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Abstract

As the energy transition transforms power grids across the globe, it poses several challenges regarding grid design and
control. In particular, high levels of intermittent renewable generation complicate the task of continuously balancing
power supply and demand, requiring sufficient control actions. Although there exist several proposals to control the grid,
most of them have not demonstrated to be cost efficient in terms of optimal control theory. Here, we mathematically
formulate an optimal centralized (therefore non-local) control problem for stable operation of power grids and determine
the minimal amount of active power necessary to guarantee a stable service within the operational constraints, minimizing
a suitable cost function at the same time. This optimal control can be used to benchmark control proposals and
we demonstrate this benchmarking process by investigating the performance of three distributed controllers, two of
which are fully decentralized, that have been recently studied in the physics and power systems engineering literature.
Our results show that cost efficient controllers distribute the controlled response amongst all nodes in the power grid.
Additionally, superior performance can be achieved by incorporating sufficient information about the disturbance causing
the instability. Overall, our results can help design and benchmark secure and cost-efficient controllers.
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1. Introduction

The electrical power grid is undergoing drastic changes
due to the energy transition [1, 2, 3] and suitable control
approaches are necessary to ensure a reliable and stable
operation [4]. The generation side of the grid is changing5

as additional renewable generators are installed to mitigate
climate change, introducing fluctuations on a time scale of
days [5] to sub-seconds [6]. In addition, the demand side
is changing due to the ongoing electrification of heating
and transport [7] and the introduction of demand control10

[8]. Regardless of these changing conditions, the grid needs
to stay within strict operational boundaries to guarantee a
stable electricity supply and to prevent damage to sensitive
electronic devices [4].

A fundamental aspect of power system stability is the15

ability of interconnected synchronous machines of a power
system to remain synchronized. Transient stability de-
scribes the power system’s ability to maintain synchro-
nism in the face of severe transient disturbances [4], and
is of great importance in preventing cascading failures [9,20
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10, 11]. Control mechanisms that balance active power
and regulate frequency in the grid are key to maintaining
these stability conditions. Primary controls [12] respond
within a few seconds of an event to stabilize the frequency
within its permissible operating limits, after which sec-25

ondary [13, 14] and tertiary controls restore the frequency
to its nominal value [15].

In this paper we describe control algorithms for net-
worked systems (such as the power grid) as being cen-
tralized if a central controller performs computations and30

issues control actions for the entire network, distributed
if there are multiple autonomous controllers that perform
computations and can communicate with each other, and
decentralized if there are multiple autonomous controllers
that perform computations but do not communicate with35

each other. Our definition intentionally permits distributed
controllers that do not communicate with each other, thus
making decentralized controllers a special case, albeit de-
generate. Distributed approaches are often supported via
advanced power electronics [16] and economic consider-40

ations [17] to further improve the grid’s stability. For
large-scale networks, centralized control schemes can be
computationally complex and impractical, thereby mak-
ing distributed control schemes with low computation and
communication complexity more desirable [18]. Decentral-45

ized controllers are popular choices since they rely only on
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Notation Description Units

Synchronous machine
parameters

N the set of nodes {1, . . . , N}
where N ≥ 2 is the number of
nodes in the network

–

Ω synchronous angular velocity
used as reference

rad · s−1

B N × N -dimensional matrix of
line susceptances

pu

Mi inertia coefficient s

Di damping coefficient pu

Ef,i exciter voltage pu

Xd,i direct synchronous reactance pu

X ′d,i direct synchronous transient
reactance

pu

T ′do,i direct axis transient time con-
stant

s

Pe,i electromagnetic air-gap power pu

Pin,i net power injection, the dif-
ference between mechanical
power and aggregate load

pu

Synchronous machine
state quantities

θi rotor angle relative to the grid
reference

rad

ωi angular velocity relative to the
grid reference

rad · s−1

Vi normalized machine voltage pu

ξi disturbance to net power injec-
tion

pu

σ(ω) standard deviation of network
angular velocities

rad · s−1

〈ω〉 mean value of network angular
velocities

rad · s−1

Optimization parameters
and variables

T control time horizon s

x 3N -dimensional state vector –

u N -dimensional vector of con-
trolled power injections

pu

U set of control variables –

J , Cη, εη cost functional, constraint
functional, constraint toler-
ance

–

Table 1: Nomenclature used in this paper. Vectors and matrices are
denoted in boldface.

local measurements, but they can have poor system-wide
performance in practice [18, 19]. For a discussion on the
strengths and limitations of centralized, decentralized and
distributed controllers for power systems see [18].50

In this paper we seek to answer the following question:
What are the characteristics of a controller that efficiently
synchronizes the power grid in the presence of known dis-
turbances caused by changes in demand and generation?
Most controllers considered in the literature on power grid55

synchronization, including those used for automatic gen-
eration control, are proportional-integral (PI) controllers,
where control actions are proportional to a linear combi-
nation of the tracking error for a desired frequency and the
time integral of this error [18, 20]. It is also typical for such60

controllers to be derived from an analysis of a static opti-
mization problem related to economic dispatch or optimal
power flow [17, 18]. These observations led us to think crit-
ically about dynamically optimal controllers for power grid
synchronization on the one hand, and new designs for such65

controllers beyond PI on the other hand. Consequently,
in this work we formulate an optimal control problem, a
mathematically principled approach to dynamic optimiza-
tion in continuous time [21, 22], for synchronization of a
power grid described by a network of control areas (nodes)70

N . The optimal control forms the basis for understanding
the characteristics of an optimal dynamic response to a
disturbance.

The optimal control problem we formulate assumes
complete information regarding the temporal evolution of75

the disturbance at all nodes in the network. Although this
setting appears to be impractical, the analysis of this prob-
lem allows us to derive practical heuristics which, along
with mathematically precise conditions of optimality, can
lead to new and interesting designs for power system con-80

trollers. Moreover, we believe that placing a-priori restric-
tions on the controller’s information structure would pre-
vent us from our goal of identifying new and interesting
control designs. The optimal control constitutes the ideal
controller in terms of performance, whose characteristics85

and performance can be compared to any realistic con-
troller, centralized or distributed. In this paper, we use
the optimal control to exemplarily benchmark the follow-
ing three distributed control schemes, two of which are
fully decentralized.90

Schäfer et al [23, 24] recently investigated a decentral-
ized linear local frequency (LLF) controller, linked to a
patent [25], that can improve the grid’s transient stabil-
ity by regulating electricity demand and supply through
economic incentives. The control action at area i ∈ N
is directly proportional to ωi, the local angular velocity
deviation relative to the grid reference,

ui(t) := −νiωi(t) i ∈ N , (1)

with νi > 0. The constant νi in (1) measures the will-
ingness at node i to change the active power level and
effectively increases the damping parameter from Di to
Di + νi in the grid dynamics (6) below.
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In [26, 27] the following integral local frequency (ILF)
control is studied,

ui(t) := − 1

κi

∫ t

0

ωi(τ)dτ, i ∈ N , (2)

where κi > 0. The integral control (2) can improve the95

power grid’s synchronization and stability, and can be eco-
nomically efficient in a particular sense [26, 27].

Finally, we consider the following gather-and-broadcast
(GAB) distributed controller which is a special case of the
one defined in [28],

ui(t) := − 1

µi

∫ t

0

N∑
j=1

Aijωj(τ)dτ, i ∈ N , (3)

where µi > 0 and A = (Aij)(i,j)∈N×N is an unweighted
adjacency matrix, Aij ∈ {0, 1} and Aij = Aji, that defines
a communication network between the control areas. If
Aij = 1 when i = j and Aij = 0 otherwise, then the
GAB controller (3) reduces to the decentralized integral
controller (2). In this paper we consider the special case
of a fully connected communication network, Aij = 1 for
all (i, j) ∈ N ×N , which leads to,

ui(t) := − 1

µi

∫ t

0

N∑
j=1

ωj(τ)dτ

= −N
µi

∫ t

0

∑N
j=1 ωj(τ)

N
dτ, i ∈ N , (4)

thereby making the GAB controller proportional to the
time integral of the mean angular velocity.

In the following section we present the optimal con-
trol problem for power grid synchronization. The power
grid dynamics are given by a system of ordinary differen-
tial equations for a state vector x of phase angles, angular
velocity deviations (related to the grid frequency) and volt-
age amplitudes. Let U be a suitable set of time-dependent
control variables u. For a given u ∈ U , we quantify its
cost through a cost function J(u), and evaluate its per-
formance with respect to various operational constraints
Cη(u) and their tolerances εη. The optimal control prob-
lem for power grid synchronization is expressed mathemat-
ically as follows:

Problem:

minimize J(u) subject to:

i) ẋ(t) = f(t,x(t),u(t)), x(0) = x0;

ii) u ∈ U ;

iii) Cη(u) ≤ εη for η = 1, . . . , N + 2,

(5)

where f governs the intrinsic dynamics of the state of the100

grid (see (6) below), and N ≥ 2 is the number of nodes in
its representation as a network.

Problem (5) is solved numerically using a control param-
etrization method [29] that is outlined in the Appendix. In

Section 3 we illustrate the efficiency of the optimal control105

compared to the three proposed controls, (1), (2) and (4),
for a four-node network motif. Finally, in Section 4 we
close with a conclusion and outlook.

Our results show that the optimal control achieves su-
perior performance with respect to cost whilst achieving110

comparable and, in some respects, better performance with
respect to the operational constraints. However, this su-
periority is a consequence of the optimal control utilizing
its knowledge of the disturbance to form a pre-emptive re-
sponse. Realistic controllers will not have this information115

for random disturbances and will therefore require larger
investments than the optimal control. Nevertheless, since
the distributed controllers we investigate do not explic-
itly incorporate any information about the disturbance,
we postulate that realistic controllers can achieve supe-120

rior performance if they incorporate some of this informa-
tion. Regularly occurring disturbances, for instance those
caused by economic effects [30] or steep gradients due to
the sun rising (similar to the recent solar eclipse) [31], pro-
vide important examples in which information about the125

disturbance may be obtained practically.

2. An optimal control problem for power grid tran-
sient stability

This section details the optimal control problem (5)
that we use to benchmark the distributed (including de-130

centralized) controllers’ performances. However, before fo-
cusing on optimal control we need to discuss the model
that we use for the intrinsic dynamics of the power grid.

2.1. Dynamics for transient stability analysis

The rotor mechanical velocities of the interconnected135

synchronous machines in a power grid must be synchro-
nized to the same frequency, else there can be deviations
in the rotor angles that lead to instabilities [4, p. 19]. A
severe transient disturbance can cause large deviations in
the rotor angles, which may lead to a progressive drop140

in the nodal voltages [4, p. 27] and further affect the an-
gular velocities and rotor angle values. A realistic model
of the power grid should therefore take into account the
influence of the rotor angles’ deviations on the voltage am-
plitudes, allowing the analysis of slower phenomena such145

as large deviations in voltage or frequency, as is typically
done in mid-term stability studies [4, p. 34]. Understand-
ably, such a model would entail a simplification of the en-
tire power system, since a dynamic model of the latter is
practically impossible to derive and simulate. Importantly,150

such reduced-order models can accurately reproduce high
level features of power systems dynamics, such as synchro-
nization and stability, for practical purposes [32, 33, 34].

In this paper we use a third-order model [20, p. 456],
which describes the power grid as a network of N ≥ 2
control areas, each represented by a synchronous generator
or motor and governed by a set of differential equations
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for the rotor angle θi, angular velocity deviation ωi, and
voltage Vi at each node,

(i) θ̇i = ωi

(ii) Miω̇i = Pin,i − Pe,i + ui −Diωi

(iii) T ′do,iV̇i = Ef,i − Vi + Id,i
(
Xd,i −X ′d,i

)
,

for i = 1, 2, . . . , N,

(6)

where Pin,i is the net power injection, ui is the controlled
active power, Pe,i is the electrical power,

Pe,i =

N∑
j=1

Bi,j sin(θi − θj)ViVj ,

Id,i is the armature current,

Id,i =

N∑
j=1

Bi,j cos(θi − θj)Vj ,

and Mi, Di, T
′
do,i, Xd,i, X

′
d,i and Ef,i are parameters de-

scribed in Table 1. Note that ωi represents the deviation155

of the rotor angle velocity from a synchronized state 2πF ,
where F is the reference frequency in Hertz. However,
for brevity we will often say “angular velocity” instead of
“angular velocity deviation”.

A positive value for Pin,i indicates net generation at160

node i and in this case we refer to this node as a genera-
tor. A negative value of Pin,i indicates net consumption at
node i and in this case we refer to this node as a consumer
or motor. We refer to positive values for the control vari-
able ui as incremental actions [35] since they correspond165

to an increase in generation or an equivalent decrease in
demand. Similarly, we refer to negative values for ui as
decremental actions [35] since they correspond to a de-
crease in generation or an equivalent increase in demand.

The third-order model (6) assumes a lossless network,170

constant exciter voltage (emf), and neglects transient sali-
ency power and damping effects produced by eddy cur-
rents. It also does not include automatic generation con-
trol or automatic voltage regulation, so that we can clearly
identify and quantify a controller’s response to a distur-175

bance. Nevertheless, by incorporating voltage dynamics it
extends a classical second-order model that is widely used
for simplified analyses of power system dynamics and the
design of grid controllers [4, 20, 36, 37]. Despite their sim-
plicity, reduced-order models such as (6) with as few as180

four or five control areas can practically reproduce the rel-
evant salient features of much larger systems [32, 33, 34].

Finally, we note that models such as (6) were devel-
oped for traditional power systems with low levels of re-
newable generation, and their relevance to present-day and185

near-future power systems with increasing levels of renew-
able generation is being questioned. One of the chief con-
cerns for systems with high levels of renewable generation
is the impact that reduced system inertia (related to the
Mi terms) has on frequency stability, particularly the rate190

of change of frequency [20, 38, 39, 40]. Lower values for in-
ertia parameters Mi in equation (6) lead to faster changes
in the angular velocities, which cause large transient insta-
bilities [38]. Therefore, our analysis is equally relevant to
modern power systems which can be modelled by choosing195

appropriate values for the Mi parameters.

2.2. Operational constraints of the power grid

Let x = (x1, . . . , x3N ) denote the 3N -dimensional con-
trolled state variable obtained from (6) with components
given by

xi = θi, xN+i = ωi, x2N+i = Vi for i ∈ N . (7)

The dynamics of x in (6) can be written compactly as

ẋ(t) = f(t,x(t),u(t)), (8)

where expressions for the components of the intrinsic dy-
namics f = (f1, . . . , f3N ) are obtained from (6) using the
assignment given in (7). Each component of the control
variable u = (u1, . . . , un) corresponds to the amount of
additional active power injected or withdrawn at an indi-
vidual node in the network. We assume that controls are
bounded: for each i ∈ N we have ui(t) ∈ Ui where:

Ui = [umini , umaxi ], −∞ < umini < umaxi <∞. (9)

Let U denote the set of all such control functions.

Synchronization. In our model, synchronization of the
rotor angle velocities for the control areas means ωi = ωj
for all i, j ∈ N . Letting ω = (ω1, . . . , ωN ) denote the vec-

tor of angular velocities and 〈ω〉 = 1
N

∑N
j=1 ωj its arith-

metic mean, we measure the lack of synchronization using
the standard deviation of ω,

σ(ω) =

(
1

N

N∑
i=1

(ωi − 〈ω〉)2
) 1

2

. (10)

Let 0 < T < ∞ denote the length of the control horizon
[0, T ] in seconds. Define the synchronization constraint
loss function by

ψ1(x) = −σ(ω), (11)

and the total synchronization loss on [0, T ] by

C1(u) =

∫ T

0

(min(0, ψ1(x(t))))
2
dt

+ λ1 min
(
0, ψ1(x(T )

)2
=

∫ T

0

σ(ω(t))2dt+ λ1σ(ω(T ))2, (12)

where λ1 ≥ 0 is a weight parameter which emphasizes
the relative importance of the constraint at the final time200

T . Recalling the definition of σ(ω) in (10), the quadratic
weighting given to it naturally defines the variance of ω.
Other weighting schemes are also possible.
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Mean angular velocity operational limits. The vari-
able ωi quantifies the deviation of the angular velocity at
node i from the synchronous reference Ω (rad/s), where Ω
is related to the nominal frequency F (Hz) of the power
grid by Ω = 2π·F . In the United Kingdom and many other
countries the nominal frequency is F = 50 Hz. For reasons
related to the quality of electricity supply, the frequency
must respect certain operational limits. In the United
Kingdom, for example, the statutory limits are ±0.5 Hz
of the nominal value 50 Hz, and the operational limits are
set to the stricter range of ±0.2 Hz [41]. In our model, this
implies the values of the mean angular velocity 〈ω〉 should
be constrained,

ωmin ≤ 〈ω〉 ≤ ωmax. (13)

Define the mean angular velocity constraint loss function
by

ψ2(x) = (ωmax − 〈ω〉)(〈ω〉 − ωmin), (14)

and the total loss on [0, T ] for violating this constraint by

C2(u) =

∫ T

0

(min(0, ψ2(x(t))))
2
dt

+ λ2 min
(
0, ψ2(x(T ))

)2
,

where λ2 ≥ 0 is a weight parameter. Note that only when
ψ2(x) is negative in eq. (14) we get a contribution.205

Voltage operational limits. Since the voltages in our
model are also time dependent, it is important to also take
into account appropriate operational constraints on these
variables. For example, regulations in the United King-
dom require that the steady state voltages should be kept
within ±6% of the nominal voltage for systems between 1
and 132 (kV), or ±10% of the nominal voltage for systems
above 132 (kV) [42]. In our model we can take this into
account with the following constraint,

V mini ≤ Vi ≤ V maxi , i ∈ N , (15)

where V mini < V maxi . We define a loss function for the
voltage constraint at each node i ∈ N by

ψ2+i(x) = (V maxi − Vi)(Vi − V mini ), (16)

and the total loss on [0, T ] for violating this constraint by

C2+i(u) =

∫ T

0

(min(0, ψ2+i(x(t))))
2
dt

+ λ2+i min
(
0, ψ2+i(x(T ))

)2
,

where λ2+i ≥ 0 are weight parameters.

2.3. Formulation of the optimal control problem

For η = 1, . . . , N + 2 the total loss Cη is non-negative,
and is equal to zero if, equivalently, the η-th constraint is
satisfied on [0, T ]. We relax this by introducing tolerance

parameters εη ≥ 0, η ∈ {1, . . . , N + 2}, and say that a
control u ∈ U is feasible if it satisfies

Cη(u) ≤ εη for η = 1, . . . , N + 2. (17)

Below we define a cost objective J(u) which we use with
the constraint losses (17) to formulate the optimal control
problem (5).210

At an initial time t = 0, the power grid is synchronized
and at a steady state, ẋ = 0, in which various operational
constraints are satisfied. Suppose the constant net injec-
tion Pin,i corresponding to the steady state is perturbed
according to an external disturbance ξi,

Pin,i → Pin,i + ξi(t), t ∈ [0, T ],

that causes the grid to become unsynchronized. We would
like the control function u to return the grid close to a
synchronized state before T seconds, and with a “minimal
cost” that ensures the constraint conditions (17) are sat-
isfied. Let L(t,x,u) denote the value of a cost rate func-
tion L that can generally depend on time and the current
value of the state and control vectors. Letting IN denote
the N × N identity matrix and tr denote the transpose
operator, we define the following quadratic cost,

L(t,x,u) := utrINu =

N∑
i=1

(ui)
2, (18)

which is typical of those in the frequency control litera-
ture [43, 27]. The rate function (18) is used to define the
following total cost for a control u ∈ U ,

J(u) =

∫ T

0

L
(
t,x(t),u(t)

)
dt. (19)

By the definition (18) of the cost rate, the cost objec-
tive (19) assigns higher costs to control functions u that
exert large amounts of effort over time. Moreover, ad-
justments in demand and generation of the same magni-
tude are penalized equally due to the symmetry utrINu =215

(−u)trIN (−u). If demand and generation should be pe-
nalized differently then this can be achieved by adjusting
(18). Note that by using the identity matrix IN we assume
that the cost of control is independent of the node. If this
is not the case, then we can replace IN in (18) with an-220

other positive diagonal matrix. Finally, if we should also
ensure that the system state does not deviate too far from
its initial value x0, then we can penalize such deviations
by adjusting the cost rate (18) or constraints Cη.

3. Simulations for a four-node networked power225

system

For the numerical simulations we use the test system
shown in Fig. 1a. Note that such a network may be ob-
tained from a dynamically equivalent model of a larger net-
work such as the IEEE 39-bus test system [32, 33, 34]. We230
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(a) Four-node network motif

0 10 20 30 40 50 60
Time [s]

−2.00

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

ξ 1
[p
u] temporary

persistent

(b) Power disturbance ξ1 to node 1

Figure 1: The first figure (a) illustrates the four-node motif network with ring topology. Parameters are given in the Appendix. The second
figure (b) illustrates the types of power disturbance ξ1 applied at node 1. We consider a short temporary change (dash-dotted line) of power
and a persistent change (solid line). No disturbances are applied to the other nodes.

consider two types of disturbance with each one altering
the net power injection at node 1 as shown in Fig. 1b. The
temporary disturbance reflects a sudden but short doubling
of demand, or equivalent loss of generation, at node 1 from
time t = 10 s that lasts for only twenty seconds. The per-235

sistent disturbance reflects a sudden doubling of demand
at node 1 from time t = 10 s that lasts for the remaining
control horizon. Results for the case with an analogous
increase in generation, or equivalent loss of demand, are
symmetric and thus omitted. In Appendix A we list the240

parameter values for the model and control problem.
Upon representing the constraints by an appropriately

defined vector of auxiliary state variables, we can apply the
theoretical results in [22] or [44] to assert the existence of a
solution to the optimal control problem (5). For example,
using Theorem 23.11 of [22] we can assert the existence
of an optimal control whenever the dynamics f are affine
in the control variable u, such as in (6) and other mod-
els for synchronisation dynamics. Furthermore, Pontrya-
gin’s Maximum Principle [21, 22] provides us with a set
of mathematical conditions that a solution to the optimal
control problem necessarily satisfies. Instead of pursuing
this mathematical formalism, however, we empirically in-
vestigate characteristics of an optimal control by solving
the optimal control problem numerically. The numerical
solutions are obtained using the control parametrization
method [29], which approximates the optimal control prob-
lem (5) by a constrained non-linear optimization problem
over a bounded (N ×np)-dimensional space, where np is a
positive integer, that parametrizes step control functions
as follows,

ui(t) =

np∑
k=1

uki 1[tk−1,tk)(t), uki ∈ Ui, i ∈ N . (20)

Further details of the algorithm are given in Appendix

B, and the source code for the numerical experiments is
available online [45]. For the simulations we use equidis-
tant partitioning points tk = k

np
T , 0 ≤ k ≤ np, with245

np = 1500, and the Sequential Least Squares Program-
ming (SLSQP) routine in Python to solve the non-linear
optimization problem.

We compare the performance of the optimal control
(OC) and three controllers, LLF (1), ILF (2) and GAB250

(4), restricting values of the latter controls to the set U =∏
i∈N Ui if necessary. We use the trapezoidal rule to ap-

proximate the integrals in (2) and (4) and update the con-
trol ui incrementally in an online manner. For simplicity
we suppose that νi = ν, κi = κ and µi = µ for all i ∈ N255

in (1), (2) and (4) respectively, which is a natural choice
since the cost rate (18) assigns the same control cost to
each node. We also aim for values of these model parame-
ters that are similar to values reported in the papers that
initially derived them. For example, the value for µ was260

selected according to the simulations in [28, p. 303], whilst
the value for κ was selected to satisfy µ

κ = N = 4, based on
the relation in (4) above. The value for ν is on the same
order as the damping constants given in the Appendix.
Moreover, by searching over the parameter space we have265

been able to refine the parameters to achieve smaller con-
trol costs with otherwise comparable performance. Table 2
shows the values of ν, κ and µ we used in the simulations.

Notice that in Table 2 the synchronization total loss C1

(12) for the distributed controls is larger for the temporary270

disturbance than for the persistent one. This is because
the temporary disturbance causes two sudden changes to
the net power injection over the control horizon whereas
the persistent disturbance only causes one sudden change.

We note that there are practicalities such as informa-275

tion and communication requirements that affect the vi-
ability of a controller but have not been addressed here.
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Nevertheless, the criteria we use for the comparison try
to limit bias due to different control designs. For in-
stance, since the proposed distributed controllers (LLF,280

ILF, GAB) are designed to keep the system frequency close
to the nominal value (and, therefore, the angular velocity
close to 0), we select relatively narrow angular velocity
constraints in the optimal control problem, reflecting a
maximum allowed deviation of 0.1% or ±0.05 Hz from the285

nominal value 50 Hz. Additionally, the model parameters
are chosen so that the different controllers achieve compa-
rable values for the synchronization total loss C1.

3.1. Simulated dynamics of the controlled power system

Even in the absence of control, the simulated system290

gradually resynchronizes within the horizon [0, T ] with ac-
ceptable voltages and, except when the disturbance per-
sists, acceptable angular velocities. We show in Fig. 2
trajectories for the controlled active power, angular veloc-
ity and voltage under the temporary disturbance, and in295

Fig. 3 corresponding trajectories for the angular velocity
mean and standard deviation. Trajectories under the per-
sistent disturbance display analogous behaviour and are
shown in Appendix D.
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Figure 2: The angular velocity with corresponding frequency values, voltage and controlled power at each node in the test system under the
temporary disturbance. Solid, dashed, dash-dotted and dotted lines correspond to nodes 1, 2, 3 and 4 respectively. Each control gradually
synchronizes the angular velocities after each change in power by the disturbance. The ILF and GAB controls furthermore try to return the
angular velocities to the initial synchronized value. Notice that OC also responds pre-emptively to the disturbance in a significant way.
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Figure 3: Angular velocity mean and deviation in the test system under the temporary disturbance. Red dotted lines show operational limits.
Each control keeps the mean angular velocity 〈ω〉 within its bounds and gradually synchronizes the system after each change in power by the
disturbance. Notice that OC synchronizes the angular velocities to the boundary of its admissible set of values. Furthermore, its pre-emptive
responses to the disturbance cause temporary losses of synchronization.

Control Parameter Value C1 (T, P)

LLF (1) ν = 1 3.6 · 10−3, 1.8 · 10−3

ILF (2) κ = 15 6.3 · 10−3, 3 · 10−3

GAB (4) µ = 60 6.3 · 10−3, 3 · 10−3

OC (5) – 10−4, 10−4

Table 2: Parameter values ν (pu), κ (s) and µ (s) selected for the
proposed controllers. Also included is the synchronization constraint
total loss C1 for the temporary (T) and persistent (P) disturbances
and the respective performance of the optimal control (OC).

Linear local frequency (LLF) control. The LLF con-300

trol keeps the angular velocities within the given bounds
over the control horizon and also synchronizes the system
after each change in power by the disturbance. For the
persistent disturbance, the angular velocities synchronize
near the nadir shown in Fig. 3a. Note that the responses at305

the nodes become equal as the system synchronizes since
the parameters for the control (1) satisfy νi = ν for all
i ∈ N . The displayed control trajectories are oscillatory
and dampen while the disturbance ξ1 remains constant.
However, in separate simulations with larger ν (not shown)310

we no longer notice these oscillations. Moreover, when ν is
very large, say ν = 100, the LLF control has a much larger
initial response at node 1 that approximates the change in
power caused by the disturbance. In this case the angular
velocities are also kept much closer to 0.315

Integral local frequency (ILF) control. The ILF con-
trol also keeps the angular velocities within the bounds
over the control horizon and synchronizes the system af-
ter each change in power by the disturbance. Moreover,
ILF also returns the angular velocities to the initial syn-320

chronized value, thereby performing a secondary control
action. The displayed control trajectories do not have the
oscillations present for the LLF control. However, if κ is
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Figure 4: Comparison of control costs for temporary and persistent disturbances (from left to right: LLF, ILF, GAB, OC). The optimal
control, OC, keeps the system within operational boundaries at the lowest costs whereas ILF and GAB have the highest costs. However,
unlike the other controllers, ILF and GAB also aim to restore the system frequency (therefore, the angular velocity) to its initial value, see
Fig. 3. We also observe near equal costs for ILF and GAB with other values for the coefficients µ and κ satisfying κ ≥ 1 and µ

κ
= 4.

sufficiently small, then such oscillations can appear, al-
though the angular velocities are kept much closer to 0.325

Gather-and-broadcast (GAB) control. The GAB con-
trol behaves and performs similarly to ILF as Fig. 3 and
results in Table 2 can attest. In particular, GAB syn-
chronizes the system and performs the secondary control
action of returning the frequency to its nominal value.330

Optimal control. The optimal control causes the mean
angular velocity 〈ω〉 to follow its natural direction of de-
scent or ascent within the operational limits until a partic-
ular level. The angular velocity is then kept at this level
whilst the disturbance persists. Additionally, the com-335

bined action at the unperturbed nodes is generally of the
opposite type to that taken at the perturbed node. That
is, when there is an increase (respectively, decrease) in
u1 there is typically a decrease (respectively, increase) in∑N
i=2 ui at the same time. We also notice the following340

pre-emptive behaviour of the control: shortly before the
sudden increase (resp. decrease) in demand at node 1,
the optimal control decreases (resp. increases) the active
power at this node and simultaneously increases (resp. de-
creases) the active power at the remaining unperturbed345

nodes. Consequently, the optimal control uses additional
and, in practice, uncertain information about the distur-
bance in its response that realistic controls may not be
able to use. Hence, the optimal controller should always
outperform any realistic controller. Finally, we note that350

the results depend on the parameters selected. For exam-
ple, if the synchronization loss tolerance is increased from
the value ε1 = 10−4 (used to generate these results) to
ε1 = 10−3 we observe oscillations in the control trajec-
tories. However, OC does not change qualitatively when355

we reduce the inertia constants’ values in order to sim-
ulate scenarios with increased renewable generation, see
Appendix C.

3.2. Comparison of control costs

In Fig. 4 we show the cost J(u) for the controls LLF,360

ILF, GAB and OC associated with the trajectories dis-
played above. While it is clear that OC satisfies the con-
straints with smallest cost at the lowest sychronization loss
(Table 2), these costs can depend significantly on the sim-
ulation parameters. For example, the LLF cost increases365

with the coefficient ν and the OC cost increases as the syn-
chronization loss tolerance ε1 decreases. Notwithstanding
this we can explain the disparity between costs for LLF
and ILF (or GAB) by the additional secondary control ac-
tion undertaken by ILF (see Fig. 2). Also, the similarity370

in costs for the temporary and persistent disturbances cor-
responding to OC can be attributed to the significant cost
of responding pre-emptively to the temporary disturbance
in this case.

4. Conclusion and outlook375

In summary, we have introduced and numerically solved
an optimal control problem to benchmark different control
schemes for power grid transient stability in terms of their
economic effectiveness. We investigated three distributed
control schemes: linear local frequency (1), integral local380

frequency (2), and gather-and-broadcast (4).
The linear local frequency control acts as a primary

response service to keep the grid frequency close to its
nominal value. If the control coefficient νi in (1) is chosen
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suitably, for example comparable to the damping param-385

eter at node i, then this control can be quite cost effec-
tive when compared to the integral frequency and gather-
and-broadcast controls. However, we note that the latter
controls can also provide secondary response service (see
Fig. 2) which the linear local frequency control is not de-390

signed for. If the coefficient νi for the linear local frequency
control is large, this leads to more costly power response
profiles that almost exactly counteract the disturbance, at
least in the initial response phase. The linear local fre-
quency, integral frequency and gather-and-broadcast con-395

trollers can also produce control trajectories with oscilla-
tions depending on how their parameters are chosen.

Our results suggest that more efficient controllers dis-
tribute the controlled response amongst all nodes in the
power grid. Moreover, this response need not be homoge-400

neous throughout the network, but could simultaneously
involve incremental actions (net increase in power) at some
nodes and decremental ones (net decrease in power) at oth-
ers. Trajectories associated with the optimal control show
that as it changes the net active power, the mean angular405

velocity follows its natural direction of descent, or ascent
as appropriate, within the operational limits until a point
is reached, possibly at the boundary, at which the power
grid is synchronized and active power is balanced within
the network.410

A response like the one exhibited by the optimal con-
trol apparently requires additional information about the
disturbance that is likely to be uncertain. Nevertheless, for
events that are planned or will occur with very high prob-
ability at an anticipated future time, information about415

the disturbance can be incorporated in the control sys-
tem’s initial response, and a simple distributed or decen-
tralized control such as those we investigated can be used
to smooth out additional unknown perturbations. Design-
ing optimal distributed controllers is the subject of ongoing420

work (see [18, 46], for instance) and decentralized stochas-
tic control (see [47, 48, 49]), which generalizes our method-
ology by incorporating uncertainties and different informa-
tion structures amongst multiple controllers, is likely to
become an important theoretical tool for understanding425

how these controllers work.
Finally, while the numerical results presented here were

obtained for a third-order model of synchronisation dy-
namics and a specific four-node network, they provide use-
ful heuristics for more realistic and larger networks. Alter-430

native network topologies and models for the synchronisa-
tion dynamics can be treated similarly within the optimal
control framework. Overall, our results contribute insight
into the process of designing and benchmarking secure and
cost-efficient controllers for the power system.435
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Appendix A. Tables of parameter values

Parameter [units] Node 1 Node 2 Node 3 Node 4

Mi [s] 5.22 3.98 4.49 4.22

Di [pu] 1.60 1.22 1.38 1.42

Ef,i [pu] 7.01 6.09 6.29 6.67

T ′do,i [s] 5.54 7.41 6.11 6.22

Xd,i [pu] 1.84 1.62 1.80 1.94

X ′d,i [pu] 0.25 0.17 0.36 0.44

Bi,i [pu] −66.1 −82.2 −69.6 −53.6

Pm,i [pu] 1.1 1.4 0.8 2.2

Pl,i [pu] 2.0 1.0 1.5 1.0

Pin,i [pu] −0.9 0.4 −0.7 1.2

θ̄i [rad] 0.0911 0.0973 0.0930 0.115

ω̄i [rad · s−1] 0 0 0 0

V̄i [pu] 0.998 0.997 1 1

Table A.3: Steady state values and parameters for the power grid
model (6) used in the simulations, based on [43, p. 251]. The net
injection Pin,i is obtained from the mechanical power Pm,i and ag-
gregate load Pl,i by Pin,i = Pm,i−Pl,i. Line susceptance values Bi,j
other than those listed are equal to 0 except B1,2 = B2,1 = 34.13,
B1,4 = B4,1 = 28, B2,3 = B3,2 = 44.1 and B3,4 = B4,3 = 22.1.

Parameter Value Units

T 60 s

ωmin, ωmax − π
10 , π

10 rad · s−1
λ 1 1

ε1 10−4 1

ε2,. . . ,ε6 10−10 1

Umin, Umax −5, 5 pu

V min, V max 0.94, 1.06 pu

Table A.4: Parameter values for the control problem. Vectors and
matrices are denoted in boldface. The tolerance ε1 for the synchro-
nization constraint is set larger than the other tolerances to allow for
the loss of synchronization around the occurrence of a disturbance.

Appendix B. The control parametrization method

The following description of the control parametriza-
tion method is summarized from the textbook [29]. Fur-
ther extensions to this method can be found in the survey
[50]. Let Sp, where p ≥ 1 is an integer, denote a finite
subset of the control horizon [0, T ] consisting of np + 1
partitioning points tp0, . . . , t

p
np

,

tp0 = 0, tpnp
= T, and tpk−1 < tpk for k = 1, . . . , np.

An increasing sequence of sets {Sp}∞p=1 is formed by tak-
ing successive refinements of partitioning points, and these
sets should become dense in [0, T ] as p tends to infinity,

lim
p→∞

max
k=1,...,np

|tpk − t
p
k−1| = 0.

For instance, we can use equidistant partitioning points,
tpk = k

np
T for k = 0, . . . , np, with the ratio

np+1

np
, p ≥ 1,

being a constant integer that is greater than 1 (a com-
mon choice is

np+1

np
= 2). We define Up as the subset of

control variables up ∈ U that are piecewise constant and
consistent with Sp in the following sense,

upi (t) =

np∑
k=1

up,ki 1[tpk−1,t
p
k)

(t), up,ki ∈ Ui, i ∈ N .

Each control up is parametrized by an element Up of the

(N ×np)-dimensional space Up =
∏np

k=1

(∏N
i=1 Ui

)
, where

Up = {upk}
np

k=1 and upk = (up,k1 , . . . , up,kN ). This induces

equivalent state dynamics f̃ , costs J̃ and constraints C̃η
that are dependent on the parameter Up,

ẋ(t) = f̃(t,x(t),Up) = f(t,x(t),up(t)),

J̃(Up) = J(up),

C̃η(Up) = Cη(up).

An approximate solution to the infinite dimensional opti-
mal control problem (5) is obtained by solving the follow-
ing non-linear finite dimensional optimization problem.635

Problem:

minimize J̃(Up) subject to:

i) ẋ(t) = f̃(t,x(t),Up), x(0) = x0;

ii) Up ∈ Up;

iii) C̃η(Up) ≤ εη for η = 1, . . . , N + 2.

An optimization algorithm such as sequential quadratic
programming can be used to solve this approximate prob-
lem. Such optimization algorithms are typically iterative,
and the main computations carried out during each itera-
tion are outlined below (see Section 6.6 of [29] for further640

details and [45] for an implementation):

1. Obtain a trajectory for the state variable x by nu-
merically integrating its dynamics forward in time
on the partitioning points Sp.

2. Evaluate the cost J̃(Up) and constraints C̃η(Up) us-645

ing numerical integration.

3. Compute the gradients of the cost J̃(Up) and con-
straints C̃η(Up) according to the formulas given in
Section 6.6 of [29].

The gradient of the cost J̃(Up), for example, involves com-
putation of the gradient of a Hamiltonian function H̃ with

12



respect to the parameter Up,

∂J̃(Up)

∂Up =

∫ T

0

∂H̃(t,x(t),Up, z(t))

∂Up dt,

where z is the costate variable associated to the cost. The
Hamiltonian is defined by,

H̃(t,x(t),Up, z(t)) = L(t,x(t),up(t))

+ z(t) · f(t,x(t),up(t)),

where L is the cost rate function in (19) and · is the dot
product. Dynamics for this costate variable are given by,ż(t) = −∂H̃(t,x(t),Up, z(t))

∂x
z(T ) = 0,

and this differential equation is solved numerically back-650

wards in time given a trajectory for x. Costate variables
for the constraints are defined similarly, but their bound-
ary values at T are non-zero in general due to the presence
of terminal costs.
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Appendix C. Simulations with smaller inertia constants655
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Figure C.5: Results for the optimized control under the temporary disturbance for inertia values scaled by 1, 3
4

, 1
2

and 1
4

in (a), (b), (c) and
(d) respectively. Other parameter values are unchanged from those listed in Appendix A. The angular velocity with corresponding frequency
values, voltage and controlled power at each node in the test system are shown, with solid, dashed, dash-dotted and dotted lines corresponding
to nodes 1, 2, 3 and 4 respectively. As the inertia is reduced, the angular velocities respond noticeably faster to changes in power and the
optimized control’s maximum output slightly increases. Nevertheless, the control’s behaviour remains consistent.
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Figure C.6: Angular velocity mean and deviation for the optimized control in the test system under the temporary disturbance. Inertia values
are scaled by 1, 3

4
, 1

2
and 1

4
in (a), (b), (c) and (d) respectively. Other parameter values are unchanged from those listed in Appendix A.

As the inertia is reduced, the angular velocities respond noticeably faster to changes in power and the maximum angular velocity dispersion
slightly increases. Nevertheless, the control’s behaviour remains consistent.
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Appendix D. Simulations under the persistent disturbance
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(c) GAB for persistent disturbance
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(d) OC for persistent disturbance

Figure D.7: The angular velocity with corresponding frequency values, voltage and controlled power at each node in the test system under
the persistent disturbance. Solid, dashed, dash-dotted and dotted lines correspond to nodes 1, 2, 3 and 4 respectively. Each control gradually
synchronizes the angular velocities after each change in power by the disturbance. The ILF and GAB controls furthermore try to return the
angular velocities to the initial synchronized value.
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Figure D.8: Angular velocity mean and deviation in the test system under the persistent disturbance. Red dotted lines show operational
limits. Angular velocity mean and deviation in the test system under the temporary disturbance. Red dotted lines show operational limits.
Each control keeps the mean angular velocity 〈ω〉 within its bounds and gradually synchronizes the system after each change in power by the
disturbance. Notice that OC synchronizes the angular velocities to the boundary of its admissible set of values.
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