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1 Introduction and summary

The thermodynamic entropy of certain extremal black holes was successfully explained by

enumerating the microstates predicted by string theory [1–3]. In particular, the D1-D5-P

black hole, which is a supersymmetric, 3-charge solution in type IIB string theory, has been

an important arena for studying microscopic physics of black holes. This is partly because

it allows a holographic description in terms of a two-dimensional CFT, called the D1-D5

CFT, which is under good theoretical control.

Although by now we understand the counting of black-hole microstates very well,

their physical nature remains mysterious. The fuzzball conjecture [4–7] claims that black-

hole microstates are made of stringy fuzz that is free of a horizon and singularities, and

spreads over the size of the would-be horizon. The typical microstates of generic black

holes such as the Schwarzschild black hole are expected to involve stringy modes and

cannot be described within supergravity, the massless-mode truncation of the full string

theory. However, constructing microstates in the full string theory is beyond the reach of

our current technology and understanding.

The microstate geometry programme (see [8] and references therein) aims to construct

as many black-hole microstates as possible within supergravity as smooth, horizonless ge-

ometries. The programme has been particularly successful for supersymmetric black holes,

where a large number of microstate geometries have been explicitly constructed [9, 10].1 It

is still unclear how large a subset of all microstates is describable within supergravity but,

even if not all microstates allow a supergravity description, explicit microstate geometries

are important because they provide the only top-down, direct tool available for studying

and understanding the microstate structure of black holes.

Superstrata [21–25] (see also [26]) represent the largest family of microstate geometries

constructed thus far for the D1-D5-P black hole with known CFT duals and have various

interesting features. The D1-D5-P black hole contains momentum (P) charge along an S1

coordinatised by v, and superstrata contain v-dependent travelling waves corresponding to

the P charge. As will be detailed below, superstrata are constructed based on a solution-

generating technique whose holographic meaning is well-understood. Consequently, the

CFT states dual to superstrata are explicitly known, which makes them an ideal setup

for studying precision holography [27–30]. Superstrata also give interesting clues for the

physical nature of typical microstates. Although the superstrata written down thus far are

not typical microstates of the black-hole ensemble, they are expected to evolve into more

1See [11–20] for explicit constructions of microstate geometries of the D1-D5-P system, before the su-

perstratum technology was developed.
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typical states when perturbed, and the endpoint of such a process is a subject of much

physical interest [31–37].

In this paper, we present an explicit construction of an entirely new class of superstrata.

They share the same features as the original superstrata [23–25], such as representing

microstates of the D1-D5-P black hole and having dual CFT states. However, they are

simpler than the original ones in that they involve a smaller number of non-trivial fields.

The original superstrata were constructed using the solution-generating technique as

follows. First we take, as a seed, some 2-charge solution of linear supergravity around

AdS3 × S3, for which the dual CFT state |ψ〉 is known.2 Next, we act on it with the gen-

erators of the SU(1, 1|2)L × SU(1, 1|2)R (super)isometry group of AdS3 × S3 [11]. Specif-

ically, we apply L−1 and J+
0 generators3 of the bosonic subgroup SL(2,R)L × SU(2)L ⊂

SU(1, 1|2)L [23–25]. This process generates a new linear solution with non-vanishing third

(P) charge. Acting on the seed m times with J+
0 and n times with L1 generates the so-

lution dual to the CFT state (J+
0 )m(L−1)

n|ψ〉. Finally, we use the structure of the BPS

equations to complete the linear solution to a fully backreacted non-linear solution. In

CFT, this final process corresponds to having the same excitation many times, namely,

[(J+
0 )m(L−1)

n|ψ〉]Nmn , with Nmn ≫ 1.

However, the supergroup SU(1, 1|2)L also includes fermionic generators G+A
−1/2, where

A = 1, 2 is the index for an SU(2)B group related to the internal manifold. Therefore,

alternatively, we can act with these fermionic generators on the seed (namely, “super-

charge” it) to generate a completely new class of linear solutions. In order to get a bosonic

solution, we need to act twice with fermionic generators. In addition to this, one can

act on the newly obtained state with the bosonic symmetry generators to obtain a new

state (J+
0 )m(L−1)

nG+1
−1/2G

+2
−1/2|ψ〉.4 The non-linear completion goes much the same way

as before, and produces a new set of superstrata.

The supersymmetric solutions in supergravity are parametrised by a number of scalars

and forms [23, 38–40]. In microstate geometries, these quantities get excited in non-trivial

ways, representing the structure of the microstate. In the original superstrata, a scalar

and a 2-form (which is related to the NS-NS B-field) get excited at linear order and, at

quadratic order, more scalars and forms are turned on in a very specific way so that the

combination that enters the metric is v-independent. This mechanism was crucial for the

explicit construction of the geometry and was called “coiffuring” [41]. In contrast, in our

new superstrata, at linear order, only the 2-form is excited and there is no scalar excited

that must be cancelled by other scalars excited at higher order. Thus we will see that

coiffuring is not necessary for the new superstrata and, consequently, they are simpler than

the ones generated just by using bosonic symmetries. In hindsight, the existence of such a

simple branch of superstrata could have been expected from the analysis of the excitation

spectrum of linear supergravity around AdS3 × S3 [42–45]; see appendix C for details.

However, we go beyond such linear analysis and construct fully non-linear solutions using

the structure of the BPS equations.

2In our convention we take |ψ〉 to be an anti-chiral primary state.
3These are generators in the NS-NS sector.
4More precisely, this state is a linear superposition of an old superstratum and a new one, and the former

must be subtracted; see (2.6).
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Due to their simplicity, studying the structure of the solution is easier for the new

superstrata than for the original ones. For example, although the solution-generating

technique can only produce asymptotically AdS3 solutions, we can trivially extend the new

superstrata to asymptotically flat solutions, as we do in section 6.3. In contrast, extending

the original superstrata to asymptotically flat ones required a non-trivial step of solving

differential equations [25]. Also, in the original superstrata, there was technical difficulty in

constructing solutions that involves two modes with completely different quantum numbers

(k1,m1, n1), (k2,m2, n2) [25]. The simple setup of the new superstrata may shed light on

this technical point.

Investigating physical aspects of this new class of superstrata, such as the integrability

of the geometry [35] and their precision holography [27–30] would be very interesting. As

mentioned above, possible instabilities of microstate geometries have attracted much inter-

est lately [31–37]. In particular, it has been argued [31] that supersymmetric microstate

geometries are non-linearly unstable when a small amount of energy is added, leading to

a formation of a near-extremal black hole. The metric of the original superstrata in the

asymptotically-flat setting [25] has no isometry in the v direction, which violates one of the

assumptions in the analysis of [31]. However, the asymptotically-flat version of the new

single-mode superstrata (6.16) is v-independent metrically, and it would be interesting to

examine their possible instability and its endpoint.

The structure of the current paper is as follows. In section 2 we give a brief description

of the D1-D5 CFT, which is dual to the supergravity picture, and present the family of

CFT states whose dual gravitational geometries we want to construct. In section 3 we

then go to the supergravity side and introduce the setup of BPS equations governing the

ansatz quantities that define the fields of our solutions. We then introduce the two-charge

geometry which we will use as a seed in our solution-generating technique and present the

superstrata that were previously constructed in [23, 25]. In section 4 we construct the

Killing spinors of empty global AdS3 × S3 × T 4 and use them to generate the fermionic

variations of the supergravity fields, which are given in section 5. There we construct the

new superstrata solutions to linear order in the perturbation parameter, corresponding to

an infinitesimal deformation of AdS3×S3×T 4. We then derive the fully backreacted, non-

linear solution in section 6, where we also discuss the asymptotically flat extension, calculate

the conserved charges obtained from the geometry, and compare them to the conserved

charges calculated on the CFT side. In section 7, we collect formulas for the new superstrata

and, in addition, present two families of solutions for which all the excited scalars and forms

can be written down in an explicit way. The reader who is interested in the explicit form

of the superstrata geometry may find this section useful. Appendix A summarises our

convention for type IIB supergravity, in particular, supersymmetry variations, spinors, and

gamma matrices. In appendix B, we discuss some technical aspects of the supersymmetry

variations that are not fully covered in the main text. In appendix C, we summarise the

spectrum of linear supergravity around AdS3 × S3 worked out in [42]. This predicts the

structure of excited fields in the new superstrata that we found in this paper, and further

suggests other simple kinds of superstratum that would be interesting to investigate. In

appendix D, we work out the map between the Killing spinors in the NS-NS coordinates

presented in the main text and the ones in the RR coordinates.
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2 A CFT starter

According to the AdS/CFT duality, type IIB string theory on AdS3 × S3 × M (where

M can be either T 4 or K3) is equivalent to a 2D SCFT with N = (4, 4) supersymmetry,

called the D1-D5 CFT.5 Besides Virasoro’s symmetry, this SCFT has two sets of fermionic

generators GαA, G̃α̇A and of bosonic currents J i, J̃ ī that together form a holomorphic and

an anti-holomorphic copy of the small N = 4 superconformal algebra. The Greek indices

α and α̇ are in the fundamental representation of SU(2)L and SU(2)R respectively: this

SU(2)L×SU(2)R is the R-symmetry of the theory. The indices i and ī are the triplet indices

of SU(2)L and SU(2)R, respectively. The index A is in the fundamental representation

of another SU(2)B, which acts as an outer automorphism on the superalgebra. Similar

to N = 4 Super-Yang-Mills theory, this holographic SCFT also has a free locus in its

moduli space where it can be described by a collection of free fields:6 ∂XAȦ (r), ψαȦ
(r)

in the holomorphic and similarly ∂̄XAȦ (r), ψ̃α̇Ȧ
(r) in the anti-holomorphic sector, where

r = 1, . . . , N , so the total central charge is c = 6N . Notice that the new type of indices Ȧ,

appearing on the free fields, belongs to a SU(2)C that is not part of the symmetry group of

the theory. Since the bosonic fields are in the (2,2) representation of SU(2)C×SU(2)B, one

can think of this group as acting on the tangent space of the target space M of one boson.

The free locus is described by N copies of the elementary fields which need to be treated

as identical, so the full target space is the orbifold MN/SN , where SN is the symmetric

group acting on the index (r) labelling the copies.

In the following we will use the anomaly-free part of the small N = 4 superconformal

algebra in the NS-NS sector,

[Lm, Ln] = (m− n)Lm+n , [J j
0 , J

k
0 ] = iǫjklJ l

0 , [Ln, J
αβ
0 ] = 0 ,

{GαA
r , GβB

s } = ǫαβǫABLr+s + (r − s)ǫAB(σi T )αγǫ
γβJ i

r+s ,

[J j
0 , G

αA
s ] =

1

2
GβA

s (σj) α
β , [Lm, GαA

s ] =
(m
2

− s
)
GαA

m+s ,

(2.1)

with n,m = −1, 0, 1 and s, r = ±1
2 , while (σj) α

β are the Pauli matrices and all SU(2)

indices are lowered/raised with the ǫ satisfying7 ǫ12 = ǫ+− = ǫ21 = ǫ−+ = 1. When M
is T 4, there are additional U(1) currents that in the free theory description are simply∑N

r=1 ∂XAȦ (r) and
∑N

r=1 ∂̄XAȦ (r). They will play no role in our discussion which is valid

for both the T 4 and K3 cases.

In the NS-NS sector, SL(2,C)-invariant vacuum |0〉 satisfies Ln|0〉 = L̃n|0〉 = 0 for

any n ≥ −1 and GαA
r |0〉 = G̃α̇A

r |0〉 = 0 for r ≥ −1/2 which implies J i
n|0〉 = J̃ ī

n|0〉 = 0 for

n ≥ −1. In what follows a particular kind of state, called an anti-chiral primary state, will

play the central role in the construction of new superstrata solutions. An anti-chiral state

5See e.g. [46, 47] for reviews of the D1-D5 CFT.
6In order to have a free theory description of the K3 case one can as usual consider the orbifold limit

K3 = T 4/Z2, where the fields with an odd number of Ȧ indices are odd under Z2. See e.g. [25] for a

discussion on the moduli space and the position of the free orbifold point in it.
7We will use α = +,− and A = 1, 2 to highlight the difference between the R-symmetry and the outer

automorphism indices.
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|s〉 satisfies

Ln|s〉 = 0 , n ≥ 1 ; GαA
r |s〉 = 0 , r ≥ 1

2
; J−

n |s〉 = 0 , n ≥ 0 ;

J+
n |s〉 = J3

n|s〉 = 0 , n ≥ 1 ; L0|s〉 = −J3
0 |s〉 = h|s〉 ,

(2.2)

where, as usual, J± = J1 ± iJ2. A simple example of such a state in the free theory is

|O−−〉 ≡ O−− |0〉 where8

Oαα̇ = − i√
2N

N∑

r=1

ψαȦ
(r) ψ̃

α̇Ḃ
(r) ǫȦḂ , (2.4)

which has h = h̄ = 1/2. There is a family of anti-chiral primary operators9 Σ−−
[k] with

h = h̄ = k−1
2 that, at the free locus, live in the twisted sectors of the orbifold SN mentioned

above. These operators change the boundary conditions of the elementary fields. For

instance when acting on the vacuum they link together k copies of the elementary fields

into a single object that we call a “strand”. In the following, we will use the anti-chiral

primaryO−−
[k] with h = h̄ = k

2 , where a strand of length k is further excited by a holomorphic

and an anti-holomorphic elementary fermionic field and, for the corresponding states, we

introduce the notation

|O−−〉k = lim
z,z̄→0

O−−
[k] |0〉 . (2.5)

Acting with J+
0 , L−1 and G+A

− 1
2

on |O−−〉k we can obtain new bosonic states in the same

multiplet

|k,m, n, q〉NS = (J+
0 )m(L−1)

n

(
G+1

− 1
2

G+2
− 1

2

+
1

k
J+
0 L−1

)q

|O−−〉k , (2.6)

where m ≤ k − 2q, q = 0, 1, otherwise the state is trivially zero, while n = 0, 1, 2 . . .

can be any non-negative integer. The eigenvalues (h, j) of L0 and J3
0 are h = k

2 + n + q

and j = −k
2 + m + q, while (h̄, j̄) are unchanged. Notice that, due to the commutation

relations (2.1), the order of the operators in (2.6) is immaterial. The combination in the

parenthesis (weighted by q) is chosen so as to make the states |k,m + 1, n + 1, 0〉NS and

|k,m, n, 1〉NS orthogonal, which means that, under the AdS/CFT dictionary, they will

correspond to two independent supergravity perturbations. It is straightforward to check

this by using the commutation relations (2.1). It is easier to start with the n = 0 case:

NS〈k,m+1,1,0|k,m,0,1〉NS=NS〈k,m+1,0,0|L1

(
G+1

− 1
2

G+2
− 1

2

+
1

k
J+
0 L−1

)
|k,m,0,0〉NS

=NS〈k,m+1,0,0|
(
−J+

0 +
2

k
L0J

+
0

)
|k,m,0,0〉NS=0 . (2.7)

8In our conventions the OPEs between the elementary fields are

∂XAȦ(z1)∂XBḂ(z2) ∼
ǫABǫȦḂ
(z1 − z2)2

, ψαȦ(z1)ψ
βḂ ∼ −

ǫαβǫȦḂ

z1 − z2
(2.3)

and GαA =
∑N
r=1 ψ

αȦ
(r) ∂XAḂ (r). Similar relations hold for the anti-holomorphic sector.

9The subscript [k] in the square parenthesis refers to the order of the twisted sector where the operator

under discussion lives.
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This shows that L1|k,m, n, q〉NS ∼ |k,m, n − 1, q〉NS, so we can recursively prove the or-

thogonality of |k,m+1, n+1, 0〉NS and |k,m, n, 1〉NS for general n. Finally notice that the

state |1, 0, 0, 1〉NS is trivial10 since it has zero norm and so all the states |1, 0, n, 1〉NS are

zero since they are constructed from |1, 0, 0, 1〉NS by dressing it with powers of L−1.

The final CFT ingredient we need is the possibility of realising the superalgebra in

equivalent ways by taking the spectral flow of the generators (here we follow the conventions

of [48])

Tν = T − 2ν

z
J3 +

cν2

6z2
, J3

ν = J3 − cν

6z
, J±

ν (e2πiz) = e∓2πi2νJ±
ν (z) , (2.8)

and similarly for the anti-holomorphic sector. When the spectral flow parameter ν takes

half-integer values, the theory is in the RR sector, and in particular, for ν = ν̄ = −1/2, an

anti-chiral primary state flows to RR ground state with hR = c/24 and jR = −hNS + c/12

(since jNS = −hNS for anti-chiral primary states). Thus, after this spectral flow, the states

in (2.6) become excited RR states that we denote as

|++〉N−k |k,m, n, q〉R , with hR =
N

4
+m+ n+ 2q , jR =

N − k

2
+m+ q , (2.9)

where we used c = 6N and used that the NS-NS vacuum state |0〉NS goes into the RR

ground state |++〉.
In this work we focus on protected RR states that are dual to smooth supergravity

solutions. A nice class of such states is obtained by starting from a NS-NS multi-particle

state which is the product of Nb copies of (2.6) and then by performing the spectral flow

to the RR sector mentioned above. In this paper we consider states involving just one type

of excitation, dual to a single-mode superstrata solution, which in the RR sector then take

the following form:

|++〉Na
(
|k,m, n, q〉R

)Nb , with Na + kNb = N . (2.10)

To be precise, the CFT states of this type are written as a coherent sum of terms involving

a different number elementary excitations (2.6), but in the large N limit the sum is sharply

peaked [49] and (2.10) represents the dominant term in the sum. For a discussion of this

point in the context of three-charge states, see [25] and reference therein. Here it is sufficient

to say that the coherent sum with a peak at (2.10) is defined in terms of two continuous

parameters a2 and b2, related to Na and Nb respectively which determine also the dual

gravity solution. Such a coherent sum of CFT states will have charges equal to the those

of the dominant term (2.10). These charges are given by the eigenvalues of the operators

L0, L̄0, J
3
0 and J̄3

0 which are equal to

hR =
N

4
+ (m+ n+ 2q)Nb , h̄R =

N

4
, jR =

Na

2
+ (m+ q)Nb , j̄R =

Na

2
(2.11)

respectively, and, as we will see in section 6.4 these results will match precisely the mo-

mentum and the angular momenta of the dual supergravity solution.

10This follows form G−A
− 1

2

|O−−〉1 = 0, while the same does not hold for states of winding k > 1.
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3 Supergravity setup

Our final goal is to find the supergravity solutions dual to the CFT states (2.6) and (2.10).

As an illustration in this section we focus on the q = 0 case, i.e., we review the original su-

perstrata [23–25], which only involve bosonic generators. In later sections we will generalise

this approach to the q = 1 case, the new superstrata, which involve fermionic generators.

3.1 The BPS ansatz

We work in Type IIB string theory on R1,4×S1×M, where the internal space M is either

K3 or T 4. The D1-D5-P black hole is 1/8-BPS, which means that it preserves 1/8 of the

total 32 supercharges. All of its microstates must also preserve the same amount of super-

charges, meaning that all of them are 1/8 BPS. Such solutions of type IIB supergravity

that are in addition independent of M are described by the following ansatz [40, 48]

ds210 =
√
αds26 +

√
Z1

Z2
dŝ24, (3.1a)

ds26 = − 2√
P
(dv + β)

[
du+ ω +

F
2
(dv + β)

]
+

√
Pds24, (3.1b)

e2Φ =
Z2
1

P , (3.1c)

B2 = −Z4

P (du+ ω) ∧ (dv + β) + a4 ∧ (dv + β) + δ2, (3.1d)

C0 =
Z4

Z1
, (3.1e)

C2 = − α

Z1
(du+ ω) ∧ (dv + β) + a1 ∧ (dv + β) + γ2, (3.1f)

C4 =
Z4

Z2
v̂ol4 −

Z4

P γ2 ∧ (du+ ω) ∧ (dv + β) + x3 ∧ (dv + β), (3.1g)

C6 = v̂ol4 ∧
[
−Z1

P (du+ ω) ∧ (dv + β) + a2 ∧ (dv + β) + γ1

]
(3.1h)

with

α ≡ Z1Z2

Z1Z2 − Z2
4

, P ≡ Z1 Z2 − Z2
4 . (3.2)

We have defined new asymptotically null coordinates u and v as

u ≡ 1√
2
(t− y), v ≡ 1√

2
(t+ y), (3.3)

where t is the time coordinate and y parametrises the S1, which has total length 2πRy.

These new coordinates can be thought of as world-volume coordinates of the dual CFT. In

the above ansatz, ds210 denotes the string-frame metric of the ten-dimensional spacetime,

and ds26 denotes the Einstein-frame metric of the six-dimensional spacetime, which is a

fibration over a 4-dimensional base B with metric ds24 which may depend on v. The ansatz

includes scalars Z1, Z2, Z4,F ; one-forms β, ω, a1, a2, a4; two-forms γ1, γ2, δ2; and a three-

form x3, all on B. These quantities can depend on the coordinates of B and on v, but
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supersymmetry requires them to be independent of u. The RR potentials Cp can have an

extra term proportional to a four-form C on B, but it has been set to zero by using the

gauge symmetries discussed in [23].

The advantage of the above ansatz is that the functions and forms used to express

the field content of the theory obey BPS differential equations which one can organise into

layers and solve in successive steps, using the solutions to the previous layer as sources

in the next one. The equations have three layers, which we call the zeroth, first, and

second. The zeroth level gives the equations for the base space metric ds24 and one-form β.

This system of equations is non-linear and hard to solve. Hence we make an assumption

that the base space B is R4 equipped with a flat metric ds24 and that the one-form β is

v-independent. With these two assumptions, the zeroth-layer equations reduce only to the

self-duality condition of β on the base space,

dβ = ∗4dβ, (3.4)

where ∗4 denotes the Hodge dual operator on B = R4. The assumption of the simple base

provides us with a tractable class of solutions that can be explicitly written down, although

we must keep in mind that it limits how generic our solutions are.

The first-layer equations are a set of linear equations

∗4DŻ1 = DΘ2, D ∗4 DZ1 = −Θ2 ∧ dβ, Θ2 = ∗4Θ2, (3.5a)

∗4DŻ2 = DΘ1, D ∗4 DZ2 = −Θ1 ∧ dβ, Θ1 = ∗4Θ1, (3.5b)

∗4DŻ4 = DΘ4, D ∗4 DZ4 = −Θ4 ∧ dβ, Θ4 = ∗4Θ4, (3.5c)

where we have introduced gauge invariant11 two-forms

Θ1 ≡ Da1 + γ̇2, Θ2 ≡ Da2 + γ̇1, Θ4 ≡ Da4 + δ̇2, (3.6)

and defined a gauge covariant differential operator

D ≡ d4 − β ∧ ∂

∂v
, (3.7)

where d4 denotes the exterior derivative on the base space. The above equations describe

three systems of equations for (Z1,Θ2), (Z2,Θ1), and (Z4,Θ4), which have the same struc-

ture. Thus if, for example, we find a solution for the pair (Z4,Θ4) then we have also found

a solution for the other two pairs. It is important to note that once we have solutions to

the zeroth-layer equations, the first-layer equations can be fully solved at least in principle.

The second layer of equations is a set of linear differential equations that determine F
and ω. These are of special interest as their long distance behaviour allows us to read off

the momentum and angular momentum charges of the geometry. The two equations are

Dω + ∗4Dω + Fdβ = Z1Θ1 + Z2Θ2 − 2Z4Θ4, (3.8a)

∗4D ∗4
(
ω̇ − 1

2
DF

)
= ∂2

v(Z1Z2 − Z2
4 )− (Ż1Ż2 − (Ż4)

2)

− 1

2
∗4 (Θ1 ∧Θ2 −Θ4 ∧Θ4). (3.8b)

11Invariant with respect to the gauge transformations given in (2.14) of [23].
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The solutions to the first-layer equations serve as sources on the right-hand side of the

differential equations. It is also important that these sources appear quadratically in the

right-hand side of second-layer equations. Hence any first-order perturbation in the first-

layer quantities becomes a second-order perturbation in the second layer. This fact is useful

in the solution-generating technique that is used to build new solutions.

3.2 Seed solution

The construction of three-charge black holes via the superstratum technology begins with

a two-charge seed solution. All two-charge solutions are known [28, 50–52], and can be

obtained by a systematic procedure using an auxiliary curve in R8, which determines the

values of the ansatz quantities of (3.1). For a short overview of the construction of two-

charge solutions and especially the one used in the subsequent sections, see, for instance,

appendix A of [23].

The seed solution used for the construction of superstrata solutions is given as a per-

turbed round supertube solution [28]. We start off by parameterising the base space R4

with a new set of coordinates related to the Cartesian ones by

x1 + ix2 =
√
r2 + a2 sin θ eiφ, x3 + ix4 = r cos θ eiψ, (3.9)

where θ ∈ [0, π2 ] and φ, ψ ∈ [0, 2π). The ansatz quantities in these coordinates are given

by12

ds24=(r2+a2 cos2 θ)

(
dr2

r2+a2
+dθ2

)
+(r2+a2)sin2 θdφ2+r2 cos2 θdψ2 , (3.10a)

Z1=
Q1

Σ
, Z2=

Q5

Σ
, (3.10b)

β=
Ra2√
2Σ

(sin2 θdφ−cos2 θdψ)≡β0 , ω=
Ra2√
2Σ

(sin2 θdφ+cos2 θdψ)≡ω0 , (3.10c)

γ2=−Q5
(r2+a2)cos2 θ

Σ
dφ∧dψ, (3.10d)

Z4=Ryba
k sink θe−ikφ

(r2+a2)k/2Σ
, (3.10e)

δ2=−Rya
kb

sink θ

(r2+a2)k/2

[(
r2+a2

)
cos2 θe−ikφ

Σ
dφ∧dψ+ i

cosθ

sinθ
e−ikφ dθ∧dψ

]
, (3.10f)

F = a1,4=x3= γ1=Θ1,2,4=0, (3.10g)

where we have introduced

Σ ≡ r2 + a2 cos2 θ ,

and the parameter k is a positive integer. We take the parameter b to be small and

only keep O(b) terms. Hence we can think of the solution (3.10) as a combination of the

background supertube (b = 0) [53–55], with an added perturbation (b 6= 0), which turns on

12Here we focus on the asymptotically AdS solutions, so we write Z1 and Z2 after taking the decoupling

limit.
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form fields B2, C0, and C4. Because Z4 appears only quadratically in the 10-dimensional

metric (3.1a), the perturbation does not change the metric at linear order in b. In the same

approximation the parameter a is related to the D-brane charges Q1 and Q5 via

a =

√
Q1Q5

Ry
. (3.11)

It is not difficult to check that the above ansatz satisfies the BPS equations (3.5) and (3.8)

to linear order. One could consider the finite b version of the above seed solution [23], but

that is not necessary for our purposes.

Performing a coordinate transformation

φ̃ = φ− t

Ry
, ψ̃ = ψ − y

Ry
, (3.12)

one finds that the six-dimensional metric becomes

ds26 =
√
Q1Q5

(
− r2 + a2

a2R2
y

dt2 +
r2

a2R2
y

dy2 +
dr2

r2 + a2
+ dθ2 + sin2 θ dφ̃2 + cos2 θ dψ̃2

)
,

(3.13)

which is that of global AdS3 × S3 with radius R2
AdS =

√
Q1Q5. Therefore, our seed

solution represents AdS3 × S3 × T 4 with a linear perturbation on top of it. On the CFT

side, this corresponds to the NS-NS vacuum with a small excitation on top.13 Since the

NS-NS vacuum is invariant under the action of SL(2,C) ∼= SL(2,R)L × SL(2,R)R and

SU(2)L × SU(2)R transformations, acting on the excited state with the generators of these

symmetries generates a new state, which is again the NS-NS vacuum with a different

small excitation added to it. Performing the corresponding transformations on the seed

solution on the gravity side similarly generates pure AdS3×S3×T 4 with a different linear

perturbation on top of it. This new solution will again satisfy the BPS equations and, in

addition to it, we will precisely know the CFT state dual to the new geometry.

It is important to note that the transformation (3.12) involves a change of the coor-

dinates t and y, which parametrise the boundary region of AdS3. This means that this

transformation also affects the dual CFT theory. In fact this transformation is dual to

the spectral flow transformation that changes the RR sector into the NS-NS sector on the

CFT side (2.8). For that reason we will refer to the coordinates (r, t, y, θ, φ, ψ) as the RR

coordinates and (r, t, y, θ, φ̃, ψ̃) as the NS-NS coordinates.

At this point we make the first identification between the supergravity solution and

a dual CFT state. Using the standard AdS/CFT dictionary the seed (3.10) expressed

in the RR coordinates is dual to a RR ground state. After performing the spectral flow

transformation (3.12) to the NS-NS coordinates, the geometry is dual to an anti-chiral

primary with the conformal dimensions h = h = k
2 and j = j = −k

2 . We thus identify the

supertube ansatz expressed in the NS-NS coordinates is dual to the state (2.5). As usual,

the gravity and the free CFT descriptions are valid in different points of the moduli space,

so the dictionary mentioned above is meaningful when applied to protected quantities such

as the 3-point correlators [56].

13For this reason we will refer to the case with b = 0 as the vacuum or the background geometry, while

reserving the term seed solution for the perturbed vacuum with b 6= 0.
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3.3 Original superstrata

This work follows up on the work of [23, 25, 48], where new superstrata solutions were

obtained by acting on the seed solution (3.10) with the gravity realisations of the bosonic

symmetry generators J+
0 and L−1, thus finding the geometries dual to the CFT states (2.6)

with q = 0. Below we will review the construction of this class of superstrata.

As mentioned above, the background is invariant under the action of SL(2,R)L ×
SL(2,R)R and SU(2)L × SU(2)R, while on the other hand the perturbation is not. Acting

on the perturbed geometry with these generators will give us a new perturbed geome-

try. Focusing on the left sector of the theory and the corresponding symmetry groups

SL(2,R)L × SU(2)L, one can show that the generators of these symmetries can be explic-

itly realised in the in the NS-NS coordinates as [25, 43]

L0 =
iRy

2
(∂t + ∂y),

L±1 = ie
± i
Ry

(t+y)
[
−Ry

2

(
r√

r2 + a2
∂t +

√
r2 + a2

r
∂y

)
± i

2

√
r2 + a2 ∂r

]
, (3.14)

J3
0 = − i

2
(∂φ̃ + ∂ψ̃), J±

0 =
i

2
e±i(φ̃+ψ̃)(∓i∂θ + cot θ ∂φ̃ − tan θ ∂ψ̃) , (3.15)

which can be shown to satisfy the algebra (2.1).

Acting on the seed solution (3.10) with (3.15) m times and with (3.14) n times leaves

all ansatz quantities unchanged at linear order.14 in b4 ∼ b except for the function Z4 and

the two-form Θ4, which are now given by

Z4 = b4 zk,m,n , Θ4 = b4 ϑk,m,n (3.16)

where we have introduced the notation

zk,m,n = Ry
∆k,m,n

Σ
cos v̂k,m,n, (3.17a)

ϑk,m,n = −
√
2∆k,m,n

[(
(m+ n) r sin θ + n

(m
k

− 1
) Σ

r sin θ

)
Ω(1) sin v̂k,m,n

+
(
m

(n
k
+ 1

)
Ω(2) +

(m
k

− 1
)
nΩ(3)

)
cos v̂k,m,n

]
, (3.17b)

with

∆k,m,n ≡
(

a√
r2 + a2

)k ( r√
r2 + a2

)n

cosm θ sink−m θ ,

v̂k,m,n ≡ (m+ n)

√
2 v

Ry
+ (k −m)φ−mψ ,

(3.18)

14See after (5.9) for a comment on the precise relation between b4 and b.
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and we have expanded ϑk,m,n on a basis of self-dual two-forms Ω(i) (i = 1, 2, 3) on R4, given

by:

Ω(1) ≡ dr ∧ dθ

(r2 + a2) cos θ
+

r sin θ

Σ
dφ ∧ dψ ,

Ω(2) ≡ r

r2 + a2
dr ∧ dψ + tan θ dθ ∧ dφ ,

Ω(3) ≡ dr ∧ dφ

r
− cot θ dθ ∧ dψ .

(3.19)

One of the important aspects of these solutions is that they now depend on the variable v,

unlike the seed solution (3.10).

The above solution-generating technique allows us to generate a family of solutions,

parametrised by the quantum numbers (k,m, n). Although the above solutions (3.16) only

involve one mode at a time, using the linearity of the first-layer BPS equations, we can

write down the general solution given by an arbitrary superposition of modes with different

quantum numbers. This superposition will not only solve the first-layer BPS equations for

the Z4 and Θ4, but also for the other two pairs (Z1,Θ2) and (Z2,Θ1), because the structure

of their equations is identical. Hence the general class of solutions with q = 0 for the first-

layer equations are given by

Z1 =
Q1

Σ
+

∑

k,m,n

bk,m,n
1 zk,m,n , Z2 =

Q5

Σ
+

∑

k,m,n

bk,m,n
2 zk,m,n , Z4 =

∑

k,m,n

bk,m,n
4 zk,m,n ,

Θ1 =
∑

k,m,n

bk,m,n
2 ϑk,m,n , Θ2 =

∑

k,m,n

bk,m,n
1 ϑk,m,n , Θ4 =

∑

k,m,n

bk,m,n
4 ϑk,m,n ,

(3.20)

where Z1 and Z2 also include the zero modes, which appear in the seed solution. In these

superpositions the coefficients bk,m,n
I are still taken to be infinitesimal. In this case they gen-

erate second-order source terms on the right-hand side of the second-layer BPS equations,

which govern the change of F and ω. Thus to linear order in the perturbation parameter,

these two ansatz quantities remain the same. This infinitesimal solution corresponds to an

infinitesimal deformation of the empty global AdS3 × S3 × T 4 spacetime.

However, we can again use the linearity of the first-layer BPS equation to make all the

coefficients bk,m,n
I finite, and the solution (3.20) will still remain a solution to the first-layer

equations. With the coefficients being finite, we have non-vanishing source terms on the

right-hand side of the second-layer BPS equations. Solving these represents a challenge.

In [25], a general solution to the second-layer equations for single-mode superstrata was

found. These solutions correspond to configurations with a single non-trivial coefficients

bk,m,n
4 in (3.20). The lesson from the non-linear solution-generating technique employed

in [40, 48] is that the descendant states have bk,m,n
2 = 0 for all values of k,m, n and this is

also the case for the single-mode superstrata, where one can consistently set b2 = 0 [25].

Furthermore, b1 was determined by “coiffuring”, which in the single-mode case requires

that the v-dependent source terms on the right-hand side of second-layer equations vanish.

In the case of b2 = 0, this corresponds to setting b1 = b24, thus having the solutions to the
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first layer given by

Z1 =
Q1

Σ
+

b24R
2
y

2Q5

∆2k,2m,2n

Σ
cos v̂2k,2m,2n , Z2 =

Q5

Σ
,

Z4 = Ry b4
∆k,m,n

Σ
cos v̂k,m,n, (3.21a)

Θ1 = 0 , Θ2 =
b24Ry

2Q5
ϑ2k,2m,2n , Θ4 = b4 ϑk,m,n . (3.21b)

By using these terms in the source terms of the second-layer equations, one finds that the

second-layer quantities are given by

ωorig
k,m,n = ω0 + ωorig,RMS

k,m,n , F = Forig
k,m,n , (3.22)

where we further decompose

ωorig,RMS
k,m,n = µorig

k,m,n(dψ̃ + dφ̃) + νorigk,m,n(dψ̃ − dφ̃) . (3.23)

One can show that the solutions for the second-layer equations are given by

Forig
k,m,n = 4b24

[
m2(k + n)2

k2
F2k,2m,2n +

n2(k −m)2

k2
F2k,2m+2,2n−2

]
, (3.24)

µorig
k,m,n =

Ry b
2
4√

2

[
(k −m)2(k + n)2

k2
F2k,2m+2,2n +

m2n2

k2
F2k,2m,2n−2

− r2 + a2 sin2 θ

4Σ
b−2
4 Fk,m,n − ∆2k,2m,2n

4Σ
+

xk,m,n

4Σ

]
, (3.25)

where the function F2k,2m,2n is defined in (6.7), and the functions νorigk,m,n are given by

differential equations [25, (4.13)], and can be solved for each case individually. We have

put the superscript “orig” to distinguish these original superstrata solutions from the new

superstrata we are presenting below. The solutions obtained this way are asymptotically

AdS3×S3×T 4. To obtain asymptotically flat solutions, one needs to add “1” to the warp

factors Z1 and Z2. This alters the right-hand side of second-layer equations and induces

new v-dependent terms into F and ω [25]. As it will turn out that our new superstrata do

not generate these additional v-dependent terms in the case of asymptotically flat case, the

asymptotically flat extension of the new solutions will be simpler than those of the original

superstrata.

4 Killing spinors of the AdS3 × S3 background

In the previous section, we reviewed the construction of the original superstrata, which are

dual to the states (2.6) with q = 0 and are generated by the supergravity realisation (3.14)

and (3.15) of the bosonic generators J+
0 and L−1. We now proceed to the construction of

new superstrata, which have q = 1 and involve fermionic generators G+A
− 1

2

. In supergrav-

ity, these fermionic generators correspond to the Killing spinors of the AdS3 × S3 × T 4

background. To begin with, in this section, we work out the explicit form of these Killing

spinors, and give a precise map between their components and the fermionic generators

GαA
± 1

2

in the CFT.
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4.1 Supersymmetry variations

The supersymmetry variations for the dilatino λ and the gravitini fields ψM in type IIB

supergravity are given by15

δλ =

(
/dφ− 1

2
/H σ3 − eφ /F 1 (iσ

2)− 1

2
eφ /F 3 σ

1

)
ǫ , (4.1a)

δψM =

[
∇M − 1

8
HMNPΓ

NP σ3 +
1

8
eφ

(
/F 1 (iσ

2) + /F 3 σ
1 +

1

2
/F 5 (iσ

2)

)
ΓM

]
ǫ , (4.1b)

see (A.5) and (A.6) for our conventions on the form fields. In type IIB supergravity, each

fermionic field appears in two copies, which we combine into a doublet ǫ ≡ (ǫ1, ǫ2). The

Pauli matrices σi in the variations above act on the doublet indices, which will be made

explicit in the following calculations when relevant. The variations (4.1) hold in a generic

coordinate system in Type IIB supergravity. In our previous discussion, we have introduced

two parametrisations of the unperturbed background: the NS-NS and the RR coordinates.

In what follows we will focus on the NS-NS description and derive an explicit expression

for the Killing spinors (4.11), while in appendix D we derive the Killing spinors (D.7) in

the RR coordinates and present the map between the two sets of solutions.

As mentioned before, in the seed (3.10), the metric, the dilaton, and C2 do not change

at O(b), while B2, C0, C4 get excited at O(b). In the NS-NS coordinates, the O(b0) fields

are the metric and

e2Φ =
Q1

Q5
, (4.2a)

C2 = −r2 + a2

Q1
du ∧ dv −Q5 cos

2 θ dφ̃ ∧ dψ̃ − Q5√
2Ry

(du− dv) ∧ dφ̃, (4.2b)

while the O(b) fields are

B2 = −b∆k,0,0 e
−iv̂k,0,0

[
r2 + a2

Rya2
du ∧ dv +

1√
2
(du− dv) ∧

(
i cos θ dθ

sin θ
+ dφ̃

)

+Ry cos θ

(
i dθ

sin θ
+ cos θdφ̃

)
∧ dψ̃

]
, (4.2c)

C0 =
bQ5

a2Ry
∆k,0,0 e

−iv̂k,0,0 , (4.2d)

C4 =
b

a2Ry
∆k,0,0 e

−iv̂k,0,0
[
Q1v̂ol4 +Q5(r

2 + a2) cos2 θ du ∧ dv ∧ dφ̃ ∧ dψ̃
]

(4.2e)

where

v̂k,0,0 = k

(
u+ v√
2Ry

+ φ̃

)
. (4.3)

On the other hand, the field strengths are F3 = O(b0); H3, F1, F5 = O(b); and dφ = O(b2).

Therefore, the supersymmetry variations (4.1) for the seed solution (3.10) split into the

15Here we follow [57]: a brief summary is included in appendix A where more details on the spinor

conventions can be found.
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O(b0) part

δλ0 = −1

2
eφ /F 3 σ

1 ǫ , (4.4a)

δψM,0 = ∇M ǫ+
1

8
eφ /F 3ΓMσ1ǫ , (4.4b)

and the O(b) part

δλb = −1

2
/H σ3ǫ− eφ /F 1 (iσ

2)ǫ , (4.4c)

δψM,b = −1

8
HMNPΓ

NP σ3ǫ+
1

8
eφ

(
/F 1 +

1

2
/F 5

)
ΓM (iσ2)ǫ . (4.4d)

In this section, we are interested in the Killing spinors in the unperturbed (b = 0)

background, which is nothing but AdS3×S3×T 4. In the NS-NS coordinates its metric takes

the form (3.13). We will work in the u, v coordinates (3.3), in which the metric becomes

ds26=
√
Q1Q5

[
−a2du2+2(a2+2r2)dudv+a2dv2

2a2R2
y

+
dr2

r2+a2
+dθ2+sin2 θdφ̃2+cos2 θdψ̃2

]
,

(4.5)

which suggests the following choice of 10-dimensional vielbeine

Eu =
1

2
√
aRy

[(√
r2 + a2 + r

)
du+

(√
r2 + a2 − r

)
dv

]
, (4.6a)

Ev =
1

2
√
aRy

[(√
r2 + a2 − r

)
du+

(√
r2 + a2 + r

)
dv

]
, (4.6b)

Er =
√
aRy

dr√
r2 + a2

, Eθ =
√
aRy dθ, (4.6c)

Eφ̃ =
√
aRy sin θ dφ̃, Eψ̃ =

√
aRy cos θ dψ̃, (4.6d)

Ek =

(
Q1

Q5

) 1
4

dxk, (4.6e)

where xk, k = 6, 7, 8, 9 are the coordinates of the internal T 4. With this choice the metric

can be written as

ds210 = −2EuEv + δabE
aEb, (4.7)
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with a = r, θ, φ̃, ψ̃, 6, 7, 8, 9. The variations (4.4a) and (4.4b) can be written out explicitly as

δλ1
0 =

1√
aRy

ΓrΓuv
(
1− Γ6789

)
ǫ2, (4.8a)

δψ1
u,0 = ∂uǫ

1 +
1

8aRy

(√
r2 + a2 − r

)
Γur

[
2ǫ1 + Γuv

(
1 + Γ6789

)
ǫ2
]

(4.8b)

− 1

8aRy

(√
r2 + a2 + r

)
Γvr

[
2ǫ1 − Γuv

(
1 + Γ6789

)
ǫ2
]
, (4.8c)

δψ1
v,0 = ∂vǫ

1 +
1

8aRy

(√
r2 + a2 − r

)
Γvr

[
2ǫ1 + Γuv

(
1 + Γ6789

)
ǫ2
]

(4.8d)

− 1

8aRy

(√
r2 + a2 + r

)
Γur

[
2ǫ1 − Γuv

(
1 + Γ6789

)
ǫ2
]
, (4.8e)

δψ1
r,0 = ∂rǫ

1 − 1

4
√
r2 + a2

Γuv
(
1 + Γ6789

)
ǫ2, (4.8f)

δψ1
θ,0 = ∂θǫ

1 − 1

4
Γrθ Γuv

(
1 + Γ6789

)
ǫ2, (4.8g)

δψ1
φ̃,0

= ∂
φ̃
ǫ1 +

cos θ

2
Γφ̃θ ǫ1 − sin θ

4
Γrφ̃Γuv

(
1 + Γ6789

)
ǫ2, (4.8h)

δψ1
ψ̃,0

= ∂
ψ̃
ǫ1 − sin θ

2
Γψ̃θ ǫ1 − cos θ

4
Γrψ̃Γuv

(
1 + Γ6789

)
ǫ2, (4.8i)

δψ1
k,0 = ∂kǫ

1 − Q
1
4
1Q

− 1
4

5

4
√

aRy

Γuvrk
(
1− Γ6789

)
ǫ2. (4.8j)

In these equations we have made the doublet index of the fermionic fields explicit. We have

only given the variations for δλ1
0 and δψ1

M,0, as the variations for δλ2
0 and δψ2

M,0 can be

obtained simply by interchanging the doublet indices 1 ↔ 2 on all fermions in the above

variations.

4.2 The Killing spinors

Killing spinors of the AdS3 × S3 × T 4 background are non-trivial spinors that satisfy the

equations

δλ1,2 = δψ1,2
M = 0. (4.9)

We find that the spinors that solve the equations (4.9) are given by

ǫ1 =
1

2
R− Y− (η̃ + η) +

1

2
R+ Y+ (ξ̃ + ξ) , (4.10a)

ǫ2 =
1

2
R− Y− (η̃ − η) +

1

2
R+ Y+ (ξ̃ − ξ) , (4.10b)
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where in the above spinors, the following definitions are used16

Y±(θ, φ̃, ψ̃) ≡ exp

(
±1

2
θΓrθ

)
exp

(
1

2
φ̃Γθφ̃

)
exp

(
±1

2
ψ̃Γrψ̃

)
, (4.11a)

R±(r) ≡
(√

r2 + a2 ± r

a

) 1
2

, (4.11b)

ξ̃(u) = ζ̃+e
− iu√

2Ry + ζ̃−e
iu√
2Ry , η̃(u) = iΓ̂ru

(
ζ̃−e

− iu√
2Ry − ζ̃+e

iu√
2Ry

)
, (4.11c)

ξ(v) = ζ−e
− iv√

2Ry + ζ+e
iv√
2Ry , η(v) = iΓ̂rv

(
ζ−e

− iv√
2Ry − ζ+e

iv√
2Ry

)
, (4.11d)

and we have defined

Γ̂rv ≡ 1√
2
Γrv, Γ̂ru ≡ 1√

2
Γru . (4.12)

The spinors ζ±, ζ̃± are constant spinors that do not depend on any coordinates. As stan-

dard in type IIB supergravity, the ǫ1,2 in (4.10) are Majorana-Weyl spinors. The Weyl

condition is

Γ(10) ǫ
1,2 = ǫ1,2 , (4.13)

with Γ(10) ≡ Γuvrθφ̃ψ̃6789. In our convention in which the charge conjugation matrix is

C = Γt, the Majorana condition reads

ǫ∗ = ǫ . (4.14)

We can now spell out the constraints following from (4.14) on the spinors in (4.10)

and (4.11). The factors Y±(θ, φ̃, ψ̃) and R±(r) are real functions containing the explicit

dependence of the spinors on the angular and radial parts respectively. Then in order for

ǫ1,2 to be real, spinors ζ±, ζ̃± must satisfy

ζ∗± = ζ∓ , ζ̃∗± = ζ̃∓ . (4.15)

This means that ζ± and ζ̃± are complex. On the other hand, ξ(v), η(v), ξ̃(u) and η̃(u) are

real spinors. Therefore, ξ(0), η(0), ξ̃(0) and η̃(0) are constant, real spinors, each containing

4 independent real degrees of freedom and can be used to parametrise the variations.

Furthermore the dilatino variation and the variation in the T 4 subspace impose

Γ6789 ǫ1,2 = ǫ1,2 . (4.16)

All spinors in (4.10) and (4.11), ξ, ξ̃, η, η̃, ζ±, ζ̃±, must satisfy the conditions (4.13)

and (4.16). In addition, they have the following chirality for the matrix Γuv:

Γuv ξ(v) = −ξ(v) , Γuv η(v) = +η(v) , Γuv ζ± = −ζ± ,

Γuv ξ̃(u) = +ξ̃(u) , Γuv η̃(u) = −η̃(u) , Γuv ζ̃± = +ζ̃± .
(4.17)

16In (4.10) we suppress the functional dependencies to avoid cluttering. Note that the angular parts can

be solved with the help techniques developed in [58, 59], where similar differential equations have been

considered, however in a different coordinate system.
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As mentioned above each one of η, η̃, ξ, ξ̃ contains 4 real degrees of freedom. On the

other hand, each one of ζ±, ζ̃± contains 4 complex degrees of freedom, but only half of

them are independent. Therefore, either way, each spinor ǫ1,2 contains 8 real degrees of

freedom, combining to 16 in total. This is what we expected, as global AdS3 × S3 should

preserve half of the total 32 supercharges.

In order to generate new solutions, we need to identify the spinor components that

correspond to different modes of the fermionic generators GαA
± 1

2

and G̃α̇A
± 1

2

. We will only

be interested in generating left-moving excitations, which are generated by G and not G̃,

hence we will limit ourselves only to the discussion around the left-moving sector. However,

the discussion on the right-moving sector is completely analogous. The relation between

the supergravity Killing spinors ζαA± and the CFT supercurrent GαA
± 1

2

can be encoded in

terms of the projectors

P±
S ≡ 1

2
± J

ψ̃
, PA

T ≡ 1 + (−1)AiΓ67

2
, A = 1, 2, (4.18)

where J
ψ̃
is defined in (A.18a). We leave the discussion of this point to appendix A.3 and

here quote just the final result

ζαA± ≡ PA
T Pα

S ζ± ←→ GαA
± 1

2

, α = ±, A = 1, 2. (4.19)

With this identification we can proceed to generate the supergravity solution corresponding

to the state (2.6) in CFT.

5 Fermionically generated superstrata: linear analysis

In this section we derive a linearised classical solution to the supergravity equations using

the Killing spinors for AdS3 × S3 × T 4 obtained in the previous section. We do so by per-

forming two supersymmetry variations, generated by the spinors corresponding to GαA
− 1

2

, on

the b 6= 0 seed solution (3.10). Single variations of bosonic fields vanish, as these are pro-

portional to the fermionic fields, which are set to zero for classical supergravity solutions.

Double variations of the bosonic fields, however, are non-vanishing, as these include terms

which are proportional to the variations of the fermionic fields. Note that, by definition,

Killing spinors are non-trivial spinors for which the variations of fermionic fields vanish.

However, here we will use the Killing spinors for the unperturbed case (b = 0) on the per-

turbed background (b 6= 0), which will generate fermionic variations that are non-vanishing.

We will limit ourselves to terms at linear order in parameter b. Using these non-vanishing

fermionic variations we can generate new solutions at linear order in the parameter b.

This section will give a step-by-step procedure of how to obtain the new solutions. We

begin by presenting the variations of the fermionic fields of the seed solution, generated

by the Killing spinors (4.10). We then present the double variations of the bosonic fields

generated, thus obtaining the solution dual to the state G+1
− 1

2

G+2
− 1

2

|O−−〉k . In this derivation

we treat the complex spinors ζαA+ and ζαA− as independent, although they really are not, due

to the relation (4.15). Because of this, the spinors ǫ1,2 become complex and we will obtain
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a complex-valued perturbation: as usual, at the linear level, we can derive a standard

supergravity solution by taking the real part of the final result. While this is indeed

a new solution to the first-layer BPS equation it is not linearly independent from the

ones already known, as discussed in section 2. We therefore present the new, linearly

independent solution, dual to the state
(
G+1

− 1
2

G+2
− 1

2

+ 1
kJ

+
0 L−1

)
|O−−〉k , and further give the

solution dual to the state (2.6) with q = 1.

5.1 Variations of fermionic fields

As a preliminary step, we use the Killing spinors found in the previous section to calculate

the supersymmetry variations of the fermionic fields. The result can be used later when

we consider double variations of bosonic fields. Furthermore, it also serves as a consistency

check of the identification (4.19) between the fermionic generators in supergravity and CFT.

As discussed in previous sections, the seed solution (3.10) expressed in the NS-NS

coordinates is dual to an anti-chiral primary state, which should be annihilated by G−A
− 1

2

but not byG+A
− 1

2

. According to the identification (4.19), this implies that the supersymmetry

variation of the seed by ζ−A
− will vanish while the supersymmetry variation by ζ+A

− will not.

In performing this check, we set ζαA+ = 0 and look at the variations of the fermionic fields

generated by the components in the spinor ζαA− . With this choice, the Killing spinor (4.10)

simplifies to

ǫ1 = −ǫ2 =
1

2

(
R+ − iR−Γ̂

vr
)
e
− iv√

2Ry Y+ζ
αA
− . (5.1)

The dilatino variation generated by this spinor is given by

δλ1
b = δλ2

b =
bak k sink−1 θ

√
aRy (a2 + r2)

k+1
2

(5.2)

×
(
R− − iR+Γ̂

vr
)
e
−ik

(
u+v√
2Ry

+φ̃
)
− iv√

2Ry

(
cos θ Γθ + sin θ Γr − iΓφ̃

)
Y+ζ

αA
− .

This expression is correct for a generic component ζαA− . However, as discussed above,

this variation should distinguish between the ζ+A
− and the ζ−A

− components of the spinor.

Indeed, this is the case here, as one can see from the factors that contain the gamma

matrices with components along S3. Using the definition of Y+ in (4.11) one can show that
(
cos θ Γθ + sin θ Γr − iΓφ̃

)
Y+ζ

αA
− = 2Γθ e−θΓrθ Y+ζ

+A
− (5.3)

because, when we commute the factor in the brackets through Y+, we generate a projector

P+
S , which projects out the ζ−A

− component. Therefore, as expected, the supersymmetry

variation of the seed by ζ−A
− vanishes, while the supersymmetry variation by ζ+A

− does not.

The variations of the gravitino components ψM are calculated in the same manner and

discussed in appendix B.

5.2 Solution-generating technique

The first step to finding the geometry dual to the state (2.6) with q = 1 is to find the ge-

ometry dual to G+1
− 1

2

G+2
− 1

2

|O−−〉k . In order to do so, we do a double variation of the bosonic
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fields. These variations generically have two kinds of terms: either they are proportional

to fermionic fields or the variation of fermionic fields. In a classical solution, fermionic

fields vanish and hence we are left only with the second type of terms. Using the variations

summarised in appendix A, we get that, for example, the variation of the axion field C0 is

given by

δ′δC0 =
1

2
e−φ ǫTΓt(iσ2)δ′λ (5.4)

where δ denotes the variation generated by spinors ǫ1,2 and δ′ denotes the variation with

different spinors ǫ′1,2. In our case the constant components of these spinors will be ζ+1
− for

the variation δ and ζ ′+2
− for the variation δ′. Following the procedure of [23, 25] we are

interested in calculating the infinitesimal deformation from the seed solution in the ansatz

function Z4 and the two-form Θ4. The physical fields in which these two quantities are

appearing are the axion C0 and the NS-NS gauge B-field, so we are interested in their

variations. Since these two calculations are analogous, we will only present the detailed

calculation for the axion field, while the results of the B-field can be found in appendix B.

As mentioned at the beginning of this section, because we treat complex spinors ζαA+

and ζαA− as independent, the spinor ǫ becomes complex. This is justified with the under-

standing that we will take the real part in the final result. In the intermediate calculations,

although ǫ1,2 are really complex, we still treat them as real spinors. In writing down (5.4),

we used the relation (A.11), which is valid only for real (Majorana) spinors, in order to

rewrite ǭ appearing in the formula (A.1d) in terms of ǫT . Another way to justify this

manipulation is that, because the first variation parameter ǫ and the second one ǫ′ are

on an equal footing, it is not possible for ǫ to enter in the variation δ′δC0 being complex

conjugated and ǫ′ without being complex conjugated. They must both enter without being

complex conjugated, as in (5.4).

The variations we consider are generated by the Killing spinors (5.1). As mentioned

above, the first variation is generated by the component ζ+1
− and the second by ζ ′+2

− . In

this case, as we have seen in (5.1), we have ǫ1 = −ǫ2. Furthermore, the variations are such

that δλ0 = 0 and δλ1
b = δλ2

b . With these, the axion variation (5.4) simplifies to

δ′δC0 = e−φ (ǫ1)TΓt δ′λ1
b . (5.5)

We insert the spinor (5.1) and the variation (5.2) (since we use only ζ+A
− we use the

projection (5.3) in the variation) into this expression to obtain

δ′δC0 = b

√
aRy

Q1

kak sink−1 θ

(a2 + r2)
k+1
2

e
−i
[
k
(
u+v√

2
+φ̃

)
+
√
2v−(φ̃+ψ̃)

]
(5.6)

×
(
ζ+1
−

)T
e−

θ
2
Γrθ

(
R+ + iR−Γ̂

vr
)(

Γ̂v + Γ̂u
)(

R− − iR+Γ̂
vr
)
Γθ e−

θ
2
Γrθζ ′+2

−

= 2kbak−1

√
aRy

Q1

r sink−1 θ cos θ

(a2 + r2)
k+1
2

e
−i
[
k
(
u+v√
2Ry

+φ̃
)
+
√
2 v
Ry

−(φ̃+ψ̃)
] [(

ζ+1
−

)T
iΓrθ ζ ′+2

−

]
.

In the second equality we have used the properties of the Clifford algebra and the R±
functions together with the fact that Γuv ζαA− = −ζαA− and hence Γu ζαA− = (ζαA− )TΓv =
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−(Γu ζ−)T = 0. Furthermore, one uses the fact that (Γrθ)2 = −1 to expand

Γrθ e−θΓrθ = cos θ Γrθ + sin θ. (5.7)

Finally noting that due to the projector property (P+
S )T = P−

S , we have (ζ+1
− )T ζ ′+2

− = 0,

which leaves us with the result (5.6). The calculation for the B-field follows along the same

lines; see (B.7) for the final result.

After the inverse spectral flow coordinate transformation (the inverse transformation

of (3.12)), one finds that the double variation leaves all ansatz quantities unchanged at

linear order in b, except for Z4 and Θ4, which are now given by17

Zf
4 = bkRy

∆k,1,1

Σ
cos v̂k,1,1 , (5.8a)

Θf
4 = −

√
2bk∆k,1,1

[(
(k − 1)

Σ

r sin θ
+ 2r sin θ

)
Ω(1) sin v̂k,1,1

+
(
(k + 1)Ω(2) + (k − 1)Ω(3)

)
cos v̂k,1,1

]
, (5.8b)

where we have again expanded Θ4 in the self-dual basis (3.19). As in mentioned above,

in the final result, we selected the real part of the perturbation. We also normalised the

spinors as follows: [(ζ+1
− )T iΓrθ ζ ′+2

− ] → 1
2

√
aRy , which is natural since in our conventions,

spinors have a mass dimension of −1/2 and so a spinor bilinear should have mass dimension

−1 or should have units of length. One can check explicitly that the result (5.8a) satisfies

the first-layer BPS equations (3.5).

To get a feeling for this solution we can compare it with the old superstrata solu-

tion (3.16), for (k,m, n) = (k, 1, 1), which is obtained by using the bosonic symmetry

generators (3.15) and (3.14) only. The solutions are similar and this may not be unex-

pected, as they both introduce the same amount of momentum and angular momentum

into the geometry. We notice that the form of the function Z4 is the same, while Θ4 slightly

differs in the relative factors multiplying the basis elements Ω(i).

As shown on the CFT side, the state G+1
− 1

2

G+2
− 1

2

|O−−〉k is not linearly independent from

the state J+
0 L−1|O−−〉k . The proper combination which contains the information about

the new, linearly independent CFT state is given by the combination

(
G+1

− 1
2

G+2
− 1

2

+
1

k
J+
0 L−1

)
|O−−〉k . (5.9)

In order to write the supergravity solution dual to (5.9), let us briefly discuss the relation

between the parameter b4 in (3.16) and the original parameter b appearing in the seed

solution. By keeping track of the overall normalisation when acting with bosonic genera-

tors (3.15) and (3.14), we have b4 = (−1)nk (k+(n−1))!
(k−m)! b. Because for m = n = 1 this gives

b4 = −k2b, one finds that the solution dual to the state (5.9) is given by the following new

17The superscript f is to denote that these solutions are obtained by acting with fermionic generators

only and hence the state that this solution is dual to is G+1

− 1

2

G+2

− 1

2

|O−−〉k .
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linear perturbation

Z4 = 0, (5.10a)

Θ4 = −
√
2 b̂∆k,1,1

[
Σ

r sin θ
Ω(1) sin v̂k,1,1 +

(
Ω(2) +Ω(3)

)
cos v̂k,1,1

]
, (5.10b)

where we introduced b̂ = (k2 − 1)b. The new solution has a vanishing Z4 function, which

means that both the axion field C0 and also the component Buv of the B-field are vanishing.

However, because Θ4 is non-vanishing, the components of Bµν with one leg in AdS3 and

one in S3 are non-vanishing, which agrees with the spectrum calculated by [42]. For a brief

summary of their results and the connection to the present work, see appendix C. One

can show that Z4 and Θ4 given in (5.10) satisfy the first-layer of BPS equations (3.5). The

solution is dual to the CFT state with quantum numbers (k,m, n, q) = (k, 0, 0, 1). Notice

that for k = 1 both the above supergravity perturbation and the corresponding CFT state

are trivial, which provides a further check on the identification proposed.

We can generalise this approach and use the geometry (5.10) as a new seed solution and

act on it with the bosonic symmetry generators (3.14) and (3.15) to obtain the geometry

dual to the state (k,m, n, q = 1). One finds that the geometry dual to the state (2.6) with

q = 1 is again unchanged at linear order from the original seed solution (3.10) in all the

ansatz quantities except for18

Z4 = 0 , Θ4 = b̂k,m,n
4 ϑ̂k,m,n , (5.11)

with

ϑ̂k,m,n = ∆k,1+m,1+n

[
Σ

r sin θ
Ω(1) sin v̂k,1+m,1+n +

(
Ω(2) +Ω(3)

)
cos v̂k,1+m,1+n

]
. (5.12)

Again it is not difficult to show explicitly that these satisfy the first-layer BPS equations.

Also in this more general case Z4 remains trivial and the structure of Θ4 is the same as

in (5.10), apart from a change in the argument v̂k,1+m,1+n of the trigonometric functions

and in the quantum numbers in the ∆k,1+m,1+n function.

6 Non-linear completion

In the previous sections we generated new solutions to the BPS equations at linear order

in the perturbation parameter b. Since the first-layer BPS equations are linear, any linear

combination of solutions (3.16) and (5.11), with an allowed combination of the quantum

numbers (k,m, n), is also a solution of these equations. This general bulk configuration

correspond to a CFT state containing various excitations (2.6) with different values of

(k,m, n, q). Up to this point we have taken the coefficients bk,m,n
I and b̂k,m,n

I to be in-

finitesimally small, making any solution only an infinitesimal deformation of the empty

AdS3 × S3 × T 4 space. In principle we could promote all these coefficients to be finite,19

18We reabsorb all overall normalisations in the parameter b̂k,m,n4 .
19See [25] for discussion on the technical difficulty in superposing modes with completely general

(k1,m1, n1) and (k2,m2, n2).
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which corresponds, on the CFT side, to taking many copies of the same excitation. With

the parameters b̂k,m,n
I being finite, the scalars ZI and the two-forms ΘI become sources on

the right-hand sides of the second-layer equations. Thus, once we have a finite solution

to the first-layer equations, we can determine the deformation of F and ω from their seed

values by solving the second-layer equations.

Here we will not tackle this general problem and will focus on a single-mode super-

stratum, i.e., we make a single, arbitrary mode coefficient to be finite and the solve the

second-layer equations with the corresponding source terms. We find that a special fea-

ture of this new class of non-linear solutions is that their extension to asymptotically flat

solutions is trivial. We close this section by calculating the conserved charges of the newly

obtained solutions and comparing them to the CFT states (2.6) to find perfect agreement

between the two results.

6.1 Solving the second-layer equations

The second-layer equations (3.8) are in general coupled second-order partial differential

equations for the components of the anti-self-dual one-form ω and the scalar F . These

quantities encode the information about the conserved charges of the geometry, i.e., the

momentum charge Qp and the angular momenta J and J̃ . As mentioned above, our goal

here is to calculate the backreaction on ω and F that the new finite deformations cause on

the geometry. We will limit ourselves to the case of single-mode superstrata involving the

new q = 1 excitations, meaning that our initial ansatz for the finite first-layer solution is

Z1 =
Q1

Σ
, Θ1 = b̂k,m,n

2 ϑ̂k,m,n ,

Z2 =
Q5

Σ
, Θ2 = b̂k,m,n

1 ϑ̂k,m,n ,

Z4 = 0 , Θ4 = b̂k,m,n
4 ϑ̂k,m,n ,

(6.1)

where b̂k,m,n
1,2 should be determined as a function of b̂k,m,n

4 , which, in turn, is related to

number of excitations (2.6) in the corresponding CFT state. We further simplify our

ansatz by recalling that the bosonic descendants of an anti-chiral primary state have a

trivial Θ1 [48]. The same feature is shared by the bosonic superstrata obtained by using

the excitations (2.6) with q = 0 [25]. We assume that a similar property holds also for q = 1

excitations and set to zero the coefficients b̂k,m,n
2 . Furthermore, in all previous work [23,

25, 60], the coefficients b̂k,m,n
1 were tuned in such a way that the singularity-causing v-

dependent terms vanished. This procedure was called “coiffuring”. However, we find that,

with the solutions generated with the new solution-generating technique, the right-hand

sides of the second-layer equations are automatically v-independent. For this reason, we

assume that all b̂k,m,n
1 are also vanishing. In this case the only non-trivial source in the

second-layer equations is Θ4∧Θ4 which takes the simple form written on the right-hand side

of (6.4). Since there are no potentially dangerous terms to be taken care of by coiffuring,

– 24 –



J
H
E
P
0
3
(
2
0
1
9
)
0
9
5

the ansatz we use for the first-layer solution of a single-mode superstrata is simply

Z1 =
Q1

Σ
, Z2 =

Q5

Σ
, Z4 = 0 , (6.2a)

Θ1 = Θ2 = 0 , Θ4 = b̂ ϑ̂k,m,n. (6.2b)

We now want to solve the second-layer equations where the source on the right-hand

side is determined by (6.2). By following [25] we take the following ansatz for F and ω

F = FRMS(r, θ), ω = ω0 + ωRMS(r, θ), (6.3)

where ω0 is given in (3.10), and the RMS superscript denotes that the ansatz functions are

independent of the coordinate v and are thus non-oscillating. We assume that FRMS and the

components of ωRMS only depend on the coordinates r and θ and that ωRMS
r = ωRMS

θ = 0.

Using (6.2) on the right-hand side of the second-layer equations, we see that the RMS parts

of (6.3) are governed by the differential equations

d4ω
RMS + ∗4d4ωRMS + FRMSdβ = 0, (6.4a)

L̂FRMS = 4 b̂2
∆2k,2m+2,2n+2 +∆2k,2m+4,2n

(r2 + a2) cos2 θ Σ
, (6.4b)

where we have used the fact that d4ω0 is anti-self-dual and have introduced L̂ ≡ −∗4d4∗4d4
as the Laplace operator in the four-dimensional Euclidean base space. Notice that the top

differential equation has a vanishing right-hand side, which was not the case in previously

known examples.

One can show that when acting on a scalar function that depends only on r and θ, the

Laplace operator can be written as

L̂F ≡ 1

rΣ
∂r
(
r(r2 + a2) ∂rF

)
+

1

Σ sin θ cos θ
∂θ
(
sin θ cos θ ∂θF

)
. (6.5)

We then note that the differential equation of the form

L̂F2k,2m,2n =
∆2k,2m,2n

(r2 + a2) cos2 θ Σ
(6.6)

is solved by the function20

F2k,2m,2n = −
j1+j2+j3≤k+n−1∑

j1,j2,j3=0

(
j1 + j2 + j3
j1, j2, j3

)(
k+n−j1−j2−j3−1

k−m−j1,m−j2−1,n−j3

)2
(

k+n−1
k−m,m−1,n

)2

×
∆2(k−j1−j2−1),2(m−j2−1),2(n−j3)

4(k + n)2(r2 + a2)
, (6.7)

with (
j1 + j2 + j3
j1, j2, j3

)
≡ (j1 + j2 + j3)!

j1! j2! j3!
. (6.8)

20For the proof see appendix A of [25].
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Notice that (6.4b) is already in the form (6.6), and can be thus solved by a linear combi-

nation of the F functions.

To get the solution for ω, we introduce the ansatz21 [25]

ωRMS = µk,m,n(dψ + dφ) + νk,m,n(dψ − dφ) , (6.9)

and define a new function

µ̂k,m,n ≡ µk,m,n +
Ry

4
√
2

r2 + a2 sin2 θ

Σ
Fk,m,n, (6.10)

where Fk,m,n ≡ F is the solution of (6.4b). One can show that µ̂k,m,n satisfies the differ-

ential equation

L̂µ̂k,m,n =
b̂2Ry√

2

∆2k,2m+2,2n +∆2k,2m+4,2n+2

(r2 + a2) cos2 θ Σ
, (6.11)

which can be again solved by a linear combination of the functions (6.7). One is thus able

to determine Fk,m,n and µ̂k,m,n as the solution of their respective second-order differential

equations. By following the same approach of [25], one can show that the explicit forms of

the ansatz quantities are given by

Fk,m,n = 4b̂2 (F2k,2m+2,2n+2 + F2k,2m+4,2n) , (6.12a)

µk,m,n =
b̂2Ry√

2

[
F2k,2m+2,2n + F2k,2m+4,2n+2

− r2 + a2 sin2 θ

Σ
(F2k,2m+2,2n+2 + F2k,2m+4,2n) +

x̂k,m,n

4Σ

]
, (6.12b)

where in (6.12b) we have added an additional harmonic piece that is left undetermined by

the differential equations. Its form is chosen so that the solution is regular at the centre of

the coordinate system and will be determined in the next subsection. The remaining νk,m,n

functions are obtained by solving first-order differential equations, which contain Fk,m,n

and µk,m,n as sources. These equations are

∂rνk,m,n = −
(
a2 + r2

)
sin2 θ − r2 cos2 θ

r2 + a2 sin2 θ
∂rµk,m,n − 2r sin θ cos θ

r2 + a2 sin2 θ
∂θµk,m,n

−
√
2a2Ry

(
a2 + 2r2

)
r sin2 θ cos2 θ(

r2 + a2 sin2 θ
)
Σ2

Fk,m,n, (6.13a)

∂θνk,m,n =
2
(
a2 + r2

)
r sin θ cos θ

r2 + a2 sin2 θ
∂rµk,m,n +

r2 cos2 θ −
(
a2 + r2

)
sin2 θ

r2 + a2 sin2 θ
∂θµk,m,n

+

√
2a2Ry

(
a2 + r2

)
r2 sin θ cos θ cos 2θ(

r2 + a2 sin2 θ
)
Σ2

Fk,m,n . (6.13b)

These equations can be solved by integration on a case-by-case basis for each set of quantum

numbers.

21Notice that in previous work νk,m,n was named ζk,m,n. Here we change the notation to avoid confusion

with the complex spinor components ζαA± .
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6.2 Regularity

We want our solutions to be free of any singularities. However, the coordinates introduced

in (3.9), which are used to describe the solutions, have points at which they degenerate.

Hence using these coordinates we have to take special care of the functions and compo-

nents of the forms in order for our solutions to be regular. There are regions of the base

manifold at which the coordinates degenerate. The first one is at θ = 0, where the φ circle

degenerates. The second one is at θ = π
2 , where the ψ circle shrinks. Finally at the locus

(r = 0, θ = 0) the entire sphere S3
θφψ shrinks. Imposing regularity at these regions imposes

constraints on our solutions. We will look at each of the constraints separately. Since now

the scalar functions Z1 and Z2 are the same as the seed solutions and Z4 is vanishing, we

only focus on the regularity of the forms. The standard procedure to check the regularity

is to express the forms in a coordinate system without any degenerate points. However,

we will instead impose the equivalent condition that form components along dφ and dψ

vanish at a degenerate locus.

We start by looking at the region where (r = 0, θ = 0). Focus on the regularity of

the 1-form ω, especially on the dψ + dφ component, which explicit expression is given

in (6.12b). In order to cancel out the singularity caused by the form legs, µk,m,n needs

to vanish at the point of interest. This determines the constant multiplying the harmonic

term in µk,m,n, which must be

x̂k,m,n = k
(k −m− 2)!m!n!

(k + n+ 1)!
. (6.14)

Again the x̂ notation is used to distinguish the normalisation from the q = 0 case. The

same analysis needs to be repeated for the dψ− dφ component of the one-form, which also

needs to be vanishing at the centre of the base manifold. However, as we are currently

lacking a closed expression for generic quantum numbers, the analysis needs to be done on

a case-by-case basis.

Let us now look at the points of the location of the supertube, namely (θ = π
2 ). This is

the same as looking at Σ = 0, where the scalars Z1 and Z2 diverge. To check the regularity

of the solution, we look at the (dφ + dψ)2 component of the metric and demand that it

is regular at the position of the supertube. Imposing regularity at this locus of spacetime

changes the relation between the brane charges Q1, Q5 and the parameters defining the

supertube ansatz a and b, which is now given by

Q1Q5

R2
y

= a2 +
b̂2

2
x̂k,m,n , (6.15)

where x̂k,m,n is defined in (6.14).

6.3 Asymptotically flat solution

Up to this point, the solutions we presented are asymptotically AdS3 × S3 × T 4, which

allows for the identification with the dual CFT states discussed in section 2. It turns out

that these solutions can be extended to asymptotically flat configurations (in our case that
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is asymptotically equal to R4,1×S1×T 4) in a straightforward way and so can be identified

with microstates of asymptotically flat black holes. As usual, this is done by adding back

“1” in the functions Z1 and Z2. By introducing this extra constant, one usually obtains

additional v-dependence on the right-hand side of second-layer equations. The effect of

these additional terms is that we get new v-dependent terms in (6.3), with the differential

equations determining these new terms usually being cumbersome to solve. Luckily, the

novel feature of the solution (6.2) is that including the constant term in Z1,2 does not add

any additional source terms into the second-layer equations.

Thus focusing on the single-mode superstrata, the asymptotically flat extension of the

solution (6.2),

Z1 = 1 +
Q1

Σ
, Z2 = 1 +

Q5

Σ
, Z4 = 0 , (6.16a)

Θ1 = Θ2 = 0, Θ4 = b̂ ϑ̂k,m,n , (6.16b)

gives the same second-layer equations for F and ω as in the asymptotically AdS case. So,

both the asymptotically AdS and the full asymptotically flat solution are v-independent.

6.4 Conserved charges

One can extract the conserved charges of our new solutions from their large-distance be-

haviour. This gives a consistency check of the proposed identification between the new

superstrata and the CFT states (2.10).

The angular momentum charges J and J̃ associated with the left-moving and right-

moving sector of the CFT respectively are related to the Jφ and Jψ components of the

supergravity angular momentum through

J =
Jφ + Jψ

2
, J̃ =

Jφ − Jψ
2

. (6.17)

These charges can be found by analysing the gφψ component of the ten-dimensional metric.

In our ansatz, this component is obtained by looking at the φ+ ψ components of the one-

forms β and ω. It is straightforward to adapt the general prescription of [61] to this case

(see for instance [48]), and one obtains

βφ + βψ + ωφ + ωφ ∼
√
2
J − J̃ cos 2θ

r2
+O(r−3) . (6.18)

Thus it is possible to read off the angular momenta of our newly obtained solutions from

the knowledge of β (which is unchanged from (3.10a)) and µ (6.12b). One finds that these

are given by

J =
Ry

2

(
a2 + b̂2

m+ 1

k
x̂k,m,n

)
, J̃ =

Rya
2

2
. (6.19)

Similarly, the momentum charge Qp can be extracted from the large-distance behaviour

of the function F :

F ∼ −2Qp

r2
+O(r−3) . (6.20)
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For our new solutions, we find

Qp = b̂2
m+ n+ 2

2k
x̂k,m,n . (6.21)

Finally, we note that the brane charges Q1 and Q5 that appear in the scalar func-

tions Z1 and Z2 do not change, as the two functions remain unchanged from the seed

solutions (3.10).

The supergravity charges calculated above are proportional to the quantised charges

calculated on the CFT side. The brane charges Q1 and Q5 are related to the D-brane

numbers n1 and n5 through

Q1 =
(2π)4 gs α

′3

V4
n1 , Q5 = gs α

′ n5 , (6.22)

with V4 being the coordinate volume of T 4, gs the string coupling, and α′ the Regge slope.

The relation between the Qp obtained in (6.20) and the quantised momentum number np is

Qp =
(2π)4 g2s α

′4

V4R2
y

np =
Q1Q5

R2
yN

np. (6.23)

The angular momenta J , J̃ obtained from the supergravity calculation in (6.18) are related

to the quantised ones j, j̄ by

J =
(2π)4g2sα

′4

V4Ry
j =

Q1Q5

RyN
j , J̃ =

(2π)4g2sα
′4

V4Ry
j̄ =

Q1Q5

RyN
j̄ . (6.24)

We are now able to compare the charges obtained from the supergravity solutions with

the ones calculated on the CFT side. The latter are given by (2.11). The crucial point at

this step is to identify the supergravity constraint obtained from the regularity condition

at the position of the supertube (6.15) and the CFT constraint for the total number of

strands (2.10). The parameter a is connected with the number of untwisted strands Na

and the number of twisted strands Nb with the parameter b. We find that these quantities

are connected by

a2 =
Q1Q5

R2
y

Na

N
, b2 =

2Q1Q5

R2
y

kNb

N
x̂−1
k,m,n . (6.25)

Using this identification together with the relations between the supergravity and quan-

tised momenta, we get that the CFT charges corresponding to the supergravity solutions

obtained above are given by22

j̄R =
RyN

Q1Q5
J̃ =

Na

2
, (6.26a)

jR =
RyN

Q1Q5
J =

Na

2
+ (m+ 1)Nb , (6.26b)

22We reinstated the subscript R for j and h to stress that we are listing the results in the in Ramond

sector.
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for the angular momenta, and using that the momentum charge np = hR − h̄R, we get

np =
R2

yN

Q1Q5
Qp = (m+ n+ 2)Nb . (6.27)

We see that in all three cases these charges agree with the ones given in (2.11), if we set

q = 1, as we should for our new supergravity solutions. This provides a check that the

newly obtained solutions really are dual to the CFT states (2.6), with q = 1.

7 Compendium of formulas and explicit solutions

Here we collect the expressions for the new superstrata that we constructed in this paper.

The new superstrata represent supersymmetric solutions of supergravity, whose 10-

dimensional fields are given by the ansatz (3.1). The quantities that enter the ansatz satisfy

two layers of BPS equations, which are differential equations on a four-dimensional base,

which we took to be flat R4. The ansatz quantities that solve the first-layer equations (3.5)

are

Z1=
Q1

Σ
, Z2=

Q5

Σ
, Z4=0 , Θ1=Θ2=0 , (7.1a)

Θ4= b̂k,m,n
4 ∆k,1+m,1+n

[
Σ

r sinθ
Ω(1) sin v̂k,1+m,1+n+

(
Ω(2)+Ω(3)

)
cos v̂k,1+m,1+n

]
, (7.1b)

where the definitions of ∆k,m,n and v̂k,m,n can be found in (3.18) and the self-dual two-

forms Ω(i) are given in (3.19). The range of the integers (k,m, n) is k ≥ 1, 0 ≤ m ≤ k − 2,

n ≥ 0.

Due to the linearity the BPS equations, an arbitrary superposition of solutions (7.1)

is still a solution of the first-layer equations (see (6.1)). However, in this paper, we limited

ourselves to single-mode superstrata, for which only one of the coefficients b̂k,m,n
4 ≡ b̂ is non-

vanishing. In this case, the ansatz quantites that solve the second-layer BPS equations (3.8)

are given by

F = FRMS(r, θ), ω = ω0 + ωRMS(r, θ) , (7.2)

where ω0 is defined in (3.10c),

ωRMS = µk,m,n(dψ + dφ) + νk,m,n(dψ − dφ) , (7.3)

and

FRMS = Fk,m,n = 4b̂2 (F2k,2m+2,2n+2 + F2k,2m+4,2n) , (7.4a)

µk,m,n =
b̂2Ry√

2

[
F2k,2m+2,2n + F2k,2m+4,2n+2

− r2 + a2 sin2 θ

Σ
(F2k,2m+2,2n+2 + F2k,2m+4,2n) +

x̂k,m,n

4Σ

]
, (7.4b)

while νk,m,n has to be calculated on a case-by-case basis using the differential equa-

tions (6.13). The functions F2k,2m,2n are given by (6.7) and the coefficient x̂k,m,n is fixed

by regularity of the solution to be (6.14).
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In the dual CFT, the single-mode superstrata correspond to states of the form

|++〉Na
(
|k,m, n, q〉R

)Nb , with Na + kNb = N (7.5)

where |k,m, n, q〉R is the spectral flow to the R sector of the NS state

|k,m, n, q〉NS = (J+
0 )m(L−1)

n

(
G+1

− 1
2

G+2
− 1

2

+
1

k
J+
0 L−1

)q

|O−−〉k . (7.6)

with q = 0, 1. States with q = 1 are dual to the new superstrata while the states with

q = 0 are dual to the original superstrata constructed in [25]. The relation between the

supergravity parameters a, b and the CFT parameters Na, Nb is given by (7.5).

The above solutions are asymptotically AdS3 but by simply setting

Z1 → Z1 + 1 , Z2 → Z2 + 1 , (7.7)

the solutions become asymptotically flat. Such a transformation does not spoil the second-

layer equations, meaning that the Fk,m,n and ωk,m,n are still valid solutions, even in the

asymptotically flat case. In contrast, extending the original superstrata to asymptotically

flat ones required a non-trivial step of solving differential equations [25].

7.1 Explicit examples

The solutions above are valid for any allowed set of quantum numbers (k,m, n, q = 1).

However, Fk,m,n and µk,m,n contain linear combinations of F2k,2m,2n, which include non-

trivial sums and are generically hard to evaluate. However, in certain cases, these sums can

be evaluated explicitly, which then makes it possible to find solutions to the second-layer

BPS equations in a closed form. Here we present the explicit expression for Fk,m,n, ωk,m,n

for two classes of solutions.

7.1.1 (k,m, n, q) = (k, 0, 0, 1) class of solutions

The simplest class of solutions is parametrised by the quantum numbers (k,m, n, q) =

(k, 0, 0, 1), with k being an arbitrary positive integer. These geometries already carry three

charges, as momentum is added through the action of the fermionic generators. They are

given by

Fk,0,0=− b̂2

k(k2−1)2(X−1)3(a2+r2)

[
P

(0)
F (X;k)+P

(1)
F (X;k) Z

]
, (7.8a)

ωk,0,0=
b̂2Ry√

2k2(k2−1)2(X−1)4Σ

[(
P

(0)
φ (X;k)+P

(1)
φ (X;k)Z+P

(2)
φ (X;k)Z2

)
sin2 θdφ

+
(
P

(1)
ψ (X;k)Z+P

(2)
ψ (X;k)Z2

)
cos2 θdψ

]
, (7.8b)

where we introduced the notation

X =
a2 sin2 θ

r2 + a2
, Z =

r2

r2 + a2
, (7.9)
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and P
(l)
F , P

(l)
ψ , and P

(l)
φ denote polynomial functions in the variable X with the parameter

k. They are given by

P
(0)
F (X; k) = 2(X − 1)(X + 1)(Xk − 1)− k(X − 1)2(1 + 3X)Xk−1

− 2k2(X − 1)2(Xk−1 − 1) + k3(X − 1)3Xk−1 , (7.10a)

P
(1)
F (X; k) = 4(X + 1)(Xk − 1)− k(X − 1)(1 + 6X +X2)Xk−1

+ 2k2(X − 1)2(X + 1)Xk−1 − k3(X − 1)3Xk−1 , (7.10b)

P
(0)
φ (X; k) = −2(X − 1)2(Xk − 1)− k(X − 1)2(X + 1)(Xk−1 − 1)

+ 2k2(X − 1)3Xk−1 + k3(X − 1)3(Xk−1 − 1) , (7.10c)

P
(1)
φ (X; k) = −4(X − 1)(X + 2)(Xk − 1) + 2k(X − 1)(2X −Xk−1 − 4Xk + 3Xk+1)

+ 4k2(X − 1)2Xk−1 − 2k3(X − 1)3Xk−1 , (7.10d)

P
(2)
φ (X; k) = −6(X + 1)(Xk − 1) + k(X − 1)(2 +Xk−1 + 8Xk +Xk+1)

− 2k2(X − 1)2(X + 1)Xk−1 + k3(X − 1)3Xk−1 , (7.10e)

P
(1)
ψ (X; k) = −2(X − 1)(1 + 2X)(Xk − 1) + k(X − 1)(−1 + 2X +X2 − 4Xk + 2Xk+1)

+ 2k2(X − 1)2Xk − k3(X − 1)3 , (7.10f)

P
(2)
ψ (X; k) = −2(1 + 4X +X2)(Xk − 1) + 2k(X − 1)(X + 1)(1 + 2Xk)

− 2k2(X − 1)2Xk . (7.10g)

The above gives regular solutions for any k > 1.

It is interesting to see what happens for k = 1. If we treat k as a continuous parameter,

one can notice that all functions P in (7.10) vanish linearly as k → 1, and so Fk,0,0 and

ωk,0,0 have a simple pole at this value of k. This means that the solution is ill-defined for

k = 1, which is consistent with the CFT result in section 2 that the states |1, 0, n, 1〉NS are

unphysical. One may think that one could multiply b̂2 by (k − 1) to start with in order to

cancel this pole and get a physical solution. However, one can show that the solution with

such modified normalisation would contain a logarithmic divergence at θ → 0 and does not

represent a phyically allowed geometry.

7.1.2 (k,m, n, q) = (2, 0, n, 1) class of solutions

The next simplest, physically meaningful class of three-charge examples is given by the

quantum numbers (k,m, n, q) = (2, 0, n, 1), where n = 0, 1, 2, . . .. In the case where n = 0

the momentum charge is coming purely from fermionic generators, whereas for n 6= 0 the

momentum charge is also added through the action of bosonic generators. One finds that
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for generic values of n the solutions for the second-layer equations are given by

F2,0,n=
b̂2

a2 (n+1)2(n+2)(n+3)2

{[
−4

1−Zn+1

1−Z
−2(n+1)(n+3) (7.11a)

+(n+1)((n+3)(n+4)+2)Zn+1−(n+1)2(n+4)Zn+2

]
−
[
4−8

1−Zn+1

1−Z

+(n3+8n2+21n+10)Zn+1−2(n+1)2(n+4)Zn+2+(n+1)2(n+2)Zn+3

]
sin2 θ

}
,

ω2,0,n=
b̂2Ry√
2a2

1

Z sin2 θ+cos2 θ

1

(n+1)2(n+2)(n+3)2
(7.11b)

×
{[

4Z
1−Zn+1

1−Z
−(n+1)(n+5)Zn+2+(n+1)2Zn+3

]
(cos2 θdψ−sin2 θdφ)

+2(n+1)(n+3)(1−Z)sin2 θdφ

}
,

where we have used the same variable Z as defined in (7.9).
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A Conventions

Most of the conventions used in this paper follow directly the conventions used in [40].23

Here we present only a brief summary of the most important conventions used throughout

the main text.

A.1 Supersymmetry variations

From [57, (2.17)], the supersymmetry transformations for bosonic fields in type IIB super-

gravity are given by

δeaµ = ǭΓaψµ, (A.1a)

δBµν = 2ǭΓ[µσ3ψν], (A.1b)

δφ =
1

2
ǭλ, (A.1c)

δC(2n−1)
µ1...µ2n−1

= −e−φǭΓ[µ1...µ2n−2
Pn

(
(2n− 1)ψµ2n−1] −

1

2
Γµ2n−1]λ

)

+ (n− 1)(2n− 1)C
(2n−3)
[µ1...µ2n−3

δBµ2n−2µ2n−1] , (A.1d)

23See appendix A of that paper.
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where µ, ν, . . . are curved spacetime indices while a, b, . . . are local Lorentz indices. The

fermionic field variations read

δψµ =

(
∂µ +

1

4
/ωµ +

1

8
PHµνρΓ

νρ

)
ǫ+

1

16
eφ

∑

n

1

(2n)!
/F 2nΓµPnǫ, (A.2)

δλ =

(
/∂φ+

1

12
/HP

)
ǫ+

1

8
eφ

∑

n

(−1)2n
5− 2n

(2n)!
/F 2nPnǫ, (A.3)

where n = 1/2, . . . , 9/2 and

P = −σ3, Pn =

{
σ1 n+ 1/2: even

iσ2 n+ 1/2: odd
(A.4)

acts on the doublet index of the gravitino ψ1,2
µ and dilatino fields λ1,2, which was suppressed

in the expressions above. We have also introduced the slashed notation

/Ap =
1

p!
Am1...mpΓ

m1...mp , (A.5)

where every form index is contracted with a gamma matrix. The RR field strengths are

related to the RR potentials by

H = dB , Fp = dCp−1 −H ∧ Cp−3. (A.6)

Using the Γ-matrix algebra and the self-duality relations of the RR field strengths, one can

write the variations (A.2) explicitly as

δψ1
M =

(
∇M − 1

8
HMNPΓ

NP

)
ǫ1 +

1

8
eφ

(
+/F 1 + /F 3 +

1

2
/F 5

)
ΓM ǫ2 , (A.7a)

δψ2
M =

(
∇M +

1

8
HMNPΓ

NP

)
ǫ2 +

1

8
eφ

(
−/F 1 + /F 3 −

1

2
/F 5

)
ΓM ǫ1 , (A.7b)

δλ1 =

(
dφ− 1

2
H

)
ǫ1 +

1

4
eφ(−4/F 1 − 2/F 3)ǫ

2 , (A.7c)

δλ2 =

(
dφ+

1

2
H

)
ǫ2 +

1

4
eφ(+4/F 1 − 2/F 3)ǫ

1 , (A.7d)

where ∇M = ∂M + 1
4ωMabΓ

ab with ωM the spin connection 1-form. In deriving the above

relations, we also used the fact that ǫ1,2 are Majorana-Weyl spinors with positive chirality.

A.2 Spinor conventions

In the above we mentioned that the supersymmetry variations are generated by Majorana-

Weyl spinors. The 10-dimensional Weyl condition is given in (4.13). If we take the charge

conjugation matrix C to be

C = Γt, (A.8)

then the Majorana condition

ǭ ≡ ǫ†Γt = ǫTC (A.9)
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simply means that the spinor is real,

ǫ∗ = ǫ. (A.10)

Note that for a Majorana spinor one has

ǭ = ǫTΓt . (A.11)

In most of our analysis we use the coordinates u and v defined in (3.3). It is convenient

to express Γt as

Γt =
1√
2
(Γu + Γv) ≡ Γ̂u + Γ̂v , (A.12)

where Γ̂u and Γ̂v are defined in (4.12). They are convenient to work with, when acted upon

a spinor with a definite eigenvalue under Γuv. They satisfy

Γ̂uT = Γ̂u† = −Γ̂v , Γ̂vT = Γ̂v† = −Γ̂u , (A.13)

where we used the hermiticity properties of the Γ matrices,

Γt† = −Γt, Γi† = Γi, i 6= t. (A.14)

As an example, using all these conventions, we find that the transpose of the

spinor (5.1) used to generate the double variation (5.4) is given by

(
ǫ1
)T

=
1

2
e
i
(
φ̃+ψ̃
2

− v√
2Ry

) (
ζαA−

)T
e−

θ
2
Γrθ

(
R+ + iR−Γ̂

ru
)
. (A.15)

A.3 Identifying Killing spinors and CFT fermionic generators

Here we will give justification for the identification (4.18), (4.19) between the components

of the Killing spinors ζ± and the CFT fermionic generators GαA
± 1

2

.

As we can see from (4.10) and (4.11), the spinors ζ± and ζ̃± are related to the u- and

v-dependent part of the Killing spinors, respectively. So, they are naturally linked with the

left-moving (G) and right-moving (G̃) sectors of CFT. Therefore, we will henceforth focus

on the identification in the left-moving sector between ζ± and GαA
± 1

2

. From the v-dependence

in (4.11d), we have the tentative identification

ζ± ←→ GαA
± 1

2

. (A.16)

The next issue is to relate the SU(2)L × SU(2)R R-symmetry on the CFT side and

the SO(4) ∼= SU(2)L × SU(2)R symmetry of the sphere S3 on the supergravity side. It is

clear that these symmetry groups are to be identified with each other but we would like to

“align” them by identifying the “J3” generators on the two sides.

On the supergravity side, we can write down a set of SU(2)L × SU(2)R generators

acting on spinors as

Ja = − i

4

(
Γra +

1

2
ǫabcΓbc

)
, J̃a = − i

4

(
Γra − 1

2
ǫabcΓbc

)
, (A.17)
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or, more explicitly,

Jθ = − i

4

(
Γrθ + Γφ̃ψ̃

)
, J

φ̃
= − i

4

(
Γrφ̃ + Γψ̃θ

)
, J

ψ̃
= − i

4

(
Γrψ̃ + Γθφ̃

)
, (A.18a)

J̃θ = − i

4

(
Γrθ − Γφ̃ψ̃

)
, J̃

φ̃
= − i

4

(
Γrφ̃ − Γψ̃θ

)
, J̃

ψ̃
= − i

4

(
Γrψ̃ − Γθφ̃

)
. (A.18b)

These matrices satisfy the commutation relations

[Ja, Jb] = iǫabcJc, [J̃a, J̃b] = iǫabcJ̃c, [Ja, J̃b] = 0, (A.19)

and have Casimir operators given by

J2 =
(
J2
θ + J2

φ̃
+ J2

ψ̃

)
=

3

8

(
1− Γrθφ̃ψ̃

)
, J̃2 =

(
J̃2
θ + J̃2

φ̃
+ J̃2

ψ̃

)
=

3

8

(
1 + Γrθφ̃ψ̃

)
.

(A.20)

We turn our focus to the action of these matrices on the spinors ζ±. Recall that these

spinors must satisfy the conditions (4.13) and (4.16). Combining these two implies that

they must satisfy

Γuvrθφ̃ψ̃ ζ± = ζ±. (A.21)

From this condition together with (4.17), we find that

Γrθφ̃ψ̃ ζ± = −ζ± . (A.22)

From the Casimir operators (A.20), we conclude that ζ± transform in the (2,1) representa-

tion under the SU(2)L×SU(2)R generated by Ja, J̃a . This is as expected, because ζ± is to

be identified with GαA
± 1

2

which transform in the same representation under the R-symmetry.

We need to identify which of the operators in (A.17) corresponds to the “J3” operator

of the SU(2)L algebra on the CFT side. This operator will allow us to distinguish between

the spinor components corresponding to G+A
± 1

2

and G−A
± 1

2

. In order to see that, we look

at the spinor (4.10). By setting ζ̃± = 0, we obtain a spinor with terms that contain

the combination Y+ζ±. Using the constraint (A.22) one can show that the combination

appearing in the spinor can be rewritten as

Y+ζ± = e
θ
2
Γrθ

(
ei
φ̃+ψ̃
2 P+

S + e−i φ̃+ψ̃
2 P−

S

)
ζ± , (A.23)

where P±
S is the projection operator onto the J

ψ̃
= ±1

2 eigenspace defined in (4.18). Because

the algebra (2.1) says that {G±A
1
2

, G±B
− 1

2

} ∼ J±
0 , a double variation by ζ± should reproduce

the bosonic symmetry J±
0 whose realisation is given in (3.15). Since J±

0 include a prefactor

of e±i(φ̃+ψ̃), we conclude that the J
ψ̃
= ±1

2 eigenspaces, multiplied by e±i φ̃+ψ̃
2 in (A.23),

are precisely the J3 = ±1
2 eigenspaces. Namely, J

ψ̃
can be identified with J3

0 on the CFT

side. This leads to a finer identification

Pα
S ζ± ←→ GαA

± 1
2

. (A.24)

One can repeat the procedure for the SU(2)B × SU(2)C symmetry on the CFT side,

which is to be identified with the symmetry of the internal T 4 on the supergravity side.
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We can write down a set of supergravity generators of SU(2)B × SU(2)C in the spinor

representation as follows:

B1 = − i

4

(
Γ78 − Γ69

)
, B2 = − i

4

(
Γ86 − Γ79

)
, B3 = − i

4

(
Γ67 − Γ89

)
,

C1 = − i

4

(
Γ78 + Γ69

)
, C2 = − i

4

(
Γ86 + Γ79

)
, C3 = − i

4

(
Γ67 + Γ89

)
,

(A.25a)

which again satisfy the commutation relations

[Bi, Bj ] = iǫijkBk, [Ci, Cj ] = iǫijkCk, [Bi, Cj ] = 0 , (A.26)

and have Casimir operators

B2 =
3

8

(
1 + Γ6789

)
, C2 =

3

8

(
1− Γ6789

)
. (A.27)

Since our spinors satisfy the condition (4.16), we see that ζ± both transform in the (2,1)

representation under SU(2)B × SU(2)C generated by Bi, Ci. This is accordance with the

fact that GαA
± 1

2

transform in the same representation under SU(2)B × SU(2)C .

However, unlike the case of SU(2)L × SU(2)R, there is no unique way to align the

SU(2)B × SU(2)C groups between supergravity and CFT, because our ansatz (3.1) does

not distinguish the four directions inside the internal T 4. As a result, in the Killing

spinors (4.10), no Γ matrix with legs in the T 4 appear, and all Γk with k = 6, 7, 8, 9

are on an equal footing. Therefore, we can choose the “J3” direction of SU(2)B as we like.

Specifically, we define the projectors PA
T , A = 1, 2 by (4.18) and identify its A index with

the A index of GαA
± 1

2

. This leads to the final identification

ζαA± = Pα
SPA

T ζ± ←→ GαA
± 1

2

(A.28)

which is (4.19) in the main text.

B Explicit results in the NS-NS sector

In section 4 we have calculated the variations of the dilatino fields generated by the AdS3×
S3 × T 4 Killing spinor ζαA− . In a similar manner one can calculate the variations of the

components of the gravitino fields. These are presented in this appendix and one finds

some subtleties one does not find in the dilatino variation. Furthermore, we also give

the variation of the fermionic fields generated by the spinor ζαA+ . We expect that these

variations vanish, and in fact the dilatino variations do, but the gravitino component

variations show the same subtleties as one finds in the variations of generated by the ζαA−
spinors. Finally we will present the results of the double variations of the components of

the B-field in the NS-NS coordinates, which we omitted in the main text.
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B.1 Gravitino variations generated by ζαA

−

One finds that the variations of the components of the gravitino field generated by the

spinor (5.1) are given by

δψ1
u,b=− bak sink−1 θ

4
√
2Ry (r2+a2)

k+1
2

e−iβ1

[
k
(
iR−+R+Γ̂

vr
)(

cosθΓrθ− iΓrφ̃+sinθ
)

− i

√
r2+a2

a

(
R+

(
R4

−+k
)
− iR−Γ̂

vr
(
R4

++k
))

sinθ

]
Y+ζ

αA
− , (B.1a)

δψ1
v,b=− bak sink−1 θ

4
√
2Ry (r2+a2)

k+1
2

e−iβ1

[
k
(
iR3

++R3
−Γ̂

vr
)(

cosθΓrθ− iΓrφ̃+sinθ
)

−(ik+ i)

√
r2+a2

a

(
R+− iR−Γ̂

vr
)
sinθ

]
Y+ζ

αA
− , (B.1b)

δψ1
r,b=− bak sink−1 θ

4(r2+a2)
k+2
2

e−iβ1

[
k
(
−R−− iR+Γ̂

vr
)(

cosθΓrθ− iΓrφ̃+sinθ
)

+

√
r2+a2

a

(
R+

(
1− kr√

1+r2

)
+ iR−

(
1+

kr√
1+r2

)
Γ̂vr

)
sinθ

]
Y+ζ

αA
− , (B.1c)

δψ1
θ,b=− bak sink−1 θ

4(r2+a2)
k+1
2

e−iβ1

[
k
(
R−− iR+Γ̂

vr
)
Γrθ

(
cosθΓrθ− iΓrφ̃+sinθ

)

+

√
r2+a2

a

(
R+− iR−Γ̂

vr
)(

k cosθ+sinθΓrθ
)]

Y+ζ
αA
− , (B.1d)

δψ1
φ̃,b

=− bak sink θ

4(r2+a2)
k+1
2

e−iβ1

[
k
(
R−− iR+Γ̂

vr
)
Γrφ̃

(
cosθΓrθ− iΓrφ̃+sinθ

)

+

√
r2+a2

a

(
R+− iR−Γ̂

vr
)(

sinθΓrφ̃− ik
)]

Y+ζ
αA
− , (B.1e)

δψ1
ψ̃,b

=−bak sink−1 θ cosθ

4(r2+a2)
k+1
2

e−iβ1

[
k
(
R−− iR+ Γ̂vr

)
Γrψ̃

(
cosθΓrθ− iΓrφ̃+sinθ

)

+

√
r2+a2

a

(
R+− iR−Γ̂

vr
)
sinθΓrψ̃

]
Y+ζ

αA
− , (B.1f)

δψ1
k,b=0 , k=6,7,8,9, (B.1g)

where

β1 ≡ k
( u+ v√

2Ry

+ φ̃
)
+

v√
2Ry

= v̂k,0, 1
2
. (B.2)

Note that, for the variations generated by spinor (5.1), we have δψ1
M,b = δψ2

M,b for all M .

We find that the gravitino variations (B.1) generically have two parts. The first one is

analogous to the dilatino variation, as it contains the combination (cos θΓrθ− iΓrφ̃+sin θ),

which when acting on the combination (Y+ζ
αA
− ) projects out the ζ−A

− components of the

spinor. This part is again expected from the fact that the perturbed geometry is dual to

an anti-chiral primary state. The second part of the variations (given in the second lines of

the respective variations) does not distinguish between the ζ+A
− and ζ−A

− components of the
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spinors. We believe that these extra factors are related to the residual gauge freedom that

we have in our system and one should be able to consistently ignore these extra factors.

This claim is further strengthened by the fact that once we use these fermionic variations to

calculate the double variations of bosonic fields, these additional terms consistently cancel

out and thus do not contribute to any observable fields.

B.2 Fermionic variations generated by ζαA

+

The claim that the extra terms found in (B.1) can be set to zero by gauge transformation is

further supported by calculating the variations of fermionic fields generated by the Killing

spinor components ζαA+ . Since these are dual to the modes GαA
+ 1

2

, the variations should

vanish. Furthermore, one should not obtain any terms that would distinguish between the

ζ+A
+ and ζ−A

+ components as now variations generated by both should vanish. If we set

ζαA− = 0 and make ζαA+ arbitrary, the spinor that generates the variation is given by

ǫ1 = −ǫ2 =
1

2

(
iR−Γ̂

vr +R+

)
Y+ζ

αA
+ e

iv√
2Ry . (B.3)

Using this spinor as the generator of the solutions, one obtains that the explicit variations

of the fermionic fields are given by

δλ1
b = 0, (B.4a)

δψ1
u,b = − bak−1 sink θ

4
√
2Ry (a2 + r2)k/2

e−iβ2

[(
iR4

+ − ik
)
iR−Γ̂

vr +
(
iR4

− − ik
)
R+

]
Y+ζ

αA
+ (B.4b)

δψ1
v,b = − bak−1 sink θ

4
√
2Ry (a2 + r2)k/2

e−iβ2(i− ik)
(
iR−Γ̂

vr +R+

)
Y+ζ

αA
+ (B.4c)

δψ1
r,b = − bak−1 sink θ

4 (a2 + r2)
k+1
2

e−iβ2

[(
−1− kr√

a2 + r2

)
iR−Γ̂

vr

+

(
1− kr√

a2 + r2

)
R+

]
Y+ζ

αA
+ (B.4d)

δψ1
θ,b = −bak−1 sink−1 θ

4 (a2 + r2)k/2
e−iβ2

(
R+ + iR−Γ̂

vr
)(

k cos θ + sin θΓrθ
)
Y+ζ

αA
+ (B.4e)

δψ1
φ̃,b

= − bak−1 sink θ

4 (a2 + r2)k/2
e−iβ2

(
R+ + iR−Γ̂

vr
)(

−ik + sin θΓrφ̃
)
Y+ζ

αA
+ (B.4f)

δψ1
ψ̃,b

= −bak−1 sink θ cos θ

4 (a2 + r2)k/2
e−iβ2

(
R+ + iR−Γ̂

vr
)
Γrψ Y+ζ

αA
+ , (B.4g)

δψ1
k,b = 0 , k = 6, 7, 8, 9 , (B.4h)

where

β2 ≡ k
( u+ v√

2Ry

+ φ̃
)
− v√

2Ry

= v̂k,0,− 1
2
, (B.5)

and δλ1
b = δλ2

b , δψ
1
M,b = δψ2

M,b. We see that the variations of the dilatino fields vanish, as

expected. On the other hand, the variations of the components of the gravitino fields do not

vanish. However, note that these variations only contain the terms which we deemed as a
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consequence of the gauge freedom in our system and lacks the term which would distinguish

between the two SU(2)L components. Since these variations should be trivial, we get

another confirmation that these terms appearing in the gravitino variations are not physical.

B.3 Variations of the B-field

The non-vanishing term in the double B-field variation is given by

δ′δBµν = 2ǭΓ[µσ
3δ′ψ̃ν] = 2 (ǫ1)

T Γt
(
Γµδψ̃

1
ν − Γνδ

′ψ̃1
µ

)
, (B.6)

where in the last term we again used the fact that the only non-zero spinor components

used to generate the variations are ζ+A
− . The variations of the individual components of

the B-field in the NS-NS sector are then given by

Buv = −2bkak−
5
2R

− 3
2

y
r sink−1 θ cos θ

(r2 + a2)
k−1
2

e−iβ3A (B.7a)

Bur = Bvr = −
√
2ibkak−

1
2R

− 1
2

y
sink−1 θ cos θ

(r2 + a2)
k+1
2

e−iβ3A (B.7b)

B
uψ̃

= −B
vψ̃

=
√
2bkak−

1
2R

− 1
2

y
sink−1 θ cos θ

(r2 + a2)
k+1
2

e−iβ3A (B.7c)

B
rψ̃

= −2ibkak−
1
2R

1
2
y
sink−1 θ cos θ

(r2 + a2)
k+1
2

e−iβ3A (B.7d)

B
φ̃ψ̃

= 2bkak−
1
2R

1
2
y
r sink+1 θ cos θ

(r2 + a2)
k+1
2

e−iβ3A (B.7e)

Buθ = −Bvθ =
√
2ibkR

− 1
2

y ak−
1
2

r sink θ

(r2 + a2)
k+1
2

e−iβ3A (B.7f)

B
θφ̃

= −2ibkR
1
2
y a

k− 1
2

r sink θ

(r2 + a2)
k+1
2

e−iβ3A (B.7g)

Brθ = 2bkak−
1
2R

1
2
y

sink θ

(r2 + a2)
k+1
2

e−iβ3A (B.7h)

B
uφ̃

= B
vφ̃

= B
θψ̃

= B
rφ̃

= 0 (B.7i)

where

β3 ≡ k
( u+ v√

2Ry

+ φ̃
)
+
√
2
v

Ry
− (φ̃+ ψ̃), (B.8)

A =
[(
ζ+1
−

)T
iΓrθζ ′+2

−

]
. (B.9)

C Supergravity spectrum around AdS3 × S3

In the main text, we explicitly constructed a new 3-charge supergravity solution that cor-

responds to the CFT state (2.6) (or (2.10)). Surprisingly, at linear order, the supergravity

solution only involved excitation of Θ4, which is related to the NS-NS B-field, and not any
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other fields such as Z4 or the 4D base metric (even at the non-linear level, the only excited

fields are Θ4,F , ω). Actually, this fact can be deduced from the analysis of the spectrum

of 6D supergravity compactified on AdS3 × S3, as we will discuss in this appendix.

The spectrum of 6D supergravity compactified on AdS3×S3, which is relevant for the

AdS3/CFT2 correspondence, has been extensively studied [42–45] (see also [27]). Partic-

ularly useful for us is ref. [42] which, for D = 6, N = (2, 0) supergravity with n tensor

multiplets, worked out the excitation spectrum around the AdS3/CFT2 background and its

explicit supermultiplet structure. Type IIB supergravity compactified on K3 corresponds

to n = 21, for which the theory is anomaly free. On the other hand, T 4 compactification

can be studied by taking n = 5, although this truncates fields that correspond to gravitino

multiplets of the N = (2, 0) theory (see ref. [44] which studied the spectrum in the T 4 case

including the gravitino multiplets).

Here we briefly summarise the result of ref. [42] and relate it to our setup. Note that our

convention for the R-charge is opposite to that in [42]; so, chiral primaries there correspond

to anti-chiral primaries in our setup, and G±A
n , G̃±̇A

n there correspond to G∓A
n , G̃∓̇A

n in our

setup.

The D = 6, N = (2, 0) supergravity theory has the duality group SO(5, n), and its

bosonic fields are the graviton gMN , 5 2-form potentials Bi
MN with self-dual field strengths,

n 2-form potentials Br
MN with anti-self-dual field strengths, and 5n scalars. Here, M,N, . . .

are curved 6D indices, i = 1, . . . , 5 is the SO(5) vector index, and r = 6, . . . , 5 + n is the

SO(n) vector index. The scalars live in the coset space SO(5, n)/(SO(5)× SO(n)) and can

be parametrised by vielbeins (V i
I , V

r
I ) where I = (i, r) = 1, . . . , 5+n is the SO(5, n) vector

index. Self-duality (anti-self-duality) is not imposed on the 3-formsGi = dBi andGr = dBr

but on H i = GIV i
I and Hr = GIV r

I ; namely, they satisfy ∗6H i = H i and ∗6Hr = −Hr.

Small fluctuations around the AdS3 × S3 background can be studied by writing the

fields as
gMN = ḡMN + hMN , GI

MNP = ḠI
MNP + gIMNP ,

V i
I = δiI + φirδrI , V r

I = δrI + φirδiI .
(C.1)

Here, ḡMN is the background AdS3 × S3 metric and ḠI
MNP is the background 3-form field

strength with components

Ḡi
µνρ = mǫµνρδ

i
5, Ḡi

abc = mǫabcδ
i
5 Ḡr

MNP = 0, (C.2)

where m−1 is the radius of AdS3 × S3, µ, ν, . . . are curved AdS3 indices, and a, b, . . . are

curved S3 indices. To support the AdS3 × S3 background, we must turn on one of the

self-dual form fields, which we have taken to be the i = 5 one. This breaks the SO(5)

R-symmetry of 6D supergravity to S̃O(4).24 We use i = 1, . . . , 4 for the vector index for

this unbroken S̃O(4). This S̃O(4) = SU(2)B × SU(2)C symmetry is not to be confused

with the SO(4) = SU(2)L × SU(2)R R-symmetry of the CFT coming from the isometry

of the S3. Rather, SU(2)B is related to the SU(2) outer automorphism of the N = (4, 4)

superconformal algebra, while SU(2)C is related to a custodial symmetry with respect which

the fundamental fields of the CFT are charged (but not the superconformal generators are).

24In [42], S̃O(4) is denoted as SO(4)R.
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We can relate the above fields in 6D supergravity to the quantities appearing in the

main text as follows. First, the self-dual H i=5 and the anti-self-dual Hr=6 are related to the

self-dual and anti-self-dual linear combinations of the RR 3-form F3 and its 6-dimensional

dual ∗6F3 [27], while the scalar φ56 is related to the dilaton which is roughly Z1/Z2. To

discuss r = 7, . . . , 5+n, let us recall that there are (n−1) (1, 1)-forms in T 4 (n−1 = 4) and

K3 (n− 1 = 20). Among them is the Kähler form J ≡ ω(7). Let us denote the remaining

(n− 2) (1, 1)-forms by ω(r), r = 8, . . . , 5 + n. The relations are slightly different for r = 7

and r ≥ 8. The 3-form Hr=7 is related to the NS-NS 3-form H3 which in turn is related

to the 2-form Θ4, and the scalar φ57 is related to Z4. On the other hand, Hr=8,...,5+n are

related to the part of the RR 5-form F5 involving ω(r), and the scalar φ5r is related to the

part of H3 involving ω(r) [62].

The fields hMN , gIMNP , and φir represent small fluctuations around the background

and can be decomposed as

hµν = Hµν + ḡµνM, ḡµνHµν = 0,

hµa = Kµa,

hab = Lab + ḡabN, ḡabLab = 0

(C.3)

and
gIMNP = 3∂[MbINP ],

bIµν = ǫµνρX
Iρ, bIab = ǫabcU

Ic, bIµa = ZI
µa.

(C.4)

In the de Donder-Lorentz gauge, the fluctuation fields can be expanded in the harmonic

functions in S3 as

Hµν =
∑

H(ℓ 0)
µν Y (ℓ 0), M =

∑
M (ℓ 0)Y (ℓ 0),

Kµa =
∑

K(ℓ,±1)
µ Y (ℓ,±1)

a ,

Lab =
∑

L(ℓ,±2)Y
(ℓ,±2)
ab , N =

∑
N (ℓ 0)Y (ℓ 0),

XI
µ =

∑
XI (ℓ 0)

µ Y (ℓ 0), ZI
µa =

∑
ZI (ℓ,±1)
µ Y (ℓ,±1)

a , U I
a =

∑
U I(ℓ 0)∂aY

(ℓ 0),

φir =
∑

φir(ℓ 0)Y (ℓ 0).

(C.5)

The SO(4) quantum numbers ℓ1, ℓ2 of the S3 harmonic functions Y
(ℓ1,ℓ2)
(s) are related to the

SU(2)L × SU(2)R quantum numbers j, j̄ in the main text as

ℓ1 = j + j̄, ℓ2 = j − j̄. (C.6)

The subscript (s) denotes the SO(3) content associated with the tangent space of S3.

By substituting the above expansion into the field equations of the D = 6 supergravity,

one obtains the spectrum of excitations and their representation content. The SO(2, 2)

representation associated with the AdS3 can be labeled by the energy E0 and the spin s0,

which are related to the weights h, h̄ in the main text as

E0 = h+ h̄, s0 = h− h̄. (C.7)
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state hµν hµa hab BI
µν BI

µa BI
ab φir

GG|−+〉, G̃G̃|+−〉, |−−〉′, GGG̃G̃|−−〉′ Hµν ,M N X5
µ U5

GG̃|−−〉′ X
i
µ U i

|00〉, GGG̃G̃|00〉, |++〉′, GGG̃G̃|++〉′ Xr
µ U r φ5r

GG̃|00〉, GG̃|++〉′ φir

|∓±〉, GGG̃G̃|∓±〉, GG|−−〉′, G̃G̃|−−〉′ Kµ Z5
µ

GG̃|∓±〉 Z
i
µ

GG|00〉, G̃G̃|00〉, GG|++〉′, G̃G̃|++〉′ Zr
µ

GG|+−〉, G̃G̃|−+〉 L

Table 1. The fields excited in various superdescendant states. The fields in each row are described

by a coupled system of equations which must be diagonalised to find the spectrum [42]. The

shorthand GG means G+1

−1/2G
+2

−1/2, G̃G̃ means G̃+̇1

−1/2G̃
+̇2

−1/2, and GG̃ means the four combinations

G+A
−1/2G̃

+̇B
−1/2 with A,B = 1, 2. The states in (red) boldface letters are supersymmetric, involving

only G and not G̃. The meaning of the prime on |++〉′ and |−−〉′ is explained in the main text.

This procedure was carried out in [42], where they have explicitly written down which

fields are involved in each excitation mode. Furthermore, by examining the quantum num-

bers of the supercharges associated with the Killing vectors of the AdS3 × S3 background,

they identified the supermultiplets that these excitation modes are the members of. By

comparing the representation content of these supergravity supermultiplets with the repre-

sentation content of the CFT supermultiplets obtained by acting with G+A
−1/2 and G̃+̇A

−1/2 on

the anti-chiral primaries25 |±±〉k, |±∓〉k and |00〉k, we can find what fields are excited in

the supergravity modes dual to each such state. In table 1, we listed the fields are excited

for anti-chiral primary and superdescendant states (cf. table 1 of [42]).

The anti-chiral primary state |00〉k in table 1 does not only mean the one considered

in the main text but represents a set of n − 1 states corresponding to the (1, 1)-forms

ω(r), where r = 7, . . . , 5 + n. In order to furnish a complete vector representation of

the SO(n) symmetry that exists in supergravity, we need to add one extra state to the

above n − 1 states. The candidate anti-chiral primaries are |++〉k+1 and |−−〉k−1, which

have the same charges as |00〉k (h = −j3 = k
2 ). Because the supergravity modes that

correspond to |00〉k leave the 6D metric unchanged, the extra state must also leave the 6D

metric unchanged. Indeed, there is a linear combination of |++〉k+1 and |−−〉k−1 whose

gravity dual has undeformed 6D metric at linear order; see footnote 9 of [63].26 Let us

25The notation indicates the T 4 or K3 cohomology to which the primary operator Op,q is associated,

where p, q can be (+, 0,−) ↔ (0, 1, 2).
26This provides a possible identification for the linear excitation mode that was studied in [11] in the

framework of 6D supergravity. The non-linear version of this mode is the superstratum with coiffuring

“Style 1” discussed in [64].
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denote by |++〉′k such a linear combination. Then the vector of SO(n) is given by the

n-vector (|++〉′k+1, |00〉k). We also define |−−〉′k to be the linear combination of |++〉k+1

and |−−〉k−1 that is orthogonal to |++〉′k.
Using the relation between the 6D supergravity in table 1 and the fields discussed in

the main text, we can figure out what fields (such as Z4 and Θ4) are excited for what

superdescendants. From the second last line of table 1, we see that the supergravity mode

corresponding to the CFT state G+1
− 1

2

G+2
− 1

2

|00〉, which has been the focus of the current

paper, only involves Zr
µ. This is related to the mixed component (between AdS3 and S3)

of the anti-self-dual 2-form Br
MN . In particular, it does not change the 6D metric at the

linear order. This means that this mode only excites Θ4 but none of Z1,2,4, which is what

we found in the main text.

It is interesting to see that there are other supersymmetric modes that excite only

one field. First, we see that the state G+1
− 1

2

G+2
− 1

2

|++〉′ do not excite the metric. The non-

linear completion of this would be the GG version of the “Style 1” superstratum discussed

in [64]. Moreover, the state G+1
− 1

2

G+2
− 1

2

|+−〉 turns only on L, which is related to the traceless

part of the S3 metric. This will probably correspond to some simple deformation of the

4D base metric with β unchanged. It would be interesting to construct the non-linear

completion of these modes. Although it must be technically more challenging, some of non-

supersymmetric states, namely GG̃|00〉, GG̃|++〉′, GG̃|∓±〉, have only one field excited,

and constructing their non-linear completion would be also interesting. See [65] for recent

work in this direction.

D Killing spinors in the RR coordinates

In the main text, we studied the Killing spinors of AdS3 × S3 in the NS-NS coordinates.

Here we derive the expression for the Killing spinor in the RR coordinates and further show

that the two sets of spinors are related by a local Lorentz transformation and the spectral

flow coordinate transformation.

We summarise some formulas that we make frequent use of in this appendix.

Because of the commutation relations

[Γuv,Γv] = 2Γv, [Γuv,Γu] = −2Γu, (D.1)

Γv and Γu can be regarded as raising and lowering operators, respectively, with (one-half

of) the Γuv chirality being the number operator.

Using the formula

Γm1...mpΓ(10) = (−1)pΓ(10)Γm1...mp =
(−1)p(p−1)/2

(10− p)!
ǫm1...mpn1...n10−pΓ

n1...n10−p . (D.2)

one can show that the following Γ-matrix relations hold when they are acting on spinors
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with Γ(10) = Γ6789 = 1:

Γi = +
1

3!
ǫijkl Γuvjkl, Γij = −1

2
ǫijkl Γuvkl, Γijk = −ǫijkl Γuvl, Γijkl = +ǫijkl Γuv,

Γvi = − 1

3!
ǫijkl Γvjkl, Γvij = +

1

2
ǫijkl Γvkl, Γvijk = +ǫijkl Γvl, (D.3)

Γui = +
1

3!
ǫijkl Γujkl, Γuij = −1

2
ǫijkl Γukl, Γuijk = −ǫijkl Γul,

where i, j, k, l denote R4 indices and are summed over when repeated. In particular, in the

convention ǫrθφψ = +1, we have

Γφψ = −Γuvrθ, Γθψ = +Γuvrφ, Γθφ = −Γuvrψ,

Γvr = −Γvψθφ, Γvψ = +Γvrθφ, Γvφ = −Γvrθψ,

Γur = +Γuψθφ, Γuψ = −Γurθφ, Γuφ = +Γurθψ

(D.4)

and so on.

D.1 The RR Killing spinors

Let us focus on the round supertube solution after the decoupling limit in the RR coordi-

nates (t, r, y, θ, φ, ψ) (see eq. (3.10a)). We take the vielbeins to be

Ev =
Σ

aRy
(dv + β), Eu = du+ ω, Er =

√
aRy

r2 + a2
dr, Eθ =

√
aRy dθ,

Eφ =

√
aRy(r2 + a2)

Σ
sin θ dφ, Eψ =

√
aRy

Σ
r cos θ dψ, Eα =

(Q1

Q5

)1/4
dxα,

(D.5)

where α = 6, 7, 8, 9. By setting the supersymmetry variations (4.1) to zero, after some

manipulations, we can find Killing spinors that preserve supersymmetry. The result can

be stated in a simple way in terms of

ǫ± = ǫ1 ± ǫ2. (D.6)

The RR Killing spinors are

ǫ+ = κ̃+ + eM̃uκ̃−, ǫ− = κ− + eMvκ+, (D.7)

where

κ̃+ = e
γ
2
Γrθe

1
2
(φ−ψ)Γθφχ̃+

+

√
aRy

2

Γv

Σ

(
−a2 sin θ cos θ Γφ + r

√
r2 + a2 Γψ

)
e
γ
2
Γrθ e

1
2
(φ−ψ)Γθφ χ̃−, (D.8a)

κ̃− = e−
γ
2
Γrθe

1
2
(φ−ψ)Γθφχ̃−, (D.8b)

κ− =

√
Σ

aRy
e
γ
2
Γrθe

1
2
(φ+ψ)Γθφχ−

− Γu

a
√
2Σ

(
a2 sin θ cos θ Γφ + r

√
r2 + a2 Γψ

)
e
γ
2
Γrθ e

1
2
(φ+ψ)Γθφ χ+, (D.8c)

κ+ =

√
aRy

Σ
e−

γ
2
Γrθe

1
2
(φ+ψ)Γθφχ+, (D.8d)
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and

M̃ =
Γv

√
aRy Σ

(
r
√
r2 + a2 Γr − a2 sin θ cos θ Γθ

)

− 1

Ry

√
2Σ

[
r sin θ(−Γrφ + Γθψ) +

√
r2 + a2 cos θ(+Γrψ + Γθφ)

]
P−
uv, (D.9a)

M =
Γu

√
a3R3

y

(
r
√
r2 + a2 Γr − a2 sin θ cos θ Γθ

)

+
1

Ry

√
2Σ

[
r sin θ(+Γrφ + Γθψ) +

√
r2 + a2 cos θ(+Γrψ − Γθφ)

]
P+
uv. (D.9b)

The angle γ is defined by

cos γ =

√
r2 + a2

Σ
cos θ, sin γ =

r√
Σ

sin θ. (D.10)

P±
uv are projection operators onto the Γuv = ±1 subspaces:

P±
uv ≡ 1

2
(1± Γuv). (D.11)

The spinors χ̃±, χ± are constant Majorana-Weyl spinors with Γ(10) = Γ6789 = 1 on them.

Furthermore, their superscript indicates the Γuv chirality, namely,

Γuv χ̃± = ±χ̃±, Γuv χ± = ±χ±. (D.12)

Each of the four spinors χ̃±, χ± has 4 independent real components. The total number

of unbroken real supercharges is 4 × 4 = 16. The spinors κ̃±, κ± also have definite Γuv

chirality displayed by the superscript:

Γuv κ̃± = ±κ̃±, Γuv κ± = ±κ±, (D.13)

while eM̃uκ̃−, eMvκ+ do not have definite Γuv chirality.

The exponential in (D.7) can be written as

eM̃u = 1 +R2
y

(
1− cos

√
2u

Ry

)
K̃ +

Ry√
2

(
sin

√
2u

Ry

)
M̃,

eMv = 1 +R2
y

(
1− cos

√
2v

Ry

)
K +

Ry√
2

(
sin

√
2v

Ry

)
M,

(D.14)

where

K̃ =
Γv

√
2aR3

yΣ

[√
r2 + a2 sin θ Γφ − r cos θ Γψ

]
− P−

uv

R2
y

,

K =

√
Σ

2a3R5
y

Γu
[√

r2 + a2 sin θ Γφ + r cos θ Γψ
]
− P+

uv

R2
y

.

(D.15)
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D.2 Map between the NS-NS and RR spinors

In the above, we derived the expression for the Killing spinors in the RR coordinates with

the vielbeins (D.5). On the other hand, in the main text, we derived the Killing spinors in

the NS-NS coordinate system with the vielbeins (4.6). The two Killing spinors are related

by a coordinate transformation and a local Lorentz transformation, which we work out

below.

The vielbeins used in the NS-NS coordinates are:

Ẽv =
1

2
√
aRy

[(√
r2 + a2 + r

)
dv +

(√
r2 + a2 − r

)
du

]
,

Ẽu =
1

2
√
aRy

[(√
r2 + a2 + r

)
du+

(√
r2 + a2 − r

)
dv

]
,

Ẽφ̃ =
√
aRy sin θ dφ̃, Ẽψ̃ =

√
aRy r cos θ dψ̃,

(D.16)

where we put tildes on the NS-NS vielbeins, to distinguish them from the RR ones (D.5).

The components Er, Eθ, Eα are the same as the RR ones and we did not write them down.

The RR angles (φ, ψ) and the NS-NS ones (φ̃, ψ̃) are related to each other by the spectral

flow transformation (3.12).

The two sets of vielbeins are related by a local Lorentz transformation and the coor-

dinate transformation (3.12). Let us focus only on the (u, v, φ, ψ) and (u, v, φ̃, ψ̃) parts of

the vielbeins because other parts are identical in RR and NS-NS coordinates. Then the

Lorentz transformation can be written as

Ẽã = Λã
bE

b, (D.17)

where

Λ = Λ5Λ6Λ3Λ4Λ1Λ2, Λi = eaigi . (D.18)

Here gi are given by

g1 = iMuv, g2 = −iMφψ, g3 = iMuφ, g4 = iMuψ, g5 = iMvφ, g6 = iMvψ (D.19)

with Mab the Lorentz generators in the vector representation given by

(Mab)cd = i(ηacδbd − ηbcδad) (D.20)

satisfying the Lorentz algebra

[Mab,M cd] = −i(ηacM bd − ηadM bc − ηbcMad + ηbdMac). (D.21)

The explicit matrix expressions for gi are

g1 =

(
1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

)
, g2 =

(
0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

)
, g3 =

(
0 0 1 0
0 0 0 0
0 1 0 0
0 0 0 0

)
,

g4 =

(
0 0 0 1
0 0 0 0
0 0 0 0
0 1 0 0

)
, g5 =

(
0 0 0 0
0 0 1 0
1 0 0 0
0 0 0 0

)
, g4 =

(
0 0 0 0
0 0 0 1
0 0 0 0
1 0 0 0

)
.

(D.22)
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The parameters ai are given by

a1 = log

√
aRy

(√
r2 + a2 + r

)

2Σ
, a2 = θ − γ, a3 = −ar sin θ√

2Σ
,

a4 =
a
√
r2 + a2 cos θ√

2Σ
, a5 = −

√
2 a sin θ√

r2 + a2 + r
, a6 = −

√
2 a cos θ√

r2 + a2 + r
.

(D.23)

Spinors transform as scalars under coordinate transformation and transform in the

spinor representation under local Lorentz transformation. Therefore, if we act on the RR

spinor ǫR− with the matrix Λ in the spinor representation and replace explicit φ, ψ appearing

in ǫR− by φ̃, ψ̃ using (3.12), we must get the NS-NS spinor ǫNS
− . Here, we put “R” and “NS”

on ǫ− to clarify the frame that the spinor is in. Namely,

ǫNS = Λspinor ǫR. (D.24)

The local Lorentz generators in the spinor representation are given by

Mab =
i

2
Γab, (D.25)

or, more explicitly,

g1 = −1

2
Γuv, g2 = +

1

2
Γφψ g3 = −1

2
Γuφ,

g4 = −1

2
Γuψ, g5 = −1

2
Γvφ, g6 = −1

2
Γvψ.

(D.26)

In doing this, we must note that we do not transform the matrices Γµ ; they are always

constant matrices and the index µ is only a label. Therefore, Γφ,Γψ are the same constant

matrices as Γφ̃,Γψ̃.

Let us explicitly prove the relation (D.24). For simplicity, we consider ǫ− in the R

sector, (D.7), in the case with χ+ = 0. In this case,

ǫR− =

√
Σ

aRy
e
γ
2
Γrθ e

1
2
(φ+ψ)Γθφ χ−. (D.27)

Applying the spectral flow coordinate transformation (3.12) on (D.27), we have

ǫR− =

√
Σ

aRy
e
γ
2
Γrθ e

1
2
(φ̃+ψ̃+

√
2v
Ry

)Γθφ
χ−. (D.28)

Next, let us act on this spinor with the Lorentz transformation matrices (D.18), in the

spinor representation, one by one. First, by the action of Λ2 = e
a2
2
Γφψ = e−

θ−γ
2

Γuvrθ =

e
θ−γ
2

Γrθ (for the second equality, see (D.4); the last equality holds on a Γuv = −1 spinor),

we have

Λ2ǫ
R
− =

√
Σ

aRy
e
θ
2
Γrθ e

1
2
(φ̃+ψ̃+

√
2v
Ry

)Γθφ
χ−. (D.29)

– 48 –



J
H
E
P
0
3
(
2
0
1
9
)
0
9
5

Next, acting with Λ1 = e−
a1
2
Γuv = e

a1
2 =

(a3Ry)1/4√
2Σ

R+, where R± are defined in (4.11a), we

get

Λ1Λ2ǫ
R
− =

1√
2

(
a

Ry

)1/4

R+e
θ
2
Γrθ e

1
2
(φ̃+ψ̃+

√
2v
Ry

)Γθφ
χ−. (D.30)

Because Γv,Γu square to zero, we find

Λ3Λ4 = 1− Γu

2
(a3Γ

φ + a4Γ
ψ) = 1− a

2
√
2Σ

Γuψ eγΓ
φψ

, (D.31)

Λ5Λ6 = 1− Γv

2
(a5Γ

φ + a6Γ
ψ) = 1 +

R−√
2R+

Γvψ e−θΓφψ . (D.32)

Because (D.30) has Γuv = −1, it is killed by Γu (see (D.1)). So, Λ3Λ4 = 1 on it. Applying

Λ5Λ6 on (D.30), we finally obtain

ΛǫR− =
1√
2

(
a

Ry

)1/4(
R+e

θ
2
Γrθ +

R−√
2
Γvψ e−

θ
2
Γrθ

)
e

1
2
(φ̃+ψ̃+

√
2v
Ry

)Γθφ
χ−. (D.33)

This is to be matched with the expression for the NS-NS spinor (4.10), (4.11):27

ǫNS
− = R+Y+ξ +R−Y−η, (D.34a)

Y± = e±
θ
2
Γrθe

φ̃
2
Γθφe±

ψ̃
2
Γrψ , (D.34b)

ξ = ζ−e
− iv√

2Ry + ζ+e
iv√
2Ry , η =

i√
2
Γvr

(
− ζ−e

− iv√
2Ry + ζ+e

iv√
2Ry

)
. (D.34c)

In order to match two expressions, let us decompose χ− into the representation of the

SU(2)L × SU(2)R symmetry group, whose generators are28

J1 = − i

4
(Γrθ + Γφψ), J2 = − i

4
(Γrφ + Γψθ), J3 = − i

4
(Γrψ + Γθφ), (D.35)

J̃1 = − i

4
(Γrθ − Γφψ), J̃2 = − i

4
(Γrφ − Γψθ), J̃3 = − i

4
(Γrψ − Γθφ). (D.36)

Eqs. (D.4) say that, on the spinor χ− with Γ(10) = Γ6789 = 1 and Γuv = −1, we have

(J1, J2, J3) = − i
2(Γ

rθ,Γrφ,Γθφ) and J̃1,2,3 = 0, namely, χ− is in the (2,1) representation.

So, if we decompose χ− as

χ− =
∑

α=±
χ−α, (D.37)

where

J3χ−α =
α

2
χ−α, or Γθφ χ−α = iαχ−α, (D.38)

then (D.33) becomes

ΛǫR− =
1√
2

(
a

Ry

)1/4(
R+e

θ
2
Γrθ +

R−√
2
Γvψ e−

θ
2
Γrθ

)
e
i
2
(φ̃+ψ̃+

√
2v
Ry

)
χ−+

+
1√
2

(
a

Ry

)1/4(
R+e

θ
2
Γrθ +

R−√
2
Γvψ e−

θ
2
Γrθ

)
e
− i

2
(φ̃+ψ̃+

√
2v
Ry

)
χ−−. (D.39)

27As explained below (D.26), the matrices Γφ̃,Γψ̃ are identical to the matrices Γφ,Γψ. Therefore, Γθφ̃ =

Γθφ, Γrψ̃ = Γrψ.
28These are the same matrices as (A.18) (also see the comment below (D.26)).
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On the other hand, the NS-NS spinor (D.34a) can be written as

ǫNS
− =

(
R+ − i√

2
R−Γ

vr

)
Y+e

− iv√
2Ry ζ− +

(
R+ +

i√
2
R−Γ

vr

)
Y+e

iv√
2Ry ζ+ (D.40)

where we used the fact that {Γrθ,Γvr} = {Γrψ,Γvr} = 0 and hence Y−Γvr = ΓvrY+.

Because both ζ+ and ζ− have Γuv = −1, we can decompose them just as in (D.37) as

ζ+ =
∑

α=±
ζα+, ζ− =

∑

α=±
ζα−. (D.41)

Using Γrψ = Γθφ = iα, we see that Y+ = e
θ
2
Γrθe

iα
2
(φ̃+ψ̃) on ζα±. So, (D.40) becomes

ǫNS
− =

(
R++

i√
2
R−Γ

vr

)
e
θ
2
Γrθe

i
2
(φ̃+ψ̃+

√
2v
Ry

)
ζ++ +

(
R+− i√

2
R−Γ

vr

)
e
θ
2
Γrθe

− i
2
(φ̃+ψ̃+

√
2v
Ry

)
ζ−−

+

(
R+− i√

2
R−Γ

vr

)
e
θ
2
Γrθe

i
2
(φ̃+ψ̃−

√
2v
Ry

)
ζ+−

+

(
R++

i√
2
R−Γ

vr

)
e
θ
2
Γrθe

− i
2
(φ̃+ψ̃−

√
2v
Ry

)
ζ−+ . (D.42)

Using the relation Γvr = −Γvψθφ = −ΓvψΓθφ, commuting Γθφ through e
θ
2
Γrθ , and replacing

Γθφ on ζα± by iα, we can rewrite this as

ǫNS
− =

(
R+e

θ
2
Γrθ +

1√
2
R−Γ

vψ e−
θ
2
Γrθ

)
e
i
2
(φ̃+ψ̃+

√
2v
Ry

)
ζ++

+

(
R+e

θ
2
Γrθ +

1√
2
R−Γ

vψ e−
θ
2
Γrθ

)
e
− i

2
(φ̃+ψ̃+

√
2v
Ry

)
ζ−− + (ζ+− , ζ−+ terms). (D.43)

This is exactly the same as (D.39), with the identification

1√
2

(
a

Ry

)1/4

χ−+ ↔ ζ++ ,
1√
2

(
a

Ry

)1/4

χ−− ↔ ζ−− . (D.44)

Similarly, ζ+− , ζ−+ must be related to χ+ which we turned off for simplicity.

The product representation of Λ in (D.18) is convenient for showing ΛǫR− = ǫNS
− . In

order to show ΛǫR+ = ǫNS
+ , on the other hand, it is more convenient to use a different product

representation Λ = Λ3Λ4Λ5Λ6Λ1Λ2 instead, where the parameters are now

a1 = log
2
√
aRy√

r2 + a2 + r
, a2 = γ − θ, a3 = −

√
2a sin θ√

r2 + a2 + r
,

a4 =

√
2a cos θ√

r2 + a2 + r
, a5 = −ar sin θ√

2Σ
, a6 = −a

√
r2 + a2 cos θ√

2Σ
.

(D.45)
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