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1 Introduction

Representations of the Lorentz group play a prominent role in particle physics. Par-

ticle states are famously classified according to irreducible representations, and the

requirement of Lorentz invariance strongly constrains their interactions. This con-

straint is particularly powerful when dealing with massless particles. In four space-

time dimensions, the isomorphism SO(3, 1) ∼= SL(2,C)/Z2 allows us to write any

massless momentum as a product of two spinors, kµ 7→ λαλ̃α̇ [1]. For the scattering

of massless particles, an S-matrix element is a function of these spinors only, and

the helicities hi of each particle fix the relative homogeneity weight of the function

for each type of spinor. This is known as the spinor-helicity formalism, and it has

become a major tool in high-energy physics. See, e.g., ref. [2] for a recent review of

this formalism and its applications.

General relativity has also seen fruitful applications of this type of idea, starting

with Penrose’s spinorial approach [3] and its development into the Newman-Penrose

formalism [4]. The basic principles are to define a frame eµM that takes us from

coordinate space to the tangent space, ηMN = gµν e
µ
M eνN , and then to explore the

isomorphism SO(3, 1) ∼= SL(2,C)/Z2 for the tangent space Lorentz transformations.

For instance, the Weyl tensor Cµνρσ is described in tangent space by a rank 4 spinor

ψαβγδ and its complex conjugate. The algebraic classification of this rank 4 spinor el-

egantly reproduces the Petrov classification of four-dimensional spacetimes [5], which

had a profound impact in the development of general relativity; see, e.g., refs. [6, 7].

In particular, the Kerr solution, which represents a vacuum asymptotically flat sta-

tionary black hole, and is perhaps the most important exact solution of astrophysical

interest, was originally discovered by imposing a condition of algebraic specialty [8].

There are a variety of motivations for extending these constructions to higher

spacetime dimensions. In the case of general relativity, extra dimensions are natu-

rally motivated by string theory, and also by the fact that the number of spacetime

dimensions is the natural parameter of the vacuum Einstein equations. Indeed, the

catalogue of higher-dimensional vacuum asymptotically flat black hole solutions is

incredibly rich, in contrast with the four-dimensional case, where the unique solution

is the Kerr black hole; see, e.g., ref. [9–12] for reviews.
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In the case of particle physics, analogous motivations apply to developing the

spinor-helicity formalism in various dimensions. There is also a more practical appli-

cation to the computation of S-matrix elements in dimensional regularisation, where

the loop momenta cannot be restricted to four dimensions. An elegant extension of

the spinor-helicity formalism approach to higher dimensions was presented in [13],

where the main focus was on six dimensions. The method was extended to general

dimensions in [14, 15]. In our paper, we will apply this extension to the algebraic

classification of solutions in general relativity.

As we mentioned, the space of solutions to the vacuum Einstein equations in

higher dimensions is much richer than that in four dimensions, and the question

of extending the Petrov classification naturally arose in the past. In fact, different

approaches have been taken. Coley, Milson, Pravda and Pravdova (CMPP) defined a

classification [16, 17] that has been investigated over many years, for example in [18–

25]; see [26] for a review. In analogy to the four-dimensional story, the classification

is based on the grouping of Weyl tensor components according to boost weight.

Subgroups within the groups of boost-weighted components were found by Coley

and Hervik in [22], and in [24] these sub-types were investigated in five dimensions.

The CMPP classification has not been studied from a purely spinorial approach.

A different classification had been previously constructed by de Smet [27] for five-

dimensional spacetimes, based on the factorisation properties of the Weyl spinor.

This spinorial approach can also be considered a natural extension of the four-

dimensional story, and yet it takes a very different form to the CMPP construction.

An in-depth comparison by Godazgar [28] showed that there was poor agreement

in what was considered algebraically special by the de Smet classification versus the

CMPP classification. None of two appeared to be the ‘finest’ classification, since a

solution could be special in one classification and general in another.

There are two main goals to our paper. The first is to apply the higher-

dimensional spinor-helicity formalism of ref. [13] to the algebraic classification of

solutions of the Einstein equations, in the spirit of the spinorial approach of Pen-

rose. The second is to show the versatility of this spinorial approach, which exhibits

manifestly the two relevant types of spinor spaces, by clarifying the relation between

the CMPP and the de Smet classifications, and the question of the ‘finest’ algebraic

classification. We will be mostly interested in five-dimensional solutions, where the

spinorial formalism is based on the isomorphism SO(4, 1) ∼= Sp∗(1, 1)/Z2, but we will

also briefly discuss the six-dimensional case in order to demonstrate generic features.

We will be careful to describe when we consider reality conditions in our spinorial

formalism, so that it can be applied both to real spacetimes and to potentially inter-

esting cases of complexified spacetimes.

In addition to the classification of the Weyl tensor, we will study – for illustration

and as customary in this context – the classification of its analogue in electromag-

netism, the Maxwell field strength. There is a modern motivation to include this. A
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relation between gravity and gauge theory known as the ‘double copy’ has emerged

from the study of scattering amplitudes in quantum field theory [29, 30]. This re-

lation, which applies in any number of spacetime dimensions, has a counterpart in

terms of solutions to the field equations. It can be expressed most clearly for certain

algebraically special solutions, namely Kerr-Schild spacetimes [31–36], but it should

apply more generally [37–56]. It is clear from these developments that there is a

close relation between the algebraic properties of spacetimes and those of gauge field

configurations. Indeed, it will be obvious from our results that an analogy exists. We

hope to address elsewhere how this analogy can be turned into a precise double-copy

relationship.

This paper is organised as follows. In Section 2, we review the four-dimensional

spinorial approach to the Petrov classification. We introduce in Section 3 the five-

dimensional spinorial formalism. The five-dimensional algebraic classification is de-

scribed in Section 4 for the field strength tensor, for illustration, and then in Section 5

for the Weyl tensor. The extension of this spinorial approach to higher dimensions

is discussed in Section 6. We conclude with a discussion of the results and possible

future directions in Section 7.

2 Review of the four-dimensional story

In this section, we begin by discussing the familiar case of spinors in four dimensions

to set up our notation. We then review the Petrov classification for four-dimensional

spacetimes. This classification can be understood from a variety of perspectives; we

emphasise the Newman-Penrose (NP) approach [4, 57] because it is closest in spirit

to our approach in five dimensions.

2.1 Spinors in four dimensions

In flat Minkowski space, the Clifford algebra is

σµαα̇ σ̃
να̇β + σναα̇ σ̃

µα̇β = −2ηµν 1α
β, (2.1)

where ηµν is the Minkowski metric.1 To be explicit, we choose a basis of σµ matrices

given by

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (2.2)

while the σ̃µ matrices are

σ̃0 =

(
1 0

0 1

)
, σ̃1 = −

(
0 1

1 0

)
, σ̃2 = −

(
0 −i
i 0

)
, σ̃3 = −

(
1 0

0 −1

)
. (2.3)

1We work in the mostly-plus signature (−,+,+, · · · ,+) in both four and higher dimensions.
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For any non-vanishing null vector V , the matrices V · σ and V · σ̃ have rank 1.

Hence we may construct solutions of the (massless) Dirac equations:

V · σαα̇ λ̃α̇ = 0, (2.4)

V · σ̃α̇α λα = 0. (2.5)

These spinors can be normalised so that V · σαα̇ = −
√

2λαλ̃α̇. We may raise and

lower the indices α and α̇ on these spinors with the help of the two-dimensional Levi-

Civita tensor. We choose conventions such that ε12 = 1, ε12 = −1 and sα = εαβ sβ
while s̃α̇ = εα̇β̇ s̃β̇.

In the curved space case, we simply introduce a frame eµM , such that

gµν = eµM eνN η
MN . (2.6)

On the tangent space at each point, the Clifford algebra can be written as before,

σMαα̇ σ̃
Nα̇β + σNαα̇ σ̃

Mα̇β = −2ηMN
1α

β, (2.7)

whereas

σµαα̇ σ̃
να̇β + σναα̇ σ̃

µα̇β = −2gµν 1α
β, (2.8)

with σµ = eµMσ
M , and a similar definition for σ̃. We use the explicit Clifford bases

of equations (2.2) and (2.3) in the tangent space.

It may be worth commenting briefly on reality conditions in four dimensions,

since the reality conditions in five dimensions will play a more significant role later.

The Lorentz group in real Minkowski space is SL(2,C)/Z2. It is consistent to choose

a basis of Hermitian σ matrices – and indeed we have chosen such a basis in equa-

tions (2.2) and (2.3). Then, given a real null vector V , we may choose our spinors λ

and λ̃ such that λ† = λ̃. This is consistent with the choice that V ·σαα̇ = −
√

2λαλ̃α̇.

2.2 The four-dimensional Newman-Penrose tetrad

In four dimensions, the NP formalism [4, 57] exploits the correspondence between

the Lie algebras so(4) and su(2)×su(2). A key element of the method is the spinorial

construction of a particular basis set of vectors, known as the NP tetrad. We begin

by choosing two null vectors kµ and nµ which satisfy k · n 6= 0, and constructing an

associated basis of spinors {oα, ıα} by solving the equations

k · σ̃α̇α oα = 0, n · σ̃α̇α ıα = 0. (2.9)

Since k · n 6= 0, we may normalise the vectors so that k · n = −1, and also normalise

our spinors so that oα ıα = 1.

Similarly, we construct a conjugate basis by solving the equations

k · σαα̇ õα̇ = 0, n · σαα̇ ı̃α̇ = 0, (2.10)
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to find the dual spinors {õα̇, ı̃α̇}, which we also normalise so that õα̇ı̃α̇ = 1. For real

k and n, we may take õ = o† and ı̃ = ı† as discussed in section 2.1.

Let us now complete the construction of the NP tetrad of vectors using our spinor

basis. The tetrad includes the vectors k and n, so we must find two more. Since the

spinor basis is complete, we can construct the last two elements of the NP tetrad, m

and m̃, from

mµ =
1√
2
σµαα̇ ı

α õα̇, m̃µ =
1√
2
σµαα̇ o

α ı̃α̇. (2.11)

Of course, when k and n are real, m̃ is the conjugate of m. It is then a straightforward

exercise to show that all four vectors in the NP tetrad are null, and satisfy −k · n =

m · m̃ = 1 with all other dot products vanishing. Furthermore, by use of these

properties the spinorial completeness relation transmutes into the NP metric,

gµν = −kµ nν − kν nµ +mµ m̃ν +mν m̃µ. (2.12)

Thus we can fully describe the spacetime in terms of spinors.

2.3 The Petrov classification for 2-forms and the Weyl spinor

These four-dimensional spinors make it possible to rewrite the field strength 2-form

and the Weyl tensor in a convenient form. For an arbitrary 2-form Fµν , we can build

a complex symmetric spinor

Φαβ = Fµν σ
µν
αβ, (2.13)

where σµναβ = 1
2

(
σµαγ̇ σ̃

νγ̇
β − σναγ̇ σ̃µγ̇β

)
. The symmetric two-dimensional matrix

Φαβ is parameterised by three complex scalars,

φ0 = Φαβ o
α oβ, φ1 = Φαβ o

α ıβ, φ2 = Φαβ ı
α ıβ. (2.14)

Similarly, we can build a symmetric 4-spinor, known as the Weyl spinor, from the

Weyl tensor Cµνρσ
Ψαβγδ = Cµνρσ σ

µν
αβ σ

ρσ
γδ. (2.15)

The Weyl spinor can be decomposed into 5 complex scalars defined by:

ψ0 =Ψαβγδ o
α oβoγoδ, ψ1 = Ψαβγδ o

α oβoγ ıδ, ψ2 = Ψαβγδ o
α oβ ıγ ıδ,

ψ3 =Ψαβγδ o
α ıβ ıγ ıδ, ψ4 = Ψαβγδ ı

α ıβ ıγ ıδ.
(2.16)

The Petrov classification [58] is a way of categorizing Weyl and field strength

spinors depending on how “algebraically special” they are. It is well known that a

symmetric SU(2) n-spinor will always factorise into the symmetrisation of n basic

spinors. The idea of the Petrov classification is that the more of these individual

spinors that are the same (up to scale), the more special the original n-spinor is.

For example, a field strength spinor Φαβ = α(αββ) is algebraically special if and only

if β ∝ α. This also has an interpretation in terms of the complex scalars φi (and
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ψi for the Weyl tensor): it is possible to find a tetrad where some of these scalars

vanish, depending on how algebraically special the n-spinor is. A summary of the

classification for the field strength tensor is given in table 1, and for the Weyl tensor

in table 2. The Petrov scalars have the interesting property that it is always possible

to choose a tetrad where φ0 vanishes. This turns out to not always be true for higher

dimensions, as originally found by CMPP in [16].

Type Spinor Alignment Scalars

Type I 11 φ0 = 0

Type II 11 φ0 = φ1 = 0

Table 1: Table showing the Petrov classes of a 2-form. There are two possible

classes, only one of which is algebraically special. We denote spinor alignment, i.e.,

when two spinors are the same (up to scale), by underlining them. Note that the

scalars only vanish in certain tetrads.

Type Spinor Alignment Scalars

Type I 1111 ψ0 = 0

Type II 11 11 ψ0 = ψ1 = 0

Type D 11 11 ψ0 = ψ1 = ψ3 = ψ4 = 0

Type III 111 1 ψ0 = ψ1 = ψ2 = 0

Type N 1111 ψ0 = ψ1 = ψ2 = ψ3 = 0

Table 2: Table showing the Petrov classes of a Weyl tensor. There are four differ-

ent algebraically special classes. The spinor alignment indicates when two or more

spinors are the same by underlining them, for example 11 11 refers to two different

pairs of identical spinors. Note that the scalars only vanish in certain tetrads. For

completeness, we note that, beyond the types represented in the table, there is also

type O corresponding to a vanishing Weyl tensor. Henceforth, we will not consider

explicitly this trivial type O case.

Before proceeding, let us point out that the Weyl spinor, as a totally symmetric

rank-4 spinor, can always be decomposed in terms of four rank-1 spinors as

Ψαβγδ = α(αββγγδδ) . (2.17)

This decomposition allows for an alternative viewpoint on the Petrov classification.

The distinct algebraic classes are given by the alignment of the rank-1 spinors , i.e.,

the equivalence of the rank-1 spinors up to scale. We have represented the aligned

spinors in tables 1 and 2 by underlining them.

The reduction of the four-dimensional formalism reviewed in this section to three

dimensions is discussed in [59].
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3 A Newman-Penrose basis in five dimensions

In the study of scattering amplitudes, it is important to construct a basis of vectors

associated with a given particle. Physically, these vectors are the momenta of a

particle, a choice of gauge, and a basis of polarisation vectors. A method to construct

this basis, known as the spinor-helicity method, is known in any dimension [13–15].

The method builds on foundational work on amplitudes in four dimensions [60–64].

In four dimensionals, the spinor-helicity construction is reminiscent of the Newman-

Penrose tetrad, suggesting that the spinor-helicity method can be adapted to craft a

higher-dimensional Newman-Penrose basis. We will see below that this turns out to

be the case, focusing on five dimensions for concreteness. Apart from some comments

on six dimensions in section 6, we leave higher dimensions for future work.

We begin with five-dimensional flat space. We will generalise to curved space in

section 5.1.

3.1 Spinors in five dimensions

Our five-dimensional setup is based on the six-dimensional conventions of [13], taking

into account simplifications which occur in odd dimensions [15]. Even dimensions

always have the property that one can choose a chiral basis of γ matrices, leading

to the Clifford algebra2. But in odd dimensions no such chiral choice exists. We

therefore work with a basis of five γ matrices. One can always raise and lower

indices of γ matrices; see e.g. [65] for a useful review. In five dimensions, we may

also exploit the accidental isomorphism between so(5) and sp(2) to choose our γ basis

so that the matrices with lower indices are antisymmetric. Since it is convenient to

understand the dimensional reduction to four dimensions, we found it useful to pick

an explicit basis given by

γµ̂AB =

(
0 σµ̂αβ̇

−σ̃µ̂α̇β 0

)
, µ̂ = 0, 1, 2, 3, (3.1)

where the matrices σ and σ̃ are nothing but the four-dimensional Clifford bases given

in equations (2.2) and (2.3) with their spinor indices appropriately raised or lowered.

The final component of the basis, γ4AB, is chosen to be

γ4AB = −i
(
εαβ 0

0 εα̇β̇

)
. (3.2)

2In even dimensions, there is always a matrix γ∗ with the property that {γµ, γ∗} = 0. In

four dimensions, this γ∗ is usually denoted γ5. With the help of γ∗, one can define projectors

P± = (1 ± γ∗)/2. Spinors which are eigenstates of these projectors are called chiral. The Clifford

algebra σµσ̃ν + σν σ̃µ = −2ηµν can be obtained from the usual Dirac gamma algebra by defining

σµ = P+γ
µP− and σ̃µ = P−γ

µP+.
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With this choice of basis, we may build on our understanding of the four-

dimensional NP tetrad to lay the foundations of a five-dimensional formalism. To do

so, we pick null vectors k and n satisfying k · n 6= 0, and choose a coordinate system

in which kµ and nµ take the form

kµ = (k0, k1, k2, k3, 0), nµ = (n0, n1, n2, n3, 0). (3.3)

Without loss of generality, we may choose k · n = −1. We emphasise that this

choice is not necessary. It is merely a choice that allows us to explicitly incorporate

familiar four-dimensional expressions. The final formulae, which are summarised in

section 3.5 for convenience, do not depend on this choice of components. In the

following, k and n will be elements of a five-dimensional basis of vectors, which we

will complete shortly in section 3.2.

Our first task, however, is to construct a basis of the space of spinors in five

dimensions. As in the four-dimensional case described in section 2.2, we will find

this basis by solving the massless Dirac equations for the null vectors k and n.

Let us take kµ as an example. We must find the null space of the matrix

k · γAB =

(
0 k · σαβ̇

−k · σ̃ α̇
β 0

)
. (3.4)

Since k · σ and k · σ̃ have rank one, the matrix k · γ has rank two and the null space

is two-dimensional. We conclude that the null space of k · γAB is spanned by the

spinors

kA1 =

(
0

õα̇

)
, kA2 =

(
oα
0

)
, (3.5)

which are evidently linearly independent and lie in the null space by virtue of the

definitions, equations (2.9) and (2.10), of o and õ. It is very convenient to package

these spinors up using a Roman two-dimensional index a:

kAa =

(
0 oα
õα̇ 0

)
. (3.6)

We will see below that the spinors kA1 and kA2 transform into one another under the

action of a particular group.

To get a feel for kAa, it is helpful to understand its relationship with the vector

kµ. The simplest way we can construct a spacetime vector is to hook up the indices as

ka ◦γµ ◦ka , where we use ◦ to denote the contraction of SO(4, 1) spinor indices, and

have defined ka = εabkb. This turns out to be correct: for the first four components

µ̂ = 0, 1, 2, 3, we find

ka ◦ γµ̂ ◦ ka =Tr

[(
0 õα̇

oα 0

)(
0 σµ̂αβ̇

−σ̃µ̂α̇β 0

)(
oβ 0

0 −õβ̇

)]
= σµ̂αβ̇ o

α õβ̇ + σ̃µ̂α̇β õ
α̇ oβ

= 2
√

2 kµ̂,

(3.7)
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while for the final component we find

ka ◦ γ4 ◦ ka = − iTr

[(
0 õα̇

oα 0

)(
εαβ 0

0 εα̇β̇

)(
oβ 0

0 −õβ̇

)]
= 0. (3.8)

Thus, using only the four-dimensional definitions, we have recovered kµ = (kµ̂, 0).

The complete formula is therefore:

kµ =
1

2
√

2
ka ◦ γµ ◦ ka. (3.9)

It is worth commenting further on this formula. The spinors ka for a = 1, 2 are

a basis of solutions of the equation k · γAB kBa = 0. We may, of course, perform a

complex linear change of basis in this space of solutions. The normalisation condition

kµ = 1
2
√
2

ka ◦ γµ ◦ ka restricts this change of basis to be an element of SL(2,C), so

we can think of the null space as a two-dimensional representation of SL(2,C). In

fact, we will see below in section 3.3 that if we choose a real vector kµ, and impose

both our normalisation condition and a reality condition on the spinors ka, we must

further restrict this group to SU(2). The physical role of this group is simply the

three-dimensional rotations on the spacetime dimensions orthogonal to both k and

n.

Now we construct the other half of the spinor basis nAa. In view of the normal-

isation condition k · n = −1 satisfied by the vectors, we can choose the spinors kAa
and nAa to satisfy ka ◦ nb ≡ kAaΩABnBb = εab, where the raising/lowering matrix

ΩAB is, explicitly,

ΩAB =

(
εαβ 0

0 −εα̇β̇

)
. (3.10)

Incidentally, for notational simplicity we define

kAa = ΩAB kBa, nAa = ΩAB nBa. (3.11)

Following the recipe described above we find a basis of spinors in the null space of

n · σAB. However, a naive application of the method leads to a basis which does not

satisfy our normalisation condition ka ◦ nb = εab. To correct this, we simply perform

a change of basis, finding

nAa =

(
ıα 0

0 −ı̃α̇
)
. (3.12)

The spacetime vector nµ can be reconstructed from the spinors as before:

nµ =
1

2
√

2
na ◦ γµ ◦ na. (3.13)

The other two contractions are ka ◦ kb = na ◦ nb = 0, which follows from the anti-

symmetry of ΩAB.
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3.2 Polarisation vectors

The spinors kAa and nAa are a complete basis of spinors. As in the four-dimensional

case, we can use the spinorial basis to construct vectors which, accompanied by kµ

and nµ, form a complete basis of vectors in five dimensions – a pentad. Recall that

the vectors kµ and nµ are given by

kµ =
1

2
√

2
ka ◦ γµ ◦ ka, nµ =

1

2
√

2
na ◦ γµ ◦ na. (3.14)

We define the remaining independent contraction to be

εµab ≡ ka ◦ γµ ◦ nb = −nb ◦ γµ ◦ ka (3.15)

where it can be shown that εµab = εµba by use of gamma matrix algebra. Thus, the

three independent vectors associated with εµab complete the pentad.

We can show this explicitly with our previous choice of components. Firstly, we

will consider µ̂ = 0, 1, 2, 3. For these values of µ̂, εµ̂ab is given by:

εµ̂ab =

(
0 õα̇

oα 0

)(
0 σµ̂αβ̇

−σ̃µ̂α̇β 0

)(
ıβ 0

0 −ı̃β̇

)

=

(
σ̃µ̂α̇β õ

α̇ ıβ 0

0 σµ̂αβ̇ o
α ı̃β̇

)

=
√

2

(
mµ̂ 0

0 m̃µ̂

)
.

(3.16)

Thus we can see that as long as µ̂ = 0, 1, 2, 3, the diagonal components of εµ̂ab are

precisely the vectors mµ̂ and m̃µ̂ which appeared in the Newman-Penrose tetrad in

four dimensions. The final value of µ, µ = 4, is given by

ε4ab = ka ◦ γ4 ◦ nb

= − i
(

0 õα̇

oα 0

)(
εαβ 0

0 εα̇β̇

)(
ıβ 0

0 −ı̃β̇

)

=

(
0 i

i 0

)
.

(3.17)

We therefore find

εµ11 =
√

2
(
mµ̂, 0

)
εµ22 =

√
2
(
m̃µ̂, 0

)
εµ12 = εµ21 = (0, 0, 0, 0, i) .

(3.18)

Finally, we can establish the useful property

εµab εµ cd = εac εbd + εad εbc (3.19)
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by explicit computation. The spinorial completeness relations imply that

ηµν = − kµnν − kνnµ +
1

2
εac εcd εµab ε

ν
cd. (3.20)

These properties are characteristic of polarisation vectors, which in part accounts for

the utility of this formalism in scattering amplitudes.

3.3 Reality conditions

Our γ basis satisfies

(γµ)† = −H ◦ γµ ◦HT (3.21)

where the matrices γµ have lower indices and

H =

(
0 εα̇β̇

−εαβ 0

)
. (3.22)

For a real null vector V in five-dimensional Minkowski space, we may impose a reality

condition on the associated basis of spinors λAa. Regarding λ as a four-by-two matrix,

reality of V implies

V · γ ◦ λ = 0⇒ V · γ ◦HT ◦ λ∗ = 0. (3.23)

Thus the spinors HT ◦ λ∗ are linear combinations of the two basis spinors λa, so we

may write HT ◦ λ∗ = λX, where X is a two-by-two matrix.

Recall from section 3.1 that the two-dimensional space of λa furnishes a repre-

sentation of SL(2,C). The reality condition HT ◦ λ∗ = λX is not covariant under

the full SL(2,C), because the left-hand side transforms under the conjugate repre-

sentation of the right-hand side. Thus the group is broken to SU(2), which has the

well-known property that the conjugate representation is equivalent to the funda-

mental representation. Requiring that the reality condition is covariant under this

SU(2) determines X ∝ ε. Thus, in our conventions, we arrive at the reality condition

in the form [66]

HT ◦ λ∗ = −λε. (3.24)

Using index notation, we may write this as follows. First we define λ̄Ȧa ≡ (λAa)
∗;

then the reality condition is

λ̄ȦaHȦ
A = εabλAb. (3.25)

Our main focus will be on real spacetimes with Minkowski signature. Therefore

we will pick real vectors kµ and nµ and impose the reality condition, equation (3.25),

on the spinors kAa and nAa.

We must now investigate what this means for our pentad, in particular for the

“polarisations” εµab. They are defined by εµab = ka◦γµ◦nb; we define the conjugate
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of these vectors to be εµab ≡ (εµab)
∗. Using the reality condition we find

ε̄µab = (ka ◦ γµ ◦ nb)
∗

= (ka)
∗ ◦ (γµ)∗ ◦ (nb)

∗

= k̄a ◦ (H ◦ γµ ◦HT ) ◦ n̄b

= (εac kc) ◦ γµ ◦ (εbd nd)

= εac εbd εµcd

= εµab.

(3.26)

In short, εµab = (εµab)
∗. So εµ11 = (εµ22)

∗, while εµ12 = −(εµ12)
∗. This is exactly as

we found in section 3.2: εµ11 and εµ22 relate to mµ and m̃µ respectively while εµ12 is

given by ieµ4, which is indeed imaginary.

3.4 Lorentz transformations and the little group

To build some intuition into the objects kAa and nAa, it is worth pausing our de-

velopment to understand how these spinors transform under symmetries, especially

(local) Lorentz transformations. Recall that the index A takes values from 1 to 4,

spanning the four dimensions of the spinorial representation of SO(4, 1), while the

index a takes values 1 and 2 and spans the two-dimensional solutions space of, for

example, the equation kµγ
µ
ABkBa = 0. We will see that the SU(2) acting on the two-

dimensional solution space is the subgroup of Lorentz transformations which preserve

the vector kµ. This subgroup is the little group of the null vector kµ.

3.4.1 Boosts and spins

We have defined the spinors kAa and nAa to be solutions of the Dirac equations

k · γABkBa = 0 = n · γABnBa , subject to the normalisation condition ka · nb = εab, and

obeying a reality condition for real spacetimes. Obviously the rescaling

kAa → b kAa, nAa →
1

b
nAa (3.27)

will preserve the definitions, provided that the factor b is real for real spacetimes. We

may therefore investigate how this rescaling acts on the pentad we have constructed

from the spinors, equations (3.14) and (3.15). It is easy to see that the action is

kµ → b2 kµ, nµ → 1

b2
nµ, εµab → εµab. (3.28)

This simple transformation is nothing but a Lorentz boost in the two-dimensional

space spanned by kµ and nµ, leaving the remaining three dimensions invariant.

We may also consider a more non-trivial change of basis of the solution space of

the Dirac equations:

kAa → k′Aa = Ma
b kAb, nAa → n′Aa = Na

bnAb. (3.29)
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This change of basis automatically preserves the conditions that ka ◦ kb = 0 and

na ◦ nb = 0. We have already seen that M and N are elements of SL(2,C). The

normalisation condition is that

Ma
cNb

d ε cd = εab, (3.30)

which implies that N = M .

We may now investigate the action of this group of transformations on our space-

time pentad. A straightforward calculation shows that the transformation is

kµ → kµ, nµ → nµ, εµab →Ma
cMb

d εµcd. (3.31)

This is a Lorentz transformation preserving k and n.

In the real case, we have already seen that the transformation M is an element

of SU(2). This makes sense: in the real case, the subgroup of the Lorentz group

which preserves kµ and nµ is evidently SO(3). We can see this more concretely by

introducing a vectorial basis of the three-dimensional representation of SU(2), which

is also the fundamental representation of SO(3). The symmetric Pauli matrices3

ςabi, i = 1, 2, 3 provide a convenient mapping from the 2⊗2 tensor product of SU(2)

representations to the 3. In view of the reality condition, we find it convenient to

take

ς1 =
1

2

(
i 0

0 −i

)
, ς2 =

1

2

(
1 0

0 1

)
, ς3 =

1

2

(
0 −i
−i 0

)
. (3.32)

Notice, for example, that this choice of basis has the property that (ς11i)
∗ = ς22i,

consistent with our reality condition.

We may then define

εµi = εµab ς
ab
i, (3.33)

and

mi = Mab ς
ab
i. (3.34)

The antisymmetric degree of freedom in M is defined to be Mtr = εabMab. In this

language, the condition that M has unit determinant becomes 1
4
Mtr

2 + m ·m = 1,

and the polarisation vector transformation is

εµ →
(
−m ·m+

1

4
Mtr

2

)
εµ + 2 (m · εµ)m+Mtr (m× εµ) . (3.35)

We can compare this with the standard formula for a rotation by angle θ around an

axis n in three-dimensional Euclidean space,

x→ cos θ x+ (1− cos θ) (n · x) n+ sin θ (n× x) , (3.36)

to see that the transformation M rotates the polarisation vectors by an angle sin θ =

Mtr|m| around the axis m in the Euclidean 3-space of the little group, leaving kµ

and nµ invariant.
3The usual Pauli matrices are −2iεac ς

cb
i.
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3.4.2 The null rotations

The boost and spin transformations comprise four of the ten Lorentz transforma-

tions available in a five-dimensional spacetime. It is interesting to understand the

remaining six. To do so, we look to the null rotations of the four-dimensional NP

tetrad for inspiration, and construct the ansatz kAa → kAa + Ta
b nAb, nAa → nAa.

To preserve ka · nb, we require that the matrix T is symmetric:

k′a · k′b = (ka + Ta
c nc) ·

(
kb + Tb

d nd
)

= Ta
c (nc · kb) + Tb

d (ka · nd)
= Tab − Tba = 0.

(3.37)

Similarly the transformation kAa → kAa, nAa → nAa + Sa
b kAb is valid as long as S

is symmetric. The symmetric matrices S and T comprise three degrees of freedom

each, so combined with the boost and spin, this is a complete parametrisation of the

Lorentz group. The action of these transformations on our pentad is:

• Null rotation about n: kAa → kAa + Ta
b nAb, nAa → nAa,

kµ → kµ + T ab εµab − detT nµ, nµ → nµ, εµab → εµab + Tab n
µ. (3.38)

• Null rotation about k: kAa → kAa, nAa → nAa + Sa
b kAb,

kµ → kµ, nµ → nµ + Sab εµab − detS kµ, εµab → εµab + Sab k
µ. (3.39)

3.5 Summary

We can now summarise the key results. The pentad is constructed from the null

orthogonal vectors kµ and nµ, satisfying

k2 = n2 = 0, kµ n
µ = −1, (3.40)

and from the three independent spacetime vectors contained in the symmetric po-

larisation vector εµab, satisfying

k · εab = n · εab = 0, εµab ε
µ
cd = εac εbd + εad εbc. (3.41)

This pentad spans the spacetime as

ηµν = − kµnν − kνnµ +
1

2
εac εcd εµab ε

ν
cd. (3.42)

We choose spinors kAa, nAa, where A = 1, ..., 4 is a spacetime spinor index and

a = 1, 2 is a little group spinor index, to satisfy

ka ◦ kb = na ◦ nb = 0, ka ◦ nb = εab, (3.43)
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where “x ◦ y” indicates a contraction on the spacetime spinor index, i.e., xA y
A. The

pentad can be defined in terms of the spinors:

kµ =
1

2
√

2
ka ◦ γµ ◦ ka, nµ =

1

2
√

2
na ◦ γµ ◦ na, εµab = ka ◦ γµ ◦ nb,

(3.44)

in order to automatically satisfy the properties given above. To restrict to real

Minkowski space, the spinors must satisfy reality conditions. In particular, any real

objects which transform under the little group indices must obey(
Xa1...an

b1....bm
) ∗ = Xa1...an

b1....bm . (3.45)

Finally, we note that the ten transformations of the standard five-dimensional Lorentz

group can be parametrised as a boost b, three spins Mab where detM = 1, and two

three-dimensional null transformations Tab and Sab which are both symmetric:

• Boost: kA
a → b kA

a, nA
a → 1

b
nA

a

• Spin: kA
a →Ma

b kA
b, nA

a →Ma
bnA

b

• Null rotation about n: kAa → kAa + Ta
b nAb, nAa → nAa

• Null rotation about k: kAa → kAa, nAa → nAa + Sa
b kAb .

4 The field strength tensor

Although our main goal is to apply the results of section 3 to gravity, it is helpful to

apply them to the simpler field strength tensor Fµν first.

4.1 Set up and classifications

To begin, we contract Fµν with the rotation generator

σµνAB =
1

2

(
γµAC γ

ν C
B − γνAC γµ CB

)
(4.1)

to find a symmetric bi-spinor,

ΦAB = Fµν σ
µν
AB. (4.2)

This is analogous to the four-dimensional Newman-Penrose formalism, as described

in section 2. Now, however, upon contraction with our basis spinors, we do not

obtain scalars but little group bi-spinors:

Φ
(0)
ab = ΦAB kAa kBb, Φ

(1)
ab = ΦAB kAa nBb, Φ

(2)
ab = ΦAB nAa nBb, (4.3)
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where the bracketed numbers label the little group bi-spinors according to the number

of nAa spinors they are contracted with. To begin with, we will consider complex-

valued Fµν , and restrict to the real case later on.

In four dimensions, the Petrov classification based on the scalars defined in (2.14)

had two classes, type I and type II, the latter of which was considered algebraically

special. Type II was defined by the existence of a tetrad where both of the four-

dimensional Petrov scalars φ0 and φ1 vanished; see table 1. Since the scalars from

equation (2.14) and the spinors from (4.3) are clearly analogous, this motivates a

Petrov-like classification for five dimensions, which is shown in table 3. The guaran-

teed existence of a tetrad where φ0 vanishes is a special feature of four dimensions,

and so we also require an additional “general” class for 2-forms in five dimensions.

As we will show in section 4.3, this is exactly the original CMPP classification for

the 2-form.

Type Little group spinor characteristic

Type G Φ(i) 6= 0 ∀ i
Type I Φ(0) = 0

Type II Φ(0) = Φ(1) = 0

Table 3: Table showing a proposed Petrov-like classification for a 2-form. There are

now three possible classes, two of which are analogous to four dimensions and one of

which, Type G, is new to higher dimensions.

The bi-spinors defined in (4.3) are reducible, and therefore we will refer to this

classification as a “coarse” classification. A more fine-grained classification is avail-

able if we break the bi-spinors down into their irreducible representations, namely

the symmetric bi-spinor and the scalar. To do this, we will use the notation that

φ(i) refers to the symmetrisation of Φ(i), such that φ
(i)
ab = Φ

(i)
(ab). Since ΦAB = ΦBA,

we can see that Φ(0) and Φ(2) are already symmetric, so φ(0) = Φ(0) and φ(2) = Φ(2).

The bi-spinor Φ(1) is not symmetric in general, but it is always possible to write

a two-component bi-spinor as the sum of a symmetric bi-spinor and a trace term

proportional to the Levi-Civita tensor4. We will refer to this trace as Φ(1)
a
a = Φ

(1)
tr

such that:

Φ
(1)
ab = φ

(1)
ab +

1

2
Φ

(1)
tr εab. (4.4)

4Since a two-dimensional index has only two possible values,

εa[bεcd] = 0 = εab εcd + εac εdb + εad εbc.

Contracting this with an arbitrary bi-spinor scd, we obtain

sab − sba = εab sc
c.
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This is simply the statement that a 4 decomposes as 4 = 3 + 1 where the symmetric

bi-spinor 3 and the scalar 1 are both irreducible representations. The 10 degrees of

freedom in the five-dimensional field strength tensor have therefore been split up into

3 symmetric bi-spinors and a single scalar. We can write this as in table 4, where

the terms have been organised by the dimension of their irreducible representation

along the horizontal axis and by the bracketed number in the vertical direction. This

fine-grained classification is sensitive to the vanishing of the columns as well as the

rows. For example, a 2-form with vanishing φ
(1)
ab or φ

(1)
tr is considered more special

than one where both are non-zero. We will give some examples in section 4.2.

Reducible representation 3 1

Φ
(0)
ab φ

(0)
ab

Φ
(1)
ab ⇒ φ

(1)
ab Φ

(1)
tr

Φ
(2)
ab φ

(2)
ab

Table 4: The three little group spinors of the 2-form can be broken up into three

symmetric bi-spinors, 3, and a scalar 1. This fine-grained structure is able to provide

more detail on the nature of the 2-form than the coarse classification. For example,

a type I solution with vanishing Φ
(1)
tr is more special than one where both Φ

(1)
tr and

φ(1) are non-zero.

In the real case, these objects are subject to the conditions φ
(i)
ab =

(
φ(i) ab

)∗
. We

can easily recast them into real vectors acted on by SO(3) using the Pauli matrices

ς iab: (
φ0

)i
= φ

(0)
ab ς

iab, (4.5)

where i = 1, 2, 3 is an SO(3) index, and of course Φ
(1)
tr remains a scalar. The little

group irreps therefore change into a combination of 3-vectors and scalars as shown

in table 5. Vector notation will be useful when making contact with the existing

literature.

Finally, it is always possible to factorise a symmetric bi-spinor into two sym-

metrised spinors

φab = α(a βb). (4.6)

It is natural to ask if there exists some subclassification where α = β as is the case in

four dimensions. From the vectorial perspective it is easy to see that this will not be

the case if we restrict ourselves to real Minkowski space. If we consider an arbitrary

symmetric bispinor (
φ
)i

= φab ς
iab = αa βb ς

iab, (4.7)
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Spinor notation Vector notation

φ
(0)
ab φ0

φ
(1)
ab Φ

(1)
tr ↔ φ1 Φ

(1)
tr

φ
(2)
ab φ2

Table 5: The little group irreps can be written in terms of spinors or vectors by

standard use of the Pauli matrices.

we can see that the modulus of this vector is given by

|φ| = 1

2
|αaβa|, (4.8)

using ς i ab ς i cd = (εacεbd + εadεbc)/4. Therefore, there is no non-vanishing real vector

φ such that α = β, and the irreps that we describe in table 4 cannot be broken

down further. In contrast, in the complex case they can, leading to a Russian doll-

like structure of nested classifications where each bi-spinor φ(i) can itself be type I

(α 6= β) or type II (α = β).

4.2 Examples

To be more concrete, we will discuss some simple examples: the plane wave, an

electric field and a magnetic field. This will illuminate some details of the fine

structure.

4.2.1 A plane wave

The simplest solution is a plane wave which has a field strength tensor of the form

Fµν = k[µεν]
abPab e

ik·x, (4.9)

where the symmetric Pab corresponds to an arbitrary choice of polarisation. It is

natural to choose kµ and εµ
ab to be elements of our pentad. Using the normalisations

in equation (3.44) we have

ΦAB = Fµνσ
µν
AB

= k[µεν]
abγµACγ

ν C
BPab e

ik·x

= − 2
√

2 k(A
akB)

bPab e
ik·x,

(4.10)

and comparison with equation (4.3) tells us that we have

φ(0) = Φ(1) = 0, φ
(2)
ab = −2

√
2Pabe

ik·x. (4.11)

A plane wave is therefore a type II solution under the coarse classification. Since

φ(2) is symmetric, it is an irreducible representation of SU(2). However, it is possible

that Pab = αaαb in the complex case, which of course describes a circularly polarised

electromagnetic field.
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4.2.2 A constant electric field

Our second example is a constant electric field E in the x direction. Then the

Maxwell spinor has the form

ΦAB = 2|E|σtxAB. (4.12)

We choose k = 1√
2
(∂t + ∂x) and n = 1√

2
(∂t − ∂x). Taking contractions with kAa and

nAa, we find

φ(0) = φ(1) = φ(2) = 0, Φ
(1)
tr = 4|E|. (4.13)

Hence the electric field has a coarse type I classification, but the fine structure is

able to pinpoint that this is more special than a general type I.

4.2.3 A constant magnetic field

Finally, we consider a simple magnetic field B which is trivial in the x direction such

that F µν = Bij. We use the same pentad as the previous section, so k = 1√
2
(∂t + ∂x)

and n = 1√
2
(∂t − ∂x). The Maxwell spinor is

ΦAB = BijσijAB. (4.14)

Taking contractions again and using the Pauli matrices ς iab to recast φ(1) as a vector,

we find

φ(0) = φ(2) = Φ
(1)
tr = 0,

(
φ1

)i
= εijkBjk. (4.15)

Therefore, although this magnetic field and the electric field have the same coarse

classification, type I, they can be differentiated by their fine structure.

4.3 Relations to the literature: CMPP and de Smet

As we have mentioned earlier, there exist previously proposed classifications for five-

dimensional spacetimes. Two of these are the classification derived by CMPP in 2004

[16, 17] and the de Smet classification proposed in 2002 [27]. We will understand

both in terms of the spinorial formalism.

4.3.1 The CMPP classification

In their papers [16, 17], CMPP observe that each component of the Weyl tensor in

five dimensions has a boost weight when the pentad is rescaled by {k, n, m(i)} →
{ρ k, ρ−1 n, m(i)} for some scalar ρ, where i = 2, 3, 4. This boost weight is simply

the power of ρ by which the component of the 2-form transforms. The independent

components of the 2-form have the following boost weights:

Boost weight 1 0 −1

Component F0i F01, Fij F1i

(4.16)
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where the index 0 indicates a contraction with k, the index 1 indicates a contraction

with n, and a Roman index i corresponds to the space-like direction m(i). The CMPP

k and n have an identical role to our own usage, so we will use the same symbols.

The relevant choices of k are made by demanding that F0i is set to zero if possible,

in which case a choice of n is made to also send F01 and Fij to zero if possible. Next,

the boost weights are organised into a Petrov-like classification as shown in table 6.

Type Components CMPP special?

Type G F0i 6= 0 No

Type I F0i = 0 No

Type II F0i = F01 = F1i = 0 Yes

Table 6: Table showing the CMPP classes of a 2-form according to which compo-

nents can be found to vanish. There are three possible classes, only one of which is

considered special. The pentad is chosen so that the 2-form is as special as possible.

In order to compare our formalism with CMPP, we can simply rewrite our little

group field strength tensors in terms of Fµν . Doing this, we find the simple relation-

ships

F0i =
1

2
√

2
φ
(0)
i , F01 =

1

4
Φ

(1)
tr , Fij =

1

2
εijkφ

(1)
k , F1i = − 1

2
√

2
φ
(2)
i . (4.17)

Since each boost weight component is exactly identifiable as one of our little group

irreps, the coarse classification that we introduced in section 4.1 is exactly the CMPP

classification as introduced in [16]. Furthermore, the bracketed number (i) of a little

group spinor Φ(i) relates directly to its boost weight, as it would in four dimensions.

4.3.2 The de Smet classification

The de Smet classification [27] has a very different set up to the CMPP classification.

It uses a gamma basis such as in equations (3.1), (3.2) to create a symmetric field

strength 2-spinor ΦAB, and studies its factorisation properties to create a classifica-

tion. There are two cases: in de Smet notation, if the 2-form does not factorise it is a

2, and if it does it either a 11 or a 11, with the two factors being equal in the latter

case. Let us examine this in more detail. The symmetric 2-spinor is constructed

using the rotation generator as usual,

ΦAB = Fµν σ
µν
AB. (4.18)

Now, the field strength polynomial F is constructed by contracting in an arbitrary

spinor ξA, such that

F = ΦAB ξ
A ξB. (4.19)
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If the original bi-spinor had the structure ΦAB = α(A βB), the polynomial will fac-

torise. Our formalism is based on irreducible representations of SU(2), namely sym-

metric SU(2) spinors. These have the useful property that they always totally fac-

torise. Therefore, each little group irrep will have its own de Smet structure. We

can compute this by studying each of them in turn.

The field strength spinor can be expanded in terms of our little group irreps as

ΦAB = φ
(0)
ab nA

a nB
b + 2φ

(1)
ab n(A

a kB)
b + φ

(1)
tr n(A

a kB)a + φ
(2)
ab kA

a kB
b. (4.20)

As an example, let us consider a case where only φ(2) is non-zero, such as the plane

wave example given in section 4.2.1. Now, the field strength polynomial is given by

F = φ
(2)
ab kA

a kB
b ξA ξB

= α(a βb) (k ◦ ξ)a (k ◦ ξ)b

= [α, k ◦ ξ] [β, k ◦ ξ] ,
(4.21)

where we have defined the factorisation of φ(2) to be φ
(2)
ab = α(a βb), and “ ◦ ” indicates

a contraction on a spacetime spinor index, while “[ · , · ]” is a little group spinor

contraction. Clearly, this is of de Smet type 11.

The φ(0) spinor has the same structure as φ(2), and therefore a 2-form for which

only φ(0) was non-zero would also be a 11. However, the k and n structure of the

φ(1) component means that its field strength polynomial behaves differently. Let us

consider a 2-form where only φ(1) is non-zero, for example the magnetic field from

section 4.2.3. This would have a field strength polynomial of the form

F = 2φ
(1)
ab n(A

a kB)
b ξA ξB

= [α, n ◦ ξ] [β, k ◦ ξ] + [α, k ◦ ξ] [β, n ◦ ξ] ,
(4.22)

and thus it is of de Smet type 2.

For a solution like the electric field in section 4.2.2, only the Φ
(1)
tr term is non-zero.

So the field strength polynomial is

F = Φ
(1)
tr εab n(A

a kB)
b ξA ξB

= Φ
(1)
tr ([o, n ◦ ξ] [ı, k ◦ ξ]− [o, k ◦ ξ] [ı, n ◦ ξ]) ,

(4.23)

where we have used the property εab = oa ıb − ıa ob for some basis spinors o and ı,

normalised as oa ıa = 1. Therefore this is also a de Smet type 2.

We organise the little group irreps as shown in table 7, that is, according to

boost weight (along the table’s vertical direction) and according to irrep dimension

(along the table’s horizontal direction). Then we see that each irrep corresponds to

a de Smet class. Any combination of little group irreps will result in a 2.

As we discussed in section 4.1, in the case of complex field strength, there is

a Russian doll-like secondary layer of structure, where each φ(i) can itself be either
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Little group spinors de Smet class

φ
(0)
ab 11

φ
(1)
ab Φ

(1)
tr ↔ 2 2

φ
(2)
ab 11

Table 7: Each little group spinor has a predefined de Smet class.

type I or type II corresponding to α 6= β or α = β, respectively. It is simple to

read off from equation (4.21) that these have distinct de Smet types 11 and 11

respectively, in the cases of φ(0) or φ(2), while we can see from equation (4.22) that

φ(1) will be 2 and 11 respectively. However, when we restrict to real spacetimes, only

the possibilities shown in table 7 are possible, since the repeated case α = β is not

permitted [28].

5 General relativity and the Weyl tensor

5.1 Spinors in curved space

So far, our analysis has been based on flat spacetime. To generalise our results to

curved space, we introduce coordinate indices µ, ν and tangent space indices M,N .

We can then pick an arbitrary frame eµM satisfying gµν = eµM eνN η
MN . Both gµν

and ηMN can be expressed in terms of an NP pentad,

gµν = − kµ nν − kν nµ + εac εbd εµab ε
ν
cd

= eµM eνN
(
−kM nN − kN nM + εac εbd εMab ε

N
cd

) (5.1)

so we can read off that the curved pentad {kµ, nµ, εµab} is obtained from our flat

pentad {kM , nM , εMab} by contraction with eµM . Similarly, the gamma basis be-

comes

γµAB = eµM γMAB, (5.2)

such that the Clifford algebra is still satisfied, exactly as for the Newman-Penrose

construction in four dimensions. Notice that the index µ of previous sections should

now be seen as the index M , and µ is henceforth a curved spacetime index.

The results we derived in section 3 still apply for the tangent space at each

spacetime point. Thus it is possible to choose spinors of the form

kAa =

(
0 oα
oα̇ 0

)
, nAa =

(
ıα 0

0 −ıα̇
)

(5.3)

where o and ı are now curved space spinors of SU(2) × SU(2). Using the curved

space gamma basis, we can construct the same relationships between the spinors and
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the pentad,

kµ =
1

2
√

2
ka ◦ γµ ◦ ka, nµ =

1

2
√

2
na ◦ γµ ◦ na, εµab = ka ◦ γµ ◦ nb, (5.4)

using the properties of the four-dimensional spinors. Similarly, the contraction rela-

tion ka ◦ nb = εab is upheld, as are the spinor transformations. Of course, the reality

conditions are also unaffected. We can therefore proceed and use these results for

curved spacetime.

5.2 The little group spinors

In order to construct the Weyl spinor ΨABCD, we simply contract the Weyl tensor

Cµνρσ with the curved space gamma basis to obtain

ΨABCD = Cµνρσ σ
µν
AB σ

ρσ
CD (5.5)

as in section 4.1. The rotation generator σµνAB is of course constructed from the

curved space γ’s now but is otherwise defined as in equation (4.1). Given the symme-

tries of the Weyl tensor, it is easy to show that the Weyl spinor is totally symmetric,

and thus comprises the 35 degrees of freedom in the five-dimensional Weyl tensor.

As in section 4.1, we would like to break up these 35 degrees of freedom according

to their boost weight by contracting in our (unchanged) spinor basis. The little group

objects Ψ
(i)
abcd are defined by

Ψ
(0)
abcd = ΨABCD kAa kBb kCc kDd

Ψ
(1)
abcd = ΨABCD kAa kBb kCc nDd

Ψ
(2)
abcd = ΨABCD kAa kBb nCc nDd

Ψ
(3)
abcd = ΨABCD kAa nBb nCc nDd

Ψ
(4)
abcd = ΨABCD nAa nBb nCc nDd,

(5.6)

where the bracketed superscript number (i) indicates the number of nAa spinors in

the contraction. These definitions are analogous to the field strength objects Φ
(i)
ab in

equation (4.3) and to the four-dimensional definitions (2.16). ΨABCD can equivalently

be expressed as the sum of the little group objects:

ΨABCD = Ψ
(0)
abcd nA

a nB
b nC

c nD
d + 4 Ψ

(1)
abcd n(A

a nB
b nC

c kD)
d

+ 6 Ψ
(2)
abcd n(A

a nB
b kC

c kD)
d

+ 4 Ψ
(3)
abcd n(A

a kB
b kC

c kD)
d + Ψ

(4)
abcd kA

a kB
b kC

c kD
d.

(5.7)

We observe from the definitions of the little group objects Ψ(i) that they possess

different symmetries. The totally symmetric ones, Ψ
(0)
abcd and Ψ

(4)
abcd, have 5 degrees of

freedom, while Ψ
(1)
abcd = Ψ

(1)
(abc)d and Ψ

(3)
abcd = Ψ

(3)
a(bcd) each contain 8. Ψ

(2)
abcd = Ψ

(2)
(ab)(cd)
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comprises the final 9 degrees of freedom to reach 35. It is sensible to break these

4-spinors into irreducible respresentations of SU(2). We will use the notation that a

lower case ψ(i) indicates a totally symmetric object, i.e., ψ
(i)
abcd = ψ

(i)
(abcd) for any value

of i, and we also introduce χ(i) to indicate a symmetric bi-spinor. Clearly Ψ(0) and

Ψ(4) are already irreducible, since they sit in the totally symmetric representation 5,

so Ψ(0) = ψ(0) and Ψ(4) = ψ(4). Ψ(1) and Ψ(3) contain a bi-spinor trace that can be

removed to decompose them as 8 = 5 + 3:

Ψ
(1)
abcd = ψ

(1)
abcd −

1

4

(
εadχ

(1)
bc + εbdχ

(1)
ac + εcdχ

(1)
ab

)
Ψ

(3)
abcd = ψ

(3)
abcd −

1

4

(
εabχ

(3)
cd + εacχ

(3)
bd + εadχ

(3)
bc

)
,

(5.8)

while Ψ(2) splits into a symmetric rank 4 spinor, a symmetric rank 2 spinor and a

scalar: 9 = 5 + 3 + 1 as

Ψ
(2)
abcd = ψ

(2)
abcd −

1

4

(
εacχ

(2)
bd + εadχ

(2)
bc + εbcχ

(2)
ad + εbdχ

(2)
ac

)
+

1

6
(εacεbd + εadεbd) Ψ

(2)
tr .

(5.9)

This is summarised in table 8.

Reducible little group spinor 5 3 1 Total dof

Ψ
(0)
abcd = Ψ

(0)
(abcd) ψ

(0)
abcd 5

Ψ
(1)
abcd = Ψ

(1)
(abc)d ψ

(1)
abcd χ

(1)
ab 8

Ψ
(2)
abcd = Ψ

(2)
(ab)(cd) ⇒ ψ

(2)
abcd χ

(2)
ab Ψ

(2)
tr 9

Ψ
(3)
abcd = Ψ

(3)
a(bcd) ψ

(3)
abcd χ

(3)
ab 8

Ψ
(4)
abcd = Ψ

(4)
(abcd) ψ

(4)
abcd 5

Table 8: The table shows how each little group 4-spinor is decomposed into irre-

ducible representations. 5 is a totally symmetric 4-spinor, 3 is a symmetric bi-spinor,

and 1 is a scalar. We write “dof” as a short-hand for degrees of freedom.

We will also use vectorial language for the little group irreps, translating between

the two using the Pauli matrices ς iab as usual such that, for example,

ψ
(0)
ij = ςi

ab ςj
cd ψ

(0)
abcd. (5.10)

Table 9 summarises the notation. This is a simple matter of representation, and

makes it easier to compare our results with the vectorial techniques used in the

literature. In this notation, imposing the reality conditions is equivalent to the

requirement that the objects are real.
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4-spinor 2-spinor scalar 3-matrix 3-vector scalar

ψ
(0)
abcd ψ

(0)
ij

ψ
(1)
abcd χ

(1)
ab ψ

(1)
ij χ(1)

ψ
(2)
abcd χ

(2)
ab Ψ

(2)
tr ↔ ψ

(2)
ij χ(2) Ψ

(2)
tr

ψ
(3)
abcd χ

(3)
ab ψ

(3)
ij χ(3)

ψ
(4)
abcd ψ

(4)
ij

Table 9: The irreducible representations of the Weyl spinor can be easily moved

between spinor space on the left and vector space on the right by use of the Pauli

matrices ς iab. We will use the two notations interchangeably. Note that all spinors

are totally symmetric, and that all 3-matrices are symmetric and tracefree.

5.2.1 Coarse and finely grained classifications

This construction naturally highlights two levels of classification, one coarse-grained

which depends only on the little group spinors, and one which is more finely grained

which also depends on the irreducible representation. The coarse classification arises

due to the similarities in construction between the little group spinors

Ψ
(i)
abcd, i = 1, ..., 4, (5.11)

defined in equation (5.6), and the complex scalars from four dimensions

ψi i = 1, ..., 4, (5.12)

defined in equation (2.16). Thus the Ψ(i) will obey a classification which is analogous

to the four-dimensional Petrov one shown in table 2 5. This coarse classification is

proposed in table 10 and as we will show in section 5.4.1, it turns out to be equivalent

to the CMPP classification [16, 17].

The fine grained classification notes that the coarse types in table 10 referred

only to the rows of table 8. The columns spreading out into different irreducible

representations of the little group shows that a greater level of detail is possible. For

example, imagine two type D solutions: then a pentad can be found for each where

only Ψ(2) is non-zero. Suppose further that when the fine structure is analysed, it is

seen that χ(2) and ψ(2) vanish for the first spacetime but only χ(2) vanishes for the

second, indicating that the first example is more special. This is exactly the case

5There is one caveat, which is that in four dimensions it is always possible to find a tetrad where

ψ0 vanishes. This is not the case in general so we require the additional type G to account for such

spacetimes; see [16].
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Type Little group spinor characteristic

Type G Ψ(0) 6= 0

Type I Ψ(0) = 0

Type II Ψ(0) = Ψ(1) = 0

Type D Ψ(0) = Ψ(1) = Ψ(3) = Ψ(4) = 0

Type III Ψ(0) = Ψ(1) = Ψ(2) = 0

Type N Ψ(0) = Ψ(1) = Ψ(2) = Ψ(3) = 0

Table 10: Table showing the coarse grained, Petrov-like classification of a five-

dimensional Weyl tensor built in analogy with the four-dimensional Petrov formalism.

The classification refers to the vanishing of the reducible little group spinors Ψ(i),

which is equivalent to the vanishing of a whole row in table 8.

for the Tangherlini-Schwarzschild black hole and the black string respectively - the

details of this example are given in the following section.

We can delve deeper into the irreps themselves to ask whether they also have sub-

classifications. First we will consider a complex spacetime. In this case, the structure

of the irreducible representations ψ(i) and χ(i), namely complex symmetric spinors

with two-dimensional indices, is exactly that of the four-dimensional Weyl and field

strength spinors respectively. Like a Russian doll, hiding inside the Weyl tensor are

additional lower-dimensional Weyl tensors. These also have a classification, which

can be found in the usual way for four dimensions. For example, a 4-spinor ψabcd =

α(aβbγcδd) could have any of four different specialisations:

• Type II: Two repeated spinors with the other two spinors distinct

ψabcd = α(aαbγcδd)

• Type D: Two pairs of repeated spinors ψabcd = α(aαbγcγd)

• Type III: Three repeated spinors ψabcd = α(aαbαcδd)

• Type N: Four repeated spinors ψabcd = αaαbαcαd

whereas for a 2-spinor χab = α(aβb) there is only one specialisation

• Type II: Two repeated spinors χab = αaαb .

In contrast, when we restrict to a real spacetime we find that much of this second

layer of hidden lower-dimensional Weyl tensor classification is forbidden. We already

know from our analysis of the field strength tensor in section 4.1 that a bi-spinor χ(i)
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which obeys the reality conditions χ = χ cannot be written as the outer product of

a single spinor, χab 6= αaαb. A similar analysis can be applied to real symmetric 4-

spinor objects ψabcd which satisfy ψ = ψ. This will restrict the number of subclasses

available, as we will now show.

It is well known from four dimensions (see for example [67]) that if we define

I = ψabcd ψabcd and J = ψab
cd ψcd

ef ψef
ab, then the requirements for each class are:

• Type II: I3 = 6J2

• Type D: ψpqr(a ψbc
pq ψrdef) = 0

• Type III: I = J = 0

• Type N: ψ(ab
ef ψcd)ef = 0.

Since our ψ’s obey the reality condition, they can be rewritten as symmetric tracefree

matrices with real entries. In contrast, if we had chosen to consider complex space,

or a different signature, the entries would be complex. A real symmetric matrix may

always be diagonalised to obtain

D =

λ1 0 0

0 − (λ1 + λ2) 0

0 0 λ2

 (5.13)

and so we can rewrite the conditions in terms of the eigenvalues as

• Type II: 2λ31 + 3λ21λ2 − 3λ1λ
2
2 − 2λ32 = 0

• Type D: 2λ31 + 3λ21λ2 − 3λ1λ
2
2 − 2λ32 = 0

• Type III: λ21 + λ1λ2 + λ22 = 0 and λ1λ2(λ1 + λ2) = 0

• Type N: λ21 = λ22 and λ21 + 4λ1λ2 + λ22 = 0.

The type II condition has reduced to the more specialised type D condition and is

solved only when two of the eigenvalues are equal (or trivially when all the eigenvalues

vanish). In contrast, there are no non-trivial solutions for type N and type III, that

is, we must have λ1 = λ2 = 0. This tells us that under our reality conditions, only

type D-like lower-dimensional Weyl tensors are possible.6 We note that interesting

behaviour relating to dimensional reduction also occurs when a single eigenvalue

vanishes, which is not reflected by this classification. We hope to explore this property

further in future work.

To summarise, we have found three layers of structure naturally embedded in

our formalism. The first is a Petrov-like coarse layer in the little group spinors.

6We note that this argument is invalidated when complex entries occur because in general

complex symmetric matrix cannot be diagonalised.
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The second is more fine-grained, breaking the little group spinors into irreducible

representations. Finally, the third looks at the irreps themselves and uses their

similarity to four-dimensional objects to classify them in a Petrov-like way. This has

two possibilities depending on whether or not reality conditions have been imposed

as summarised in table 11.

Complex ψ: I, II, D, III, N

χ: I, II

Real ψ: I, D

χ: I

Table 11: The classification of the lower-dimensional objects hidden within the

Weyl tensor depends on whether or not reality conditions have been imposed.

5.3 Examples

To illustrate a few key features of the formalism, we shall give a few very simple

examples: the plane wave, a Tangherlini-Schwarzschild black hole and a black string.

5.3.1 A pp-wave

The metric for pp-wave can be expressed in Brinkmann coordinates

ds2 = −H(u, x, y, z)du2 − 2du dv + dx2 + dy2 + dz2, (5.14)

such that if we choose the pentad

k = ∂v, n = ∂u −
1

2
H(u, x, y, z)∂v, εab =

(
∂x + i∂y i∂z
i∂z ∂x − i∂y

)
, (5.15)

then the Weyl tensor is given by

Cµνρσ = 2 ∂i∂jH(u, x, y, z)n[µ ε
i
ν] n[ρ ε

j
σ], (5.16)

where the index i = 1, 2, 3 runs over the three polarisation directions {x, y, z} as

usual, and we recall (3.33). Recasting this as a spinor using the curved space gamma

basis we find

ΨABCD = Cµνρσσ
µν
ABσ

ρσ
CD

= 4 ∂i∂jH(u, x, y, z) ς iab ς
j
cd kA

a kB
b kC

c kD
d.

(5.17)

Therefore the pp-wave is a type N solution with ψ
(4)
ij = 4 ∂i∂jH(u, x, y, z). If we were

to specify the function H(u, x, y, z) we could classify ψ
(4)
abcd further since it has all of

the properties of a four dimensional Weyl tensor.
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5.3.2 The Tangherlini-Schwarzschild black hole

Another simple example is a five-dimensional Schwarzschild black hole, with metric

ds2 = −∆(r)du2 − 2 du dr + r2
(
dθ2 + sin2 θ

(
dφ2 + sin2 θdχ2

))
, (5.18)

where ∆(r) = 1− r2s
r2

. We choose the pentad

k = −∂u +
1

2
∆(r) ∂r, n = ∂r, εab =

1

r

(
∂θ + i csc θ ∂φ i csc θ cscφ ∂χ
i csc θ cscφ ∂χ ∂θ − i csc θ ∂φ

)
, (5.19)

such that the Weyl tensor is

Cµνρσ =
2r2s
r4

(
2k[µ ε

i
ν] n[ρ ε

i
σ] + 2n[µ ε

i
ν] k[ρ ε

i
σ] − 6k[µ nν] k[ρ nσ] − εi[µ εjν]ε

[i
[ρ ε

j]
σ]

)
. (5.20)

The Weyl spinor is

ΨABCD = Cµνρσσ
µν
ABσ

ρσ
CD

= − 48r2s
r4

(εacεbd + εadεbc) k(A
a kB

b nC
c nD)

d,
(5.21)

and so we can read off that the only non-zero little group irrep for the Tangherlini-

Schwarzschild black hole is the scalar Ψ
(2)
tr = −48r2s

r4
. Therefore, it is a very special

type D solution, since it only has a single non-zero irrep.

5.3.3 The black string

It is interesting to contrast this with another type D solution, the black string. This

is a four-dimensional Schwarzschild black hole trivially extended along the x4 = z

direction with the metric

ds2 = −Γ(r)du2 − 2 du dr + r2
(
dθ2 + sin2 θdφ2

)
+ dz2 (5.22)

where Γ(r) = 1− rs
r

. We choose a pentad which is similar to the previous example:

k = ∂r, n = ∂u −
1

2
Γ(r) ∂r, εab =

1

r

(
∂θ + i csc θ ∂φ i∂z

i∂z ∂θ − i csc θ ∂φ

)
, (5.23)

to find that the Weyl tensor is

Cµνρσ = 2
rs
r3
(
2 δijred

(
k[µ ε

i
ν] n[ρ ε

j
σ] + n[µ ε

i
ν] k[ρ ε

j
σ]

)
− 2k[µ nν] k[ρ nσ]

+ δikred δ
jl
red ε

i
[µ ε

j
ν]ε

[k
[ρ ε

l]
σ]

)
,

(5.24)

where the reduced identity matrix δred is trivial in the z direction, δijred = δij − eizejz.
Note the similarity to equation (5.20) if δred is replaced by δ. As usual, we recast as

a spinor to find

ΨABCD = −96rs
r3

δijred ς
i
ab ς

j
cd k(A

a kB
b nC

c nD)
d. (5.25)
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This time there is more than one little group irrep present. The reducible little group

spinor Ψ(2) is given by

Ψ(2)ij = −4rs
r3
δijred, (5.26)

which decomposes into a trace term and a traceless symmetric 5:

ψ(2)ij = −4rs
r3

(
1

3
δij − eizejz

)
, Ψ

(2)
tr = −16rs

r3
. (5.27)

Therefore the black string is still a type D solution but it has a very different fine

structure to the Tangherlini-Schwarzschild black hole.

Finally, we can consider the structure of ψ(2) itself: since it has two equal eigen-

values (λx = λy = − 4rs
3r3

), the irrep is itself type D.

5.4 Relations to the literature: CMPP and de Smet

As we have previously mentioned, there exist previously proposed classifications for

five dimensions. Two of these are the classification derived by Coley, Milson, Pravda

and Pravdova (CMPP) in 2004 [16, 17] and the de Smet classification proposed in

2002 [27]. These two classifications are in disagreement, since some spacetimes are

algebraically special in CMPP but not in de Smet, and vice versa. Their relationship

was first investigated by Godazgar in 2010 [28].

5.4.1 The CMPP classification

In their papers [16, 17], CMPP observe that each component of the Weyl tensor in

five dimensions has a boost weight when the pentad is rescaled by {k, n, m(i)} →
{ρ k, ρ−1 n, m(i)} for some scalar ρ, where i = 2, 3, 4. This boost weight is the

power of ρ by which the component of the Weyl tensor transforms. The independent

components of the Weyl tensor have the following boost weights:

Boost weight 2 1 0 −1 −2

Component C0i0j C010i, C0ijk C0101, C01ij, C0i1j, Cijkl C011i, C1ijk C1i1j

(5.28)

where the index 0 indicates a contraction with k, the index 1 indicates a contraction

with n, and a Roman index i corresponds to the space-like direction m(i). Our usage

of k and n is identical, while the CMPP polarisation directions m(i) can be chosen

to correspond to our εµi as

mµ(i) = ς i ab εµab. (5.29)

The Weyl tensor components, combined by boost weight, are then organised into

a classification which is shown in table 12. This is valid in any dimension, and of

course reduces to the Petrov classification in four dimensions.
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Type Characteristic

Type G C0i0j 6= 0

Type I C0i0j = 0

Type II C0i0j = C010i = C0ijk = 0

Type D C0i0j = C010i = C0ijk = C011i = C1ijk = C1i1j = 0

Type III C0i0j = C010i = C0ijk = C0101 = C01ij = C0i1j = Cijkl = 0

Type N C0i0j = C010i = C0ijk = C0101 = C01ij = C0i1j = Cijkl = C011i = C1ijk = 0

Table 12: The CMPP classification considers the vanishing of the components of

the Weyl tensor in some pentad in order to specify a type. The more special the

classification, the more components, grouped by boost weight, must vanish.

The boost transformation is clearly identical to the boost that we have previously

defined through spinor space as kA
a → c kA

a, nA
a → 1

c
nA

a. As shown in equation

(3.28), the effect on the pentad is identical when we identify ρ = c2. We therefore

expect to see a correlation between the components of the Weyl tensor and the

little group 4-spinors. This turns out to be exactly the case. We can easily use the

equations (5.5), (3.14) and (3.15), which express the Weyl tensor, k, n and εµab in

terms of spinors, to show that the CMPP components correspond directly to little

group irreps:

C0i0j = 1
8
ψ

(0)
ij C010i = − 1

8
√
2
χ
(1)
i C0ijk = 1

8
√
2

(
2 εijl ψ

(1)
lk − χ

(1)
[i δj]k

)
C0101 = 1

16
Ψ

(2)
tr C01ij = −1

8
εijkχ

(2)
k C0i1j = −1

8

(
ψ

(2)
ij + 1

2
εijkχ

(2)
k + 1

6
Ψ

(2)
tr δij

)
C1i1j = 1

8
ψ

(4)
ij C011i = 1

8
√
2
χ
(3)
i C1ijk = − 1

8
√
2

(
2εijlψ

(3)
lk + χ

(3)
[i δj]k

)
Cijkl = 1

2

(
δi[l ψ

(2)
k]j − δj[l ψ

(2)
k]i + 1

12
Ψ

(2)
tr δi[l δk]j

)
.

(5.30)

Using this correspondence, it is clear that the classifications shown in tables 12 and

10 are identical. Thus, the coarse classification inspired by the similarities of our

construction with the four-dimensional Petrov classification is exactly the original

CMPP classification.
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5.4.2 Little group irreps

The irreducible representations ψ(i), χ(i) and Ψ
(2)
tr also make an appearance in the

literature. It was noted in [22] that there are subgroups of the Weyl components for

a given boost weight by noting their grouping under Lorentz transformations. For

example, Coley and Hervik define two subclasses of type I by

• Type I(A) ⇔ Ci
ji0 = 0

• Type I(B) ⇔ Cijk0C
ijk

0 = 1
2
Cji

j0C
k
ik0

in the Weyl-aligned basis for an arbitrary number of dimensions. As before, we can

cast this into little group space in five dimensions to find that this corresponds to

• Type I(A) ⇔ χ
(1)
ab = 0

• Type I(B) ⇔ ψ
(1)
abcd = 0.

The other little group irreps are identified in a similar way. In [24], now joined by

Ortaggio and Wylleman, Coley and Hervik apply their results to five dimensions and

find that the Weyl tensor can be written in terms of 5 symmetric trace-free matrices,

three vectors and a scalar, which produce exactly the fine structure that we presented

based on spinor-helicity considerations. Thus, the spinorial techniques we have de-

veloped are precisely the spinor underpinnings of the refined CMPP classification.

5.4.3 The de Smet classification

As we previously mentioned, another notable higher-dimensional classification is that

of de Smet [27]. In this work, de Smet constructs the SO(4, 1) 4-spinor ΨABCD exactly

as we have done, and then constructs a classification based on the factorisation

properties of the Weyl polynomial W , defined by

W ≡ ΨABCD ξ
A ξB ξC ξD, (5.31)

for an arbitrary ξA. Originally containing 12 classes, further work by Godazgar [28]

found that consideration of the reality conditions brought the total number of classes

down to 8. It was proposed that these can be arranged in order of “specialness” as

shown in figure 1. We only consider real spacetimes in this section. The de Smet

labels work as follows. The numbers indicate the rank of each factorised part of the

Weyl polynomial and groups of underlined numbers signify that these are repeated

factors. Thus, a 211 indicates a Weyl polynomial with one factor quadratic in ξ

and two factors linear in ξ. If the spacetime is a 22, then there are two identical

quadratic factors.

We can interpret the de Smet construction in terms of our formalism by expand-

ing equation (5.7) in terms of its little group irreps. Because our formalism splits
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4

22

31

211 1111 1111

22

0

Figure 1: The real de Smet classification proposed by [27] and restricted with reality

conditions by [28] contains 8 classes including the flat spacetime class 0, for which

the Weyl tensor vanishes.

the spacetime into totally symmetric little group irreps, the factorisation properties

can be easily investigated. To take a simple example, let us consider a spacetime for

which only ψ
(2)
tr is non-zero (such as the Schwarzschild-Tangherlini solution), so that

W = ψ
(2)
tr (εac εbd + εad εbc) (n ◦ ξ)a (n ◦ ξ)b (k ◦ ξ)c (k ◦ ξ)d

= 2ψ
(2)
tr [(n ◦ ξ), (k ◦ ξ)]2.

(5.32)

We have used [·, ·] to indicate a contraction on little group spinor indices, distin-

guishing it from the centre dot “ ◦ ” used to indicate contraction on spacetime

spinor indices. Clearly, this factorises beautifully into a de Smet 22, which means

that the Weyl polynomial factorises into two identical bi-spinors.

Next, consider a type III solution for which only χ(3) is non-zero. The Weyl

polynomial is

W = −
(
εab χ

(3)
cd + εac χ

(3)
bd + εad χ

(3)
bc

)
(n ◦ ξ)a (k ◦ ξ)b (k ◦ ξ)c (k ◦ ξ)d

= − 3 [n ◦ ξ, k ◦ ξ]
[
k ◦ ξ, θ(3)

] [
k ◦ ξ, κ(3)

]
,

(5.33)

where, in the last line, we have used the property that symmetric SU(2) bi-spinors

can always be written as the symmetrisation of two spinors to define χ
(3)
ab ≡ θ

(3)
(a κ

(3)
b) .

This has de Smet type 211. Using the k ↔ n symmetry, we can see that χ(1) must

also be a 211:

W = −3 [n ◦ ξ, k ◦ ξ]
[
n ◦ ξ, θ(1)

] [
n ◦ ξ, κ(1)

]
, (5.34)

where again we have defined χ
(1)
ab ≡ θ

(1)
(a κ

(1)
b) . By contrast, when χ(2) gives the sole

contribution to ΨABCD, the Weyl polynomial has de Smet class 22:

W = −3 [n ◦ ξ, k ◦ ξ]
{[

n ◦ ξ, θ(2)
] [

k ◦ ξ, κ(2)
]

+
[
n ◦ ξ, κ(2)

] [
k ◦ ξ, θ(2)

]}
. (5.35)
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The ψ(i)’s also have characteristic de Smet types. For example, if only ψ(4) is

non-zero as for a type N spacetime, then the Weyl spinor is oriented in the k direction

as

ΨABCD = ψ
(4)
abcd k(A

a kB
b kC

c kD)
d. (5.36)

The explicit symmetrisation on the little group indices is not required, and thus the

Weyl polynomial factorises totally to form a de Smet 1111:

W =
[
k ◦ ξ, α(4)

] [
k ◦ ξ, β(4)

] [
k ◦ ξ, γ(4)

] [
k ◦ ξ, δ(4)

]
. (5.37)

Using the invariance of de Smet classes under the interchange n↔ k, we can see that

ψ(0) is also of this type. However, the remaining ψ(i) do require proper symmetrisation

over the little group indices, leading to sums over the different permutations which

do not factorise at all and are de Smet 4’s. For example, the Weyl polynomial for

ψ(1) is:

W =
∑

Perms {α,β,γ,δ}

[
k ◦ ξ, α(1)

] [
n ◦ ξ, β(1)

] [
n ◦ ξ, γ(1)

] [
n ◦ ξ, δ(1)

]
. (5.38)

As usual, ψ(3) can be obtained by k ↔ n interchange. The expression for ψ(2) is very

similar, except that it contains 6 terms due to the symmetrisation over two k’s and

two n’s.

As we can see, the de Smet classification is highly sensitive to the fine structure

of the Weyl tensor. This is summarised in table 13. At this point, it is possible to see

that the hierarchy between de Smet classes proposed in [27] and shown in figure 1 is

not actually present. For example, the 211 class does not contain the full 1111 class.

A spacetime formed of more than one irrep will generically be a de Smet 4. Although

some special multi-irrep spacetimes exist, which are detailed in appendix A, there are

not very many of them and they arise only in highly specialised circumstances. This

explains the disagreement between the de Smet and CMPP classifications elucidated

by Godazgar in [28]. On the one hand, because the CMPP classification is sensitive

to the presence of the reducible little group spinors, it attributes the same Petrov

class to a number of different possible de Smet classes7. On the other hand, the de

Smet classification is most sensitive to the presence of a single irrep, irrespective of

its boost weight. The two classifications clearly disagree in the notion of algebraic

specialness.

5.5 Further refinements

The classification we propose is based on identifying representations of the little

group: the ψ
(i)
abcd, for i = 0, . . . , 4, χ

(j)
ab , for j = 1, 2, 3, and Ψ

(2)
tr . An algebraically

7Although of course the refined CMPP classification in [22, 24] captures the little group irreps

in full detail.
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Little group irreps de Smet class

ψ
(0)
abcd 1111

ψ
(1)
abcd χ

(1)
ab 4 211

ψ
(2)
abcd χ

(2)
ab Ψ

(2)
tr ↔ 4 22 22

ψ
(3)
abcd χ

(3)
ab 4 211

ψ
(4)
abcd 1111

Table 13: The de Smet class of each little group irrep. The irreps are arranged by

boost weight in the vertical direction and by dimension in the horizontal direction.

Note the reflection symmetry in the central horizontal line, indicating invariance

under the k ↔ n interchange.

general spacetime has a full set of these objects, none of which are vanishing, and

furthermore satisfying no algebraic relations amongst them.

Algebraically special cases can occur in a number of ways. We have already

observed that it is possible for some of the little group objects to vanish, and a

more subtle possibility is that one or more of the ψ
(i)
abcd’s could be type D. In terms

of spinors, we can always find two-component spinors αa, βb, γc and δd such that

ψ
(i)
abcd = α(aβbγcδd) for a particular i. In the type D case, there are really only two

different spinors up to scaling. In group theoretic terms, this particular ψ(i) is actually

a three-dimensional representation rather than a five-dimensional representation.

It is also possible to have situations in which spinors are shared among different

little group objects. In the complex case, there are many possibilities, but in the real

case we are more limited. It is still possible that χ(i) ∝ χ(j) for some choices of i and

j. Alternatively, it could happen that a particular ψ could be composed of some χ:

e.g., ψ
(1)
abcd = χ

(2)
(abχ

(2)
cd). The de Smet classification can be sensitive to such alignments

in particular cases, as we discuss in Appendix A.

6 Higher dimensions

Although we focused on five dimensions, our approach is quite general. Indeed,

our starting point, the spinor-helicity method, is available in any number of dimen-

sions [13–15]. In this section we will briefly discuss the classification in six dimensions.

As this is an even number of dimensions, we choose a chiral basis of spinors, with

Clifford algebra

σµABσ̃
BC ν + σνABσ̃

BC µ = −2ηµν1CA. (6.1)
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It happens that the Lie algebra of the Lorentz group in six dimensions, so(6), is

isomorphic to su(4). This is reflected in the facts that the spinor representation of

so(6) is the four-dimensional fundamental representation of su(4). From the point of

view of su(4), the six-dimensional vector representation of so(6) is the antisymmetric

tensor product of two 4s. Consequently, we can choose σµ and σ̃µ to be antisymmetric

4× 4 matrices.

In six dimensions, the little group is SO(4) ∼= SU(2) × SU(2) /Z2, so our first

task is to understand how this product group structure is encoded in the spinors.

Let kµ be a six-dimensional null vector; then we define spinors associated with the

vector by

k · σABkBa = 0. (6.2)

The index a labels linearly independent solutions of this equation. The matrix k ·σAB
has vanishing determinant and, in fact, has rank 2. Thus the label a takes values 1

and 2.

How can we reconstruct the null vector k from the spinor kAa? The observation

that the 6 is an antisymmetric combination of two 4s is helpful. There are six

linearly independent 4×4 antisymmetric matrices, so if we expand an antisymmetric

combination of the two spinors kAa (for a = 1, 2) on the basis σµAB, the result is

guaranteed to transform as a vector. Since kµ is the only vector available, we simply

have to fix the normalisation. Indeed,

kµ =
1

2
√

2
kAa σ

µ
AB kBa, (6.3)

where kAa = εabk
Ab; from this perspective, the matrix εab is introduced to antisym-

metrise the two possible ka spinors.

This expression, equation (6.3), is manifestly invariant under an SU(2) transfor-

mation ka → Ua
bk
b. This is part of the SO(4) little group. The other SU(2) factor

acts on the antichiral spinors defined via

k · σ̃ABk̃B
ȧ = 0, (6.4)

which implies that we may also write kµ as

kµ =
1

2
√

2
k̃Aȧ σ̃

µAB k̃B
ȧ. (6.5)

To construct the analogue of the NP tetrad in six dimensions we pick a second

null vector n with the property that k · n = −1, and introduce spinors nAȧ and ñA
a.

Then

nµ =
1

2
√

2
nAȧ σ

µ
AB nBȧ (6.6)

=
1

2
√

2
ñAa σ̃

µAB ñB
a. (6.7)
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The set of spinors kAa, nAȧ, k̃A
a, ñA

a spans the spinor spaces, so it is a simple matter

to break the 15 degrees of freedom of the 2-form spinor FA
B and the 84 degrees of

freedom in the Weyl spinor CAB
CD into little group irreps. Because this is done in

exactly the same way as we did for five dimensions (subject to the details of the

spinor spaces), we are guaranteed that the connection to CMPP will continue to be

expressed. The representations of the little group spinors are now labelled by two

numbers in six dimensions, (i, j), and the boost weight is given by their average. The

CMPP classification is simply the statement that each row of tables 14 and 15 for

the 2-form and Weyl tensor, respectively, vanishes appropriately.

The appearance of a second number in the boost weight is due to a second

symmetry in the irreps, that of an interchange between the two SU(2) parts of the

little group. This corresponds to an interchange i↔ j and dotted to undotted indices

a↔ ȧ, and manifests itself as a vertical line of symmetry through the centre of tables

14 and 15. This also explains the shape of the tables: previously, in five dimensions,

where there was only a single SU(2) little group, these decompositions had the shape

of arrowheads which when reflected through the vertical axis form the characteristic

rhombi of six dimensions. The dimensions of the irreps are not as regular as five

dimensions, but have the pleasing distribution shown in figure 2 for the case of the

Weyl spinor, laid next to their five-dimensional equivalent for comparison.

Reducible spinors Irreducible spinors Irrep dimensionality

Φ
(0,0)

aḃ
φ
(0,0)

aḃ
2× 2

Φ
(0,2)
ab Φ

(2,0)

ȧḃ
⇒ φ

(0,2)
ab Φ

(1,1)
tr φ

(2,0)

ȧḃ
⇔ 1× 3 1× 1 3× 1

Φ
(2,2)
ȧb φ

(2,2)
ȧb 2× 2

Table 14: The six-dimensional 2-form contains 4 reducible little group representa-

tions, which can be broken into 5 irreps. The rows are organised by boost weight,

equal to the average of the bracketed superscripts. The columns are arranged such

that the representations respect the SU(2) interchange symmetry through the cen-

tral vertical axis, hence the scalar Φ
(1,1)
tr = εab Φ

(0,2)
ab = εȧḃ Φ

(2,0)

ȧḃ
sits at the centre of

the array.

7 Conclusions

We have demonstrated that higher-dimensional spinors provide a convenient for-

malism for the algebraic classification of spacetimes, extending Penrose’s spinorial

approach to the Petrov classification in four dimensions. The crucial element of
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Reducible 6D little group spinors Irreducible 6D little group spinors

Ψ
(0,0)

(ab) (ċḋ)
ψ

(0,0)

ab ċḋ

Ψ
(0,2)

(ab) cḋ
Ψ

(2,0)

aḃ ċḋ
ψ

(0,2)

abcḋ
χ
(1,1)

aḃ
ψ

(2,0)

aḃċḋ

Ψ
(0,4)
(ab) (cd) Ψ

(2,2)

aḃ cḋ
Ψ

(4,0)

(ȧḃ) (ċḋ)
⇒ ψ

(0,4)
abcd χ

(1,3)
ab Ψ

(2,2)
tr χ

(3,1)

ȧḃ
ψ

(4,0)

ȧḃċḋ

Ψ
(2,4)
ȧb (cd) Ψ

(4,2)

(ȧḃ) ċd
ψ

(2,4)
ȧbcd χ

(3,3)
ȧb ψ

(4,2)

ȧḃċd

Ψ
(4,4)

(ȧḃ) (cd)
ψ

(4,4)

(ȧḃ)cd

Table 15: Connections between the traces of the reducible six-dimensional little

group spinors allow us to break down the components into irreps. The indices of the

reducible spinors (left) are organised in symmetrised pairs such that two like indices,

for example ab or ċḋ comprise 3 degrees of freedom each, while pairs such as aḃ and

ċd have no symmetrisation and constitute 4 degrees of freedom. For the table of

irreducible representations on the right, all indices of the same SU(2) type (ie dotted

or undotted) are totally symmetric. The boost weight of each representation (i, j) is

given by (i+ j)/2.

the higher-dimensional spinorial construction, first proposed in [13] in the context

of particle physics, is the explicit consideration of the little group. We have shown

that the formalism not only leads naturally to the CMPP classification and its re-

finements, but it also allows for a natural connection with the de Smet classification.

In particular, we have demonstrated that the de Smet classes mostly correspond to

spacetimes where a single little group irrep is present, except for interesting cases

where algebraic relations exist between distinct irreps. This analysis completes the

work begun by [28].

In this work, we have set up a basic framework but there is much to be done.

We have not described in detail the choice of vector basis (pentad in five dimensions)

that makes manifest the algebraic properties of a spacetime. We have also only con-

sidered a few very simple examples of solutions to the Einstein equations. Further

work should provide us with invaluable intuition for the interpretation of the vari-

ous algebraic classes. Moreover, we have not discussed here the higher-dimensional

extension of the Newman-Penrose formalism for the Einstein equations, which has
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5 × 1 3 × 1 1 × 1 1 × 3 1 × 5

4 × 2 2 × 2 2 × 4

4 × 2 2 × 2 2 × 4

3 × 3

3 × 3

m + n = 6

m + n = 4

m + n = 2
5

3

1

3

5

5

3

5

5

d = 1

d = 3

d = 5

Figure 2: The irreps of the six-dimensional Weyl spinor m×n form a kite-like pat-

tern (left). Rows correspond to boost weight. Each concentric rhombus corresponds

to a different value of m+n. Travelling clockwise from the leftmost value of the outer

(red) rhombus, the values of m decrease from 5 to 1 before increasing again, while

n increases from 1. A similar pattern is observed for the inner rhombus between 1

and 3. The irreps of the five-dimensional Weyl spinor (right) can be arranged in a

similar way to six dimensions to form an arrowhead with concentric arrows of irrep

dimension d. As usual, rows correspond to boost weight.

been the subject of much previous work concerning, for instance, problems of exis-

tence and stability of solutions [68–78]. Another interesting problem to investigate

with our formalism is the use of curvature (and Cartan) invariants to characterise

spacetimes; see [79] for a brief introduction and [80–83] for recent work on this topic.

To the obvious possible directions mentioned above, we add one further direction

that we already alluded to in the introduction. This is the ‘double copy’ between

gauge theory and gravity, which appeared in the context of scattering amplitudes,

and whose application to classical solutions is now under study. The existence of

an analogy is, of course, natural from discussions such as the one in this paper,

when comparing the classifications of the field strength tensor and the Weyl tensor.

The point is, however, that there is a precise formulation of the double copy in this

context. This is the subject of work in progress, and it was an important motivation

for us to revisit the classification problem in this paper.
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A Multi-irrep spacetimes in the de Smet classification

In section 5.4.3, it was shown that the de Smet classification is highly sensitive to

the presence of a single little group irrep. What about when more than one irrep

contributes to the Weyl tensor? Generically, this will lead to a 4. For example, it

can be seen from the discussion in section 5.4.3 that combining a 22 or a 22 with a

1111 will always produce a 4. Similarly, while de Smet classes are invariant under

the interchange k ↔ n, combining any irrep with its k ↔ n pair creates a 4, if the

two irreps are distinct. However, there are two cases when more than one irrep is

present and the spacetime is still special in the de Smet classification:

• Absence of any ψ(i)

The Weyl polynomials of all four irreps of dimension 3 or less contain a factor

[n · ξ, k · ξ]. This means that when only irreps of dimension 3 or less are present

in the spacetime, they will in general form a 22. However, if χ(1), χ(2) and χ(3)

are present and all directly proportional to each other, they can form into a

211. This works as follows. Let the χ(i) factorise as

χ
(1)
ab = X θ(aκb), χ

(2)
ab = Y θ(aκb), χ

(3)
ab = Z θ(aκb). (A.1)

Now the Weyl polynomial is of the form

W = −3 [n ◦ ξ, k ◦ ξ]
{
X [n ◦ ξ, θ] [n ◦ ξ, κ] + Y [n ◦ ξ, θ] [k ◦ ξ, κ]

+ Y [n ◦ ξ, κ] [k ◦ ξ, θ] + Z [k ◦ ξ, θ] [k ◦ ξ, κ]
}
,

(A.2)

which factorizes into a 211 if X Z = Y 2:

W = −3 [n ◦ ξ, k ◦ ξ] (X [n ◦ ξ, θ] + Y [k ◦ ξ, θ])
(

[n ◦ ξ, κ] +
Y

X
[k ◦ ξ, κ]

)
.

(A.3)

In other words, if the three vectors χ1, χ2 and χ3 all point in the same di-

rection with relative magnitudes satisfying |χ1| |χ3| = |χ2|2 then a special 211

composite spacetime is formed.

• 211 + 1111

If the Weyl tensor contains only non-zero ψ(4) and χ(3) terms (or ψ(0) and χ(1)),

it is possible for these to form a de Smet 31 or 211. Let us define

ψ
(4)
abcd = α

(4)
(a β

(4)
b γ(4)c δ

(4)
d) , χ

(3)
ab = θ

(3)
(a κ

(3)
b) . (A.4)

Now, if one direction is the same, for example θ(3) ∝ α(4), then the Weyl

polynomial forms a 31,

W =
[
k ◦ ξ, α(4)

]{ [
k ◦ ξ, β(4)

] [
k ◦ ξ, γ(4)

] [
k ◦ ξ, δ(4)

]
+
|θ(3)|
|α(4)|

[
k ◦ ξ, κ(3)

]
[n ◦ ξ, k ◦ ξ]

}
,

(A.5)
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while if two directions are shared such that θ(3) ∝ α(4) and κ(3) ∝ β(4) then the

Weyl polynomial remains a 211,

W =
[
k ◦ ξ, α(4)

] [
k ◦ ξ, β(4)

]{ [
k ◦ ξ, γ(4)

] [
k ◦ ξ, δ(4)

]
+
|θ(3)|
|α(4)|

|κ(3)|
|β(4)| [n ◦ ξ, k ◦ ξ]

}
.

(A.6)

In contrast, if ψ(4) is of the special de Smet form 11 11 and shares a direction

with χ(3), then the spacetime is always a 211: the reality conditions prevent

us from constructing a 31. This is because the reality conditions on a ψ(4) of

the form

ψ
(4)
abcd = α(a βb αc βd) (A.7)

are

α1 β1 = ±(α2 β2)
∗, α1 β2 + α2 β1 = ∓ (α1 β2 + α2 β1)

∗ , (A.8)

requiring a β that looks like

β =

(
1

−α∗1 / α∗2

)
β1, β∗1 = ∓ α2

α∗2
β1. (A.9)

The reality conditions for χ3 of the form χ
(3)
ab = θ(a κd) are very similar:

θ1 κ1 = (θ2 κ2)
∗, θ1 κ2 + θ2 κ1 = − (θ1 κ2 + θ2 κ1)

∗ , (A.10)

with solution

κ =

(
1

−θ∗1 / θ∗2

)
κ1, κ∗1 = − θ2

θ∗2
κ1. (A.11)

Therefore, if ψ(4) and χ3 share a direction such that α ∝ θ, then it can be read

off from equations (A.9) and (A.11) that β and κ are proportional.

These are the only ways that a de Smet class can be built - every other com-

bination results in a 4. Figure 1 is therefore misleading, since it implies that each

class can be reduced to another wholly contained within it. For example, figure 1

implies that de Smet 1111s are a subset of 211s. This is not always the case: a

spacetime with only χ(3) non-zero has no overlap with a spacetime which has only

ψ(0) non-zero. An attempt to depict this limited specialisation of de Smet classes

more accurately has been made in figure 3 as a contrast to figure 1.
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