ≡ Dh +BhY

T
obsN

−1
YobsBh, (8)

where the prior term Dh is diagonal with entries given by
(f̃h

ℓ )
2/Cℓ and the modified beam matrix Bh is diagonal

with elements given by f̃h
ℓ bℓpℓ. In this case, the system is

bandlimited by some ℓhmax ≤ ℓmax, above which f̃h
ℓ = 0.

Figures 3 and 4 show the filters used in our setup; we
discuss the choice of filters further in Section 3.3.
With this choice, we can clearly satisfy the multi-level

hierarchy of Equation (7) by choosing the restriction op-
erator IHh as an (ℓHmax +1)2-by-(ℓhmax +1)2 block matrix,
where the block for ℓ ≤ ℓHmax is diagonal with entries

fH
h,ℓ ≡

f̃H
ℓ

f̃h
ℓ

, (9)

and the block for ℓHmax < ℓ ≤ ℓhmax is zero.
As already mentioned in Section 3.1, the error

smoother that we have available, M̂h, is defined in pixel
domain. For every spherical harmonic (SH) level we
therefore tag on a corresponding sibling pixel level with
matching HEALPix resolution Nh

side. The result is the

CR-Cycle(h,x,b):
Inputs:

h – The current level
x – Starting vector
b – Right-hand side

H denotes the coarser level relative to h.
Output:

Improved solution vector x

if h is bottom level:
x← A−1

h b By dense Cholesky
else:

x← x+YT
h M̂hYh(b−Ahx) Pre-smoothing

rH ← IHh (b−Ahx) Restricted residual
cH ← 0 Coarse correction

repeat nh
rec times:

cH ← CR-Cycle(H, cH , rH) Recurse

x← x+ (IHh )T cH Apply correction

x← x+YT
h M̂hYh(b−Ahx) Post-smoothing

return x

CR-Solve(b, ǫ):
Inputs:

b – Right-hand side
ǫ – Requested improvement in residual

Output:
Approximate solution x

x← 0
repeat:

x← CR-Cycle(1st,x,b)
r← b−Ax Reused in next CR-Cycle

if rTS−1r < ǫbTS−1b: Improvement relative to Cℓ
return x

Figure 5. The multi-level CR solver. The matrices involved are
defined in the main text. In place of the simple iteration scheme of
CR-Solve, one can use CR-Cycle as a preconditioner within another
solver, such as CG. By varying the nh

rec parameter, a variety of
solver cycles can be constructed, such as a V-cycle (nh

rec = 1) or
W-cycle (nh

rec = 2). Note that, for simplicity, the top-level diagonal
error correction is omitted; see the main text.

following level structure:

SH at ℓhmax = 3000 ←→ Pixels at Nh
side = 1024

l

SH at ℓhmax = 2048 ←→ Pixels at Nh
side = 512

l

SH at ℓhmax = 1280 ←→ Pixels at Nh
side = 256

l

...

The arrows indicate that transfers between different
scales happen only through the spherical harmonic lev-
els. As emphasized in Section 2.1, no spherical har-
monic analysis operations are performed in each conver-
sion (only synthesis and adjoint synthesis operations),
and the implied under-pixelization in the above scheme
is therefore numerically unproblematic.
The full details of how to properly move between the

levels to obtain a solution is given in pseudo-code in Fig-
ure 5. We highlight some aspects in what follows.
Assume that we are currently on some spherical har-

monic level h (where the original equation is simply the
top level), with corresponding system

Ahxtrue,h = bh. (10)
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We start with some search vector xh (initialized to zero),
and want to improve it to get closer to the true value

xtrue,h. In order to make use of M̂, we must now move
to the corresponding pixel level. Our chosen restriction
operator, denoted Yh, is spherical harmonic synthesis to
a HEALPix grid2 of resolution Nh

side. The key to efficient
multi-level solvers is to transfer the residual vector rh,
and not the search vector xh;

rh ← bh −Ahxh (11)

r̂h ← Yrh, (12)

where r̂h is the pixel domain projection of rh. Then, we
approximately solve the projected system for a correction
vector ĉh,

ĉh ← M̂ r̂h ≈ (YhAhY
T
h )

−1
r̂h, (13)

where the computation of M̂ r̂h is further described in
Section 3.5. The approximation is better for small scales
than for large scales. Finally, we let the interpolation
operator be the transpose of restriction, Y

T , so that
the correction is brought over to the spherical harmonic
search vector by adjoint spherical harmonic synthesis,

xh ← xh +Y
T
ĉh. (14)

Together, these steps act as the error smoothing of
a spherical harmonic level, labeled pre- and post-
smoothing in Figure 5. Here we have motivated the
procedure as arising from moving between levels, but
the idea of solving for a correction in a projected sys-
tem arises in many settings (Tang et al. 2009), and other
variations on this theme may prove fruitful in the future.
The vertical movement between coarser and finer levels

follows the same pattern, but uses the restriction opera-
tor IHh defined in Equation (9) instead of pixel projection
Y. First, a fine residual is computed and restricted (i.e.
low-pass filtered) to the coarser level,

rh ← bh −Ahxh, (15)

rH ← I
H
h rh. (16)

Then, a coarse correction cH is sought that approximates
the solution of the coarse system

I
H
h Ah(I

H
h )T cH = AHcH = rH . (17)

Except for at the bottom level, this happens by initializ-
ing a search vector cH to zero and recursively applying
the algorithm. Finally, the correction is interpolated and
applied to our current search vector,

xh ← xh + I
h
HcH . (18)

Using this idea of transferring residuals and corrections
between levels with different bases, one can form a va-
riety of multi-level cycles, moving between the levels in
different patterns. Our choice in the end is a W-cycle
on the coarser levels and a V-cycle on the finer levels, as
described in Section 4.1 and the pseudo-code.
In addition to the pixel levels described above, the

top and bottom levels are special. The smallest scales

2 The pixel level is actually coarser than the spherical harmonic
level, because ℓhmax must be chosen so high that the grid cannot
resolve all the scales of the projected field. See Section 3.4.

(ℓ & 2200 in our experimental setup) are strongly noise-
dominated, making the spherical harmonic domain ma-
trix A nearly diagonal. As a result, we do not project
to a pixel grid, but simply use diag(A)−1 as the error
smoother. Note, however, that this process would de-
stroy the solution on scales that are not entirely noise-
dominated, and so we first apply a high-pass filter to
the correction vector before applying it to the solution
search vector. For the largest scales (ℓ ≤ 40), we do not
project to pixel domain either, but simply solve Ax = b

restricted to ℓ ≤ 40 by explicitly computing the matrix
entries and using a simple Cholesky solver.
For the top solver level, we need to compute the diago-

nal of YT
obsN

−1
Yobs in spherical harmonic domain, and

for the bottom solver level we similarly need all entries of
Y

T
obsN

−1
Yobs for ℓ up to some ℓdense. While such entries

can be computed using Wigner 3j-symbols (Hivon et al.
2002; Eriksen et al. 2004), the following procedure has
some significant advantages. Firstly, while the computa-
tional scaling is the same, it is much faster in practice, in
particular due to the optimized code for associated Leg-
endre polynomials Pℓm available in libpsht (Reinecke
2011). Secondly, it is accurate to almost machine preci-
sion for any grid, whereas the method relying on Wigner
3j-symbols relies on approximation by evaluation of an
integral, and is therefore inaccurate for low-resolution
HEALPix grids.
Let ξkj be the j-th of Jk pixels on ring k in the masked

inverse-noise map. One can then evaluate

(YT
obsN

−1
Yobs)ℓ1m1,ℓ2m2

=

=
∑

k

Jk∑

j=1

ξkjYℓ1m1
(θj , φkj)Y

∗

ℓ2m2
(θj , φkj)

=
∑

k

P̃ℓ1m1
(cos θk)P̃ℓ2m2

(cos θk)

Jk∑

j=1

ξkje
i(m1−m2)φkj ,

where the normalized associated Legendre function is

P̃ℓm(cos θ) =

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pℓm(cos θ). (19)

The inner sum can be precomputed for each ring k and
every (m1−m2) by discrete Fourier transforms, allowing
the evaluation of matrix elements in O(Nring) = O(ℓmax)
time. In the case that we want a dense low-ℓ block,
the procedure to downgrade the inverse-noise operator
from Section 3.4 should be applied first, to reduce the
computational cost from O(ℓ2denseℓmax) to O(ℓ3dense).

3.3. Filter selection and pixel-domain localization

So far we have not specified the exact form of the low-
pass filters f̃h

ℓ required for every level. It turns out that
careful selection of these filters is essential to ensure that
the pixel projection ofAh is localized, and hence that the
construction of an efficient error smoother is possible.
As indicated in Eq. (13), the spherical harmonic sys-

tem Ah on each level h is projected to pixel domain with

Âh ≡ YhAhY
T
h = D̂h + B̂

T
hN

−1
B̂h, (20)

where the prior and pixelized beam terms are this time
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D̂h B̂T
hN−1B̂h

Âh = D̂h + B̂T
hN−1B̂h Mask

Figure 6. Effect of a poor choice of filter f̃h
ℓ . Each panel shows

the couplings between a single pixel and its neighboring region,

corresponding to a row/column of Âh. In this case we used a
low-pass filter based on modifying a standard needlet (Scodeller et
al. 2011, and references therein). While the harmonic properties
of this filter were very attractive, the tails do not decay quickly
enough in real space. The resulting strong, long-range couplings
are fatal to our algorithm.

given by (respectively)

D̂h = YhFhS
−1

FhY
T
h (21)

B̂h = YobsB FhY
T
h . (22)

Note that the pixelization along the rows of B̂h is the ob-
servational grid, while the pixelization down the columns
is that of the current level.
The matrices D̂h and B̂h are both rotationally invari-

ant. By the addition theorem of spherical harmonics,
the coupling strength between two points on the sphere
separated by angular distance θ is given by

g(θ) =
∑

ℓ

2ℓ+ 1

4π
gℓPℓ(cos θ), (23)

where we insert gℓ = (f̃h
ℓ )

2/Cℓ for D̂h and gℓ = f̃h
ℓ bℓpℓ

for B̂h. The pixel-domain localization of such matrices
depends entirely on gℓ. In our experience, the gℓ that
lead to localized matrices in pixel domain tend to be flat
or polynomially increasing before an exponential drop.
Since bℓ already describes a localized beam, and 1/Cℓ

increases non-exponentially, crafting a localized system

Âh at each level is indeed possible.
Selecting the filters fH

h,ℓ, whose products form f̃h
ℓ and

Fh for each level, is a non-trivial matter. The main char-
acteristic the filters must have is that each f̃h

ℓ falls off
quickly enough in real space to avoid strong couplings
between the edge of the mask and the interior. Figure 6

shows what happens if this is not controlled correctly —
the long-range couplings make the construction of an er-

ror smoother M̂ impossible. In contrast, Figure 7 shows
the behavior of the operators in the well-tuned case.
A filter that we found to work very well is given by

squaring the exponent of a Gaussian,

qℓ = exp(−ℓ2(ℓ+ 1)2λ). (24)

The scale parameter λ is simply chosen from the scale
behavior that we want. In our test runs, we chose the
constraints q2570 = 0.1 at the Nh

side = 1024 level and
q1536 = 0.1 at the Nh

side = 512 level.

This filter has the following advantages over a simple
Gaussian:

• It decays much more quickly in ℓ, while in real
space it decays almost as quickly in the tails as
the Gaussian. This allows us to avoid increas-
ing the bandlimit of the original system beyond
ℓmax = 3000.

• The rapid decay with ℓ is also beneficial to counter
the behavior of 1/Cℓ. In the range 2000 < ℓ <
3000, 1/Cℓ follows a rather steep trajectory (be-
tween ∼ ℓ7 and ℓ8) which, when only countered by
a Gaussian, causes some ringing and less locality.

• Using Gaussian filters shapes the N−1 term so that
couplings around a given pixel are similar to a
Gaussian with FWHM of 4 pixels. That is, the
couplings between neighboring pixels are rather
strong. The filter defined above produces much
weaker couplings between neighbors. This is not
currently an advantage, because we let every pixel
“see” a radius of k = 8 pixels around itself anyway
in the error smoother. However, it could become
an advantage in the future if k is chosen adaptively
for each pixel.

Despite these features, the simple Gaussian filter be-
haved better at the coarser levels with very high signal-
to-noise, as can be seen by comparing the second panel of
Figure 7 with the first panel of Figure 8. In our tests we
chose a Gaussian filter fH

h,ℓ for levels N
h
side ≤ 256, tuned

so that the cumulative filter f̃h
ℓ on each level roughly

corresponds to a Gaussian with FWHM of 2 pixels.

3.4. Band-limitation and coarsening Y
T
N

−1
Y

Figure 9 shows the effect of choosing the bandlimit
ℓhmax too low. On the coarser levels, ringing from the
inverse-noise term causes strong non-local couplings un-
less the bandlimit is set as high as 6Nh

side. This limit
depends on the signal-to-noise ratio, and ℓmax = 4Nh

side
is sufficient on the Nside = 512 level.
The HEALPix grid can only represent a field accu-

rately up to ℓhmax ∼ 2Nh
side, and will in fact see different

scales on different parts of the sphere, due to the neces-
sary irregularities in the pixelization. This is the primary
reason for the non-traditional level traversal structure
chosen in Section 3.2. The pixel projection operator Yh

removes some parts of the projected field that the grid
cannot represent, but this is after all how a multi-level
restriction normally works, and so poses no problems.
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Figure 7. Effect of the mask on Âh. Each panel shows the coupling strength in absolute value in the Âh operator, between a sample
point at (θ, φ) (plotted at the origin), and another sample point n pixels away at (θ, φ+n∆), where ∆ is the angular size of one pixel. The

couplings of Âh (black) are a sum of the prior term D̂h (dotted blue) and the inverse-noise term B̂T
hN−1B̂h (dashed red). For each panel,

we vary the position of (θ, φ) relative to the mask (gray band), so that the origin is in each case a value on the diagonal of Âh. Displayed
here is our Nh

side = 32 level in the case of 1.9 µK constant RMS noise (the minimum RMS level of the Planck 143 GHz band). The filter

f̃ℓ is a product of all the inter-level filters fh
H,ℓ (as described in the text), but corresponds roughly to a Gaussian with FWHM of 2 pixels

divided by the pixel window pℓ. The “floor” at 10−1 is caused by the non-Gaussian features of the instrumental beam, bℓ. For comparison,
a perfect Gaussian instrumental beam is used in Figure 9.
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Figure 8. Effect of resolution on Âh. See Figure 7 for legend and experimental setup. In this figure, we also show the effect of the filter
qℓ of Equation (24), with λ appropriately tuned for the resolution in each case. As the resolution is increased, the signal-to-noise ratio
decreases, making the influence of the edge of the mask less important.
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Figure 9. Effect of the band-limit ℓhmax on Âh. See Figure 7 for legend and experimental setup. The settings for each panel are the same

except for varying ℓhmax. Here, the product f̃h
ℓ bℓpℓ is a pure Gaussian with FWHM of 2 pixels. Since the instrumental beam is in this case

taken to be a perfect Gaussian, there is also no “floor” at 10−1 (compare with Figure 7 for the effect of a non-Gaussian beam).
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The filter f̃h
ℓ allows us to set ℓhmax much lower than the

full ℓmax. The two SHTs involved in Y
T
obsN

−1
Yobs still

involve an Nside = 2048 grid, however, so the coarsest
levels are still almost as computationally expensive as
the finest levels.
To work around this, the key is to note that the oper-

ator Y
T
obsN

−1
Yobs does not “see” scales in the inverse-

noise map beyond 2ℓhmax. This follows from an expan-
sion into Wigner 3j-symbols (Hivon et al. 2002; Eriksen
et al. 2004). Simply degrading the inverse-noise map to
a coarser resolution HEALPix grid was found to be far
too inaccurate, so more care is needed. First, we rewrite
the operator as

Y
T
obsN

−1
Yobs = Y

T
obsWobs(W

−1
obsN

−1)Yobs, (25)

where Wobs denotes the quadrature weights of the
HEALPix Nside = 2048 grid, so that Y

T
obsWobs corre-

sponds to spherical harmonic analysis, as described in
Section 2.1. Then, we write ξi for the pixels on the diag-
onal of W−1

N
−1, and ξℓm for the same map expanded

into spherical harmonics. Since the operator of Equation
(25) does not see coefficients beyond 2ℓhmax, we can trun-
cate ξℓm and project it onto a Gauss-Legendre grid of the
same order, which (unlike HEALPix grids) allows spher-
ical harmonic analysis that is accurate to almost ma-
chine precision. Using this re-weighted and downgraded
inverse-noise map as the diagonal of a new inverse-noise
matrix Ñ

−1
h , we have that

Y
T
obsN

−1
Yobs = Ỹ

T
h W̃hÑ

−1
h Ỹh, (26)

where Ỹh and Ỹ
T
h W̃h indicate spherical harmonic syn-

thesis and analysis on the Gauss-Legendre grid.

3.5. Error smoother construction for the CR system

A simple diagonal error smoother does not converge in
our setup, primarily because pixels on the edge of the
mask can have a very strong influence on the solution
in the interior of the mask, as seen in Figure 7. Also,
when applying Gaussian filters, the couplings between
neighboring pixels are rather strong, preventing the use
of a diagonal error smoother even far from the mask.
The basic strategy for our error smoother is to make

sure that every pixel “sees” neighboring pixels in some
radius k around it. In our case we let k = 8 on all
levels, although improvements on this may be possible,
especially in cases with lower signal-to-noise than ours.
We start by dividing the sphere into tiles of size k-by-

k. Then, we include the couplings between pixels in the
same and neighboring tiles while ignoring any couplings
between pixels further apart, so that couplings are in-
cluded in a radius of at least k pixels around every pixel.
The result is a block sparse matrix, as shown in Fig. 10.

Next, we explicitly compute the parts of D̂h (Eq. (21))

and B̂h (Eq. (22)) that fall within the sparsity pattern
by evaluating the sum over Legendre polynomials from
Equation (23). After preparing the block sparse matrix
approximations, we use matrix multiplication without

fill-in to compute B̂T
N

−1
B̂ — that is, we neglect result-

ing blocks outside of the same sparsity pattern. The ap-

proximant for D̂h can then be added directly. Finally, we
perform a zero-fill-in Incomplete Cholesky factorization

(ICC), i.e. we perform in-place Cholesky factorization of
the block sparse approximant as usual, but ignore any
element updates outside of the sparsity pattern during
the factorization process.
Without modification, the factorization process usu-

ally fails, either due to the sparse approximant of the
full dense matrix ending up non-positive-definite, or be-
cause of elements dropped during the ICC. When this
happens, we do a binary search for the lowest ridge ad-
justment α that, when added to the diagonal, makes the
factorization procedure succeed, and scale this α by a
factor of 1.5 for the final factorization. Typical ridge val-
ues α are in the range 10−2 to 10−4 times the maximum
element of Ah.
After factorization, applying the smoother is simply a

matter of doing the usual triangular solve. This is an
inherently sequential process, and the smoother there-
fore currently runs on a single CPU core. Since an error
smoother only needs to work locally, we expect to be able
to apply domain decomposition techniques, partitioning
the sphere into large domains that overlap by k or 2k
pixels, and applying one error smoother on each domain.
Proper parallelization of the error smoother is left for fu-
ture work, however. Also note that the process described
above is the very simplest incomplete factorization algo-
rithm, and more sophisticated incomplete factorization
algorithms are standard in the literature.
In Section 4.1, we quote numbers for the execution time

and memory usage of the smoother. One possibility for
reducing memory consumption in the future is to let k
be adaptive, as it can be made smaller away from the
edges of the mask. All error smoother computations are
done in single precision. In the current implementation,

computing B̂ is very expensive, as we sample it directly
on the Nside = 2048 grid. This is not a fundamental scal-
ing problem, but rather an issue of implementation, as
the degraded inverse-noise map on the Gauss-Legendre
grid described in Section 3.4 could also be used in this
setting.

4. IMPLEMENTATION AND RESULTS

4.1. Numerical results and performance

The basic assumptions for our experimental setup have
already been laid out in Section 2.2. We choose for our
example the RMS map and symmetric beam approxima-
tion of the 143 GHz channel of Planck, as provided in
the Planck 2013 data release (Planck 2013a).
We tried running both with the 40%-sky, 80%-sky and

97%-sky masks used in the Planck analysis, in all cases
together with the 143 GHz point source mask. The mask
has some impact on speed of convergence, but not enough
to warrant attention, and we therefore only present the
results from the 80%-sky mask, which was the slowest to
converge.
For the power spectrum, Cℓ, we use the standard best-

fit Planck+WP+high-ℓ 6-parameter ΛCDM spectrum
(Planck 2013d), but set C0 and C1 to the value of C2 as
a wide prior for any residual monopole or dipole compo-
nent. Statistically, the prior for the monopole and dipole
is of little relevance, since the data so strongly constrain
these components. Note that the present algorithm will
not let us condition on a given monopole and dipole (i.e.
set C0 = C1 = 0), at least without modifications.
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Table 1
Structure and computational cost of a W-cycle

Time in Yh Time in Yobs Time in M̂h or A
−1
h Total time

Level ℓmax # of visits (wall s) (wall s) (wall s) (wall s)

ℓmax = 3000 3000 1 — 6 × 2.8 — 16.8
Nside = 1024 3000 1 4 × 1.2 4 × 2.8 2 × 11 38.0
Nside = 512 2048 2 8 × 0.3 10 × 1.3 4 × 2.3 24.6
Nside = 256 1280 4 16 × 0.07 20 × 0.40 8 × 0.57 13.7
Nside = 128 768 8 32 × 0.016 40 × 0.10 16 × 0.14 6.75
Nside = 64 384 16 64 × 0.004 80 × 0.03 32 × 0.035 3.78
Nside = 32 224 32 128 × 0.002 160 × 0.008 64 × 0.009 2.11
ℓmax = 40 40 32 — — 32 × 0.028 0.90

Other work 8

Full W-cycle 114

Note. — All times are given in wall time seconds using 16 CPU cores. The total number of
operations of each kind for the W-cycle is indicated in each case; this number is not a multiple of the
number of visits because the input vector x is zero on the first visit (except on the first level). Ignoring
this aspect, each pixel level requires: i) two level-transfer spherical harmonic transforms (Yh), ii) three
multiplications with Ah, each with two inverse-noise spherical harmonic transforms (Yobs), and iii) two

applications of the error smoother M̂. The top spherical harmonic level also requires two applications
of Ah, while the smoother application time is negligible. The bottom spherical harmonic level consists
only of dense triangular solves.

Figure 10. Structure of the block sparse matrices used in the
error smoothers. Top panel: The sparsity pattern when every tile
is coupled to its 8 neighboring tiles. In this case, the pattern of
tiles is an Nside = 2 HEALPix grid in ring-ordering. Bottom panel:

The blocks of B̂h = YobsBYT
h corresponding to the red rectangle

in the top panel. The blocks on the diagonal contain within-tile
couplings, while off-diagonal blocks are couplings between pixels in
neighboring tiles. Each block is rectangular because Yobs samples
on a grid with 4× more pixels than the grid sampled by Yh.
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Figure 11. Absolute errors as a function of W-cycle count. For

every iteration we plot the maximum error over all C
−1/2
ℓ xℓm

(black circles, left axis), as well as the largest error across all pixels
(red triangles, right axis).

To produce the right-hand side, b, corresponding to a
random test realization, we draw a simulated xtrue from
the prior p(s|Cℓ), and multiply it with A of Equation
(4). This synthetic setup allows us to track the true
error, e = xtrue−x. In a real setting the right hand side
is of course generated from observed data, and in this
case one can only track the residual, r = b−Ax.
The error smoothers are least efficient on the largest

scales. At the same time, these are much cheaper to pro-
cess than the small-scale smoothers due to the O(ℓ3max)
scaling of the spherical harmonic transforms. We there-
fore choose a partial W-cycle, where the levels forNh

side ≤
1024 participate in a W-cycle (nh

rec = 2 in Figure 5), but
the very expensive error smoother of the Nh

side = 1024
level, as well as SHTs at ℓmax = 3000, are only run once
on the way down and once on the way up (a V-cycle).
In Figure 11 we plot the resulting convergence, in terms

of absolute error as a function of W-cycle iteration count.
Here we see that the error falls exponentially with cycle
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Figure 12. Comparison of absolute errors relative to Cℓ, (x −
xtrue)TS−1(x− xtrue) (black circles), and similarly scaled residu-
als, (b−Ax)TS−1(b−Ax) (red triangles). Both are normalized
with respect to the initial error/residual. The two quantities be-
have very similarly, implying that the residual is an excellent proxy
for the true error.

count, at the rate of roughly one order of magnitude
per iteration. The largest error anywhere on the sky is
smaller than 1µK after only 3 W-cycles, and approaches
the numerical precision limit after 8 cycles.
As mentioned above, since we know what the true so-

lution is for the simulated data, we are also able to trace
the absolute error, e = xtrue−x, although only the resid-
ual, r = b −Ax, is available in real-world applications.
Figure 12 shows that these have qualitatively very similar
behavior as a function of W-cycle count, which implies
that the residual can be used as a robust proxy for the
actual error for the multi-level algorithm. The same is
not true for the CG method, for which the error can flat-
ten earlier than the residual due to the presence of the
nearly singular modes in A.
Finally, in Figure 13 we show the relative error as a

function of multipole moment and W-cycle count. This
plot highlights the problematic angular scales, and is
therefore particularly useful during the debugging and
tuning phase of the analysis; for example, the use of a V-
cycle rather than a W-cycle would make the large scales
noticeably lag behind in convergence on this plot. An-
other example is that, if the filters f̃h are poorly-tuned
(potentially causing the method to diverge), the respon-
sible level can often be picked out on this plot.
The total run-time for this setup was 114 seconds wall

time per W-cycle on 16 CPU cores (AMD 6282 running
at 2.6 GHz). Table 1 breaks this cost down further to the
individual levels and actions. The bulk of the memory
use is by the error smoothers, which consume about 20
GiB of memory (see Table 2). The total process footprint
was around 30 GiB, although unnecessary temporary ar-
rays abound in the current implementation.
Table 2 presents the cost of the necessary precomputa-

tions. For every new combination of instrumental beam,
noise map and mask, or for a new choice of multi-level
filters fH

h,ℓ, one needs to precompute an approximation to

B̂
T
hN

−1
B̂h for every solver level. These precomputations

required a total of 44 CPU hours in our tests, but are triv-
ially parallel. We also expect that one will usually load

Table 2
Error smoother precomputation cost/memory use per solver level

Time obs. Time Cℓ Time ICC Mem. use
Nside (CPU min) (CPU min) (CPU min) (GiB)

1024 727 85 1.15 15
512 509 15 0.35 3.7
256 340 2.4 0.10 0.93
128 230 0.36 0.02 0.23
64 452 0.05 0.007 0.058
32 363 0.01 0.002 0.014

Total 2621 103 1.6 20

Note. — All times are given in CPU minutes (wall time times
the number of CPU cores used). Precomputations can be divided
into the part that must be performed whenever the observational
setup (beam/mask/noise map) changes and the part that must be
performed whenever the prior (Cℓ) changes. If any part changes,
the non-parallel Incomplete Cholesky factorization (ICC) must also
be performed again.

the results from disk. The approximation for D̂h must be
recomputed every time Cℓ changes, which in the case of
Gibbs sampling means every time one wants to run the
solver. Fortunately, this computation is much cheaper
and only requires around 100 CPU minutes of trivially
parallel work, plus 2 minutes of non-parallel work. We
argue in Section 5 that it should be possible to greatly
decrease precomputation time in future.
The main weakness in the current implementation is

the lack of parallelization in the error smoothers. Not
only does the code need to be run on a single node, but
the 40 seconds spent on error smoothing runs on a single
CPU core, with the 15 other cores idling. Parallelization
of the smoother would bring the wall time much closer
to 80 seconds, as well as allowing the distribution of the
20 GiB of smoother data among several cluster nodes.

4.2. Notes on implementation and dependencies

The CR solver is part of Commander 2, which is
made available as open source software under the BSD
license (core code) and the GPL license (full software
when including dependencies). For more information,
see http://commander.bitbucket.org/.
Commander 2 is implemented in a mixture of Python

(using NumPy and SciPy), Cython (Behnel et al. 2011),
Fortran 90, and C. For SHTs we use libsharp (Reinecke
& Seljebotn 2013). For our benchmarks we have used
OpenBLAS (Goto & van de Geijn 2008; Xianyi et al.
2012) for linear algebra.
The main computation time is spent in libsharp or

OpenBLAS, and as such is already highly optimized. The
computation of Equation (23) benefited greatly from be-
ing structured as described in the appendix of Seljebotn
(2012). In addition to what is mentioned there, we made
use of the AVX and FMA4 instruction sets. Also, note
that all the computations for the error smoother could
be performed in single precision.

5. DISCUSSION

We have presented a new algorithm for solving
the Gaussian constrained realization system for high-
resolution CMB data. This method is based on ideas
from multi-grid (or multi-level) theory, and is fundamen-
tally different from the Conjugate Gradient methods tra-
ditionally used for this problem. Being only weakly de-
pendent on the signal-to-noise ratio of the data set under
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Figure 13. Relative error as a function of angular scale. Starting from the top, each line shows the error for a given multi-level W-cycle.
Specifically, we plot ‖xtrue,ℓ − xℓ‖/‖xtrue,ℓ‖, where xℓ denotes a vector with the coefficients for a given ℓ only. This plot is especially
useful during development and tuning of the code, as one can immediately see which error smoothers do not perform well.

consideration, our new method converges exponentially
to numerical precision when properly tuned, and is ca-
pable of producing constrained realizations for the full
resolution of a Planck-like data set within minutes. For
comparison, we have yet to achieve robust full-sky con-
vergence with CGmethods for the same data set. Indeed,
this particular issue was the single most important ob-
stacle preventing a full-resolution analysis of the Planck
2013 data release with the Commander code.
The ultimate goal of this line of work is to per-

form an exact global Bayesian analysis of the high-
resolution, high-sensitivity observations now being pro-
duced by CMB experiments, including component sep-
aration as described by Eriksen et al. (2008a). For this
to be successful, multi-frequency and multi-component
analysis must be added to the algorithm. Other com-
plications, such as the possible asymmetry of the CMB
on large scales (e.g. Planck 2013c), will also need to be
taken into account. As such, the present paper represents
only the first step towards a complete solution. We also
emphasize that the algorithm as presented here is only
the first implementation of a more general framework,
and we expect that many improvements with respect to
computational speed, application to more general cases,
overall robustness and stability, and even user interfaces,
will be introduced in the near future. Before conclud-
ing this paper, we will mention a few relevant ideas, but
leave all details for future publications.
Firstly, as is evident from Figure 7, our method is quite

sensitive to the behavior of the tails of the instrumental
beams extending as far out as the 10−5 level, as these
formally constrain the solution inside the mask. These
tails are not realistically known to such high accuracy,
and so this issue is therefore a modeling problem as well
as a numerical problem. In practice, it seems that in the
absence of other options, one should just choose a form
for the tails that falls quickly enough to not have an effect
on the solution, and that allows a small computational

bandlimit, ℓmax. In short, optimally tuning the tails of
the beam profile may render a more stable solution at a
lower computational cost.
For an exact analysis of data from current and forth-

coming CMB experiments, one would ideally like to ac-
count for the effect of asymmetric beams. With the above
in mind, we envision two solutions for this. One option is
to modify the algorithm so that the beams are defined in
pixel space, as is done in FEBECop (Mitra et al. 2011) for
instance, and then carry the FEBECop beams through
to the computation of the smoother. The main challenge
in this scenario is how to avoid very expensive matrix-
vector multiplications at the coarse levels. Alternatively,
and perhaps more simply, one could use the multi-level
solver for perfect symmetric beams described here as a
preconditioner for a CG search, which then accounts for
the beam asymmetries in its own internal matrix multi-
plications.
Correlated noise is another significant complication for

current CMB observations. While these correlations have
a complicated morphology in pixel space, being con-
volved with the scanning strategy of the experiment,
they are simple to describe in the time-domain. With
the vastly improved convergence rate of the multi-level
method presented here — requiring only a handful of iter-
ations to reach sub-µK errors — it may for the first time
be realistic to define the constrained realization system
in time-domain, rather than map-domain. As for asym-
metric beams, this can either be done by defining the
multi-level scheme directly in time-domain, or, if that
does not succeed, by using the multi-level solver for un-
correlated noise as a preconditioner for a time-domain
CG search. Going to time-domain also provides a direct
route to handling beam asymmetries and optical side-
lobes by full-sky convolution (Wandelt & Górski 2001).
The current computational bottleneck in our imple-

mentation is the time needed to precompute the error
smoothers. The time is spent almost exclusively on sam-
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pling rotationally-invariant operators at every position
on the sphere by brute force evaluation of Equation (23).
While the code for this computation is already highly
optimized, as mentioned above, we do not exploit any
symmetries from pixel to pixel. The grid used within
the multi-level process is arbitrary, and not necessarily
related to the grid of the inverse-noise map, N, or data
vector, d. A future implementation of the algorithm will
therefore employ a different grid with greater symmetry
than the HEALPix grid, which will only require evalua-
tion of the smoother blocks 3–7 times per pixel ring, thus
reducing the computational scaling from O(k2ℓmaxNpix)

to O(k2ℓmax

√
Npix).

Finally, the error smoother evaluation is currently not
parallelized, and only executes on a single CPU core. As
the error smoothers only need to work well for the local
couplings, we expect to be able to partition the sphere
into multiple partially-overlapping domains, and apply
an error smoother on each domain in parallel, at the
cost of some extra computation on the domain borders.
Assuming that this approach is successful, the spherical
harmonic transforms will once again become the bottle-
neck of the overall algorithm.
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Doré, O., Teyssier, R., Bouchet, F. R., Vibert, D., & Prunet, S.
2001, A&A, 374, 358

Elsner, F., & Wandelt, B. D. 2012, arXiv:1211.0585
Elsner, F., & Wandelt, B. D. 2013, A&A, 549, A111
Eriksen, H. K., O’Dwyer, I. J., Jewell, J. B., et al. 2004, ApJS,

155, 227
Eriksen, H. K., Huey, G., Saha, R., et al. 2007a, ApJ, 656, 641
Eriksen, H. K., Huey, G., Banday, A. J., et al. 2007b, ApJ, 665,

L1
Eriksen, H. K., Jewell, J. B., Dickinson, C., et al. 2008a, ApJ,

676, 10
Eriksen, H. K., Dickinson, C., Jewell, J. B., et al. 2008b, ApJ,

672, L87
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