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Abstract5

We develop a VAR that allows the estimation of the impact of monetary policy shocks6

on volatility. Estimates for the US suggest that an increase in the policy rate by 1% is7

associated with a rise in unemployment and inflation volatility of about 15%. Using a8

New Keynesian model, with search and matching labour frictions and Epstein-Zin prefer-9

ences we show that these volatility effects are driven by the coexistence of agents’ fears of10

unemployment and concerns about the (in) ability of the monetary authority to reverse11

deviations from the policy rule with the impact magnified by the agents’ preferences.12
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1 Introduction18

Uncertainty shocks can cause business cycle fluctuations and drive policy, but policy changes19

themselves can lead to change in uncertainty. This paper investigates empirically and the-20

oretically to what extent monetary policy shocks can affect the volatility of macroeconomic21

variables. It finds an important transmission channel from monetary policy to endogenous22
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uncertainty, both in the data and using a model where households react to the the anticipated23

risk of long unemployment spells. Using a structural VAR with stochastic volatility (extended24

to allow for feedback from the endogenous variables to the volatility), we show that monetary25

policy shocks increase macroeconomic volatility and the results are robust across identification26

schemes. It is also shown here that the monetary policy shock is responsible for about 40%27

to 50% of the forecast error variance contribution of all level shocks to the volatility of the28

endogenous variables. These volatility contributions are substantially higher than monetary29

policy shock’s shares of explaining the level series (as it is commonly found in the literature30

and illustrated again here).31

To understand how volatility is affected when monetary authorities decide to deviate unex-32

pectedly from their Taylor type reaction function, we employ a stylised New Keynesian DSGE33

model, with search & matching labour frictions and Epstein-Zin preferences. The model is34

estimated using limited information impulse response matching techniques. Although the lit-35

erature has questioned the ability of “simple” search and matching New Keynesian models to36

jointly replicate the dynamics of both unemployment and inflation (Krause and Lubik (2007)37

and Gertler et al. (2008)), our estimated model reproduces VAR responses remarkably well.38

Simulations from the theoretical model suggest that the transmission of the policy shock to39

volatility depends on three modelling features: (i) the presence of labour market real frictions,40

(ii) the monetary authorities’ desire for gradual policy adjustments and (iii) the existence of41

Epstein-Zin preferences. It is the coexistence of agents’ fears about being prolonged unemploy-42

ment and policymakers’ preference for interest rate smoothing that causes volatility to increase43

significantly. It is only in this scenario that Epstein-Zin preferences have a quantitatively mean-44

ingful role. From an economic point of view, households acknowledge the real risk of becoming45

unemployed and the fact that during the unemployment spells additional adverse shock may46

occur. However, it is the combination of these risks together with the policy-rate smoothing47

parameter that causes monetary policy to have significant volatility effects and not the shock48

per-se. In other words, agents are not overly concerned that authorities are able to deviate49

unexpectedly from their objective function but they significantly price the fact that the central50

bank cannot fully undo such actions resulting in prolonged unemployment spells where they51

are vulnerable to further adverse shocks and future uncertainty rises.52
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As in the empirical and theoretical literature on the impact of uncertainty shocks (Bloom (2009)53

and Fernandez-Villaverde et al. (2015)), our paper highlights the importance of these type of54

disturbances. However, the focus and results of our analysis are novel in one key respect.55

Unlike the bulk of the uncertainty literature, this paper attempts to model the transmission of56

monetary policy shocks to economic volatility and thus takes a step towards treating economic57

volatility as endogenous.58

Regarding our empirical contribution, the study of Ludvigson et al. (2015) is the closely related.59

Ludvigson et al. (2015) develop a procedure that separates movements in volatility caused by60

primitive (first order) shocks and by uncertainty shocks. However, crucially, they do not identify61

the source of the primitive shocks. In contrast, our focus is on the impact of monetary policy62

shocks on volatility.63

The papers closest to our theoretical work are the studies of Rudebusch and Swanson (2012) and64

Swanson (2015), who use a similar theoretical setup to the one employed here to understand the65

asset pricing implications of volatility effects caused by level shocks. Cacciatore and Ravenna66

(2016) develop a real business cycle model, with labour search and matching frictions and an67

occasionally binding constraint on downward wage adjustment to understand the effect from a68

negative productivity shock on volatility.1 Our paper is also related to the work of Bikbov and69

Chernov (2013) and Campbell et al. (2014), who uses macro-finance models to understand the70

relationships between monetary policy and bond risk premia. Petrosky-Nadeau et al. (2018)71

illustrate that when real business cycle models with search & matching friction are calibrated72

and solved carefully, then they can generate endogenous disasters. Our finding support fully73

their analysis, we illustrate below that only the version of the model with these labour frictions74

can give rise to endogenous disasters.275

Finally, our work is related to the heterogeneous agents (HA) literature that introduces un-76

employment into these incomplete markets models either to understand how different fiscal77

policies are transmitted to the economy (McKay and Reis (2016)) or to develop models that78

can account for extreme economic phenomena such as the Great Recession without employ-79

1Cacciatore and Ravenna (2016) also use their framework to understand the state dependent amplification
mechanism of exogenous uncertainty shocks.

2In our framework the endogenous disasters are caused by monetary policy shocks and not by productivity
shocks as it is the case in Petrosky-Nadeau et al. (2018). Endogenous disasters in our model illustrate that the
monetary policy could cause highly adverse economic conditions and this is why agents in the model: (i) are
concerned and (ii) try to insure against these outcomes.
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ing large and persistent exogenous shocks (Ravn and Sterk (2017), Den Haan et al. (2018)).80

Agents in these models cannot fully insure against idiosyncratic unemployment risk and, there-81

fore, they are concerned about their consumption level if the become unemployed. So when82

an adverse shock takes place, they act in a precautionary manner and increase savings. These83

concerns are more elevated in bad times as unemployment spells last longer making the agents’84

responses state dependent. In our setting, the specification of the utility function leads to state-85

dependence of responses. However this feature is now driven by the difference between current86

and steady-state consumption with agents responding by more in states where consumption is87

below the steady state.88

The paper is organised as follows, Section 2 presents the empirical model and discusses the data89

and empirical results. Section 3 reviews the theoretical model, its calibration and presents the90

impulse response analysis. The final section concludes.91

2 Empirical results92

In order to estimate the impact of monetary policy shocks on second moments of key macroe-

conomic variables, we estimate an extended structural VAR model with stochastic volatility.

The observation equation of the model is given by:

Zt = c+
P∑
j=1

βjZt−j +
K∑
k=1

bkh̃t−k + Ω
1/2
t et, et ∼ N(0, IN) (1)

In equation (1) Zt is N × 1 vector of endogenous variables and h̃t denotes the N × 1 vector of93

log stochastic volatilities. The coefficients are denoted by the N ×N matrices βj and bk while94

IN is a N × N identity matrix. The covariance matrix of the VAR residuals is time-varying95

and factored as:96

Ωt = A−1HtA
−1′ (2)

Ht = diag(exp
(
h̃t

)
) (3)

and the N ×N diagonal matrix Ht holds the stochastic volatility of the orthogonalised shocks97

on the main diagonal
(
h̃t = [h1,t, h2,t, .., hN,t]

)
. The structure of the A matrix is chosen by the98

econometrician to model the contemporaneous relationship amongst the reduced-form shocks.99

We discuss our choice of the structure of the A matrix in section 2.3 below.100
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The transition equation for the stochastic volatilities is given by the following VAR model:

h̃t = α + θh̃t−1 +
K∑
j=1

djZt−j + ηt, ηt ∼ N(0, Q), E (et, ηt) = 0 (4)

The constants and coefficients on lags are denoted by the N × 1 and N × N matrices α and101

θ, respectively. Following standard practice in the literature on stochastic volatility models102

(see for e.g. Kim et al. (1998)), we allow h̃t to depend on its first lag. However, the N × N103

coefficient matrices dj also allow lagged endogenous variables to affect the log variances. If these104

coefficients are non-zero, then shocks to equation 1 have an impact on h̃t and consequently on105

Ωt and measures of the unconditional variance of Zt. Note also that the stochastic volatility106

in mean formulation of equation 1 allows feedback from lagged volatilities to the endogenous107

variables.108

The model in equations 1 and 4 contains two innovations relative to the standard BVAR

with stochastic volatility (see Clark (2011)). First, it allows the elements of h̃t to co-move

while most of the previous literature assumes an independent AR or random walk process

for each log variance. The specification used here thus captures the possibility that volatility

of shocks to macroeconomic and financial variables may move together – a phenomenon that

may be important during periods of recession and financial stress. Secondly, unlike previous

applications of this model (see Mumtaz and Theodoridis (2015)), the terms
∑K

k=1 bkh̃t−k and∑K
j=1 djZt−j in equations 1 and 4 allow a dynamic relationship between the level and volatility

of the endogenous variables.3One way to see this is to re-write the observation and transition

equations jointly as an expanded VAR system: Zt

h̃t


︸ ︷︷ ︸

(2N×1)

=

 c

α


︸ ︷︷ ︸
(2N×1)

+


β (L)︸ ︷︷ ︸

(N×NP )

b (L)︸︷︷︸
(N×NK)

d (L)︸ ︷︷ ︸
(N×NK)

θL︸︷︷︸
(N×N)


 Zt

h̃t

+

 ut

ηt


︸ ︷︷ ︸

(2N×1)

(5)

var


 ut

ηt


 =

 A−1HtA
−1′ 0

0 Q

 (6)

where β (L) , b (L) and d (L) denote lag polynomials of order P , K and K respectively. As109

discussed above, our interest lies in investigating the possible impact of monetary policy shocks110

on the second moments of the endogenous variables. The specification above enables us to111

calculate the impulse response of h̃t and thus var (Zt) to a monetary policy shock identified via112

3An exception is the univariate stochastic volatility in mean model of Chan (2017) that allows lagged effects
from the data in the transition equation.
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an appropriate structure for A.113

Equation 5 reveals two restrictive features of the benchmark model. First, the coefficient114

matrices are time-invariant and the model does not directly account for structural change.115

Second, the error covariance matrix (equation 6) is assumed to be block diagonal and level116

(volatility) shocks have a lagged impact on volatility (levels). In the sensitivity analysis below117

(see Section 3.1.1), we relax these assumptions and show that our main results are qualitatively118

similar in the extended versions of the benchmark model.119

2.1 Data120

The model is estimated using US data on the civilian unemployment rate, annual CPI inflation,121

an interest rate representing the policy instrument and the spread of 10 year government bonds122

over the three month T-bill rate. The data is monthly and, in the benchmark case, runs from123

1947m1 to 2007m12, with the last few years dropped as they represent the period of uncon-124

ventional monetary policy. The first ten years are used as a training sample with estimation125

carried out over the period 1957m1 to 2007m12. In the benchmark model, we use the three126

month T-bill rate as a proxy for the policy instrument. In an additional model specification127

we identify the monetary policy shock using an external instrument approach. As explained128

in section 2.3 below, this version of the model uses a one year government bond yield as the129

policy instrument. The data on the unemployment rate, CPI and the three month T-Bill rate130

is obtained from FRED, while the 1 and 10 year bond yield is obtained from Global Financial131

Data.132

2.2 Estimation and impulse responses133

The model is estimated using Bayesian methods. In the on-line appendix we state in detail the134

Gibbs sampling algorithm used to approximate the posterior distribution. In short, the algo-135

rithm is an extension of the MCMC methods used to estimate Bayesian VARs with stochastic136

volatility, presented for example in Cogley and Sargent (2005).4 The prior distribution for the137

VAR coefficients in equation 1 are based on existing studies and ‘shrink’ the VAR coefficient138

matrix towards an AR specification for each endogenous variable. We employ a similar prior139

4We use a particle Gibbs sampler (see Andrieu et al. (2010). This is described in the technical appendix.
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for the transition equation and thus assume apriori that each log stochastic volatility follows140

an AR process and that there is no feedback from Zt−j.141

The impulse responses of log var (Zt) to a monetary policy shock are calculated via Monte-

Carlo integration. In particular, the impulse responses are defined as the difference between

the following conditional expectations

IRFt = E (ln var (Zt+k) \Ψt, Zt−1, µ)− E (ln var (Zt+k) \Ψt, Zt−1) (7)

where Ψt denotes the parameters and state variables of the model and µ is the monetary policy142

shock. The first term in equation 7 denotes a forecast of the log volatility conditioned on one143

of the structural shocks µ. Note that, the volatility of the endogenous variables depends on144

the structural shocks through equation 4 above. The second term is the baseline forecast of145

the log variance, i.e. conditioned on the scenario where the shock equals zero. Koop et al.146

(1996) describe how to approximate these conditional expectations via a stochastic simulation147

of the non-linear VAR model. We use 100 simulations to calculate IRFt repeating this for 500148

retained Gibbs draws. In order to account for history dependence of the non-linear responses,149

the calculation is done for t = 1, 12, ...T i.e. every 12th month in the sample and the mean150

across time is reported in the figures below.151

2.3 Model specification and identification152

We set the lag length in the VAR model to 12 and use 3 lags of the endogenous variables in153

the transition equation 4 and 3 lags of the stochastic volatilities in the observation equation 1.154

As shown in the sensitivity analysis, the main results are very similar for longer lag lengths.155

We consider three schemes to identify the monetary policy shock. The schemes are implemented156

by placing restrictions on the column of the A−1 matrix corresponding to the equation for the157

policy instrument. The remaining columns of the matrix correspond to a triangular structure.158

The benchmark identification scheme uses contemporaneous sign restrictions to identify the159

monetary policy shock. We assume that a contractionary policy shock increases the short-term160

interest rate on impact and leads to a rise in unemployment and a fall in CPI inflation. The161

second scheme assumes a recursive structure and implies that monetary policy shocks have162

no contemporaneous impact on unemployment and inflation but can affect the term spread163

immediately. Finally, we follow Gertler and Karadi (2015) and identify the monetary policy164
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shock using an external instrument. This version of the model uses the 1 year government165

bond yield as the measure of the policy rate and the estimation sample runs to 2012 m6.166

Gertler and Karadi (2015) argue that the use of the 1 year rate accounts for unconventional167

policy such as forward guidance. We use the benchmark instrument employed in Gertler and168

Karadi (2015) – i.e. surprise changes in three month ahead fed funds futures rate on FOMC169

dates. As discussed in Mertens and Ravn (2013), under the assumption that the instrument is170

relevant and uncorrelated with other structural shocks, the impulse vector to a unit shock can171

be recovered by a regression of the reduced form residuals on the instrument.5172

3 Results173

3.1 Impulse response to a monetary policy shock174

Figure 1 presents the impulse response to a contractionary monetary policy shock normalised175

to increase the T-Bill rate by 100 basis points. The unemployment rate rises by about 0.2176

percentage points at the two year horizon. Inflation displays a persistent decline of about 0.3177

percentage points. Finally, the term spread falls by about 70 basis points on impact.178

The last three rows of the figure present the response of the unconditional volatility to this179

shock. It is clear from the figure that the volatility of all endogenous variables rises in response180

to this shock. This is reflected in the measure of overall volatility, the log determinant of the181

covariance matrix of the endogenous variables which shows a persistent increase. The response182

of volatility is persistent lasting for about 2 years with the magnitude of the response of interest183

rate and inflation volatility slightly larger than the remaining variables.184

Figure 2 presents the response of the volatility of the endogenous variables estimated using the185

three identification schemes discussed above. The second row of the figure shows the recursive186

identification schemes produces results very similar to the benchmark case. Similarly, when the187

external instrument is used to identify the monetary policy shock the impulse responses still188

suggest that volatility rises after a monetary contraction.189

5Gertler and Karadi (2015) present a detailed evidence that suggests that three month ahead fed funds
futures rate innovations provide a strong instrument to identify monetary policy shocks.
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3.1.1 Robustness checks190

Time variation As noted above, the benchmark model restricts the VAR coefficients to be191

fixed over time. To check the structural stability of the estimated impulse responses we extend192

the benchmark model to allow the coefficients to be time-varying. In particular, we estimate193

the following version of the model:194

Zt = ct +
P∑
j=1

βt,jZt−j +
K∑
k=1

bt,kh̃t−k + Ω
1/2
t et (8)

Ωt = A−1HtA
−1′ (9)

h̃t = αt + θth̃t−1 +
K∑
j=1

dt,jZt−j + ηt (10)

where var (ηt) = Q. Letting Θt︸︷︷︸
N(NP+NK+1)×1

= vec
([
ct, βt,1, .., βt,P , bt,1, .., bt,K

])
and Ψt︸︷︷︸

N(N+NK+1)×1

=195

vec ([αt, θt, dt,1, .., dt,K ]) the evolution of the coefficients is determined by the additional transi-196

tion equations:197

Θt = Θt−1 + Q̃
1/2
1 v1t (11)

Ψt = Ψt−1 + Q̃
1/2
2 v2t (12)

where (e′t, v
′
1t, v

′
2t)
′ ∼ N (0, IN̄) with N̄ = N (NP +NK + 1) + N (N +NK + 1) + N . The198

model can be estimated using an extended version of the Gibbs algorithm summarised above.199

The extension is described in the technical appendix.200

The time-varying impulse responses of volatility to a 1 unit monetary contraction are shown201

in Figure 3. As in the benchmark case, sign restrictions are used to identify the policy shock.202

As noted in previous studies, there is some evidence suggesting that the impact of monetary203

policy on the real economy has declined over time (see Boivin and Giannoni (2006)). As in204

Boivin and Giannoni (2006) the inflation response becomes positive at medium horizons in the205

earlier part of the sample. While there is some weak evidence to suggest that the response of206

volatility may have been slightly larger during the 1970s and the first half of the 1980s, the207

impact on volatility remains positive and persistent throughout the sample period.208

Further sensitivity checks The technical appendix provides a range of further checks. The209

benchmark model in equations 5 and 6 does not allow a contemporaneous relationship between210

level and volatility shocks. Following Alessandri and Mumtaz (2018), we extend the model211
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and relax this assumption. Impulse responses from this version of the model (see Section212

4.1, pages 14-17 in the appendix) support the conclusion that volatility rises after a monetary213

contraction.6 In addition, we show that the results survive if a longer lag length is used214

in the benchmark model. Similarly, versions of the model that include the Federal Funds215

rate, industrial production or stock returns produce results similar to the benchmark case.216

Finally, positioning the short-term interest rate first in the recursive order or using the Romer217

and Romer (2004) measure of monetary policy shocks as an instrument produces responses of218

volatility that support the results depicted in the second and third rows of Figure 2.219

3.2 Variance decomposition220

To investigate the importance of the monetary policy shock we construct the forecast error221

variance (FEV) decomposition for the benchmark model using the method described in Lanne222

and Nyberg (2016) for non-linear models. Table 1 presents the contribution of the monetary223

policy shock and compares it with the contribution of all 4 level shocks in the VAR model. The224

third and fourth columns of the table display the contribution to the FEV of volatility of the225

variables while the final two columns display the contribution to the FEV of the level. The226

final column of the table shows that, as highlighted by several previous studies, the monetary227

policy shock makes a modest contribution to future movements in the unemployment rate and228

inflation. As in Bernanke et al. (2005), the contribution to the FEV of the unemployment rate229

is about 10 percent while the contribution to inflation FEV does not exceed 5 percent. The230

contribution to the interest rates is higher, especially at shorter horizons. When compared to231

the contribution of all level shocks jointly (column 5 of the table), the monetary policy shock232

does not appear to be the most important component.233

Column four of table 1 shows that the contribution of the monetary policy shock to the volatility234

of the variables is also modest in absolute terms and ranges from about 5 to 7 percent. However,235

in relative terms, the monetary policy shock appears to be important, especially at the one year236

horizon. For example, the total contribution of the level shocks to the FEV of unemployment237

volatility at this horizon is 16 percent. Almost half of this contribution comes from the monetary238

6In the technical appendix we present results using the proxy VAR of Gertler and Karadi (2015) extended
to include the measure of uncertainty developed by Jurado et al. (2015). Results from this model, which allows
for a contemporaneous impact of monetary policy shock on uncertainty, support our key conclusions.
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policy shock. Similarly, the monetary policy component in the contribution of level shocks to239

the FEV of inflation, interest rate and spread volatility accounts for 40 to 50 percent at the one240

year horizon. However, the relative importance of this shock declines at the 60 month horizon241

suggesting that other level or second moment shocks may play a role in the long run.242

To investigate the economic importance of monetary policy transmission via volatility, we243

estimate a version of the benchmark model that restricts the effects of level shocks on second244

moments to be equal to zero (by setting dj = 0 in equation 4).7 In Figure 4, we compare the245

impulse response to a monetary policy shock in the restricted and the benchmark model. It is246

clear from the figure that the response of unemployment and inflation is less persistent in the247

restricted case. This implies that the cumulated change in these variables is estimated be much248

smaller if the effect of policy shocks on volatility is assumed away.249

4 Theoretical Analysis250

In order to investigate the transmission of monetary policy shocks to volatility, we build and251

estimate a New Keynesian DSGE model. We first describe the building blocks of the key sectors252

of the DSGE model and consider how time-varying volatility arises in this set-up. We then253

use an estimated version of the model to calculate the response of the key variables and their254

volatility to monetary policy shocks.255

4.1 DSGE Model256

Households: The economy is populated by a continuum of households (h ∈ [0, 1]) that attain

utility from consumption C̃t (h) and leisure 1− Lt (h), where Lt (h) denotes the fraction of the

household that is employed. Household’s preferences are separable

u
(
C̃t (h) , Z̃t, Lt (h)

)
=

(
C̃t (h)− bC̃t−1

)1−σC

1− σC
− χ0Z̃

1−σC
t

Lt (h)1+σL

1 + σL
(13)

where σL is the inverse of the Frisch elasticity, σC stands for the inverse of intertemporal elas-257

ticity of substitution and Z̃t = ZZ̃t−1

(
Z̃t−1

Z̃t−2

)ρz
eσzωz,t denotes the non-stationary productivity258

process (the tilde indicates that the variable is non-stationary) where Z is the steady-state259

value of the productivity growth, ρz indicates the degree of persistence and σz is the standard260

deviation of the productivity growth process.261

7Based on the deviance information criterion (DIC) of Spiegelhalter et al. (2002) the benchmark model
is preferred to this restricted model. The DIC for the restricted model is -4526.68, while the corresponding
estimate for the benchmark model is smaller (-4560.82) indicating an improved fit.
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The empirical analysis above illustrates convincingly that the changes in the policy instrument

have an impact on the level and volatility of endogenous variables. This evidence points to

the existence of important non-linearities in the data that give rise to these effects. Given our

stylised facts are related to volatility, it seems a natural starting point to investigate whether

these non-linearities are due to agents’ preferences. The analysis of Rudebusch and Swanson

(2012) and Swanson (2015) suggest that when agents form recursive preferences (Epstein and

Zin (1989)) then a productivity level shock induces the stochastic volatility of the series in the

model to vary. We proceed, therefore, by assuming that agents have preferences of this form:

Vt (h) = u
(
C̃t (h) , Z̃t, Lt (h)

)
+ β

(
EtVt+1 (h)1−γ) 1

1−γ (14)

The attractive feature of Epstein-Zin preferences is that the coefficient of relative risk aversion

decouples from the intertemporal elasticity parameter. The parameter γ illustrates the degree

of agents’ desire for an early resolution of uncertainty over future consumption. Household

maximises its utility function subject to its budget constraint which is:

P̃tC̃t (h) +
D̃t (h)

Rt

+ Tt (h) = P̃tW̃tLt (h) + (1− Lt (h)) P̃tB̃t + D̃t−1 (h) + Ξ̃t (h) (15)

where P̃t is the price index, D̃t (h) is the one period risk free government debt, Rt is the return262

on investing on the government debt, W̃t stands for the real wage, Tt (h) is the lump sum taxes,263

B̃t is the unemployment benefit and Ξ̃t (h) denotes firms’ profits.264

The budget constraint reveals the existence of real labour market frictions that lead some265

members of the household to become unemployed. However, they enjoy the same consumption266

levels as the employed members due to our complete markets assumption. The structure of267

the labour market is discussed below. Here we mention two pieces of evidence supporting the268

argument that search and matching frictions could be a vital part of the mechanism relating269

monetary policy shocks and second moments. Firstly, the empirical exercise undertaken in270

Section 3.2 (Figure 4) reveals that the impact of monetary policy on unemployment is enhanced271

by the impact of this shock on volatility. This is indicative of the existence of frictions in the272

labour market that re-enforce the effects of volatility.273

Secondly, there are a growing number of studies employing heterogeneous agents models that274

argue in favour of including unemployment into these incomplete market models in order to275

better understand extreme economic episodes such as the Great Recession (Ravn and Sterk276

(2017), Den Haan et al. (2018)). The outcome of these studies is further supported by the277
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work of Petrosky-Nadeau et al. (2018) that illustrates search and matching frictions in a real278

business cycle could give rise to endogenous disasters when the model is calibrated and solved279

carefully. These two different type of approaches seems to indicate that these labour frictions280

may have very rich nonlinear implications. Finally, during the ZLB period and the introduction281

of the forward guidance policy by the FED and Bank of England, unemployment became the282

primary policy variable in terms of monetary authorities communicating the end date of the283

excess stimulus in the economy.8284

Labour Market: The existence of a real – search and matching – friction in the labour market285

(Mortensen and Pissarides (1994)) prevents all job-seekers (Ut = 1− (1− δN)Lt−1) from being286

matched with vacancies (Υt) posted by firms and they end up unemployed (ut = 1− Lt). The287

matching technology is described by the following Cobb-Douglas (expression 16)288

Mt = µ̄Uµ
t Υ1−µ

t (16)

Lt = (1− δN)Lt−1 +QΥ
t Υt (17)

Ψt = κZ̃tΥt (18)

While employment evolves according to equation 17, where δN is the separation probability.289

This formulation incorporates the assumption that new hires start working in the same period290

they are hired (Blanchard and Gali (2010)). Furthermore, firms in order to be able to hire a291

worker they need to post a vacancy and this incurs a cost (expression 18, see Mortensen and292

Pissarides (1994)). In other words, the cost is a linear function of the vacancies posted. This293

is different set-up than the cost of hiring function used in Gertler et al. (2008). However, this294

particular formulation implies that the cost is paid after the vacancy is filled and it reflects295

internal costs of adjusting the number of employees (such as training). This specification, thus,296

minimises the exposure of entrepreneur’s profits unsuccessful matches and, consequently, to297

uncertainty, since the cost is only paid after the vacancy is filled. This feature makes this298

formulation less suitable in our setting.299

Final Good Producer: The next two paragraphs discuss the price Phillips curve. The set-300

up is quite standard and the nominal rigidities are introduced as a simple way to make output301

8In August 2013, the Bank of England augmented its policy toolkit with (state dependent) forward guidance.
Unemployment became a forward guidance threshold variable and the Bank of England started publishing its
fan chart in order to better communicate with public its projection about real economy.
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demand driven in the short run and to allow monetary policy to be able to affect the economic302

cycles. The final good is produced via the following production function303

Ỹt =

[∫ 1

0

Ỹt (f)
ε−1
ε df

] ε
ε−1

(19)

Ỹt (f) =

(
Pt (f)

Pt

)−ε
Yt (20)

where ε denotes the elasticity of substitution between differentiated intermediate goods (f ∈ [0 1]).304

The demand for intermediate goods (expression 20) results from profit maximisation and the305

assumption that the final good producer operates under perfect competition.306

Intermediate Good Producers: Similar to Krause and Lubik (2007) and Krause et al.

(2008) we assume that there is a continuum of firms (f ∈ [0, 1]) that post vacancies, combine

employment, fixed capital and employ the following technology:

Ỹt (f) = Z̃t (Lt (f))1−φKφ (21)

to produce the intermediate good, where φ is the capital share in the production function.307

These producers solve a two-stage problem. In the first stage, taking the wage and the cost of308

filling a vacancy as given they decide how many vacancies to post and people to employ, these309

choices result from the maximisation of their profit function:310

Et

∞∑
j=0

Mt+jβ
j

 MCt+j (f) Ỹt+j (f)− W̃t+jLt+j (f)−RKK − κZ̃t+jΥt+j (f)

+Θ̃t+j (f)
(
(1− δN)Lt+j−1 (f) +QΥ

t+j (f) Υt+j (f)− Lt+j (f)
)
 (22)

where MCt (the marginal cost), Θ̃t (the shadow value of hiring an additional worker) are the

Lagrange multipliers associated with the goods’ production function and the employment’s law

of motion, respectively. Finally, Mt denotes the stochastic discount factor

Mt+1 =

 Vt+1(
EtV

1−γ
t+1

) 1
1−γ

−γ (C̃t (h)− bC̃t−1

C̃t+1 (h)− bC̃t

)σC

In the second stage, producers set the price of the intermediate good that maximises their

profits. The optimisation problem in this case reflects that prices are set in a staggered manner.

This means that every period a fraction (1− ξ) of firms receive a random signal and set prices

optimally
(
P̆t (f)

)
, while those firms who miss the signal set prices based on a rule of thumb

backward looking indexation scheme
(
P̆t (f) = Πι

t−1P̆t−1 (f)
)

. As explained in Christiano et al.

(2005), this pricing setup allows us to replicate the hump shaped response of inflation to the

monetary policy observed in the empirical section. The pricing problem is summarised by the
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following profit maximisation

max
P̆t(f)

Et

∞∑
j=0

Mt,t+j (βξ)j
[{

P̆t (f) Πι
t+j−1

P̃t+j
−MCt+j (f)

}
Ỹt+j (f)

]
(23)

subject to

Ỹt+j (f) =

(
j∏
s=0

Πι
t+s−1

Pt (f)

Pt+j

)−ε
Yt+j

Wage Determination: The wage is determined by solving a Nash bargaining problem be-

tween workers and firms that takes place in order to decide how to split the surplus produced by

a match (see Mortensen and Pissarides (1994) and Krause et al. (2008) amongst others). This

simple framework is commonly used in the literature and assumes that newly hired workers get

the existing wage, an assumption that is also supported by some empirical evidence (Galuscak

et al. (2012)). To set the problem we need to define the value of the firm:

J̃Ft = MCt
(1− φ) Ỹt

Lt
− W̃t + βEtMt+1 (1− δN) J̃Ft+1 (24)

On the other hand, the value of an employed and unemployed worker is given by:311

J̃Wt = W̃t − χ0Z̃
1−σC
t LσLt

(
C̃t − bC̃t−1

)σC
+βEtMt+1

{[
1− δN

(
1−QU

t+1

)]
J̃Wt+1 + δN

(
1−QU

t+1

)
J̃Ut+1

}
(25)

J̃Ut = B̃t + βEtMt+1

{
QU
t+1J̃

W
t+1 +

(
1−QU

t+1

)
J̃Ut+1

}
(26)

and the wage results from the following bargaining problem:

W̃Nash
t = argmax

W̃t

(
J̃Wt − J̃Ut

)η (
J̃Ft

)1−η
(27)

Similarly to Krause and Lubik (2007) and Leduc and Liu (2016), we allow for real wage rigidity

via the following norm:

W̃t = W̃ ιw
t−1

(
W̃Nash
t

)1−ιw
(28)

Government and Aggregation: The government in this economy runs a balanced budget:

P̃tG̃t +Dt−1 + (1− Lt) P̃tB̃t = Tt +
Dt

Rt

(29)

where G̃t = gtỸt is government consumption and gt = g
(
gt−1

g

)ρg
eσgωg,t is the of the government

share in the economy. Monetary policy is set based on Taylor Type rule:

log (Rt) = rt = ρRrt−1 + (1− ρR)

{
ζΠ log

(
Πt

Π

)
+ ζu log

(ut
u

)}
+ ωR,t (30)

where Π is the inflation target, ρR is the interest rate smoothing parameter, ζΠ and ζY d are the

policy reaction coefficients to inflation and demand growth, respectively, and ωR,t = ρεRωR,t−1+
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σRεR,t is the monetary policy shock. Finally, the market clearing condition is derived after a

number of simple substitutions (see the Section 5.1, pages 21-22):

Z̃tL
1−φ
t Kφ

∆t

= C̃t + G̃t + Ψ̃t (31)

The de-trended and steady-state calculations are discussed in the technical appendix (Section312

5.1, pages 21-22).313

4.2 Heteroscedasticity314

The novel part of our analysis is that we focus on the volatility implications of the monetary

policy shock. With the term volatility or measured uncertainty we refer to the heteroscedastic

response of a variable, say xt, defined as in Basu and Bundick (2017) and Swanson (2015)

σ̂x,t = 100 ln

(
σx,t
σx

)
(32)

where

σx,t = vart (xt) = Et(xt+1 − Etxt+1)2 (33)

and σx is the stochastic steady-state standard deviation of the variable xt.
9 It is perhaps315

important to highlight that equation (33) coincides with the definition of volatility studied by316

Jurado et al. (2015). As explained in Rudebusch and Swanson (2012) and Swanson (2015),317

the higher moments of economy’s endogenous state vector are time-varying (σx,t) due to (i)318

the additive separability of consumption in the period utility function and (ii) the Epstein-319

Zin preferences. According to these authors the additive separability property of consumption320

makes the model non-homogeneous and this is what induces a small degree of heteroscedasticity,321

which is further enhanced by the risk aversion parameter (γ).322

The economic intuition behind these two technical conditions is actually quite simple. The323

additive separability property of consumption makes agents’ responses to economic shocks324

depend on the current level of on the state of the economy. For instance, when the current325

level of consumption is low (or the marginal utility of consumption is high) then consumption326

uncertainty is higher (relative to the case where the initial level of consumption/output is327

high) and this reflects agents’ elevated concerns about future shocks. As an adverse shock that328

lowers output further is going to induce a proportionally a larger reduction in utility relative329

to the case where the initial level of consumption/output was high. This channel is the further330

enhanced by Epstein-Zin preferences as the risk parameter reflects how much agents dislike331

9In the text below, we use the term uncertainty to refer to ‘measured uncertainty’.
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elevated uncertainty (Rudebusch and Swanson (2012)).332

Loosely speaking, agents in this economy price adverse shocks more heavily in ‘bad times’333

when compared to ‘good times’. This behaviour induces a wedge between the mode of the334

distribution xt and its mean as the latter captures these elevated concerns. Figures 5 illustrates335

this phenomenon. We use the model developed in this study (and the estimates discussed336

below) to simulate the data. Panel A of Figure 5 shows the probability density function337

of unemployment rate, unemployment expected duration, labour income, GDP and annual338

inflation as deviations from their stochastic steady states when the monetary policy shock is339

drawn from its estimated distribution.10 It is apparent that even under one standard deviation340

monetary policy shocks the probability density functions displays a ‘downward risk’, meaning341

that the average unemployment rate and the average expected duration of being unemployed342

are higher than their modes. Similarly, the average labour income, GDP and inflation fall to left343

of their modes. We repeat the same exercise in Panel B of Figure 5, however, we apply larger344

shocks this time (two times their standard deviation). As expected, the asymmetry becomes345

more pronounced indicating that agents economic behaviour is also a function of the state of346

the economy.347

The above simulations illustrate that under certain conditions monetary policy actions can348

have quite dramatic implications for the economy; for instance, unemployment rate could rise349

6 percentage points (pps) above the stochastic steady state, while inflation, GDP and labour350

income could fall 10% below the stochastic steady state, respectively. These adverse economic351

conditions are taken into account by agents when they form their decisions optimally and try352

to minimise their exposure to these downward risks.353

Monetary Policy and Volatility: To understand the role of monetary policy in inducing354

volatility it is instructive to consider the solution of the model approximated to the third order:355

zt = hzzt−1 +Hzz (zt−1 ⊗ zt−1) +Hzzz (zt−1 ⊗ zt−1 ⊗ zt−1)

+
3

6
hσσzσ

2zt−1 +
1

2
hσσσ

2 +
1

2
hσσσσ

3 + σηεt (34)

10Both the non-stationary productivity and government spending shocks are switched off for the rest of the
analysis. To be precise, although the values of the latter two shocks are set to zero, their standard deviations
are not. This affects peoples average behaviour as their expectations are based on the distribution of the two
shocks and not just on their realisation.
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where zt is the state vector of the economy and εt is the vector of structural shocks. The

matrices hz, Hzz, Hzzz, hσσz, hσσ and hσσσ denote the derivatives of the system with respect to

the state and/or shock vectors for different orders and evaluated at the non-stochastic steady-

state (see Andreasen et al. (2018) for the exact details). The one step ahead expectation of

this expression (ignoring constant terms for simplicity) can be written as:

Etzt+1 = hzzt +Hzzvart (zt) +Hzzzskewt (zt) (35)

where vart (zt) = Et (zt ⊗ zt) is the column stacked covariance matrix of zt at time t and356

skewt (zt) = Et (zt ⊗ zt ⊗ zt) is approximately the column stacked skewness matrix of zt at357

time t.11 Thus, along with the current state, zt, the higher moments of the system directly358

affect the one step ahead expectation and these moments are time-varying due to the speci-359

fication of the agents’ preferences. As discussed earlier, Epstein-Zin agents have a preference360

for an early resolution of uncertainty with the magnitude of this preference determined by the361

terms Hzzvart (zt) + Hzzzskewt (zt). In other words, this preference for an early resolution of362

uncertainty is a function of the location of the current state of the economy relative to its363

distribution. Moreover, the non-linearity of equation 35 implies that the agents’ aversion to364

uncertainty is larger when the shock is negative and pushes the economy below the steady365

state.12
366

Because of this non-linearity, when a contractionary monetary policy shock occurs, agents367

start forming expectations that are more heavily influenced by the possibility of future adverse368

shocks. This asymmetry increases the dispersion of their forecast errors meaning that volatility369

(see equation 33) increases. Loosely speaking, as the economy contracts, households and firms370

start hedging against the worst case scenario through their expectations. While this reduces371

their exposure, the dispersion of their forecast errors increases as they are concerned about372

events that do not necessarily arise.373

Table 2 compares a set of data estimated disaster statistics reported by Petrosky-Nadeau et al.374

(2018), with those predicted by the model that is subject to a monetary policy shock. The375

aim of this second exercise is to use data evidence to quantify the risks to which the agents in376

11This term capture information about the tails of the distribution but, unlike the skewness, it is not nor-
malised by the standard deviation.

12We illustrate this point numerically in the technical appendix by comparing the responses to positive and
negative policy shocks in the model (Figure 10, page 35). The absolute contribution of uncertainty to these
responses is higher if the shock is negative and these concerns intensify with the magnitude of the shock.
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this economy are exposed and, consequently, to understand why they want to hedge against377

them. As in Petrosky-Nadeau et al., we apply the peak-to-trough method discussed in Barro378

and Ursua (2008) to to identify rare disasters.The disasters are defined as cumulative fractional379

declines in per capita output of at least 10%.380

When the economy is exposed to one standard deviation policy shocks, then the disaster proba-381

bility is significantly less than 1%. However, if this highly unlikely event ever takes place then it382

lasts for almost 7 years and growth reduces by almost 12%.13 Not surprisingly, when the econ-383

omy is perturbed with larger policy shocks, then the disaster probability and the size of output384

collapse increase significantly and non-linearly, while the duration of disaster state decreases:385

The probability of disaster and its size rise to 5% and 14% respectively, while the duration386

of the disaster shortens to 4 years. Unlike in the case of one standard deviation shocks these387

estimates are significant closer to those obtained using actual data. Finally, the comparison of388

the second and third columns of Table 2 illustrates again that agents’ responses to monetary389

policy shocks are different at different stages of the cycle.390

4.3 Calibration391

The model is estimated using limited information impulse response matching techniques (Chris-392

tiano et al. (2005), Christiano et al. (2010)). However, the value of a small number of parameters393

is decided prior to the estimation. To be precise, the share of capital in the production (φ)394

and its depreciation rate have been calibrated to 0.36 and 0.025, numbers typically used in the395

literature (Christiano et al. (2005)). The steady-state unemployment (u) is set equal to 5.8%396

(the sample mean), while the steady-state value of output (y) to 1. The time discount factor (β)397

equals 0.995, while the both the steady-state value of inflation and productivity growth have398

been set to 2%. The last three parameters imply that the non-stochastic steady-state of the399

annual policy rate is 6%. Similar to Smets and Wouters (2007), the government spending and400

investment to GDP ratios are calibrated to 0.18 and 0.2, respectively. Finally, the steady-state401

value of the probability filling the vacancy is 70% (Hagedorn and Manovskii (2008)).402

The parameters σC , σL, b, γ, ξ, ι, ζΠ, ζu, ζR, ε, µ, η, δN , B̄ = B
WL

, ιw, Φ
Y

, ρεZ , ρεG , ρεR ,403

13In the online Appendix (Section 5.3) we develop a version of the model without search and matching real
labour frictions but with sticky nominal wages. Although, this version of the model replicates the cyclical
dynamics remarkably well, it fails to produce an endogenous disaster even when the economy is hit with 2
standard deviation policy shocks.
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σεZ , σεG and σεR are selected to match the nonlinear VAR responses to an identified monetary404

policy shock using the benchmark identification scheme. The model is solved using third-order405

perturbation methods and the impulse responses are calculated relative to the stochastic steady406

state (Cacciatore and Ravenna (2016)).14
407

The objective of the estimation is for the model to be able to replicate not only the empirical408

responses to a monetary policy shock illustrated in Figure 1 but the also the contribution409

of the ‘uncertainty channel’ to these responses. This is defined as the difference between the410

unrestricted and restricted responses plotted in Figure 4 and discussed in Section 3.2. The latter411

set of targets ensures that the parameters that control the size of the uncertainty channel in the412

model are calibrated carefully and the predictions of the model about the importance of that413

channel are in line with those observed in the data.15 As it will become apparent later in our414

analysis, the last set of moments acts also a natural metric that allows us to assess which part415

of the transmission mechanism is responsible for the existence of the endogenous uncertainty416

channel. The process used to estimate the DSGE contributions of uncertainty follows closely417

the steps employed for the empirical models. To be precise, the uncertainty contribution is418

defined as the difference between the responses obtained using the third order solution model419

minus those by using only the first order component of the solution.420

4.4 Estimation Results421

Figure 5 in the online appendix (page 30) illustrates the ability of the theoretical model to422

replicate the identified empirical responses (Panel A) as well as the contribution of the un-423

certainty channel to these responses (Panel B), respectively. Even though the literature has424

questioned ability of a “simple” search and matching New Keynesian model to jointly replicate425

the dynamics of both unemployment and inflation (see the discussion in Krause and Lubik426

(2007) and Gertler et al. (2008)), our estimated model seems to be robust to this criticism as427

it reproduces the data dynamics remarkably well.428

In this study, however, our results go further. The model is capable of replicating: (i) the VAR429

based stochastic volatility responses to a level monetary policy shock and, (ii) the empirically430

14No pruning is applied in our calculations, which have been implemented using Dynare 4.4.3. The model
and replication files can be downloaded from authors’ webpages. We also check if our results are robust if we
apply Koop et al. (1996) methodology to calculate the IRFs and we find that our results are almost identical.
We choose to employ the first method to calculate the IRFs as it dramatically reduces the estimation time.

15We would like to thank an anonymous referee for proposing this exercise.
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identified contribution of the uncertainty channel.16 This is a new set of results that further431

supports the analysis of Petrosky-Nadeau et al. regarding the aptitude of DSGE models with432

search and matching labour market frictions of reproducing highly non-linear dynamics seen in433

the data.434

Returning to the discussion of the estimated parameters (Table 1, online appendix, page 31),435

the remaining discussion illustrates that the model can replicate the data features mentioned436

in the previous paragraph by relying on a set of parameter values that have been extensively437

used in the literature. Perhaps the less common parameter estimate is that for the Epstein-438

Zin risk coefficient (γ = 115.57) with the estimated value indicating that agents dislike future439

uncertainty. This value is similar to the one used in the Rudebusch and Swanson (2012) and440

Swanson (2015). As explained in Swanson (2015) – and it is further illustrated in the next441

section – this parameter only has a small effect on the stochastic volatility of macroeconomic442

variables and therefore the large magnitude is innocuous.17
443

In terms of the utility kernel, the model demands some curvature (σC = 2.15, Chen et al.444

(2012)) and (σL = 4.00, Christiano et al. (2010)) in order to reconcile the predicted dynamics445

with those in the data. The degree of consumption smoothing (b = 0.57), is close to the446

estimates reported by Christiano et al. (2005).447

The parameters that govern the labour market block of the model, the Cobb-Douglas matching448

parameter (µ = 0.40), the job separation rate (δN = 0.18), the income replacement ratio449

(100B̄ = B
WL

= 54%) and the steady-state, the bargaining power for workers (η = 0.50) search450

and matching friction (100 Φ
Y

= 1%) are again consistent with those in the literature (see for451

instance, Krause and Lubik (2007) and Krause et al. (2008), Gertler et al. (2008) and Hagedorn452

and Manovskii (2008) among others).453

Consistent with the analysis Krause and Lubik (2007) and Leduc and Liu (2016) (among454

others), the model requires a high degree of real wage rigidity (ιw = 0.89) in order to be able to455

16While the VAR-based volatility responses are all hump shaped, this feature is less evident in the model.
This is likely to be because the model incorporates simplifying assumptions and does not capture all aspects of
the data.

17This is not the case for asset price variables as the they are functions of the stochastic discount factor. The
risk parameter has a great influence on the second term of the stochastic discount factor that captures how
agents ‘trade’ uncertainty across time. As it is discussed briefly in the next section, we discovered that the risk
parameter variations have perhaps a larger impact on the stochastic steady-state than the cyclical dynamics
regarding the macro variables.
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match the volatility of unemployment in the data (Figure 5, Panel A, page 30, online appendix).456

As explained by these authors and it can be seen from equation (28), under this calibration457

paid wages decouple from productivity and this leads to high surplus for firms (relative to the458

situation of no real wage rigidity) stimulating vacancy creation.459

Similar to Christiano et al. (2005) a high degree of price indexation (ι = 0.72) and a small460

probability of resetting prices optimally (1− ξ = 0.03) are needed for the model to match the461

response of inflation after a monetary policy shock. Furthermore, the steady-state value of462

firms’ markup is 50% (ε = 3.0) a value similar to Smets and Wouters (2007) and Gertler et al.463

(2008). Finally, the estimates of the policy reaction coefficients are similar to those reported in464

the literature (Krause et al. (2008), Gertler et al. (2008), Leduc and Liu (2016)).465

4.5 Impulse Response Analysis466

The aim of this section is to discuss the transmission mechanism of monetary policy shocks to467

macroeconomic volatility. We illustrate this via impulse response analysis. We first describe468

the results in the benchmark model and then investigate the features of the model that drive469

the transmission of the shock.470

4.5.1 Benchmark results471

The blue solid line in Panel A of Figure 6 shows the agents’ responses to a monetary policy472

shock estimated using the benchmark version of the model.473

Households: Starting from the household side, as consumption moves away from its steady-474

state level due to the adverse policy shock, agents start becoming concerned about the fact that475

another adverse economic shock is going to take their current consumption even further away476

from its steady-state. For the agents, this is more costly in utility terms than if consumption had477

been above its steady-state prior to the adverse shock (see Rudebusch and Swanson (2012) and478

Swanson (2015)). To insure themselves against this downward risk they act in a precautionary479

manner and reduce current consumption by a larger amount (Basu and Bundick (2017) and480

Fernandez-Villaverde et al. (2015)).481

Furthermore, in an economy with search and matching frictions, the agents face additional482

risks: i.e. the risk of job separation and unemployment. This enhances households’ concerns483
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about their expected consumption plan and intensifies their desire to hedge against this uncer-484

tainty. An adverse shock that reduces consumption when the latter is already below its steady485

state would have a larger detrimental impact when agents are unemployed. We consider the486

importance of these risks below.487

Firms: Firms are owned by households and so they use the same stochastic discount factor488

to weight expected profits. This means that a profit reduction is more costly when the pre-489

vious period profits had been below rather than above their steady-state. As it is explained490

carefully in Swanson (2015), these preferences induce entrepreneurs to devote more attention491

to generating profits in bad times. However, firms who face adverse economic conditions are492

exposed to: (i) paying a wage higher than worker’s productivity (taking into account future493

forgone costs of hiring) due to high wage rigidity and to, (ii) low expected demand for their494

output.495

To mitigate these exposures firms pause hiring. As explained in Bloom (2009) and Leduc and496

Liu (2016) filling a vacancy is an irreversible decision that has long-term implications. There-497

fore, entrepreneurs act more cautiously and post even less vacancies pushing up unemployment.498

Moreover, the firm recognises that a lower price could lead to a higher demand for its output499

and, consequently, more profits. Despite the fall in the marginal cost (caused by the fact that500

supply exceeds labour demand), the firm has an incentive to a set an even lower price during501

bad times in order to secure more demand and, consequently, hedge itself against future more502

adverse economic outcomes.503

As inflation falls and monetary authorities reduce the policy rate only gradually (due to their504

preferences of avoiding injecting too much interest rate volatility) the real interest rate remains505

persistently positive and this enhances the desire for saving.506

Impact on volatility: As shown in the last row of Panel A of Figure 6, volatility increases507

after a monetary policy shock. As discussed in Section 4.2 above, the volatility of a variable508

can be viewed as a wedge between the mean and the mode of the distribution. When the509

adverse monetary policy shock occurs, agents in the economy form expectations about future510

events. Households take into account the probability of longer unemployment spells during511

which they may be exposed to additional negative shocks. Similarly, firms’ expectations about512
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profits are skewed downwards. However, as the time evolves and no further shocks are realised513

this wedge between expectations and what actually happens eases, and so does the volatility514

in the economy.515

Contribution of uncertainty: The blue circle line in Panel B of Figure 6 isolates the con-516

tributions of uncertainty in the transmission of monetary policy. The uncertainty contribution517

is defined as the difference between the response derived by using the full third order solution of518

the model minus the responses produced using only the first term of that solution. For instance,519

unemployment increases 0.3 pps after one standard deviation monetary policy shock (Panel A520

of Figure 6, blue solid line/left y-axis) and 1/3 (30%) of this increase is due to the uncertainty521

(Panel B of Figure 6, blue circle line/left y-axis). Furthermore, uncertainty seems to account522

for almost 50% of the output, labour income and inflation fall. This exercise reveals that: (i)523

the endogenous uncertainty channel plays a sizeable role in the transmission of the monetary524

policy shock and (ii) it manifests itself as a demand type shock (Leduc and Liu (2016)).525

4.5.2 Key Features of the model526

It is interesting to consider the features of the model that drive the impact of monetary policy527

on second moments. In particular, the model contains three ingredients that play a role: (1)528

Search and Matching labour market frictions, (2) interest rate smoothing by the monetary529

authorities and (3) Epstien-Zin preferences. In order to gauge the role of these features of the530

model, we derive the impulse responses under the counterfactual scenario where these channels531

are switched off one by one.532

Labour Market Frictions We pursue two exercises: (i) we consider what happens when533

non-stochastic steady-state probability of finding a job (QU) is (almost) equal to one (or the534

non-stochastic steady-state of unemployment is almost equal to zero) and (ii) what happens535

when the friction is removed completely but nominal wages adjust only gradual (sticky nominal536

wages, Christiano et al. (2005), Smets and Wouters (2007)). Due to the space required for the537

development of the second model, the latter exercise is conducted in the online Appendix538

(Section 5.3), but the intuition of the results coincides with the first experiment and it is,539

therefore, discussed here briefly.540

Panel A of Figure 6 compares the agents’ responses to a monetary policy shock derived by the541
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benchmark version of the model (blue solid line) against the responses when implicitly there is542

no risk that agents will ever become unemployed (QU = 1, red dashed line).18 Panel B of Figure543

6 on the other hand identifies the contribution of the uncertainty channel for both versions of544

the model. Without the search and matching labour market real friction the contribution of the545

endogenous uncertainty channel to the economy is substantially smaller (red cross line/right546

y-axis). This evidence seems to indicate that households fear that they can remain unemployed547

for an extended period of time (the expected average duration is given by 1
1−(1−QU )

). Their548

fear is magnified by the possibility that, during this period, another adverse shock that moves549

their consumption away from its steady-state might arrive. To insure themselves against this550

uncertainty, they reduce consumption by more (relative to the situation where they move from551

unemployment to employment almost instantaneously) when the monetary shock takes place.552

We develop in the online appendix (Section 5.3) a version of the model without search and553

matching frictions but with sticky nominal wages (Christiano et al. (2005), Smets and Wouters554

(2007)) and Epstein-Zin preferences (SW). The estimated version of the SW model again repli-555

cates the cyclical responses remarkably well. However, the steady-state value of the output556

stochastic volatility is almost zero and the model fails to produce distribution skewness and557

endogenous disasters.558

These two quite different exercises seems to converge to the same conclusion that search and559

matching frictions are important. This is a result that seems to go hand in hand with the finding560

of the heterogenous agents literature. To be precise, Ravn and Sterk (2017) and Den Haan561

et al. (2018) (amongst others) argue convincingly about the necessity of incorporating search562

and matching friction (along with nominal price or/and wage rigidities) into these incomplete563

markets model in order to produce quantitative sizeable results without replying on large and564

very persistent shocks. It also coincides with the analysis of Petrosky-Nadeau et al. (2018),565

who argue that DSGE models with search and matching frictions can generate endogenous566

disasters.567

Interest Rate Smoothing Taking the real labour frictions as given, we consider how discre-568

tionary monetary actions could cause uncertainty to increase endogenously and significantly.569

The systematic part of the monetary policy consists of the two parts: (i) the response to devia-570

18This is implemented in the model by lowering the non-stochastic steady-state unemployment rate to 0.01%
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tion from FED’s inflation and unemployment gap objectives and (ii) the interest rate smoothing.571

Our investigation seems to suggest that it is the policymaker’s desire to ‘smooth’ changes in572

the policy rate that actually causes uncertainty to rise after a monetary policy shock.19 To be573

precise, when the interest rate smoothing coefficient is set to zero (ρR = 0), the uncertainty574

channel disappears and the impact of monetary policy on second moments is close to zero. (Fig-575

ure 7). This happens as the lack of preference for interest rate smoothing allows authorities576

to loosen policy very quickly in order to restore both the inflation and unemployment targets.577

In other words, agents do not seem to be particularly concerned about the ability of monetary578

authorities to discretionary deviate from their objective function as long as they can reverse579

their actions and restore economy’s steady-state.580

Epstein-Zin Risk Coefficient Figure 8 compares the responses (Panel A) and the uncer-581

tainty contributions (Panel B) in the benchmark case and the counterfactual case where the582

risk coefficient is set to zero (γ = 0). With γ = 0 the importance of the endogenous uncertainty583

channel declines and the uncertainty contributions are substantially smaller. Moreover, the584

response of volatility in the counterfactual case is smaller than the benchmark case.585

However, these results also suggest that in relative terms the dramatic reduction in γ from 115586

to 0 does not lead to effects that are extreme. As the economies’ agents have a high desire of587

early resolution of future uncertainty, the central bank is expected to keep policy expansionary588

for longer to meet its objectives. As a result, the long-term interest rate falls by more than 30589

bps and stays below its stochastic steady-state for more than a year. Finally, this exercise is an590

additional evidence in favour of endogenous uncertainty acts as a demand channel (shock).20
591

5 Conclusion592

This study investigates the response of macroeconomic volatility to an unexpected increase in593

the policy rate. For this purpose we develop an empirical model that allows us to estimate the594

response of macroeconomic volatility to a monetary policy shock. To investigate the transmis-595

19In the online Appendix (Section 5.1) we illustrate that if the reaction coefficient to unemployment gap is
increased beyond empirically plausible values (such as greater than one) then the uncertainty channel diminishes
significantly. Although, this simulation lacks empirical support (as we do not observed such high values for ζu
in the literature) the results further enforce the message of this paragraph. The higher policy response to
unemployment countervails the smoothing parameter and the policy rate is decreased faster in order to support
the recovery of the economy.

20In the online appendix (Section 5.1) we investigate what happens to the economy when the inflation target
increases from 2% to 4%. We find that the uncertainty effects from this policy change are small.

26



sion channel of the shock, we build a simple New Keynesian model, with search and matching596

labour frictions and Epstein-Zin preferences.597

The empirical model suggests that a 100 basis points increase in the policy rate causes un-598

employment and inflation volatility to rise by around 10% above its unconditional value. The599

theoretical model has been calibrated to match the SVAR responses. Simulations from the the-600

oretical model suggest that it is the coexistence of agents’ fears about being prolonged unem-601

ployment and monetary authorities’ desire for gradual policy adjustments that causes volatility602

to increase to levels observed empirically. In other words, households understand the risks of603

becoming unemployed and the fact that during the unemployment spells additional adverse604

shock may occur. However, it is the combination of these risks together with the policy-rate605

smoothing parameter that causes monetary policy to have significant volatility effects and not606

the shock per-se. When these two conditions pre-exist, only then the Epstein-Zin preferences607

play a significant role.608
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Table 2: Disaster Statistics
Metrics Data 1 Standard Deviation 2 Standard Deviation

Probability 7.83 0.30 4.55
Size 21.99 11.84 14.46
Duration 3.72 6.35 3.76

Notes: The data disaster statistic estimates are those reported by Petrosky-Nadeau et al. (2018) (Table 4, pp.

2227). Starting from the stochastic steady state, the model is simulated for 50000 periods. Similar to Petrosky-

Nadeau et al. (2018) , we time-aggregate output into annual observations, and apply the peak-to-trough method

to identify disasters as cumulative fractional declines in output of at least 10%. The disaster probabilities and

average size are in percent, and the average duration is in terms of years.
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Figure 4: Impulse response to a monetary policy shock from the benchmark and restricted
models

Notes: The light shaded area is the 68% error band while the dark shaded area is the 90% error band from

the benchmark model. The thick black line shows the median response from the restricted model.
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Figure 5: Downward Risk

Panel A: 1 Standard Deviation Shocks

Panel B: 2 Standard Deviation Shocks

Notes: Starting from the stochastic steady state, the model is simulated for 50000 periods. The histogram

illustrates the distribution of xt as deviation from its stochastic steady-state. Unemployment and inflation are

expressed in percentage points (x-axis), expected unemployment duration is measured in quarters, while the

GDP and labour income are defined as percentage deviations.
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Figure 6: Search and Matching Frictions

Panel A: Impulse Responses

Panel B: Uncertainty Contribution

Notes: The blue solid (Panel A) and blue circle (Panel B) line (left y-axis) represents the benchmark version

of the model (u = 5.8% or QU = 63%), while the red dashed (Panel A) and red cross (Panel B) line (right

y-axis) is the responses of the model when the unemployment rate is set to (almost) zero or the probability of

finding a job is (almost) one (u = 0 or QU = 100%). Rates are reported in annual basis points, inflation in

annual percentage rates, the job filling probability in percentage points, unemployment duration in quarters.

The responses are calculated relative to the stochastic steady state. Panel B: The uncertainty contribution is

defined as the difference between the response derived by using the third minus the responses produced using

only the first order solution of the model.
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Figure 7: Policy Rate Smoothing Preferences

Panel A: Impulse Responses

Panel B: Uncertainty Contribution

Notes: The blue solid (Panel A) and blue circle (Panel B) line (left y-axis) represents the benchmark version

of the model (ρR = 0.71), while the red dashed (Panel A) and red cross (Panel B) line (right y-axis) denotes

the responses of the model when the interest rate smoothing parameter is set to zero (ρR = 0). Rates are

reported in annual basis points, inflation in annual percentage rates, the job filling probability in percentage

points, unemployment duration in quarters. The responses are calculated relative to the stochastic steady state.

Panel B: The uncertainty contribution is defined as the difference between the response derived by using the

third minus the responses produced using only the first order solution of the model.
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Figure 8: Epstein-Zin Risk Coefficient

Panel A: Impulse Responses

Panel B: Uncertainty Contribution

Notes: The blue solid (Panel A) and blue circle (Panel B) line (left y-axis) represents the benchmark version

of the model (γ = 115.6), while the red dashed (Panel A) and red cross (Panel B) line (right y-axis) denotes the

responses of the model when the Epstein-Zin Risk Coefficient is set to zero (γ = 0). Rates are reported in annual

basis points, inflation in annual percentage rates, the job filling probability in percentage points, unemployment

duration in quarters. The responses are calculated relative to the stochastic steady state. Panel B: The

uncertainty contribution is defined as the difference between the response derived by using the third minus the

responses produced using only the first order solution of the model.
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