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Subsurface mapping is crucial to understanding many biological systems as well as structured thin films 

for (opto)electronic or photonic applications. A non-invasive method is presented to map subsurface 

nanostructures from scanning near-field optical microscopy images. The Bethe-Bouwkamp model is 

used to simulate imaging of buried nano objects or subsurface slanted planar interfaces, and it is shown 

how to determine their depth and size, or the interface inclination, from just one image. It is shown that 

the steep optical field gradient makes near-field microscopy a particularly sensitive depth probe for thin 

films. 

 

1. Introduction 

In all fields of knowledge the ability to see through and beyond surfaces is intimately connected with 

deeper understanding of phenomena. Within natural sciences, sub-surface imaging is crucial to the study 

of a large variety of “natural” nanostructures (from sub-cellular elements in living organisms to mixed 

phases and defects in a variety of materials) as well as of artificial, man-made systems, that can be 

generated via either lithographic methods[1] or via entropy-driven phase-separation processes, [2] 

including the growth of quantum dots[3] for single-photon sources, or in the study of defects in electronic 

devices.[4] Successful implementation of nanotechnology requires a variety of high-resolution 

microscopy techniques,[5] for both surfaces and the bulk, and this demand has been met with remarkable 

advances in far-field nanoscale resolution optical microscopy, some of which were rewarded with the 

2014 Nobel prize in chemistry. There is also vast interest in the optical near-field for probing surface 

structure in non-biological domains since it does not rely on dyes with specific photoluminescence 

properties and can also be applied beyond fluorescence imaging. Detecting the optical near-field 

typically requires a probe to be positioned at nanometre distances from the surface under study, but with 

the development of the far-field superlens method for viewing the evanescent optical near-field at far-

field distances,[6] imaging of such evanescent optical fields has become a practical technique for 

obtaining structural information of samples across an increasingly broad cross-section of science and 

engineering.   

 

Scanning near-field optical microscopy (SNOM) has proved to be a powerful tool to achieve sub-

wavelength resolution in both imaging[7] and fabrication[7a, 8] of a variety of nanostructures, in particular 

for its capabilities in obtaining simultaneous topographical and photoluminescence images[7b, 9] - and 

often further information such as the local photoconductivity,[10] polarisation,[1a, 11] surface plasmons,[12] 

mechanical stress,[13] Raman signal,[13b, 14] thickness,[15] dichroism[16] or the chemical composition[17] of 

the sample. As with other members of the scanning probe family of techniques, SNOM is primarily 

aimed at surface characterisation, although the nature of the evanescent optical field allows a degree of 
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sub-surface probing. A small number of studies have accordingly reported detection of nanoscale 

subsurface optical structure with SNOM,[6, 18] or by using other techniques such as cathodoluminescence 

spectroscopy[5b] and scanning superlens microscopy.[5c] Importantly, the steep decay of the optical field 

from the SNOM probe makes it sensitive to the depth of objects in films, and therefore information 

about the location of objects in three dimensions (3D) could be obtained in a unique way that is both 

highly sensitive and non-destructive – not unlike scanning acoustic holography,[19] but with optical 

contrast.   

 

By definition, near-field imaging occurs when the sub-wavelength probe and the sample are located less 

than the order of a wavelength apart, and accordingly a range of apertured[20] and apertureless[21] probes 

have been developed to guide laser light near the sample. The probe tip can be used as a nanosource for 

illuminating a sample or conversely for collecting the evanescent field from it. The results we present 

simulate illumination-mode apertured photoluminescence (PL) and photocurrent (PC) SNOM, which is 

quite different from scattering SNOM (s-SNOM), for which a method has been proposed to extract 3D 

structure either from multiple images obtained in volume scanning mode,[22] or through phase-sensitive 

detection.[16] Neither multiple images nor phase- sensitive detection are required in the method we 

present – indeed phase is not preserved in either PL or PC SNOM. Our samples are topographically 

smooth, but optically inhomogeneous, and the imaging is simulated using a model of the near-field 

pioneered by Bethe[23] that considers transmission of light through a sub-wavelength circular aperture in 

an perfectly conducting metal sheet. It is regularly used in near-field investigations[24] because of its 

parallels with the geometry of an apertured probe and, despite its approximations,[25] encapsulates the 

physics of the near-field problem. 

 

 

2. Methods 

 

We consider the sample to have a linear response to illumination, introducing a parameter η(R) relating 

to the sample’s optical properties such as PL or PC efficiency at a position 𝑹 = (𝒓, 𝑧) = (𝑥, 𝑦, 𝑧) within 

the sample. The plane z = 0 is defined as being the surface of the (planar) sample (which is parallel to 

the aperture plane). The total collected signal I(Γ) when the SNOM probe is centred at a lateral position 

Γ = (x’, y’) is therefore the sum of the product of the intensity, 𝐹(𝑹), of the optical field with the 

material response, η(R), over a volume defined by the thickness of the sample and lateral extent of the 

near-field. 

𝐼(𝜞) = ∑ 𝐹(𝑹, 𝚪)𝜂(𝑹)𝑹                                (1) 

F(R,Γ) is calculated by the downwards propagation of the x- and y-polarised components of the optical 

field that exists inside the film at the top surface, Es(k). 

𝐹(𝑹, 𝚪) = (∬[𝐸𝑠(𝒌)]𝑥 exp 𝑖(𝒌. (𝒓 − 𝚪) + 𝑧𝜅𝑠) 𝑑𝒌)
2

 

                +(∬[𝐸𝑠(𝒌)]𝑦 exp 𝑖(𝒌. (𝒓 − 𝚪) + 𝑧𝜅𝑠) 𝑑𝒌)
2
      (2) 

k = (kx, ky) is the wavevector in the x-y plane, and κs is the wavenumber in the z-direction. 

 
𝜅𝑠 = √𝑛𝑓𝑖𝑙𝑚

2𝑘0
2 − 𝑘2                                                                       (3) 

where nfilm is the refractive index of the film and 𝑘0 = 2𝜋 𝜆⁄  is the wavenumber in air. Es(k) derives 

from the application of electromagnetic boundary conditions to the Bethe-Bouwkamp near-field 

computed on the air side of the interface and the resultant components of Es(k) are linear combinations 

of the orthogonally polarised components on the air side. Note that although light incident on the SNOM 

aperture is linearly polarised, the near-field contains two orthogonally polarised components as a result 

of the aperture diffraction. The form of Es(k) is described in detail elsewhere.[24b] Our samples are flat 

with a complex refractive index of the sample, n, of 1.62+0.54i, corresponding to that of 
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poly(p-phenylene vinylene), PPV, at 325 nm, as measured by spectroscopic ellipsometry.[9c] An aperture 

radius, a, of 20 nm is used, with the tip-sample distance, z0, set to 5 nm. 

 

3. Results and discussion 

 

We first studied the signal generated when a probe crosses over a non-luminescent spherical object ( = 

0) embedded in a 100 nm thick luminescent matrix ( = 1) (Figure 1b) and sought to quantify relevant 

parameters of the embedded spheres by firstly exploiting the full-width at half-maximum (FWHM) of 

their intensity in the linescans. Figure 1c shows these FWHM of linescans across a 22 nm diameter 

sphere as a function of its depth in the film (as measured from the position of its centre), with the 

incident laser polarisation both parallel (full circles) and perpendicular (empty circles) to the scan 

direction. Plotted as continuous and dashed lines is the FWHM of the near-field profile in a uniform 

sample in the directions parallel and perpendicular respectively to the incident laser polarisation. The 

sphere is comparable in size to the diameter of the aperture (40 nm) and is larger than the decay length 

of the optical field, with the bottom of the sphere being imaged by a field which is approximately twice 

as broad and, in some cases, more than an order of magnitude lower in intensity compared to the field at 

the sphere’s top. In spite of such a steep optical field gradient, which decays and diverges over a 

distance comparable to the diameter of the object, the size of the object in the image correlates strongly 

with the width of the optical field at the depth of the centre of the sphere - a regime which holds for 

objects up to 50 nm in diameter. Such a close correlation across a range of object sizes (including some 

larger than the aperture diameter) is surprising, and as a consequence of this observation it is relatively 

straightforward to extract object depths from such an image. 

 

This is confirmed in Figure 2b, showing the FWHM of linescans across spheres embedded at two 

different depths (24 nm and 48 nm), as a function of the sphere radius. The FWHM of the line-scan is 

almost independent of the sphere diameter when less than 50 nm, and only changes by 2 nm or less as it 

is increased to 70 nm. Importantly, this means that the apparent size of such sub-wavelength objects in 

the image can be used as a reliable measure of their depth with nanometre precision. Therefore, the 

computational time to extract information about sub-surface object depths can be much reduced, since 

only simulation of the FWHM of the near-field as a function of depth is required, rather than a full 3D 

simulation of the sample geometry. Furthermore, rotating the incident laser polarisation direction gives 

us two independent ways of extracting this information. 

 

Once the depth of the sphere is known, its radius can be extracted using the dip of intensity in the image, 

Idip (Figure 1b), and comparing with simulated data such as that shown in Figure 2c. Unlike the apparent 

width of objects, Idip is highly dependent on their size, changing over four orders of magnitude when the 

diameter is varied over just one order (for spheres embedded at 48nm). This makes Idip a highly sensitive 

measure of the size of nanoscale objects, with the ultimate limitation being the detection sensitivity of 

the microscope. 

 

We then investigated a different sample geometry, simulating the signal intensity as the apertured probe 

crosses a slanted planar interface, inclined at angle θ, between two regions with different PL or PC 

efficiencies, η. This situation occurs for example between n and p-doped regions of a semiconductor. 

Saiki et al. [26] have reported a method using multiwavelength photocurrent SNOM to determine the 

inclination of a slanted 1 μm thick p-n junction which intersects the sample surface. This method, 

though successful, exploits propagating modes in the sample (from a 200 nm aperture) at significantly 

lower resolution and is less applicable to thin film devices where the near-field dominates the imaging. 

Other far-field techniques such as confocal microscopy have a depth of field much larger than the 

thickness of thin films (~100 nm), making them unsuitable for extracting structural information from 

partially submerged heterojunctions.  
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For simplicity we set η = 0 on one side of the interface and η = 1 on the other. A schematic of the 

sample profile for a 60 nm deep film is shown in Figure 3a, with corresponding simulated image 

linesections in Figure 3b for different inclinations. As expected, the signal intensity rises smoothly 

across the interface, and levels out at large distances from it. For steep interfaces (θ < 15o) the linescans 

are almost indistinguishable, and the position where the interface intersects the surface coincides with 

the position where the signal intensity rises to half its maximum. For shallow interfaces (θ > 15o) the 

linescans become rapidly asymmetric and the signal changes more gradually, as one might expect since 

shallower interfaces have a greater lateral extent. This invites the possibility of distinguishing between 

experimentally investigated interfaces. The first derivative of the signal intensity, and in particular its 

FWHM (χ in Figure 3c), permits us to do this in a quantitative fashion. Figure 3c plots the first 

derivative of the linescans, and shows a broadening and flattening as the inclination angle increases, 

whilst its position moves away from where the interface meets the surface. This is shown more 

quantitatively in Figure 4a, where the FWHM of the first derivative is plotted against the tangent of the 

interface inclination angle. For large angles (θ > 45o) the FWHM has a strongly linear relationship to the 

tangent of the inclination angle, since the lateral width of the interface scales as tan(θ). The asymmetry 

relative to the incident laser polarisation once again provides two independent ways of extracting the 

inclination angle. 

 

We can, in principle, discriminate between inclination angles with θ<150 by using the second derivative 

of the linescans. Figure 3d shows the second derivative of the four linescans across the slanted 

heterojunctions shown in Figure 3b. It can be seen that the position of the inflection point (second 

derivative = 0) has a dependence on the angle of inclination. The separation between the inflection 

point, and the maximum and minimum of the second derivative - ∆max and ∆min respectively - are plotted 

in Figure 4b. When the interface is perpendicular to the polarisation direction, ∆max and ∆min change by 

>50% when the angle of inclination is increased from 0o to 76o; and they still change by >10% when the 

interface angle is increased from 0o to 15o. This allows for the identification of its inclination even at 

low θ, though experimentally this latter method would be challenging since small levels of noise may 

become quite significant when plotting the second derivative. 

 

4. Conclusions  

The SNOM is designed and used predominantly for mapping a number of surface properties of 

materials. We have presented simulations which give precious insight into how the SNOM could also be 

used as a powerful non-destructive tomographic tool for probing thin films in their sub-surface regions. 

We have shown that a single image can be enough to accurately determine both the depth and size of 

sub-wavelength sized inclusions in thin films. Similarly, the sub-surface properties of domain 

boundaries can be investigated in a quantitative manner using the SNOM, in particular to extract the 

angle of a sub-surface planar interface with respect to the surface. We do, however, note some 

limitations to this technique such as the difficulty in accurately determining the slope of steep interfaces. 

 

Our work highlights a simple approach that can be applied across a range of SNOM modes and 

experiments, but different experiments to the one presented here would inevitably involve different 

optical properties and geometries of the system, including aperture size, sample refractive index and 

laser wavelength. The laser wavelength is generally selected to match the optical properties of the 

sample in order to balance optical response with sufficient depth penetration of the optical field, in order 

that the subsurface structure can be studied. No material has a perfectly sharp absorption edge, but 

rather, absorption edges are usually distributed over several tens of nanometres of spectral width, 

thereby making it entirely feasible to reduce absorption via wavelength tuning of the beam used for the 

SNOM investigation. Beyond absorption by the sample, the penetration depth of the nearfield into the 

film is determined by the nearfield attenuation length, |𝜿𝒔|−𝟏. For a given aperture diameter, equation 

(3) above implies that longer laser wavelengths have a greater nearfield character and consequently 

experience a higher attenuation rate (in the z direction) of high spatial resolution components of the 
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optical field (in the x, y directions), thereby effectively allowing the user to balance imaging resolution 

and overall penetration depth into the sample. The sample refractive index also has a strong effect both 

on the transmission of light across the air-sample interface (due to reflection of certain wavevectors at 

the air-sample interface), and also on the attenuation length, |𝜿𝒔|−𝟏, of the nearfield within the sample 

(Eqs. (2) and (3)).[24b] Quantitative analysis of any future experiment should therefore involve adaptation 

of our method by re-calculation of the nearfield distribution using the optical parameters of the 

experiment being simulated. 

 

Finally, we note that it is the evanescent nature of the optical excitation from the SNOM which makes it 

particularly sensitive to the position and geometry of sub-surface features – much more so than 

conventional far-field optical microscopies. 
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Figure 1. a Schematic of the probe-sample geometry. The example field shown in x-z and y-z 

cross-sections is calculated for an aperture of radius 20 nm positioned 5 nm above a 100 nm thick PPV 

sample and illuminated normally by a 325 nm laser polarized in the x-direction. b Schematic of a 48 nm 

diameter sphere with a PL or PC efficiency of zero, embedded at 24 nm in a 100 nm deep matrix with a 

PC or PL efficiency of unity. Superimposed (dashed line) is the signal intensity as the aperture crosses 

the sphere. c Width (full-width at half-maximum, FWHM) of signal intensity, Idip, when scanning across 

a 22 nm diameter sphere (circles), as a function of its depth (measured from its centre to the film 

surface).  The continuous lines report the FWHM of the intensity profile of the near-field (lines) in a 

uniform film (no sphere) as a function of depth (distance from the surface). Results with the incident 

laser polarisation direction both parallel (solid) and perpendicular (empty/dashed) to the scanning 

direction are plotted. A remarkable correlation can be seen between the FWHM of the near-field at a 

certain depth and the FWHM in the image of the sphere centred at that depth. 
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Figure 2 (a) A schematic of the buried nano-object model, comprising of a spherical inclusion in a thin 

film. (b) Full width at half maximum (FWHM) of sphere as it appears in the image, and (c) Maximum 

change in signal intensity, Idip, of linescans across spheres embedded at two different depths, as a 

function of the sphere radius. Widths in the image are shown both with the incident light polarisation 

direction perpendicular (empty) and parallel (full) to the scanning direction. Data are truncated to 

included only for sphere radii that do not intersect the boundaries of the film. It should also be noted that 

for a spherically symmetric object, Idip is independent of the polarisation direction, so data for just one 

polarisation is displayed in b. 
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Figure 3 a Schematic of the slanted heterojunction simulated sample. B Signal intensity of a linescan 

perpendicular to the heterojunction. c FWHM of the first derivative of the signal across a slanted 

heterojunction, with the incident laser polarisation direction parallel (circles) and perpendicular 

(squares) to the interface, plotted against the tangent of the inclination angle. d Separation between the 

point of inflexion of the signal intensity across a slanted heterojunction, and both the maximum (filled 

symbols) and the minimum (empty symbols) of its second derivative. Results both with the incident 

light polarisation direction parallel (circles) and perpendicular (squares) to the interface are plotted. 

 

  



Page 11 of 11 

 

 

 

 
 

Figure 4 Imaging slanted heterojunctions. a Schematic of a sample with two regions of different PL or 

PC efficiency, the planar interface separating these regions being inclined at angle θ with respect to the 

surface. b Signal intensity, c its first derivative and d its second derivative plotted as the aperture crosses 

the interface, for inclination angels, θ, of 0°, 14°, 45° and 76°. The scan direction is parallel to the 

incident laser polarisation. For θ = 76°, the inflection point of the signal intensity is marked as Ω76° in b; 

the full-width at half-maximum (FWHM) of the first derivative is marked as Γ76° in c; and the separation 

between the inflection point and the minimum of the second derivative is marked as Δ76° in d. Aperture 

radius, a = 20 nm, tip-sample distance z0 = 5 nm, sample refractive index n = 1.62+0.54i, laser 

wavelength  = 325 nm. The incident laser polarisation is perpendicular to the line where the interface 

meets the surface. 

 

 


