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Abstract: As decarbonisation progresses and conventional thermal generation gradually gives way1

to other technologies including intermittent renewables, there is an increasing requirement for system2

balancing from new and also fast-acting sources such as battery storage. In the deregulated context3

this raises questions of market design and operational optimisation. In this paper we assess the4

real option value of an arrangement under which an autonomous energy-limited storage unit sells5

incremental balancing reserve. The arrangement is akin to a perpetual American swing put option6

with random refraction times, where a single incremental balancing reserve action is sold at each7

exercise. The power used is bought in an energy imbalance market (EIM), whose price we take as a8

general regular one-dimensional diffusion. The storage operator’s strategy and its real option value9

are derived in this framework by solving the twin timing problems of when to buy power and when10

to sell reserve. Our results are illustrated with an operational and economic analysis using data from11

the German Amprion EIM.12

Keywords: Multiple optimal stopping; general diffusion; real option analysis; energy imbalance13

market14

1. Introduction15

In today’s electric grids, power system security is managed in real time by the system operator,16

who coordinates electricity supply and demand in a manner that avoids fluctuations in frequency or17

disruption of supply (see, for example, New Zealand Electricity Authority (2016)). In addition the18

SO carries out planning work to ensure that supply can meet demand, including the procurement19

of non-energy or ancillary services such as operating reserve, the capacity to make near real-time20

adjustments to supply and demand. These services are provided principally by network solutions such21

as the control of large-scale generation, although from a technical perspective they can also be provided22

by smaller, distributed resources such as demand response or energy storage (National Grid plc (2016);23

Xu et al. (2016)). Such resources have strongly differing operating characteristics: when compared to24

thermal generation, for example, energy storage is energy limited but can respond much more quickly.25

Storage also has important time linkages, since each discharge necessitates a corresponding recharge26

at a later time.27

The coming decades are expected to bring a period of “energy transition” in which markets for28

ancillary services will evolve, among other highly significant changes to generation, consumption29

and network operation. The UK government, for example, has an ambition that “new solutions such30

as storage or demand-side response can compete directly with more traditional network solutions” (UK Office31

of Gas and Electricity Markets (2017, p. 29)). In harmony the UK System Operator National Grid32

has recently declared its intention to “create a marketplace for balancing that encourages new and existing33
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providers, and all new technology types” (National Grid plc 2017). In anticipation of changes such as these,34

we will examine the participation of autonomous energy storage in a future marketplace for balancing.35

Operating reserve is typically procured via a two-price mechanism, with a reservation payment36

plus an additional utilisation payment each time the reserve is called for (Ghaffari and Venkatesh37

2013; Just and Weber 2008). Since the incentivisation and efficient use of operating reserve for system38

balancing is of increasing importance with growing penetration of variable renewable generation39

(King et al. 2011), several system operators have recently introduced real-time energy imbalance markets40

(EIMs) in which operating reserve is pooled, including in Germany (Ocker and Ehrhart 2017) and41

California (CAISO 2016; Lenhart et al. 2016). Such markets typically involve the submission of bids42

and offers from several providers for reserves running across multiple time periods, which are then43

accepted, independently in each period, in price order until the real-time balancing requirement is44

met. As one provider can potentially be called upon over multiple consecutive periods, this reserve45

procurement mechanism is not well suited to energy-limited reserves such as energy storage. However,46

storage-oriented solutions are being pioneered in a number of countries including a recent tender by47

National Grid in the UK (National Grid plc 2016) and various trials by state system operators in the48

US (Xu et al. 2016).49

This paper considers operating reserve contracts for energy limited storage devices such as50

batteries. In contrast to previous work on the pricing and hedging of energy options where settlement51

is financial (see for example Benth et al. (2008) and references therein), we take account of the physical52

settlement required in system balancing, considering also the limited energy and time linkages of53

storage. The potential physical feedback effects of such contracts are investigated by studying the54

operational policy of the storage or battery operator. To address the limited nature of storage, the55

considered reserve contract is for a fixed quantity of energy. In this way, each contract written can be56

physically covered with the appropriate amount of stored energy. We consider a simple arrangement57

where the system operator sets the contract parameters, namely the premia (the reservation and58

utilisation payments) plus an EIM price level x∗ at which the energy is delivered. That is, rather than59

being the outcome of a price formation process, these parameters are set administratively. Our analysis60

thus focuses exclusively on the timing of the battery operator’s actions. This dynamic modelling61

contrasts with previous economic studies of operating reserve in the literature, which have largely62

been static (Just and Weber 2008).63

To quantify the economic opportunity for the storage operator we use real options analysis. Real64

Options analysis is the application of option pricing techniques to the valuation of non-financial or65

“real” investments with flexibility (Borison 2005; Dixit and Pindyck 1994). Here the energy storage unit66

is the real asset, and is coupled with the timing flexibility of the battery operator, who observes the67

EIM price in real time. The arrangement may be viewed as providing the battery operator with a real68

perpetual American put option on the reserve contract described above. This option is either of swing69

type (called the lifetime problem in this paper) or of single exercise type (single problem). The feature that70

sets it apart from the existing literature on swing options is the random refraction time (c.f. Carmona71

and Touzi (2008)).72

A key question in Real Options analyses is the specification of the driving randomness (Borison73

2005). In this paper we model the EIM price to resemble the historical statistical dynamics of imbalance74

prices. In common with electricity spot prices and commodity prices more generally but unlike the75

prices of financial assets, imbalance prices typically exhibit significant mean reversion (Ghaffari and76

Venkatesh 2013; Pflug and Broussev 2009).77

To avoid trivial cases we impose the following, mild, sustainability conditions on the arrangement:78

S1. The battery operator has a positive expected profit from the arrangement.79

S2. The reserve contract cannot lead to a certain financial loss for the system operator.80

Condition S1 is also known as the individual rationality or participation condition (Fudenberg81

et al. 1991). While the battery operator is assumed to be a profit maximiser, the system operator may82

engage in the arrangement for wider reasons than profit maximisation. To acknowledge the potential83
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Figure 1. The sequence of actions A1–A3.

additional benefits provided by batteries, for example in providing response quickly and without84

direct emissions, condition S2 is less strict than individual rationality.85

By considering reserve contracts for incremental capacity (defined as an increase in generation86

or equivalently a decrease in load), we are able to provide complete solutions whose numerical87

evaluation is straightforward. Contracts for a decrease in generation, or an increase in load, lead to a88

fundamentally different set of optimisation problems which have been partially solved by Szabó and89

Martyr (2017).90

This study extends earlier work (Moriarty and Palczewski 2017) with two important differences.91

Firstly, the dynamics of the imbalance price is described there by an exponential Brownian motion.92

In the present paper, by employing a different methodological approach we obtain explicit results93

for mean-reverting processes (and also other general diffusions) which better describe the statistical94

properties of imbalance prices (Ghaffari and Venkatesh 2013; Pflug and Broussev 2009). Secondly, the95

present paper takes into account deterioration of the store. Without this feature it was found that the96

value of storage is either very small (corresponding roughly to writing a single reserve contract) or97

infinite.98

Through a benchmark case study we obtain the following economic recommendations. Firstly,99

investments in battery storage to provide reserve will be profitable on average for a wide range of100

the contract parameters. Secondly the EIM price level x∗ at which energy is delivered is an important101

consideration. This is because as x∗ increases, the EIM price reaches x∗ significantly less frequently102

and the reserve contract starts to provide cover for rare events, resulting in infrequent power delivery103

and low utilisation of the battery, which may make the business case unattractive. These observations104

suggest that the contractual arrangement studied in this paper is more suitable for the frequent105

balancing of less severe imbalance.106

1.1. Objectives107

Given the model parameters x∗, pc ≥ 0 and Kc ≥ 0, we wish to analyse the actions A1-A3 below108

(a graphical description of this sequence of actions is provided in Figure 1):109

A1 The battery operator selects a time to purchase a unit of energy on the EIM and stores it.110

A2 With this physical cover in place, the battery operator then chooses a later time to sell the111

incremental reserve contract to the system operator in exchange for the initial premium pc.112

A3 The system operator requests delivery of power when the EIM price X first lies above the level113

x∗ and immediately receives the contracted unit of energy in return for the utilisation payment114

Kc.115
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Thus, the system operator obtains incremental reserve from the arrangement in preference to using116

the EIM, when the EIM price is higher than the level x∗ specified by the system operator. When117

the sequence A1–A3 is carried out once, we refer to this as the single problem; when it is repeated118

indefinitely back-to-back we refer to it as the lifetime problem.119

In the lifetime problem, because storage is energy limited, action A3 must be completed before120

the sequence A1–A3 can begin again. Thus if the arrangement is considered as a real swing put option,121

the time between A2 and A3 is a random refraction period during which no exercise is possible. Note122

that after action A3, the battery operator will perform action A1 again when the EIM price has fallen123

sufficiently. Mathematically, therefore, we have the following objectives:124

M1 For the single and lifetime problems, find the highest EIM price x̌ at which the battery operator may buy125

energy when acting optimally.126

M2 For the single and lifetime problems, find the expected value of the total discounted cash flows (value127

function) for the battery operator corresponding to each initial EIM price x ≥ x̌.128

We also aim to provide a straightforward numerical procedure to explicitly calculate x̌ and the value129

function (for x ≥ x̌) in the lifetime problem.130

1.2. Approach and related work131

We take the EIM price to be a continuous time stochastic process (Xt)t≥0. Since markets operate132

in discrete time this is an approximation, made for analytical tractability. Nevertheless it is consistent133

with the physical fact that the system operator’s system balancing challenge is both real-time and134

continuous.135

Mathematically the problem is one of choosing two optimal stopping times corresponding to the136

two actions A1 and A2, based on the evolution of the stochastic process X. (The reader is refered to137

Peskir and Shiryaev (2006, Chapter 1) for a thorough presentation of optimal stopping problems.) We138

centre our solution techniques around ideas of Beibel and Lerche (2000), who characterise optimal139

stopping times using the Laplace transforms of first hitting times for the process X (see for example140

Borodin and Salminen (2012, Section 1.10)). Methods and results from the single problem are then141

combined with a fixed point argument for the lifetime analysis.142

Our methodological results feed into a growing body of research on timing problems in trading.143

In a financial context, Zervos et al. (2013) optimise the performance of “buy low, sell high” strategies,144

using the same Laplace transforms to provide a candidate value function, which is later verified as145

a solution to certain quasi-variational inequalities. An analogous strategy in an electricity market146

using hydroelectric storage is studied in Carmona and Ludkovski (2010) where the authors use147

Regression Monte Carlo methods to approximately solve the dynamic programming equations for148

a related optimal switching problem. Our results differ from the above papers in two aspects. Our149

analysis is purely probabilistic, leading to arguments that do not refer to the theory of PDEs and150

quasi-variational inequalities. Secondly, our characterisation of the value function and the optimal151

policy is explicit up to a single, one-dimensional non-linear optimisation which, as we demonstrate in152

an empirical experiment, can be performed in milliseconds using standard scientific software. Related153

to our lifetime analysis, Carmona and Dayanik (2008) apply probabilistic techniques to study the154

optimal multiple-stopping problem for a general linear regular diffusion process and reward function.155

However the latter work deals with a finite number of option exercises in contrast to our lifetime156

analysis which addresses an infinite sequence of exercises via a fixed point argument. Our work thus157

yields results with a significantly simpler and more convenient structure.158

The contracts we consider have features in common with the reliability options used in Colombia,159

Ireland and the ISO New England market and currently being introduced in Italy (Mastropietro et al.160

2018). Reliability options pay an initial premium to a generator, usually require physical cover, and161

have a reference market price and a strike price which plays a similar role to x∗. Typically the strike162

price is set at the variable cost of the technology used to satisfy demand peaks, and the generator is163
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contracted to pay back the difference between the market price and the strike price in periods when164

energy is delivered and the market price is higher. However instead of being designed for system165

balancing, the purpose of reliability options is to ensure sufficient investment in generation capacity.166

The remainder of the paper is organised as follows. The mathematical formulation and main167

tools are developed in Section 2. In the results of Section 3 we show that, for a range of price168

processes X incorporating mean reversion, solutions for all initial values x can be obtained. Further169

an empirical illustration using data from the German Amprion system operator is provided and170

qualitative implications are drawn, while Section 5 concludes. Auxiliary results are collected in the171

appendices.172

2. Methodology173

2.1. Formulation and preliminary results174

In this section we characterise the real option value in the single and lifetime problems using the
theory of regular one-dimensional diffusions. Denoting by (Wt)t≥0 a standard Brownian motion, let
X = (Xt)t≥0 be a (weak) solution of the stochastic differential equation:

dXt = µ(Xt)dt + σ(Xt)dWt, (1)

with boundaries a ∈ R ∪ {−∞} and b ∈ R ∪ {∞}. The solution of this equation with the initial
condition X0 = x defines a probability measure Px and the related expectation operator Ex. We assume
that the boundaries are natural or entrance-not-exit, i.e. the process cannot reach them in finite time,
and that X is a regular diffusion process, meaning that the state space I := (a, b) cannot be decomposed
into smaller sets from which X cannot exit. The existence and uniqueness of such an X is guaranteed if
the functions µ and σ are Borel measurable in I with σ2 > 0, and

∀ y ∈ I, ∃ ε > 0 such that
∫ y+ε

y−ε

1 + |µ(ξ)|
σ2(ξ)

dξ < +∞, (2)

(see Karatzas and Shreve (1991, Theorem 5.5.15); condition (2) holds if, for example, µ is locally
bounded and σ is locally bounded away from zero). Necessary and sufficient conditions for the
boundaries a and b to be non-exit points, i.e., natural or entrance-not-exit, are formulated in Theorem
5.5.29 of the latter book. In particular, it is sufficient that the scale function

p(x) :=
∫ x

c
exp

(
−2

∫ z

c

µ(u)
σ2(u)

du
)

dz, x ∈ I, (3)

converges to −∞ when x approaches a and to +∞ when x approaches b. (Here c ∈ I is arbitrary and175

the condition stated above does not depend on its choice.) These conditions are mild, in the sense that176

they are satisfied by all common diffusion models for commodity prices, including those in Section 3.177

Denote by τx the first time that the process X reaches x ∈ I:

τx = inf{t ≥ 0 : Xt = x}. (4)

For r > 0, define

ψr(x) =

{
Ex{e−rτc}, x ≤ c,

1/Ec{e−rτx}, x > c,
φr(x) =

{
1/Ec{e−rτx}, x ≤ c,

Ex{e−rτc}, x > c,
(5)
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for any fixed c ∈ I (different choices of c merely result in a scaling of the above functions). It can be
verified directly that function φr(x) is strictly decreasing in x while ψr(x) is strictly increasing, and for
x, y ∈ I we have

Ex{e−rτy} =
{

ψr(x)/ψr(y), x < y,

φr(x)/φr(y), x ≥ y.
(6)

Since the boundaries a, b are natural or entrance-not-exit, we have ψr(a+) ≥ 0, φr(b−) ≥ 0 and178

ψr(b−) = φr(a+) = ∞ (Borodin and Salminen 2012, Section II.1).179

2.1.1. Optimal stopping problems and solution technique180

The class of optimal stopping problems which we use in this paper is

v(x) = sup
τ

Ex{e−rτϑ(Xτ)1τ<∞}, (7)

where the supremum is taken over the set of all (possibly infinite) stopping times. Here ϑ is the payoff
function and v is the value function. If a stopping time τ∗ exists which achieves the equality (7) we call
this an optimal stopping time. Also, if v and ϑ are continuous then the set

Γ := {x ∈ I : v(x) = ϑ(x)} (8)

is a closed subset of I. Under general conditions (Peskir and Shiryaev 2006, Chapter 1), which are181

satisfied by all stopping problems studied in this paper, τ∗ = inf{t ≥ 0 : Xt ∈ Γ} is the smallest182

optimal stopping time and the set Γ is then called the stopping set.183

Appendix A contains three lemmas providing a classification of solutions to the stopping problem184

(7) which will be used below.185

2.1.2. Single problem186

Let (Xt)t≥0 denote the EIM price. We will develop a mathematical representation of actions
A1–A3 (see Section 1.1) when only one reserve contract is traded. Considering A3, the time of power
delivery is the first time that the EIM price exceeds a predetermined level x∗:

τ̂e = inf{t ≥ 0 : Xt ≥ x∗}.

Given the present level x of the EIM price, the expected net present value of the utilisation payment
exchanged at time τ̂e can be expressed as follows thanks to (6):

hc(x) = Ex{e−rτ̂e Kc} =

Kc, x ≥ x∗,

Kc
ψ(x)
ψ(x∗) , x < x∗.

(9)

Therefore, the optimal timing of action A2 corresponds to solving the following optimal stopping
problem:

sup
τ

Ex{e−rτ
(

pc + hc(Xτ)
)
1τ<∞}.

Since the utilisation payment Kc obtained when the EIM price exceeds x∗ is positive and constant, as
is the initial premium pc, it is best to obtain these cashflows as soon as possible. The solution of the
above stopping problem is therefore trivial: the contract should be sold immediately after completing
action A1, i.e. immediately after providing physical cover for the reserve contract. Optimally timing
the simultaneous actions A1 and A2, the purchase of energy and sale of the incremental reserve
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contract, is therefore the core optimisation task. It corresponds to solving the following optimal
stopping problem:

Vc(x) = sup
τ

Ex{e−rτ
(
− Xτ + pc + hc(Xτ)

)
1τ<∞} = sup

τ
Ex{e−rτh(Xτ)1τ<∞}, (10)

where the payoff
h(x) = −x + pc + hc(x) (11)

is non-smooth since hc is non-smooth. The function Vc(x) is the real option value in the single problem.187

2.1.3. Lifetime problem formulation and notation188

In addition to having a design life of multiple decades, thermal power stations have the primary189

purpose of generating energy rather than providing ancillary services. In contrast electricity storage190

technologies such as batteries have a design life of years and may be dedicated to providing ancillary191

services. In this paper we take into account the potentially limited lifespan of electricity storage by192

modelling a multiplicative degradation of their storage capacity: each charge-discharge cycle reduces193

the capacity by a factor A ∈ (0, 1).194

We now turn to the lifetime problem. To this end, suppose that a nonnegative continuation value195

ζ(x, α) is also received at the same time as action A3. It is a function of the capacity of the store196

α ∈ (0, 1) and the EIM price x, and represents the future proceeds from the arrangement.197

The expected net present value of action A3 is now

hζ(x, α) := Ex{e−rτ̂e
(
αKc + ζ(Xτ̂e , Aα)

)
} =


(
αKc + ζ(x∗, Aα)

) ψ(x)
ψ(x∗) , x < x∗,

αKc + ζ(x, Aα), x ≥ x∗,
(12)

where A ∈ (0, 1) is the multiplicative decrease of storage capacity per cycle. Here the optimal timing
of action A2 may be non trivial due to the continuation value ζ(x, α). We will show however that for
the functions ζ of interest in this paper, it is optimal to sell the reserve contract immediately after action
A1, identically as in the single problem. The timing of action A1 requires the solution of the optimal
stopping problem

T ζ(x, α) := sup
τ

Ex{e−rτ
(
− αXτ + αpc + hζ(Xτ , α)

)
1τ<∞

}
. (13)

The optimal stopping operator T makes the dependence on ζ explicit: it maps ζ onto the real option
value of a selling a single reserve contract followed by continuation according to ζ. We define the
lifetime value function V̂ as the limit

V̂(x) = lim
n→∞

(T n0)(x, 1), (14)

(if the limit exists), where T n denotes the n-fold iteration of the operator T and 0 is the function198

identically equal to 0. Thus T n0 is the real option value of selling at most n reserve contracts under199

the arrangement. (Note that a priori it may not be optimal to sell all n contracts in this case, since it is200

possible to offer fewer contracts and refrain from trading afterwards by choosing τ = ∞.)201

Calculation of the lifetime value function requires the analysis of a two-argument function. We202

will show now that this computation may be reduced to a function of the single argument x. Define203

ζ0(x, α) = 0 and ζn+1(x, α) = T ζn(x, α). We interpret ζn(x, α) as the maximum expected wealth204

accumulated over at most n cycles of the actions A1–A3 when the initial capacity of the store is α.205
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Lemma 1. We have ζn(x, α) = αζ̂n(x), where ζ̂n(x) = ζn(x, 1). Moreover, ζ̂n(x) = T̂ n0(x), where

T̂ ζ̂(x) = sup
τ

Ex{e−rτ
(
− Xτ + pc + ĥζ̂(Xτ)

)
1τ<∞

}
, (15)

and

ĥζ̂(x) =


(
Kc + Aζ̂(x∗)

) ψ(x)
ψ(x∗) , x < x∗,

Kc + Aζ̂(x), x ≥ x∗.
(16)

Proof. The proof is by induction. Clearly, the statement is true for n = 0. Assume it is true for n ≥ 0.
Then

ζn+1(x, α) = T ζn(x, α) = α sup
τ

Ex{e−rτ
(
− Xτ + pc +

1
α

hζn(Xτ , α)
)
1τ<∞

}
,

and
1
α

hζn(x, α) = Ex{e−rτ̂e
(
Kc +

1
α

ζn(Xτ̂e , Aα)
)}

= Ex{e−rτ̂e
(
Kc + Aζ̂n(Xτ̂e)

)}
.

Hence, ζn+1(x, α) = αT̂ ζ̂n(x) = αζn+1(x, 1). Consequently, ζ̂n = T̂ n0.206

Assume that ζn(x, α) converges to ζ(x, α) as n→ ∞. Then, clearly, ζ̂n converges to ζ̂(x) = ζ(x, 1).
It is also clear that ζ is a fixed point of T if and only if ζ̂ is a fixed point of T̂ . Therefore, we have
simplified the problem to that of finding a limit of T̂ n0(x). The stopping problem T̂ ζ̂ will be called
the normalised stopping problem and its payoff denoted by

ĥ(x, ζ̂) =

−x + pc +
ψr(x)
ψr(x∗)

(
Kc + Aζ̂(x∗)

)
, x < x∗,

−x + pc + Kc + Aζ̂(x), x ≥ x∗.
(17)

In particular, T̂ 0 coincides with the single problem’s value function Vc.207

Notation. In the remainder of this paper a caret (hat) will be used over symbols relating to the
normalised lifetime problem:

V̂(x) = lim
n→∞

T̂ n0(x).

2.1.4. Sustainability conditions revisited208

The sustainability conditions S1 and S2 introduced in Section 1 are our standing economic209

assumptions. The next lemma, proved in the appendices, expresses them quantitatively. This makes210

way for their use in the mathematical considerations below.211

Lemma 2. When taken together, the sustainability conditions S1 and S2 are equivalent to the following212

quantitative conditions:213

S1*: supx∈(a,b) h(x) > 0, and214

S2*: pc + Kc < x∗.215

Notice that S1* is always satisfied when a ≤ 0.216

2.2. Three exhaustive regimes in the single problem217

In this section we consider the single problem. Recall that the sustainability assumptions, or218

equivalently assumptions S1* and S2*, are in force. For completeness the notation and general optimal219

stopping theory used below is presented in Appendix A.220

Since the boundary a is not-exit we have φr(a+) = ∞. When h is given by (11), the limit L of (39)
is then

Lc := lim sup
x→a

−x
φr(x)

. (18)
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Figure 2. Sensitivity of the expected value in the single problem with respect to the stopping boundary.
The EIM price is modelled as an Ornstein-Uhlenbeck process dXt = 3.42(47.66− Xt)dt + 30.65dWt

(time measured in days, fitted to Elexon Balancing Mechanism price half-hourly data from 07/2011 to
03/2014). The interest rate r = 0.03, power delivery level x∗ = 60, the initial premium pc = 10, and the
utilisation payment Kc = 40. The initial price is X0 is set equal to x∗.

It can also be verified that the analogous constant R defined in (40) in the appendices satisfies R < ∞221

since, by S2*, h is negative on [x∗, ∞). The following theorem completes our aim M2.222

Theorem 1. (Single problem) Assume that conditions S1* and S2* hold. With the definition (18) there are223

three exclusive cases:224

(A) Lc ≤ h(x)
φr(x) for some x =⇒ there is x̂ < x∗ that maximises h(x)

φr(x) , and then, for x ≥ x̂, τx̂ is optimal,
and

Vc(x) = φr(x)
h(x̂)
φr(x̂)

, x ≥ x̂. (19)

(B) ∞ > Lc >
h(x)
φr(x) for all x =⇒ Vc(x) = Lc φr(x) and there is no optimal stopping time.225

(C) Lc = ∞ =⇒ Vc(x) = ∞ and there is no optimal stopping time.226

Moreover, in cases A and B the value function Vc is continuous.227

Proof. By condition S1*, h(y) is positive for some y ∈ I and the value function Vc(x) > 0. For case A228

note first that the function h is negative on [x∗, b) by S2*, see (9) and (11). Therefore, the supremum of229

h
φr

is positive and must be attained at some (not necessarily unique) x̂ ∈ (a, x∗). The optimality of τx̂230

for x ≥ x̂ then follows from Lemma 6. Case B follows from Lemma 7 and the fact that Lc > 0. Lemma231

7 proves case C. The continuity of Vc follows from Lemma 8.232

The optimal strategy in case A is of threshold type. When an arbitrary threshold strategy τx̃ is233

used, the resulting expected value for x ≥ x̃ is given by φr(x)h(x̃)/φr(x̃). Figure 2 (whose problem234

data fall into case A) shows the potentially high sensitivity of the expected value of discounted cash235

flows for the single problem with respect to the level of the threshold x̃. It is therefore important in236

general to identify the optimal threshold accurately.237

We now show that for commonly used diffusion price models, it is case A in the above theorem238

which is of principal interest. This is due to the mild sufficient conditions established in the following239
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lemma which are satisfied, for example, by the examples in Section 3. Although condition 2(b) in240

Lemma 3 is rather implicit, it may be interpreted as requiring that the process X does not ‘escape241

relatively quickly to −∞’ (see Appendix D for a further discussion and examples) and it is satisfied,242

for example, by the Ornstein-Uhlenbeck process.243

Lemma 3. If condition S1∗ holds then:244

1. The equality Lc = 0 implies case A of Theorem 1.245

2. Any of the following conditions is sufficient for Lc = 0:246

(a) a > −∞,247

(b) a = −∞ and limx→−∞
x

φr(x) = 0.248

Proof. Condition S1∗ ensures that h takes positive values. Hence the ratio h(x)
φr(x) > 0 = Lc for some x.249

For assertion 2(a), recall from Section 2 that φr(a+) = ∞ since the boundary a is not-exit. Then we250

have Lc = lim supx→a(−x)/φr(x) = 0 as a > −∞. In 2(b), the equality Lc = 0 is immediate from the251

definition of Lc.252

Turning now to aim M1, we have253

Corollary 1. In the setting of Theorem 1 for the single problem, either254

(a) the quantity

x̌ := max

{
x ∈ I :

h(x)
φr(x)

= sup
y∈I

h(y)
φr(y)

}
(20)

is well-defined, i.e., the set is non-empty. Then x̌ is the highest price at which the battery operator may buy255

energy when acting optimally, and we have x̌ < x∗ (this is case A); or256

(b) there is no price at which it is optimal for the battery operator to purchase energy. In this case the single257

problem’s value function may either be infinite (case C) or finite (case B).258

Proof. a) Since the maximiser x̂ in case A of Theorem 1 is not necessarily unique, the set in (20) may259

contain more than one point. Since h and φr are continuous and all maximisers lie to the left of x∗,260

this set is closed and bounded from above, so x̌ is well-defined and a maximiser in case A. For any261

stopping time τ with Px{Xτ > x̌} > 0, it is immediate from assertion 3 of Lemma 6 that τ is not262

optimal for the problem Vc(x), x ≥ x̌. Part b) follows directly from cases B and C of Theorem 1.263

Corollary 1 confirms that it is optimal for the battery operator to buy energy only when the EIM264

price is strictly lower than the price x∗ which would trigger immediate power delivery to the system265

operator. Thus the battery operator (when acting optimally) does not directly conflict with the system266

operator’s balancing actions.267

2.3. Two exhaustive regimes in the lifetime problem268

Turning to the lifetime problem, we begin by letting ζ̂(x) in definition (16) be a general269

nonnegative continuation value depending only on the EIM price x, and studying the normalised270

stopping problem (15) in this case (the payoff ĥ is therefore defined as in (17)).271

We now wish to study the value of n cycles A1–A3, and hence the lifetime value, by iterating272

the operator T̂ . To justify this approach it is necessary to check the timing of action A2 in the lifetime273

problem. With the actions A1–A3 defined as in Section 1.1, recall that the timing of action A2 is trivial274

in the single problem: after A1 it is optimal to perform A2 immediately. Lemma 10, which may be275

found in the appendices, confirms that the same property holds in the lifetime problem.276

We may now provide the following answer to objective M1 for the lifetime problem.277

Corollary 2. Assume that conditions S1* and S2* hold. In the lifetime problem with ζ̂ = V̂, either:278
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(a) the quantity

x̌ := max

{
x ∈ I :

ĥ(x, ζ̂)

φr(x)
= sup

y∈I

ĥ(y, ζ̂)

φr(y)

}
(21)

is well-defined, i.e., the set is non-empty. Then x̌ is the highest price at which the battery operator can buy279

energy when acting optimally in the lifetime problem, and we have x̌ < x∗ (cases 1 and 2a in Lemma 9); or280

(b) there is no price at which it is optimal for the battery operator to purchase energy. In this case the lifetime281

value function may either be infinite (case 3) or finite (case 2b in Lemma 9).282

Proof. The proof proceeds exactly as that of Corollary 1 with the exception of showing that x̌ < x∗283

(this is because Lemma 9 in the appendices, which characterises the possible solution types in the284

lifetime problem, does not guarantee the strict inequality x̌ < x∗). Assume then x̌ = x∗. At the EIM285

price Xt = x̌ = x∗ the power delivery to the system operator is immediately followed by the purchase286

of energy by the battery operator and this cycle can be repeated instantaneously, arbitrarily many287

times. However since each such cycle is loss making for the battery operator by condition S2∗, this288

strategy would lead to unbounded losses almost surely in the lifetime problem started at EIM price x∗289

leading to V̂(x∗) = −∞. This would contradict the fact that V̂ > 0, so we conclude that x̌ < x∗.290

Pursuing aim M2, we will show now that there are two regimes in the lifetime problem: either the291

lifetime value function is strictly greater than the single problem’s value function (and the cycle A1–A3292

is repeated infinitely many times), or the lifetime value equals the single problem’s value. Although293

the latter case appears counterintuitive, it is explained by the fact that the lifetime problem’s value294

is then attained only in the limit when the purchase of energy (action A1) is made at a decreasing295

sequence of prices converging to a, the left boundary of the process (Xt). In this limit, the benefit of296

future payoffs becomes negligible, equating the lifetime value to the single problem’s value.1297

Theorem 2. There are two exclusive regimes:298

(α) V̂(x) > Vc(x) for all x ≥ x∗,299

(β) V̂(x) = Vc(x) for all x ≥ x∗ (or both are infinite for all x).300

Moreover, in regime (α) an optimal stopping time exists when the continuation value is ζ̂ = ζ̂n = T̂ n0 for301

n > 0 (that is, for a finite number of reserve contracts), and when ζ̂ = V̂ (for the lifetime value function).302

Proof. We take the continuation value ζ̂ = Vc in Lemma 9 from the appendices and consider separately303

its cases 1, 2a, 2b and 3. Firstly in case 3 we have Vc = ∞, implying that also V̂ = ∞ and we have304

regime (β).305

Case 2 of Lemma 9 corresponds to case B of Theorem 1, when there is no optimal stopping time306

in the single problem and Vc(x) = Lcφr(x) for all x ∈ I. Considering first case 2b and defining ζ̂n as in307

Lemma 11, it follows that ζ̂2(x) = Lcφr(x) = Vc(x) for x ∈ I and consequently V̂ = Vc, which again308

corresponds to regime (β).309

In case 2a of Lemma 9, suppose first that the maximiser x̂ ≤ x∗ is such that ĥ(x̂,ζ̂1)
φr(x̂) = Lc. Then for310

x ≥ x∗ ≥ x̂ we have ζ̂2(x) = φr(x) ĥ(x̂,ζ̂1)
φr(x̂) = Lcφr(x), which also yields regime (β). On the other hand,311

when ĥ(x̂,ζ̂1)
φr(x̂) > Lc we have for x ≥ x∗ ≥ x̂ that ζ̂2(x) = φr(x) ĥ(x̂,ζ̂1)

φr(x̂) > Lcφr(x) = ζ̂1(x), and so regime312

(α) applies by the monotonicity of the operator T̂ . From the definition of ĥ in (17), and holding the313

point x̂ ≤ x∗ constant, this monotonicity implies that ĥ(x̂,ζ̂n)
φr(x̂) > Lc for all n > 1 and that ĥ(x̂,V̂)

φr(x̂) > Lc. We314

conclude that case 2a of Lemma 9 applies (rather than case 2b) for a finite number of reserve contracts315

and also in the lifetime problem.316

1 If the lifetime value is infinite then so is the single problem’s value and they are equal in this sense. When the lifetime value
is zero then it is optimal not to enter the contract, and so the single problem’s value is also zero.



Version March 28, 2019 submitted to Risks 12 of 29

Considering now the maximiser x̂ defined in case 1 of Lemma 9, we have for x ≥ x∗ ≥ x̂ that

ζ̂2(x) = φr(x)
ĥ(x̂, ζ̂1)

φr(x̂)
≥ ĥ(x̂0, ζ̂1)

φr(x̂0)
>

ĥ(x̂0, 0)
φr(x̂0)

= ζ̂1(x) = Vc(x),

and regime (α) again follows by monotonicity. Also, trivially, case 1 of Lemma 9 applies for ζ̂ = ζ̂n317

and ζ̂ = V̂.318

The following corollary follows immediately from the preceding proof.319

Corollary 3. Regime (β) holds if and only if T̂ 20(x) = T̂ 0(x) for all x ≥ x∗.320

To address the implicit nature of our answers to M1 and M2 for the lifetime problem, in the next321

section we provide results for the construction and verification of the lifetime value function and322

corresponding stopping time. For this purpose we close this section by summarising results obtained323

above (making use of additional results from Appendix C).324

Theorem 3. In the setting of Theorem 2 assume that regime (α) holds. Then the lifetime value function V̂ is325

continuous, is a fixed point of the operator T̂ and T̂ n0 converges to V̂ exponentially fast in the supremum norm.326

Moreover, there is x̌ < x∗ such that τx̌ is an optimal stopping time for T̂ V̂(x) when x ≥ x̌ and, furthermore, x̌327

is the highest price at which the battery operator can buy energy when acting optimally.328

2.4. Construction of the lifetime value function329

In this section we discuss a numerical procedure for solution of the lifetime problem. It is based330

on the problem’s structure as summarised in Theorem 3. Lemma 4 provides a means of constructing331

the lifetime value function, together with the value x̌ of Theorem 3, using a one-dimensional search.332

We assume that regime (α) of Theorem 2 holds.333

In the circumstance when the above procedure is not followed, complementary findings in334

Appendix E enable one to verify if a candidate buy price x̂ is optimal for the lifetime problem.335

Lemma 4. The lifetime value function evaluated at x∗ satisfies

V̂(x∗) = max
z∈(a,x∗)

y(z), (22)

where

y(z) :=
−z + pc +

ψr(z)
ψr(x∗)Kc

φr(z)
φr(x∗) −

ψr(z)
ψr(x∗) A

. (23)

Proof. Fix z ∈ (a, x∗). In the normalised lifetime problem of Section 2.1.3, suppose that the strategy
τz is used for each energy purchase. Writing y for the total value of this strategy under Px∗ , by
construction we have the recursion

y =
φr(x∗)
φr(z)

(
− z + pc +

ψr(z)
ψr(x∗)

(
Kc + Ay

))
.

Rearranging, we obtain (23). By Theorem 3, there exists an optimal strategy τx̌ of the above form under336

Px∗ and (22) follows.337

Hence under Px∗ an optimal stopping level x̂ can be found by maximising y(z) over z ∈ (a, x∗).338

The value x̌ of Theorem 3 is given by x̌ = max{x : y(x) = maxz∈(a,x∗) y(z)}.339
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3. Results340

The general theory presented above provides optimal stopping times for initial EIM prices x ≥ x̌,341

where x̌ is the highest price at which the battery operator can buy energy optimally. In this section, for342

specific models of the EIM price we derive optimal stopping times for all possible initial EIM prices343

x ∈ I when the sustainability conditions S1* and S2* hold. In the examples of this section the stopping344

sets Γ for the single and lifetime problems take the form (a, x̌] although, in general, stopping sets may345

have much more complex structure. Interestingly, the stopping sets for the single and lifetime problem346

are either both half-lines or both compact intervals.347

Note that condition S2* is ensured by the explicit choice of parameters. Verification of condition348

S1∗ is straightforward by checking, for example, if the left boundary a of the interval I satisfies349

a < pc + limx→a
ψr(x)
ψr(x∗)Kc, i.e., that lim supx→a h(x) > 0. In particular, S1∗ always holds if a = −∞.350

Our approach is to combine the above general results with the geometric method drawn from
Section 5 of Dayanik and Karatzas (2003). Although Proposition 5.12 of the latter paper gives results
for natural boundaries, we note that the same arguments apply to entrance-not-exit boundaries. In
particular we construct the least concave majorant W of the obstacle H : [0, ∞)→ R, where

H(y) :=


ĥ(F−1(y),ζ̂)
φr(F−1(y)) , y > 0,

lim supx→a
ĥ(x,ζ̂)
φr(x) = Lc, y = 0,

(24)

(the latter equality was given in (41) in the appendices). Here the function F(x) = ψr(x)/φr(x) is351

strictly increasing with F(a+) = 0. Writing Γ̂ for the set on which W and H coincide, under appropriate352

conditions the smallest optimal stopping time is given by the first hitting time of the set Γ := F−1(Γ̂)353

(Dayanik and Karatzas 2003, Propositions 5.13–5.14).354

The Ornstein-Uhlenbeck (OU) process is a continuous-time stochastic process with dynamics

dXt = θ(µ− Xt)dt + σdWt, (25)

where θ, σ > 0 and µ ∈ R. It has two natural boundaries, a = −∞ and b = ∞. This process extends355

the scaled Brownian motion model by introducing a mean reverting drift term θ(µ− Xt)dt. The mean356

reversion is commonly observed in commodity price time series and may have several causes (Lutz357

2009). In the present context, the mean reversion can also be interpreted as the impact on prices of358

the system operator’s corrective balancing actions. Appendix F collects some useful facts about the359

Ornstein-Uhlenbeck process. In particular, when constructing W it is convenient to note that H′′ ◦ F360

has the same sign as (L− r)h, where L is the infinitesimal generator of X defined as in Appendix F.361

3.1. OU price process362

Assume now that the EIM price follows the OU process (25) so that Lc = 0 (see Equation (55)363

in Appendix F) and, by Lemma 3, case A of Theorem 1 applies. We are able to deal with the single364

and lifetime problems simultaneously by setting ζ̂ equal to 0 for the single problem and equal to (the365

positive function) V̂ in the lifetime problem. The results of Sections 2.2–2.3 yield that in both problems,366

the right endpoint of the set Γ̂ equals F(x̌) for some ∞ < x̌ < x∗. Further, since ψr is a solution to367

(L− r)v = 0 and since x̌ < x∗, for x ≤ x∗ we have368

(L− r)ĥ(x, ζ̂) = (L− r)
(
− x + pc +

ψr(x)
ψr(x∗)

(
Kc + Aζ̂(x∗)

))
(26)

= (L− r)(−x + pc) (27)

= (r + θ)x− rpc − θµ. (28)

Therefore, the function (L − r)ĥ(·, ζ̂) is negative on (−∞, B0) and positive on (B0, ∞), where B0 =369
rpc+θµ

r+θ . This implies that H is strictly concave on (0, F(B0)) and strictly convex on (F(B0), ∞). Since370
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the concave majorant W of H cannot coincide with H in any point of convexity, so necessarily x̌ < B0371

and H is concave on (0, F(x̌)). Hence we conclude that W is equal to H on the latter interval and so372

Γ = (−∞, x̌].373

3.2. General mean-reverting processes374

The above reasoning can be extended to mean-reverting processes with general volatility

dXt = θ(µ− Xt)dt + σ(Xt)dWt

for a measurable function σ such that the above equation admits a unique solution, c.f. Section 2,375

and Lc = 0 (c.f. (24)). Recall that we assume that (Xt) has two non-exit boundaries a, b (natural or376

entrance-not-exit boundaries) satisfying a < x∗ < b. Since L = θ(µ− x) d
dx + 1

2 σ2(x) d2

dx2 , equations377

(26)–(28) still apply. In particular, we see that the diffusion coefficient σ(·) does not affect the sign of (28)378

and thus does not influence the concavity properties of H on (0, F(x∗)). Proceeding as above, we argue379

that case A of Theorem 1 applies and the single and lifetime problems can be solved simultaneously.380

Particularly, the largest buy price is given by a < x̌ < x∗ (different for the single and lifetime problems).381

Note that the form of the stopping set is purely determined by µ, θ, the left boundary a and the initial382

premium pc. Obviously, the mean price level µ satisfies µ > a because a is an unreachable boundary.383

Lemma 5. If pc > a, then the stopping sets for the single and lifetime problems are of the form Γ = (a, x̌].384

Proof. The same arguments as in the OU case are directly applicable to the present setting and, under385

the assumptions of the lemma, we have B0 = rpc+θµ
r+θ > a. Hence for each problem the stopping set has386

the form Γ = (a, x̌] for some x̌ < B0.387

In the particular case of the CIR model (Cox et al. 1985)

dXt = θ(µ− Xt)dt + σ
√

XtdWt, (29)

we have a = 0, b = ∞. Then:388

Corollary 4. If X is the CIR process (29) with 2θµ ≥ σ2 and µ > 0 then the boundary a = 0 is389

entrance-not-exit. Further, if pc > 0 then the stopping sets for the single and lifetime problems are of the390

form Γ = (0, x̌].391

Proof. If follows from (Cox et al. 1985, p. 391) that the condition 2θµ ≥ σ2 is necessary and sufficient392

for the boundary 0 to be entrance-not-exit. By Lemma 3, we have Lc = 0. An application of Lemma 5393

concludes.394

Remark 1. More generally, suppose that the imbalance price process follows

dXt = θ(µ− Xt)dt + σXγ
t dWt,

for some γ > 0.5. Then the left boundary a = 0 is entrance-not-exit for any choice of parameters θ, µ, σ > 0395

since the scale function p given in (3) converges to negative infinity at 0. Therefore, the arguments in the above396

corollary apply and the stopping sets for the single and lifetime problems are also of the form Γ = (0, x̌].397
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3.3. Shifted exponential price processes398

In order to first recover and then generalise previously obtained results (Moriarty and Palczewski399

2017), take the following shifted exponential model for the price process:400

f (z) := D + debz, (30)

Xt = f (Zt), (31)

where Z is a regular one-dimensional diffusion with non-exit (natural or entrance-not-exit) boundaries401

aZ and bZ (we will use the superscripts X and Z where necessary to emphasise the dependence on the402

stochastic process). The idea is that Z models the physical system imbalance process while f represents403

a price stack of bids and offers which is used to form the EIM price. In this case the left boundary for X404

is a = f (aZ) ≥ D and, by Lemma 3, Lc = 0 and case A of Theorem 1 applies. Rather than working405

with the implicitly defined process X, however, we may work directly with the process Z by setting:406

z∗ := f−1(x∗), (32)

h f (z) := − f (z) + pc +


ψZ

r (z)
ψZ

r (z∗)
Kc, z < z∗,

Kc, z ≥ z∗,
(33)

ĥ f (z, ζ̂) :=

− f (z) + pc +
ψZ

r (z)
ψZ

r (z∗)

(
Kc + Aζ̂(z∗)

)
, z < z∗,

− f (z) + pc + Kc + Aζ̂(z), z ≥ z∗,
(34)

and modifying the definitions for T , T̂ , Vc and V̂ accordingly. We then have407

Theorem 4. Taking definitions (30) and (32)–(34), assume that conditions S1* and S2* hold. Then

Lc := lim sup
z→aZ

− f (z)
φZ

r (z)
= 0.

Also:408

i) (Single problem) There exists ẑ < z∗ that maximises
h f (z)
φZ

r (z)
, the stopping time τẑ is optimal for z ≥ ẑ, and

Vc(z) = φZ
r (z)

h f (ẑ)
φZ

r (ẑ)
, z ≥ ẑ.

ii) (Lifetime problem) The lifetime value function V̂ is continuous and a fixed point of T̂ . There exists

z̃ ∈ (ẑ, z∗) which maximises ĥ(z,V̂)

φZ
r (z)

and τz̃ is an optimal stopping time for z ≥ z̃ with

V̂(z) = T̂ V̂(z) = φZ
r (z)

ĥ(z̃, V̂)

φZ
r (z̃)

, z ≥ z̃.

Proof. The proof follows from the one-to-one correspondence between the process X and the process409

Z, and direct transfer from Theorems 1 and 3.410

In some cases, explicit necessary and/or sufficient conditions for S1∗ may be given in terms of the411

problem parameters. Assume that aZ = −∞ as in the examples studied below. If pc > D and Kc ≥ 0,412

this is sufficient for the condition S1∗ to be satisfied as then h f (z) ≥ − f (z) + pc > 0 for sufficiently413

small z. When pc = D and Kc > 0, it is sufficient to verify that ebz = o
(
ψZ

r (z)
)

as z → −∞ since414

then h f (z) = −debz + ψZ
r (z)Kc/ψZ

r (z∗) for z < z∗. On the other hand, our assumption that S1∗ holds415

necessarily excludes parameter combinations with pc − D = Kc = 0, since the reserve contract writer416

then cannot make any profit because h f (z) ≤ 0 for all z.417
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In Section 3.3.1 we take Z to be the standard Brownian motion and recover results from the single418

problem of Moriarty and Palczewski (2017) (the lifetime problem is formulated differently in the latter419

reference, where degradation of the store is not modelled). In Section 3.3.2 we generalise to the case420

when Z is an OU process.421

3.3.1. Brownian motion imbalance process422

When the imbalance process Z = W, the Brownian motion, we have

(L− r)ĥ f (z, ζ̂) = (L− r)(− f (z) + pc) = debz
{

r− 1
2

b2
}
+ r(D− pc).

We have several cases depending on the sign of (D− pc) and (r− 1
2 b2).423

1. Assume first that r > 1
2 b2.424

(i) We may exclude the subcase pc ≤ D, since then H(y) = ĥ(z,ζ̂)
φZ

r (z)
|z=(FZ)−1(y) is strictly convex425

on (0, FZ(z∗)) for any ζ̂ and Γ cannot intersect this interval, contradicting Theorem 4 and,426

consequently, violating S1∗ or S2∗.427

(ii) If pc > D, H is concave on (0, FZ(B)) and convex on (FZ(B), ∞), where

B =
1
b

log

(
r(pc − D)

d(r− 1
2 b2)

)
.

By Theorem 4 and the positivity of H on (0, FZ(ẑ)) we have Γ = (−∞, ẑ] and Γ = (−∞, z̃]428

for the single and lifetime problems respectively, with z̃ < ẑ < B.429

2. Suppose that r < 1
2 b2.430

(i) When pc ≥ D, the function H is concave on (0, ∞). Hence the stopping sets Γ for single and431

lifetime problems have the same form as in case 1(ii) above.432

(ii) If pc < D, the function H is convex on (0, FZ(B)) and concave on (FZ(B), ∞). The set Γ433

must then be an interval, respectively [ẑ0, ẑ] and [z̃0, z̃]. For explicit expressions for the left434

and right endpoints for the single problem, as well as sufficient conditions for S1∗, the435

reader is refered to Moriarty and Palczewski (2017).436

3. In the boundary case r = 1
2 b2, the convexity of H is determined by the sign of the difference437

D− pc. As above the possibility D > pc is excluded since then H is strictly convex. Otherwise H438

is concave and the stopping sets Γ have the same form as in case 1(ii) above.439

3.3.2. OU imbalance process440

When Z is the Ornstein-Uhlenbeck process, by adjusting d and b in the price stack function f (see
(30)) we can restrict our analysis to the OU process with zero mean and unit volatility, that is:

dZt = −θZtdt + dWt.

Then for z < z∗441

(L− r)ĥ f (z, ζ̂) = (L− r)(− f (z) + pc) (35)

= debz
{

b
(

θz− 1
2

b
)
+ r
}
+ r(D− pc) =: η(z). (36)

Differentiating η we obtain

η′(z) = dbθebz

(
bz + 1 +

r− 1
2 b2

θ

)
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which has a unique root at z� = 1
b

( 1
2 b2−r

θ − 1
)

. The function η decreases from r(D− pc) at −∞ until442

η(z�) = −debz�θ + r(D− pc) at z� and then increases to positive infinity.443

1. If pc ≥ D then the function η is negative on (−∞, u), where u is the unique root of η. Hence H is444

concave on (0, FZ(u)) and convex on (FZ(u), ∞). The stopping sets Γ for the single and lifetime445

problems must then be of the form (−∞, ẑ] and (−∞, z̃], respectively, c.f. case 1(ii) in Section446

3.3.1.447

2. The case pc < D is more complex.448

(i) Let z� ≥ z∗. We exclude the possibility η(z∗) ≥ 0, since then the function H is convex on449

(0, FZ(z∗)) and the set Γ has empty intersection with this interval, contradicting Theorem450

4 and, consequently, violating S1∗ or S2∗. When η(z∗) < 0, H is convex on (0, FZ(u))451

and concave on (FZ(u), FZ(z∗)), where u is the unique root of η on (0, z∗). Therefore452

the stopping sets Γ for the single and lifetime problems are of the form [ẑ0, ẑ] and [z̃0, z̃],453

respectively, with min(ẑ0, z̃0) > u, c.f. case 2(ii) in Section 3.3.1.454

(ii) Consider now z� < z∗. As above we exclude the case η(z�) ≥ 0, since then H is convex455

on (0, FZ(z∗)). The remaining case η(z�) < 0 implies that the stopping sets Γ have the456

same form as in case 2(i) above, as H is convex and then concave if η(z∗) ≤ 0, and457

convex-concave-convex if η(z∗) > 0.458

4. Benchmark case study and economic implications459

In this section we use a case study to draw qualitative implications from the above results. An460

OU model is assumed, which captures both the mean reversion and random variability present in EIM461

prices, and is fitted to relevant data. The interest rate is taken to be 3% per annum, and the degradation462

factor for the store to be A = 0.9999.463

Our data is the ‘balancing group price’ from the German Amprion system operator, which is464

available for every 15 minute period (AMPRION 2016). Summary statistics for the period from 1 June465

2012 to 31 May 2016 are presented in Table 1. To address the issue of its extreme range, which impacts466

the fitting of both volatility and mean reversion in the OU model, the data was truncated at the values467

-150 and 150. The parameters obtained by maximum likelihood fitting were then θ = 68.69 (the rate of468

mean reversion), σ = 483.33 (the volatility), µ = 30.99 (the mean-reversion level). The effect of the469

truncation step was to approximately halve the fitted volatility.470

Table 1. Summary statistics for the 15 minute balancing group price per MWh in the German Amprion
area, 1 June 2012 to 31 May 2016.

Min. 1st Qu. Median Mean 3rd Qu. Max.
-6002.00 0.27 33.05 31.14 66.97 6344.00

The left panel of Figure 3, and Figure 4, show the lifetime value V̂(x∗), while the right panel of471

Figure 3 plots the stopping boundary x̌, which is the maximum price at which the battery operator can472

buy energy optimally. These values of x̌ are significantly below the long-term mean price D, indeed473

the former value is negative while the latter is positive. Thus in this example the battery operator474

purchases energy when it is in excess supply, further contributing to balancing. To place the negative475

values on the stopping boundary in Figure 3 in the statistical context, recall from Table 1 that the first476

quartile of the price distribution is approximately zero. Indeed negative energy prices usually occur477

several times per day in the German EIM. In the present dataset of 1461 days there are only 11 days478

without negative prices and the longest observed time between negative prices is 41.5 hours.479

We make the following empirical observations. Firstly, defining the total premium as the sum480

pc + Kc, altering its distribution between the initial premium pc (which is received at x = x̌) and the481
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Figure 3. Results obtained with the Ornstein-Uhlenbeck model fitted in Section 4, as functions of
the total premium, with interest rate 3% per annum. Solid lines: x∗ = 100, dotted: x∗ = 75, dashed:
x∗ = 50. Left: lifetime value V̂(x∗). Right: the stopping boundary x̌, the maximum price for which the
battery operator can buy energy optimally.

utilisation payment Kc (which is received at x = x∗) results in insignificant changes to the graphs, with482

relative differences on the vertical axes of the order 10−3 (data not shown). It is for this reason that483

the figures are indexed by the total premium pc + Kc rather than by individual premia. Secondly, it is484

seen from the right hand panel of Figure 3 that the (negative valued) stopping boundary increases485

with the total premium, making exercise more frequent. Thus as the total premium increases, both486

the frequency and size of the cashflows increase, yielding a superlinear relationship in the left hand487

panel of Figure 3. This superlinearity is not very pronounced since the stopping boundary is relatively488

insensitive to the total premium in the range presented in the graphs (see the right hand panel), so that489

the lifetime value is driven principally by the size of the cashflows. Thirdly, the grey horizontal line of490

Figure 4 is placed at a level indicative of recent costs for lithium-ion batteries per megawatt hour. Thus491

the investment case for battery storage providing reserve is significantly positive for a wide range of492

the contract parameters. Finally the contours in Figure 4 have an S-shape, the marginal influence of x∗493

being smaller in the range x∗ < 110 and larger for greater values of x∗ (with the marginal influence494

eventually decreasing again in the limit of large x∗).495

These phenomena are explained by the presence of mean reversion in the OU price model. The496

timings of the cashflows to the battery operator are entirely determined by the successive passage times497

of the price process between the levels x∗ and x̌. These passage times are relatively short on average498

for the fitted OU model. This means that the premia are received at almost the same time under each499

reserve contract, and it is the total premium which drives the real option value. Further the passage500

times between x∗ and x̌ may be decomposed into passage times between x∗ and D, and between D501

and x̌. Since the OU process is statistically symmetric about D, let us compare the distances |x̌− D|502

and |x∗ − D|. From Figure 3 we have x̌ ≈ −70 so that |x̌− D| ≈ 100. Therefore for x∗ < 110 we have503

|x∗ −D| � |x̌−D| and the passage time between D and x̌, which varies little, dominates that between504

x∗ and D. Correspondingly we observe in Figure 4 that the value function changes relatively little as505

x∗ varies below 110. Conversely, as x∗ increases beyond 110 it is the distance between x∗ and D which506

dominates, and the value function begins to decrease relatively rapidly.507

These results provide insights into the suitability of the considered arrangement for correcting508

differing levels of imbalance. As the distance between x∗ and the mean level D grows, the energy509

price reaches x∗ significantly less frequently and the reserve contract starts to provide insurance510
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Figure 4. Lifetime value V̂(x∗) as a function of x∗ with the Ornstein-Uhlenbeck model fitted in Section 4,
with interest rate 3% per annum. Dashed line: pc + Kc = 20, solid: pc + Kc = 30, dotted: pc + Kc = 40,
mixed: pc + Kc = 50. The horizontal grey line indicates the current price of lithium-ion battery storage
per MWh (IRENA 2017, Figure 33).

against rare events, resulting in infrequent power delivery and low utilisation of the battery. These511

observations suggest that the contractual arrangement studied in this paper is more suitable for the512

frequent balancing of less severe imbalance. In contrast, the more rapid reduction in the lifetime value513

for large values of x∗ suggests that such arrangements based on real-time markets are not suitable for514

balancing relatively rare events such as large system disturbances due to unplanned outages of large515

generators. The system operator may prefer to use alternative arrangements, based for example on516

fixed availability payments, to provide security against such events.517

5. Discussion518

In this paper we investigate the procurement of operating reserve from energy-limited storage519

using a sequence of physically covered incremental reserve contracts. This leads to the pricing of a520

real perpetual American swing put option with a random refraction time. We model the underlying521

energy imbalance market price as a general linear regular diffusion, which, in particular, is capable of522

modelling the mean reversion present in imbalance prices. Both the optimal operational policy and523

the real option value of the store are characterised explicitly. Although the solutions are generally524

not available in an analytical form we have provided a straightforward procedure for their numerical525

evaluation together with empirical examples from the German energy imbalance market.526

The results of the lifetime analysis in particular have both managerial implications for the battery527

operator and policy implications for the system operator. From the operational viewpoint, under the528

setup described in Section 1.1 we have established that the battery operator should purchase energy as529

soon as the EIM price falls to the level x̌, which may be calculated as described in Section 2.4. Further530

the battery operator should then sell the reserve contract immediately. Our real options valuation may531

be taken into account when deciding whether to invest in an energy store, and whether to sell such532

reserve contracts in preference to trading in other markets (for example, performing price arbitrage in533

the spot energy market).534

Turning to the perspective of the system operator, we have demonstrated that the proposed535

arrangement can be mutually beneficial to the system operator and battery operator. More precisely,536

the system operator can be protected against guaranteed financial losses from the incremental capacity537
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contract purchase while the battery operator has a quantifiable profit. The analysis also provides538

information on feedback due to battery charging by determining the highest price x̌ at which the battery539

operator buys energy, hence identifying conditions under which the battery operator’s operational540

strategy is aligned with system stability.541

We address incremental reserve contracts, which are particularly valuable to the system operator542

when the margin of electricity generation capacity over peak demand is low. Decremental reserve may543

also be studied in the above framework, although the second stopping time (action A2) is non-trivial544

which leads to a nested stopping problem beyond the scope of the present paper. Further we assume545

that the energy storage unit is dedicated to providing incremental reserve contracts, so that the546

opportunity costs of not operating in other markets or providing other services are not modelled. The547

extension to a finite expiry time, the lifetime analysis with decremental reserve contracts, and also the548

opportunity cost of not operating in other markets would be interesting areas for further work.549

The methodological advances of this paper reach beyond energy markets. In particular they are550

relevant to real options analyses of storable commodities where the timing problem over the lifetime551

of the store is of primary interest. The lifetime analysis via optimal stopping techniques, developed552

in Section 2.3, provides an example of how timing problems can be addressed for rather general553

dynamics of the underlying stochastic process. In this context we provide an alternative method to554

quasi-variational inequalities, which are often dynamics-specific and technically more involved.555

Funding: This research was funded by the UK Engineering and Physical Sciences Research Council grant number556

EP/K00557X/2 and MNiSzW grant UMO-2012/07/B/ST1/03298.557
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Appendix A Lemmas and proofs from Section 2559

The following three lemmas classify solutions to the stopping problem (7). Note that if
supx ϑ(x) ≤ 0 then no choice of the stopping time τ gives a value function greater than 0. The
optimal stopping time in this case is given by τ = ∞. In what follows we therefore assume

sup
x∈(a,b)

ϑ(x) > 0. (37)

These results can be derived from Beibel and Lerche (2000); however, for the convenience of the560

reader we provide simple proofs.561

Lemma 6. Assume that there exists x̂ ∈ I which maximises ϑ(x)/φr(x) over I. Then the value function v(x)562

is finite for all x, and for x ≥ x̂:563

1. the stopping time τx̂ is optimal,564

2. v(x) =
ϑ(x̂)
φr(x̂)

φr(x),565

3. any stopping time τ with Px{ϑ(Xτ)/φr(Xτ) < ϑ(x̂)/φr(x̂)
}
> 0 is strictly suboptimal for the problem566

v(x).567

Proof. Since φr is r-excessive (Borodin and Salminen 2012, Section II.5), for any finite stopping time τ

Ex{e−rτφr(Xτ)} ≤ φr(x).
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Let now τ be a stopping time taking possibly infinite values. Let bn be an increasing sequence
converging to b with b1 > x, the initial point of the process X. Then τbn is an increasing sequence of
stopping times converging to infinity and

φr(x) ≥ lim inf
n→∞

Ex{e−r(τ∧τbn )φr(Xτ∧τbn
)}

≥ Ex{lim inf
n→∞

e−r(τ∧τbn )φr(Xτ∧τbn
)} = Ex{e−rτφr(Xτ)1τ<∞},

where φr(b−) = 0 was used in the last equality.568

For any stopping time τ

Ex{e−rτϑ(Xτ)1τ<∞} = Ex
{

e−rτφr(Xτ)
ϑ(Xτ)

φr(Xτ)
1τ<∞

}
≤ ϑ(x̂)

φr(x̂)
Ex{e−rτφr(Xτ)1τ<∞

}
≤ ϑ(x̂)

φr(x̂)
φr(x),

(38)

where the final inequality follows from the first part of the proof and (37) (so ϑ(x̂)
φr(x̂) > 0). Hence, v(x) is569

finite for all x ∈ I. To prove claim 1, note from (6) that for x ≥ x̂ the upper bound is attained by τx̂,570

which is therefore an optimal stopping time in the problem v(x). The assumption on τ in claim 3 leads571

to strict inequality in (38), making τ strictly suboptimal in the problem v(x).572

It is convenient to introduce the notation

L := lim sup
x→a

ϑ(x)+

φr(x)
. (39)

Lemma 7 corresponds to cases when there is no optimal stopping time but the optimal value can be573

reached in the limit by a sequence of stopping times.574

Lemma 7.575

1. If L = ∞ then the value function is infinite and there is no optimal stopping time.576
577

2. If L < ∞ and L > ϑ(x)/φr(x) for all x ∈ I, then there is no optimal stopping time and the value function578

equals v(x) = Lφr(x).579

Proof. Assertion 1. Fix any x ∈ I. Then for any x̂ < x we have

Ex{e−rτx̂ ϑ(Xτx̂ )} = ϑ(x̂)
φr(x)
φr(x̂)

,

which converges to infinity for x̂ tending to a over an appropriate subsequence. Since the process is580

recurrent, the point x can be reached from any other point in the state space with positive probability581

in a finite time. This proves that the value function is infinite for all x ∈ I.582

Assertion 2. Recall that due to the supremum of ϑ
φr

being strictly positive we have L > 0. From
the proof of Lemma 6, for an arbitrary stopping time τ we have

Ex{e−rτϑ(Xτ)1τ<∞} = Ex{e−rτφr(Xτ)
ϑ(Xτ)

φr(Xτ)
1τ<∞} < LEx{e−rτφr(Xτ)1τ<∞} ≤ Lφr(x).

However, one can construct a sequence of stopping times that achieves this value in the limit. Take xn

such that limn→∞ ϑ(xn)/φr(xn) = L and define τn = τxn . Then

lim
n→∞

Ex{e−rτn ϑ(Xτn)} = lim
n→∞

ϑ(xn)
φr(x)
φr(xn)

= φr(x)L,



Version March 28, 2019 submitted to Risks 22 of 29

so v(x) = φr(x)L. This together with the strict inequality above proves that an optimal stopping time583

does not exist.584

The results developed in this section also have a ‘mirror’ counterpart involving

R := lim sup
x→b

ϑ(x)+

ψr(x)
(40)

rather than L. In particular, the value function is infinite if R = ∞, and585

Corollary 5. If x̂ ∈ I maximises ϑ(x)/ψr(x) then for any x ≤ x̂ an optimal stopping time in the problem v(x)586

is given by τx̂.587

This also motivates the assumptions of the following lemma which collects results from Dayanik588

and Karatzas (2003, Section 5.2). Again, although those results are obtained under the assumption that589

both boundaries are natural, their proofs require only that they are non-exit.590

Lemma 8. Assume that L, R < ∞ and ϑ is locally bounded. Then the value function v is finite and continuous591

on (a, b).592

All the stopping problems considered in this paper have a finite right-hand limit R < ∞. Therefore,593

whenever L < ∞, their value functions will be continuous.594

Proof of Lemma 2. If S1* does not hold then the payoff from cycle A1–A3 is not profitable (on595

average) for any value of the EIM price x, so S1 does not hold. Conversely if S1* holds then there596

exists x such that T̂ 0(x) ≥ h(x) > 0. For any other x′ consider the following strategy: wait until the597

process X hits x and proceed optimally thereafter. This results in a strictly positive expected value:598

T̂ 0(x′) > 0 and by the arbitrariness of x′ we have T̂ 0 > 0.599

Suppose that S2* holds. Then the system operator makes a profit on the reserve contract (relative600

to simply purchasing a unit of energy at the power delivery time τ̂e, at the price X(τ̂e) ≥ x∗) in601

undiscounted cash terms. Considering discounting, the system operator similarly makes a profit602

provided the EIM price reaches the level x∗ (or above) sufficiently quickly. Since this happens with603

positive probability for a regular diffusion, a certain financial loss for the system operator is excluded.604

When S2* does not hold, suppose first that pc + Kc > x∗: then the system operator makes a loss in605

undiscounted cash terms, and if the reserve contract is sold when x ≥ x∗ then this loss is certain. In606

the boundary case pc + Kc = x∗ the battery operator can only make a profit by purchasing energy and607

selling the reserve contract when Xt < x∗, in which case the system operator makes a certain loss.608

This follows since instead of buying the reserve contract, the system operator could invest pc > 0609

temporarily in a riskless bond, withdrawing it with interest when the EIM price rises to x∗ = pc + Kc.610

The loss in this case is equal in value to the interest payment.611

Appendix B Lemmas for the lifetime problem612

It follows from the optimal stopping theory reviewed in Section 2.1.1 and Appendix A that the613

following definition of an admissible continuation function, is natural in our setup. In particular, the614

final condition corresponds to the assumption that the energy purchase occurs at a price below x∗.615

Definition 1. (Admissible continuation value) A continuation value function ζ̂ is admissible if it is continuous616

on (a, x∗] and non-negative on I, with ζ̂(x)
φr(x) non-increasing on [x∗, b).617

The following result now characterises the possible solution types in the lifetime problem.618



Version March 28, 2019 submitted to Risks 23 of 29

Lemma 9. Assume that conditions S1* and S2* hold. If ζ̂ is an admissible continuation value function then

lim sup
x→a

ĥ(x, ζ̂)

φr(x)
= lim sup

x→a

−x
φr(x)

= Lc, (41)

and with cases A, B, C defined just as in Theorem 1:619

1. In case A, there exists x̂ ≤ x∗ which maximises ĥ(x,ζ̂)
φr(x) and τx̂ is an optimal stopping time for x ≥ x̂ with

value function

v(x) = T̂ ζ̂(x) = φr(x)
ĥ(x̂, ζ̂)

φr(x̂)
, x ≥ x̂.

Denoting by x̂0 the corresponding x̂ in case A of Theorem 1, we have x̂0 ≤ x̂.620

2. In case B, either621

a) there exists xL ∈ (a, b) with ĥ(xL ,ζ̂)
φr(xL)

≥ Lc: then there exists x̂ ∈ (a, x∗] which maximises ĥ(x,ζ̂)
φr(x) , and622

τx̂ is an optimal stopping time for x ≥ x̂ with value function v(x) = φr(x) ĥ(x̂,ζ̂)
φr(x̂) for x ≥ x̂; or623

b) there does not exist xL ∈ (a, b) with ĥ(xL ,ζ̂)
φr(xL)

≥ Lc: then the value function is v(x) = Lc φr(x) and624

there is no optimal stopping time.625

3. In case C, the value function is infinite and there is no optimal stopping time.626

Moreover, the value function v is continuous in cases A and B.627

Proof. Note that628

h(x) = ĥ(x, 0) ≤ ĥ(x, ζ̂) =

h(x) + ψr(x)
ψr(x∗) Aζ̂(x∗), x < x∗,

h(x) + Aζ̂(x), x ≥ x∗.
(42)

This proves (41), since limx→a ψr(x)/φr(x) = 0. We verify from (42) and the assumptions of the lemma
that R < ∞ in (40). Hence, whenever Lc < ∞ the value function v is finite and continuous by Lemma
8. As noted previously (in the proof of Theorem 1), h is negative and decreasing on [x∗, b), hence the
ratio h(x)/φr(x) is strictly decreasing on that interval. It then follows from (42) and the admissibility

of ζ̂ that the function x 7→ ĥ(x,ζ̂)
φr(x) is strictly decreasing on [x∗, b). Therefore the supremum of x 7→ ĥ(x,ζ̂)

φr(x) ,
which is positive by (42) and S1∗, is attained on (a, x∗] or asymptotically when x → a. In cases 1 and
2a, the optimality of τx̂ for x ≥ x̂ then follows from Lemma 6. To see that x̂0 ≤ x̂ in case 1, take x < x̂0.
Then from (42) we have

ĥ(x, ζ̂)

φr(x)
=

h(x)
φr(x)

+
ψr(x)
φr(x)

Aζ̂(x∗)
ψr(x∗)

<
h(x̂0)

φr(x̂0)
+

ψr(x̂0)

φr(x̂0)

Aζ̂(x∗)
ψr(x∗)

=
ĥ(x̂0, ζ̂)

φr(x̂0)
,

since x 7→ ψr(x)
φr(x) is strictly increasing. Case 2b follows from Lemma 7 and the fact that Lc > 0, while629

Lemma 7 proves case 3.630

Before proceeding we note the following technicalities.631

Remark 2. The value function v in cases 1 and 2a of Lemma 9 satisfies the condition that v(x)/φr(x) is
non-increasing on [x∗, b). Indeed,

v(x)
φr(x)

=
ĥ(x̂, ζ̂)

φr(x̂)
= const.

for x ≥ x̂.632

Remark 3. For case 3 of Lemma 9, the assumption that ζ̂(x)
φr(x) is non-increasing on [x∗, b) can be dropped.633
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Lemma 10. The timing of action A2 remains trivial when the cycle A1–A3 is iterated a finite number of times.634

Proof. Let us suppose that action A1 has just been carried out in preparation for selling the first in a635

chain of n reserve contracts, and that the EIM price currently has the value x. Define τA2 to be the time636

at which the battery operator carries out action A2. The remaining cashflows are (i) the first contract637

premium pc (from action A2), (ii) the first utilisation payment Kc (from A3), and (iii) all cashflows638

arising from the remaining cycles A1–A3 (there are n− 1 cycles which remain available to the battery639

operator). The cashflows (i) and (ii) are both positive and fixed, making it best to obtain them as soon640

as possible. The cashflows (iii) include positive and negative amounts, so their timing is not as simple.641

However it is sufficient to notice that642

• their expected net present value is given by an optimal stopping problem, namely, the timing of
the next action A1:

sup
τ≥σ∗

Ex{e−rτh(iii)(Xτ)1τ<∞}, (43)

where σ∗ := inf{t ≥ τA2 : Xt ≥ x∗}, for some suitable payoff function h(iii),643

• the choice τA2 = 0 minimises the exercise time σ∗ and thus maximises the value of component644

(iii), since the supremum in (43) is then taken over the largest possible set of stopping times.645

It is therefore best to set τA2 = 0, since this choice maximises the value of components (i), (ii) and646

(iii).647

The next result establishes the existence of, and characterises, the lifetime value function V̂.648

Lemma 11. In cases A and B of Theorem 1,649

1. For each n ≥ 1 the function ζ̂n := T̂ n0 is an admissible continuation value function and is decreasing on650

[x∗, b).651

2. The functions T̂ n0 are strictly positive and uniformly bounded in n.652

3. The limit ζ̂ = limn→∞ T̂ n0 exists and is a strictly positive bounded function. Moreover, the lifetime653

value function V̂ coincides with ζ̂.654

4. The lifetime value function V̂ is a fixed point of T̂ .655

Proof. Part 1 is proved by induction. The claim is clearly true for n = 1. Assume it holds for n. Then656

Lemma 9 applies and ζ̂n+1(x)/φr(x) = ĥ(x̂, ζ̂n)/φr(x̂) for x ≥ x̂ when the optimal stopping time657

exists and ζ̂n+1(x)/φr(x) = Lc otherwise. Therefore, ζ̂n+1(x) = cφr(x) for x ≥ x∗ and some constant658

c ≥ 0. Since φr is decreasing, we conclude that ζ̂n+1 decreases on [x∗, b).659

The monotonicity of T̂ guarantees that if T̂ 0 > 0 then T̂ n0 > 0 for every n. For the upper bound,
notice that

T̂ ζ̂n(x) = sup
τ

Ex
{

e−rτ
(

pc − Xτ +EXτ
{

e−rτ̂e
(
Kc + Aζ̂n(Xτ̂e)

)})
1τ<∞

}
≤ sup

τ
Ex
{

e−rτ
(

pc − Xτ + KcEXτ{e−rτ̂e}
)

1τ<∞

}
+ Aζ̂n(x∗) = Vc(x) + Aζ̂n(x∗),

where Vc = T̂ 0 is the value function for the single problem and the inequality follows from the fact
that ζ̂n is decreasing on [x∗, b). From the above we have ζ̂n(x) = T̂ n0(x) ≤ Vc(x) + 1−An

1−A Vc(x∗).
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Recalling that A ∈ (0, 1) yields that the ζ̂n(x) are bounded by Vc(x) + 1
1−A Vc(x∗), so there exists a

finite monotone limit ζ̂ := limn→∞ ζ̂n, and

ζ̂(x) = lim
n→∞

T̂ ζ̂n(x) = sup
n

sup
τ

Ex
{

e−rτ
(

pc − Xτ +EXτ
{

e−rτ̂e
(
Kc + Aζ̂n(Xτ̂e)

)})
1τ<∞

}
= sup

τ
lim

n→∞
Ex
{

e−rτ
(

pc − Xτ +EXτ
{

e−rτ̂e
(
Kc + Aζ̂n(Xτ̂e)

)})
1τ<∞

}
= sup

τ
Ex
{

e−rτ
(

pc − Xτ +EXτ
{

e−rτ̂e
(
Kc + Aζ̂(Xτ̂e)

)})
1τ<∞

}
= T̂ ζ̂(x),

by monotone convergence. The equality of V̂ and ζ̂ is clear from (14).660

Appendix C Uniqueness of fixed points661

Corollary 6 below establishes the uniqueness of the fixed point of T̂ . Lemma 13 shows that T̂ n0662

converges exponentially fast to this unique fixed point as n→ ∞.663

Lemma 12. Let ξ, ξ ′ be two continuous non-negative functions with ξ satisfying the assumptions of Lemma 9
together with the bound ξ ≥ ξ ′. In the problem T̂ ξ, assume the existence of an optimal stopping time τ∗ under
which stopping occurs only at values bounded above by x′ < x∗. Then

‖T̂ ξ − T̂ ξ ′‖# ≤ ρ‖ξ − ξ ′‖#,

where ρ = A ψr(x′)
ψr(x∗) < 1 and ‖ f ‖# = | f (x∗)| is a seminorm on the space of continuous functions. Moreover,

0 ≤ T̂ ξ(x)− T̂ ξ ′(x) < ‖ξ − ξ ′‖#. (44)

Note that in general, an optimal stopping time for T̂ ξ(x) depends on the initial state x. However,664

under general conditions (cf. Section 2.1.1), τ∗ = inf{t ≥ 0 : Xt ∈ Γ}, where Γ is the stopping set.665

Then the condition in the above lemma writes as Γ ⊂ (a, x′] for some x′ < x∗.666

Proof of Lemma 12. By the monotonicity of T̂ , for any x we have

0 ≤ T̂ ξ(x)− T̂ ξ ′(x) ≤ Ex
{

e−rτ∗
(
− Xτ∗ + pc +

(
Kc + Aξ(x∗)

)ψr(Xτ∗)

ψr(x∗)

)}
−Ex

{
e−rτ∗

(
− Xτ∗ + pc +

(
Kc + Aξ ′(x∗)

)ψr(Xτ∗)

ψr(x∗)

)}
= Ex

{
e−rτ∗A

((
ξ(x∗)− ξ ′(x∗)

)ψr(Xτ∗)

ψr(x∗)

)}
= ‖ξ − ξ ′‖# AEx

{
e−rτ∗ ψr(Xτ∗)

ψr(x∗)

}
.

This proves (44). Also we have

AEx∗
{

e−rτ∗ ψr(Xτ∗)

ψr(x∗)

}
≤ A

φr(x∗)
φr(x′)

ψr(x′)
ψr(x∗)

≤ ρ.

667

Lemma 13. Assume that there exists a fixed point ζ̂∗ of T̂ in the space of continuous non-negative functions.668

In the problem T̂ ζ̂∗, assume the existence of an optimal stopping time under which stopping occurs only at669

values bounded above by x′ < x∗ (c.f. the comment after the previous lemma). Then there is a constant ρ < 1670

such that ‖ζ̂∗ − T̂ n0‖# ≤ ρn‖ζ̂∗‖# and ‖ζ̂∗ − T̂ n0‖∞ ≤ ρn−1‖ζ̂∗‖#, where ‖ · ‖∞ is the supremum norm.671
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Proof. Clearly, ‖ζ̂∗ − 0‖# < ∞. By virtue of Lemma 12 we have ‖T̂ n0 − ζ̂∗‖# ≤ ρn‖0 − ζ̂∗‖# for
ρ = ψr(x′)

ψr(x∗) < 1. Hence, T̂ n0 converges exponentially fast to ζ̂∗ in the seminorm ‖ · ‖#. Using (44) we
have

‖ζ̂∗ − T̂ n0‖∞ = ‖T̂ ζ̂∗ − T̂ ◦ T̂ n−10‖∞ ≤ ρn−1‖ζ̂∗‖#.

672

Corollary 6. Let ζ̂∗ be a fixed point of T̂ and suppose that the problem T̂ ζ̂∗ admits an optimal stopping time673

τ̂∗ satisfying Xτ̂∗ ≤ x′ < x∗, for some constant x′. Such a fixed point ζ̂∗ is unique.674

Proof. By Lemma 13 if ζ̂∗ is a fixed point satisfying the assumptions of the corollary, it is approximated675

by T̂ n0 in the supremum norm, hence, it must be unique.676

Appendix D Note on Lemma 3677

The inequality limx→−∞
−x

φr(x) > 0 when a = −∞ asserts that the process X escapes to −∞ quickly.678

Indeed, choosing z ∈ I, we have Ez{e−rτx} = φr(z)
φr(x) for x ≤ z, hence Ez{e−rτx} ≥ c

−x for some constant679

c > 0 and x sufficiently close to −∞. To illustrate the speed of escape, assume for simplicity that X is a680

deterministic process. Then the last inequality would imply τx ≤ 1
r
(

log(−x)− log(c)
)
, i.e., X escapes681

to −∞ exponentially quickly.682

An example of a model that violates the assumptions of Lemma 3 is the negative geometric683

Brownian motion: Xt = − exp
(
(µ− σ2/2)t + σWt

)
for µ, σ > 0. With the generator A = 1

2 σ2x2 d2

dx2 +684

µx d
dx , we have φr(x) = (−x)γ2 and ψr(x) = (−x)γ1 , where γ1 < 0 < γ2 are solutions to the685

quadratic equation σ2

2 γ2 + (µ − σ2

2 )γ − r = 0, i.e., γ = B ±
√

B2 + 2 r
σ2 with B = 1

2 −
µ

σ2 . Hence,686

limx→−∞
−x

φr(x) = limx→−∞(−x)1−γ2 > 0 if and only if γ2 ≤ 1. It is easy to check that γ2 = 1 for µ = r687

and γ2 is decreasing as a function of µ. Therefore, the condition γ2 ≤ 1 is equivalent to µ ≥ r.688

In summary, the negative geometric Brownian motion violates the assumptions of Lemma 3 if689

µ ≥ r. If µ = r then case B of Theorem 1 applies with Lc = 1, while if µ > r then Lc = ∞ and so case C690

applies. Both cases may be interpreted heuristically as the negative geometric Brownian motion X691

escaping ‘relatively quickly’ to −∞, that is, relative to the value r of the continuously compounded692

interest rate. In the latter case this happens sufficiently quickly that the single problem’s value function693

Vc is infinite.694

Appendix E Verification theorem for the lifetime value function695

We now provide a verification lemma which may be used to verify if a given value x̂ is an optimal696

buy price in the lifetime problem. The result is motivated by the following argument using Theorem 3.697

We claim that for all x ∈ I, T̂ V̂(x) depends on the value function V̂ only through its value at698

x = x∗. The argument is as follows: when the battery operator acts optimally, the energy purchase699

occurs when the price is not greater than x∗: under Px for x ≥ x∗, this follows directly from Theorem700

3; under Px for x < x∗, the energy is either purchased before the price reaches x∗ or one applies a701

standard dynamic programming argument for optimal stopping problems (see, for example, Peskir702

and Shiryaev (2006)) at x∗ to reduce this to the previous case. In our setup the continuation value is703

not received until the EIM price rises again to x∗ (it is received immediately if the energy purchase704

occurs at x∗).705

Suppose therefore that we can construct functions Vi : I → R, i = 1, 2, with the following706

properties:707

i) T̂ V1 = V2,708

ii) V1(x∗) = V2(x∗),709

iii) for i = 1, 2, the highest price at which the battery operator buys energy in the problem T̂ Vi is not710

greater than x∗.711
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Then we have V2 = T̂ V1 = T̂ V2, so that V2 is a fixed point of T̂ .712

We postulate the following form for Vi: given y > 0 take713

V1(x) = ξ̂
y
0(x) := 1x≤x∗y, (45)

V2(x) = ξ̂y(x) := T̂ ξ̂
y
0(x). (46)

For convenience define h(x, y) to be the payoff in the lifetime problem when the the continuation value714

is ξ̂
y
0 . Thus we have715

h(x, y) = ĥ(x, ξ̂
y
0), (47)

ξ̂y(x) = T̂ ξ̂
y
0(x) = sup

τ
Ex{e−rτh

(
Xτ , y

)
1τ<∞

}
. (48)

Lemma 14. Suppose that x̂ ∈ (a, x∗) satisfies the system716

h(x̂, y)
φr(x̂)

= sup
x∈(a,x∗)

h(x, y)
φr(x)

, (49)

y =
φr(x∗)
φr(x̂)

h(x̂, y), (50)

y > 0. (51)

Then the function ξ̂y of (48) is a fixed point of T̂ , is continuous and strictly positive, and

ξ̂y(x) =
φr(x)
φr(x∗)

y, for x ≥ x̂. (52)

Proof. Consider first the problem (48) with x ≥ x̂. By construction ξ̂
y
0 is an admissible continuation717

value in Lemma 9, and cases 1 or 2a must then hold due to the standing assumption for this section718

that regime (α) of Theorem 2 is in force. By (49) the stopping time τx̂ is optimal, and the problem’s719

value function ξ̂y has the following three properties. Firstly, ξ̂y is continuous on I by Lemma 8.720

Secondly, using (50) we see that ξ̂y satisfies (52). This implies thirdly that ξ̂y/φr is constant on [x∗, b)721

and establishes that ξ̂y(x∗) = y, giving property ii) above. Since y > 0 by (51), the strict positivity of722

ξ̂y everywhere follows as in part 1 of the proof of Lemma 2. Our standing assumption S2* implies that723

the payoff h(x, y) of (47) is negative for x > x∗, which establishes property iii) for problem (48).724

The three properties of ξy established above make it an admissible continuation value in Lemma725

9, so we now consider the problem T̂ ξy for x ≥ x̂. Under Px for x ≥ x∗, claim 2 of Lemma 6 prevents726

the battery operator from buying energy at prices greater than x∗ when acting optimally; under Px for727

x < x∗, the dynamic programming principle mentioned above completes the argument.728

The following corollary completes the verification argument, and also establishes the uniqueness729

of the value y in Lemma 14.730

Corollary 7. Under the conditions of Lemma 14:731

i) the function ξ̂y coincides with the lifetime value function: V̂ = ξ̂y,732

ii) there is at most one value y for which the system equations (49) and (50) has a solution x̂ ∈ (a, x∗).733

Proof. i) We will appeal to Lemma 13 by refining property iii) above for the problem T̂ V2 = T̂ ξ̂y
734

(as was done in the proof of Corollary 2). Suppose that the battery operator buys energy at the735

price x∗. Then since the function ξ̂y is a fixed point of T̂ under our assumptions, we may consider736

T̂ ξ̂y(x∗) = −x∗ + pc + Kc + ξ̂y(x∗) and then S2* leads to T̂ ξ̂y(x∗) < ξ̂y(x∗) which is a contradiction.737

Thus from Lemma 13, T̂ n0 converges to ξ̂y as n→ ∞. As the limit of T̂ n0 is the lifetime value function738

we obtain V̂ = ξ̂y.739



Version March 28, 2019 submitted to Risks 28 of 29

ii) Assume the existence of two such values y1 6= y2. Then (52) gives V̂(x∗) = ξ̂y1(x∗) = y1 6=740

y2 = ξ̂y2(x∗) = V̂(x∗), a contradiction.741

We recall here that, on the other hand, the value x̂ in Lemma 14 may not be uniquely determined742

(cf. part (a) of Corollary 2). In this case the largest x̂ satisfying the assumptions of Lemma 14 is the743

highest price x̌ at which the battery operator can buy energy optimally.744

Appendix F Facts about the OU process745

Let us temporarily fix µ = 0 and θ = σ = 1. Consider the ordinary differential equation (ODE)

w′′(z) +
(

ν +
1
2
− 1

4
z2
)

w(z) = 0.

There are two fundamental solutions Dν(z) and Dν(−z), where Dν is a parabolic cylinder function.
Assume that ν < 0. This function has a multitude of representations, but the following will be sufficient
for our purposes (Érdelyi et al. 1953, p. 119):

Dν(z) =
e−z2/4

Γ(−ν)

∫ ∞

0
e−zt− 1

2 t2
t−ν−1dt.

Then Dν is strictly positive. Fix r > 0. Define

ψr(x) = e
(x−µ)2θ

2σ2 D−r/θ

(
− (x− µ)

√
2θ

σ

)
, φr(x) = e

(x−µ)2θ

2σ2 D−r/θ

( (x− µ)
√

2θ

σ

)
.

By direct calculation one verifies that these functions solve

Lv = rv, (53)

where
Lv(x) =

1
2

σ2v′′(x) + θ(µ− x)v′(x) (54)

is the infinitesimal generator of the OU process (25). Setting ν = −r/θ we can write

ψr(x) =
1

Γ(−ν)

∫ ∞

0
e(x−µ)t

√
2θ
σ −

1
2 t2

t−ν−1dt, φr(x) =
1

Γ(−ν)

∫ ∞

0
e−(x−µ)t

√
2θ
σ −

1
2 t2

t−ν−1dt.

Hence ψr is increasing and φr is decreasing in x. Also, by monotone convergence ψr(−∞) = φr(∞) = 0746

and ψr(∞) = φr(−∞) = ∞. The functions ψr and φr are then fundamental solutions of the equation747

(53). Further they are strictly convex, which can be checked by passing differentiation under the748

integral sign (justified by the dominated convergence theorem). Defining F(x) = ψr(x)/φr(x), then F749

is continuous and strictly increasing with F(−∞) = 0 and F(∞) = ∞.750

Using the integral representation of φr and l’Hôpital’s rule we have

lim
x→−∞

−x
φr(x)

= lim
x→−∞

−1
1

Γ(−ν)

∫ ∞
0 e−(x−µ)t

√
2θ
σ −

1
2 t2
(
− t
√

2θ
σ

)
t−ν−1dt

=
σ√
2θ

lim
x→−∞

1
1

Γ(−ν)

∫ ∞
0 e−(x−µ)t

√
2θ
σ −

1
2 t2 t−νdt

=
σ√
2θ

lim
x→−∞

1
Γ(−ν+1)

Γ(−ν)
1

Γ(−ν+1)

∫ ∞
0 e−(x−µ)t

√
2θ
σ −

1
2 t2 t−νdt

= 0,

(55)

as the denominator is a scaled version of φr̃ corresponding to a new r̃ such that −r̃/θ = ν− 1 < ν < 0,751

and so it converges to infinity when x → −∞.752
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