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1 Abstract: As decarbonisation progresses and conventional thermal generation gradually gives way
2 to other technologies including intermittent renewables, there is an increasing requirement for system
s balancing from new and also fast-acting sources such as battery storage. In the deregulated context
«  this raises questions of market design and operational optimisation. In this paper we assess the
s real option value of an arrangement under which an autonomous energy-limited storage unit sells
s  incremental balancing reserve. The arrangement is akin to a perpetual American swing put option
7 with random refraction times, where a single incremental balancing reserve action is sold at each
s exercise. The power used is bought in an energy imbalance market (EIM), whose price we take as a
o general regular one-dimensional diffusion. The storage operator’s strategy and its real option value
1o are derived in this framework by solving the twin timing problems of when to buy power and when
1 tosell reserve. Our results are illustrated with an operational and economic analysis using data from
12 the German Amprion EIM.

1z Keywords: Multiple optimal stopping; general diffusion; real option analysis; energy imbalance
12 market

s 1. Introduction

"

16 In today’s electric grids, power system security is managed in real time by the system operator,
17 who coordinates electricity supply and demand in a manner that avoids fluctuations in frequency or
e disruption of supply (see, for example, New Zealand Electricity Authority (2016)). In addition the
1o SO carries out planning work to ensure that supply can meet demand, including the procurement
20 of non-energy or ancillary services such as operating reserve, the capacity to make near real-time
z  adjustments to supply and demand. These services are provided principally by network solutions such
22 as the control of large-scale generation, although from a technical perspective they can also be provided
23 by smaller, distributed resources such as demand response or energy storage (National Grid plc (2016);
22 Xu et al. (2016)). Such resources have strongly differing operating characteristics: when compared to
2 thermal generation, for example, energy storage is energy limited but can respond much more quickly.
26 Storage also has important time linkages, since each discharge necessitates a corresponding recharge
2z atalater time.

28 The coming decades are expected to bring a period of “energy transition” in which markets for
2 ancillary services will evolve, among other highly significant changes to generation, consumption
s and network operation. The UK government, for example, has an ambition that “new solutions such
a1 as storage or demand-side response can compete directly with more traditional network solutions” (UK Office
sz of Gas and Electricity Markets (2017, p. 29)). In harmony the UK System Operator National Grid
ss  has recently declared its intention to “create a marketplace for balancing that encourages new and existing
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providers, and all new technology types” (National Grid plc 2017). In anticipation of changes such as these,
we will examine the participation of autonomous energy storage in a future marketplace for balancing.

Operating reserve is typically procured via a two-price mechanism, with a reservation payment
plus an additional utilisation payment each time the reserve is called for (Ghaffari and Venkatesh
2013; Just and Weber 2008). Since the incentivisation and efficient use of operating reserve for system
balancing is of increasing importance with growing penetration of variable renewable generation
(King et al. 2011), several system operators have recently introduced real-time energy imbalance markets
(EIMs) in which operating reserve is pooled, including in Germany (Ocker and Ehrhart 2017) and
California (CAISO 2016; Lenhart et al. 2016). Such markets typically involve the submission of bids
and offers from several providers for reserves running across multiple time periods, which are then
accepted, independently in each period, in price order until the real-time balancing requirement is
met. As one provider can potentially be called upon over multiple consecutive periods, this reserve
procurement mechanism is not well suited to energy-limited reserves such as energy storage. However,
storage-oriented solutions are being pioneered in a number of countries including a recent tender by
National Grid in the UK (National Grid plc 2016) and various trials by state system operators in the
US (Xu et al. 2016).

This paper considers operating reserve contracts for energy limited storage devices such as
batteries. In contrast to previous work on the pricing and hedging of energy options where settlement
is financial (see for example Benth et al. (2008) and references therein), we take account of the physical
settlement required in system balancing, considering also the limited energy and time linkages of
storage. The potential physical feedback effects of such contracts are investigated by studying the
operational policy of the storage or battery operator. To address the limited nature of storage, the
considered reserve contract is for a fixed quantity of energy. In this way, each contract written can be
physically covered with the appropriate amount of stored energy. We consider a simple arrangement
where the system operator sets the contract parameters, namely the premia (the reservation and
utilisation payments) plus an EIM price level x* at which the energy is delivered. That is, rather than
being the outcome of a price formation process, these parameters are set administratively. Our analysis
thus focuses exclusively on the timing of the battery operator’s actions. This dynamic modelling
contrasts with previous economic studies of operating reserve in the literature, which have largely
been static (Just and Weber 2008).

To quantify the economic opportunity for the storage operator we use real options analysis. Real
Options analysis is the application of option pricing techniques to the valuation of non-financial or
“real” investments with flexibility (Borison 2005; Dixit and Pindyck 1994). Here the energy storage unit
is the real asset, and is coupled with the timing flexibility of the battery operator, who observes the
EIM price in real time. The arrangement may be viewed as providing the battery operator with a real
perpetual American put option on the reserve contract described above. This option is either of swing
type (called the Iifetime problem in this paper) or of single exercise type (single problem). The feature that
sets it apart from the existing literature on swing options is the random refraction time (c.f. Carmona
and Touzi (2008)).

A key question in Real Options analyses is the specification of the driving randomness (Borison
2005). In this paper we model the EIM price to resemble the historical statistical dynamics of imbalance
prices. In common with electricity spot prices and commodity prices more generally but unlike the
prices of financial assets, imbalance prices typically exhibit significant mean reversion (Ghaffari and
Venkatesh 2013; Pflug and Broussev 2009).

To avoid trivial cases we impose the following, mild, sustainability conditions on the arrangement:

S1. The battery operator has a positive expected profit from the arrangement.
S2. The reserve contract cannot lead to a certain financial loss for the system operator.

Condition S1 is also known as the individual rationality or participation condition (Fudenberg
et al. 1991). While the battery operator is assumed to be a profit maximiser, the system operator may
engage in the arrangement for wider reasons than profit maximisation. To acknowledge the potential
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Figure 1. The sequence of actions A1-A3.

additional benefits provided by batteries, for example in providing response quickly and without
direct emissions, condition S2 is less strict than individual rationality.

By considering reserve contracts for incremental capacity (defined as an increase in generation
or equivalently a decrease in load), we are able to provide complete solutions whose numerical
evaluation is straightforward. Contracts for a decrease in generation, or an increase in load, lead to a
fundamentally different set of optimisation problems which have been partially solved by Szab6 and
Martyr (2017).

This study extends earlier work (Moriarty and Palczewski 2017) with two important differences.
Firstly, the dynamics of the imbalance price is described there by an exponential Brownian motion.
In the present paper, by employing a different methodological approach we obtain explicit results
for mean-reverting processes (and also other general diffusions) which better describe the statistical
properties of imbalance prices (Ghaffari and Venkatesh 2013; Pflug and Broussev 2009). Secondly, the
present paper takes into account deterioration of the store. Without this feature it was found that the
value of storage is either very small (corresponding roughly to writing a single reserve contract) or
infinite.

Through a benchmark case study we obtain the following economic recommendations. Firstly,
investments in battery storage to provide reserve will be profitable on average for a wide range of
the contract parameters. Secondly the EIM price level x* at which energy is delivered is an important
consideration. This is because as x* increases, the EIM price reaches x* significantly less frequently
and the reserve contract starts to provide cover for rare events, resulting in infrequent power delivery
and low utilisation of the battery, which may make the business case unattractive. These observations
suggest that the contractual arrangement studied in this paper is more suitable for the frequent
balancing of less severe imbalance.

1.1. Objectives

Given the model parameters x*, p. > 0 and K, > 0, we wish to analyse the actions A1-A3 below
(a graphical description of this sequence of actions is provided in Figure 1):

A1l The battery operator selects a time to purchase a unit of energy on the EIM and stores it.

A2 With this physical cover in place, the battery operator then chooses a later time to sell the
incremental reserve contract to the system operator in exchange for the initial premium p.

A3 The system operator requests delivery of power when the EIM price X first lies above the level
x* and immediately receives the contracted unit of energy in return for the utilisation payment
Ke.
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Thus, the system operator obtains incremental reserve from the arrangement in preference to using
the EIM, when the EIM price is higher than the level x* specified by the system operator. When
the sequence A1-A3 is carried out once, we refer to this as the single problem; when it is repeated
indefinitely back-to-back we refer to it as the lifetime problem.

In the lifetime problem, because storage is energy limited, action A3 must be completed before
the sequence A1-A3 can begin again. Thus if the arrangement is considered as a real swing put option,
the time between A2 and A3 is a random refraction period during which no exercise is possible. Note
that after action A3, the battery operator will perform action Al again when the EIM price has fallen
sufficiently. Mathematically, therefore, we have the following objectives:

M1 For the single and lifetime problems, find the highest EIM price X at which the battery operator may buy
energy when acting optimally.

M2 For the single and lifetime problems, find the expected value of the total discounted cash flows (value
function) for the battery operator corresponding to each initial EIM price x > X.

We also aim to provide a straightforward numerical procedure to explicitly calculate ¥ and the value
function (for x > X) in the lifetime problem.

1.2. Approach and related work

We take the EIM price to be a continuous time stochastic process (X;);>o. Since markets operate
in discrete time this is an approximation, made for analytical tractability. Nevertheless it is consistent
with the physical fact that the system operator’s system balancing challenge is both real-time and
continuous.

Mathematically the problem is one of choosing two optimal stopping times corresponding to the
two actions Al and A2, based on the evolution of the stochastic process X. (The reader is refered to
Peskir and Shiryaev (2006, Chapter 1) for a thorough presentation of optimal stopping problems.) We
centre our solution techniques around ideas of Beibel and Lerche (2000), who characterise optimal
stopping times using the Laplace transforms of first hitting times for the process X (see for example
Borodin and Salminen (2012, Section 1.10)). Methods and results from the single problem are then
combined with a fixed point argument for the lifetime analysis.

Our methodological results feed into a growing body of research on timing problems in trading.
In a financial context, Zervos et al. (2013) optimise the performance of “buy low, sell high” strategies,
using the same Laplace transforms to provide a candidate value function, which is later verified as
a solution to certain quasi-variational inequalities. An analogous strategy in an electricity market
using hydroelectric storage is studied in Carmona and Ludkovski (2010) where the authors use
Regression Monte Carlo methods to approximately solve the dynamic programming equations for
a related optimal switching problem. Our results differ from the above papers in two aspects. Our
analysis is purely probabilistic, leading to arguments that do not refer to the theory of PDEs and
quasi-variational inequalities. Secondly, our characterisation of the value function and the optimal
policy is explicit up to a single, one-dimensional non-linear optimisation which, as we demonstrate in
an empirical experiment, can be performed in milliseconds using standard scientific software. Related
to our lifetime analysis, Carmona and Dayanik (2008) apply probabilistic techniques to study the
optimal multiple-stopping problem for a general linear regular diffusion process and reward function.
However the latter work deals with a finite number of option exercises in contrast to our lifetime
analysis which addresses an infinite sequence of exercises via a fixed point argument. Our work thus
yields results with a significantly simpler and more convenient structure.

The contracts we consider have features in common with the reliability options used in Colombia,
Ireland and the ISO New England market and currently being introduced in Italy (Mastropietro et al.
2018). Reliability options pay an initial premium to a generator, usually require physical cover, and
have a reference market price and a strike price which plays a similar role to x*. Typically the strike
price is set at the variable cost of the technology used to satisfy demand peaks, and the generator is
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contracted to pay back the difference between the market price and the strike price in periods when
energy is delivered and the market price is higher. However instead of being designed for system
balancing, the purpose of reliability options is to ensure sufficient investment in generation capacity.

The remainder of the paper is organised as follows. The mathematical formulation and main
tools are developed in Section 2. In the results of Section 3 we show that, for a range of price
processes X incorporating mean reversion, solutions for all initial values x can be obtained. Further
an empirical illustration using data from the German Amprion system operator is provided and
qualitative implications are drawn, while Section 5 concludes. Auxiliary results are collected in the
appendices.

2. Methodology

2.1. Formulation and preliminary results

In this section we characterise the real option value in the single and lifetime problems using the
theory of regular one-dimensional diffusions. Denoting by (W;)>¢ a standard Brownian motion, let
X = (X¢)t>0 be a (weak) solution of the stochastic differential equation:

dX; = ]/l(Xt)df+0'(Xt)th, 1)

with boundaries 4 € RU {—o0} and b € RU {oo}. The solution of this equation with the initial
condition Xy = x defines a probability measure P* and the related expectation operator E*. We assume
that the boundaries are natural or entrance-not-exit, i.e. the process cannot reach them in finite time,
and that X is a regular diffusion process, meaning that the state space I := (a, b) cannot be decomposed
into smaller sets from which X cannot exit. The existence and uniqueness of such an X is guaranteed if
the functions y and ¢ are Borel measurable in I with 02 > 0, and

rre1+ )|
— 0%(g)

(see Karatzas and Shreve (1991, Theorem 5.5.15); condition (2) holds if, for example, y is locally
bounded and ¢ is locally bounded away from zero). Necessary and sufficient conditions for the
boundaries a and b to be non-exit points, i.e., natural or entrance-not-exit, are formulated in Theorem
5.5.29 of the latter book. In particular, it is sufficient that the scale function

p(x) = /Cx exp (—2 /CZ :2((?) du) dz, xe€l, ©)]

converges to —oo when x approaches 2 and to +oco when x approaches b. (Here ¢ € I is arbitrary and

the condition stated above does not depend on its choice.) These conditions are mild, in the sense that

they are satisfied by all common diffusion models for commodity prices, including those in Section 3.
Denote by 7, the first time that the process X reaches x € I:

Vyel, 3£>Osuchthat/ dE < +oo, @)
Y

T =inf{t > 0: X; = x}. 4)
For r > 0, define

1,L’r(X> _ {]Ex{e_"l'c}l x <g, (l)r(x) _ {1/EC{8_TTX}’ x<c (5)

1/E¢{e7 "™}, x>, E*{e" "%}, x>



178

179

184

185

186

Version March 28, 2019 submitted to Risks 6 of 29

for any fixed ¢ € I (different choices of ¢ merely result in a scaling of the above functions). It can be
verified directly that function ¢, (x) is strictly decreasing in x while (x) is strictly increasing, and for
x,y € I we have

]EX{efi’Ty} — {lpr(X)/l/)r(y), x < Y, (6)

or(x)/Pr(y), x 2.
Since the boundaries 4, b are natural or entrance-not-exit, we have ¢,(a+) > 0, ¢,(b—) > 0 and

P (b—) = ¢, (a+) = co (Borodin and Salminen 2012, Section II.1).

2.1.1. Optimal stopping problems and solution technique

The class of optimal stopping problems which we use in this paper is
v(x) =supE*{e7""9(Xr)lr<wo }, (7)
T

where the supremum is taken over the set of all (possibly infinite) stopping times. Here ¢ is the payoff
function and v is the value function. If a stopping time T* exists which achieves the equality (7) we call
this an optimal stopping time. Also, if v and ¢ are continuous then the set

F'={xel:v(x)=79(x)} 8

is a closed subset of I. Under general conditions (Peskir and Shiryaev 2006, Chapter 1), which are
satisfied by all stopping problems studied in this paper, T = inf{t > 0 : X; € I'} is the smallest
optimal stopping time and the set I is then called the stopping set.

Appendix A contains three lemmas providing a classification of solutions to the stopping problem
(7) which will be used below.

2.1.2. Single problem

Let (X;);>0 denote the EIM price. We will develop a mathematical representation of actions
A1-A3 (see Section 1.1) when only one reserve contract is traded. Considering A3, the time of power
delivery is the first time that the EIM price exceeds a predetermined level x™:

T, =inf{t >0:X; > x*}.

Given the present level x of the EIM price, the expected net present value of the utilisation payment
exchanged at time 1, can be expressed as follows thanks to (6):

*
KC/ xe/

KC%, x < x*.

he(x) = E¥ {e K.} = )

Therefore, the optimal timing of action A2 corresponds to solving the following optimal stopping
problem:

sup E*{e™"" (pc + he(X7))1rcoo }-
T

Since the utilisation payment K. obtained when the EIM price exceeds x* is positive and constant, as
is the initial premium p,, it is best to obtain these cashflows as soon as possible. The solution of the
above stopping problem is therefore trivial: the contract should be sold immediately after completing
action Al, i.e. immediately after providing physical cover for the reserve contract. Optimally timing
the simultaneous actions Al and A2, the purchase of energy and sale of the incremental reserve
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contract, is therefore the core optimisation task. It corresponds to solving the following optimal
stopping problem:

Ve(x) = sup E¥{e™""( — Xv 4+ pc + he(X7)) Lrcoo} = sup EX{e7"h(X7)lr<oo }, (10)
T T

where the payoff
h(x) = _x+pc+hc(x) (11)

is non-smooth since k. is non-smooth. The function V,(x) is the real option value in the single problem.

2.1.3. Lifetime problem formulation and notation

In addition to having a design life of multiple decades, thermal power stations have the primary
purpose of generating energy rather than providing ancillary services. In contrast electricity storage
technologies such as batteries have a design life of years and may be dedicated to providing ancillary
services. In this paper we take into account the potentially limited lifespan of electricity storage by
modelling a multiplicative degradation of their storage capacity: each charge-discharge cycle reduces
the capacity by a factor A € (0,1).

We now turn to the lifetime problem. To this end, suppose that a nonnegative continuation value
¢(x, ) is also received at the same time as action A3. It is a function of the capacity of the store
a € (0,1) and the EIM price x, and represents the future proceeds from the arrangement.

The expected net present value of action A3 is now

* P(x) *
(K 4 ¢(x*, An)) e X <X 12)
aKe + (x, An), x > x*,

e (x,0) == E*{e” "% (aKc + {(Xz,, Aw)) } =
where A € (0,1) is the multiplicative decrease of storage capacity per cycle. Here the optimal timing
of action A2 may be non trivial due to the continuation value {(x, ). We will show however that for
the functions ¢ of interest in this paper, it is optimal to sell the reserve contract immediately after action
Al, identically as in the single problem. The timing of action A1 requires the solution of the optimal
stopping problem

T(x,a) :==sup E*{e”"" ( — aX¢ +ap: + hg(XT,a))le}. (13)

The optimal stopping operator T makes the dependence on  explicit: it maps ¢ onto the real option
value of a selling a single reserve contract followed by continuation according to {. We define the
lifetime value function V as the limit

V() = lim (T"0)(x,1), 14
(if the limit exists), where 7" denotes the n-fold iteration of the operator 7 and 0 is the function
identically equal to 0. Thus 770 is the real option value of selling at most n reserve contracts under
the arrangement. (Note that a priori it may not be optimal to sell all n contracts in this case, since it is
possible to offer fewer contracts and refrain from trading afterwards by choosing T = 0.)
Calculation of the lifetime value function requires the analysis of a two-argument function. We
will show now that this computation may be reduced to a function of the single argument x. Define
Co(x,a) = 0 and {y41(x, &) = Tn(x,a). We interpret {,(x,a) as the maximum expected wealth
accumulated over at most n cycles of the actions A1-A3 when the initial capacity of the store is «.
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Lemma 1. We have {,(x, &) = al,(x), where {,(x) = {u(x,1). Moreover, {,,(x) = T"0(x), where

TC(x) =supE*{e "™ ( — Xr + pc + fzé(XT))le}, (15)

and

A (x) = p(x)’ (16)

(Ke + AL(x%)) o)y <y,
Ke+ A(x), x> xt.

Proof. The proof is by induction. Clearly, the statement is true for n = 0. Assume it is true for n > 0.
Then

_ 1
€n+1(x/ 0‘) =T (xr 0‘) = asup Ex{e rr( — X+ pe+ &hgn (XT/ 0‘))1T<oo}/
T

and
L6 (x,0) = BT (Ko 300X, An))} = B{e ™ (Ke + AL (X2)) )

Hence, {;11(x, &) = IXTCAn(x) = a{,+1(x,1). Consequently, to=7T"0. O

Assume that {,(x, &) converges to {(x,a) as n — co. Then, clearly, {,, converges to {(x) = {(x,1).
It is also clear that { is a fixed point of 7T if and only if { is a fixed point of 7. Therefore, we have
simplified the problem to that of finding a limit of 7"0(x). The stopping problem 7 will be called
the normalised stopping problem and its payoff denoted by

Pr(x*)

Pr(x) %] *

o _x+pc+ Kc‘.‘Aé(-X), x<x,

(x,¢) = (A ) 17)
—x+pc+ Ke+ Al(x), x > x*.

In particular, 70 coincides with the single problem’s value function V..
Notation. In the remainder of this paper a caret (hat) will be used over symbols relating to the
normalised lifetime problem:
V(x) = lim 7"0(x).

n—oo

2.1.4. Sustainability conditions revisited

The sustainability conditions S1 and S2 introduced in Section 1 are our standing economic
assumptions. The next lemma, proved in the appendices, expresses them quantitatively. This makes
way for their use in the mathematical considerations below.

Lemma 2. When taken together, the sustainability conditions S1 and S2 are equivalent to the following
quantitative conditions:

ST*: sup,c (o) h(x) > 0, and
S§2%: pe+ K¢ < x*.

Notice that S1* is always satisfied when a < 0.

2.2. Three exhaustive regimes in the single problem

In this section we consider the single problem. Recall that the sustainability assumptions, or
equivalently assumptions S1* and S2%, are in force. For completeness the notation and general optimal
stopping theory used below is presented in Appendix A.

Since the boundary 7 is not-exit we have ¢, (a+) = co. When # is given by (11), the limit L of (39)
is then

X
Lc := limsup ——. 18
‘ IHEP ¢r(x) (18)



226

227

228

229

230

Version March 28, 2019 submitted to Risks 9 of 29

present value £
20 30 40

10

-10
|

\ \ \ \ \ \
-40 -20 0 20 40 60

stopping boundary: £ per MWh

Figure 2. Sensitivity of the expected value in the single problem with respect to the stopping boundary.
The EIM price is modelled as an Ornstein-Uhlenbeck process dX; = 3.42(47.66 — X;)dt + 30.65dW;
(time measured in days, fitted to Elexon Balancing Mechanism price half-hourly data from 07/2011 to
03/2014). The interest rate r = 0.03, power delivery level x* = 60, the initial premium p. = 10, and the
utilisation payment K. = 40. The initial price is X is set equal to x*.

It can also be verified that the analogous constant R defined in (40) in the appendices satisfies R < o
since, by S2*, I is negative on [x*,c0). The following theorem completes our aim M2.

Theorem 1. (Single problem) Assume that conditions S1* and S2* hold. With the definition (18) there are
three exclusive cases:

(A) L. < % for some x == thereis £ < x* that maximises %, and then, for x > %, T3 is optimal,
and h2)
x
V.(x) = X ~, x > Xx. 19
C( ) (P‘f( )¢r(x) ( )

(B) o> L > q]:r((x))) forall x = V.(x) = L ¢,(x) and there is no optimal stopping time.

(C) Lc =00 = V,(x) = oo and there is no optimal stopping time.

Moreover, in cases A and B the value function V. is continuous.

Proof. By condition S1%, h(y) is positive for some y € I and the value function V;(x) > 0. For case A
note first that the function & is negative on [x*,b) by S2*, see (9) and (11). Therefore, the supremum of
% is positive and must be attained at some (not necessarily unique) £ € (a, x*). The optimality of ¢
for x > % then follows from Lemma 6. Case B follows from Lemma 7 and the fact that L, > 0. Lemma

7 proves case C. The continuity of V. follows from Lemma 8. [

The optimal strategy in case A is of threshold type. When an arbitrary threshold strategy 73 is
used, the resulting expected value for x > £ is given by ¢,(x)h(%)/¢,(%). Figure 2 (wWhose problem
data fall into case A) shows the potentially high sensitivity of the expected value of discounted cash
flows for the single problem with respect to the level of the threshold #. It is therefore important in
general to identify the optimal threshold accurately.

We now show that for commonly used diffusion price models, it is case A in the above theorem
which is of principal interest. This is due to the mild sufficient conditions established in the following
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lemma which are satisfied, for example, by the examples in Section 3. Although condition 2(b) in
Lemma 3 is rather implicit, it may be interpreted as requiring that the process X does not ‘escape
relatively quickly to —oco” (see Appendix D for a further discussion and examples) and it is satisfied,
for example, by the Ornstein-Uhlenbeck process.

Lemma 3. If condition S1* holds then:

1. The equality L. = 0 implies case A of Theorem 1.
2. Any of the following conditions is sufficient for L, = 0:

(ﬂ) a > —o0,

(b) a = —oc0and limy_,_o =0.

X
¢r(x)
h(x)
¢r(x)
For assertion 2(a), recall from Section 2 that ¢(a+) = oo since the boundary a4 is not-exit. Then we

have L. = limsup,_, ,(—x)/¢;(x) = 0asa > —oo. In 2(b), the equality L, = 0 is immediate from the
definition of L,. [

Proof. Condition S1* ensures that & takes positive values. Hence the ratio > 0 = L. for some x.

Turning now to aim M1, we have

Corollary 1. In the setting of Theorem 1 for the single problem, either
(a) the quantity

Y U 16 N ()
' { T ) syé?cpr(y)} @)

is well-defined, i.e., the set is non-empty. Then X is the highest price at which the battery operator may buy

energy when acting optimally, and we have X < x* (this is case A); or
(b) there is no price at which it is optimal for the battery operator to purchase energy. In this case the single

problem’s value function may either be infinite (case C) or finite (case B).

Proof. a) Since the maximiser £ in case A of Theorem 1 is not necessarily unique, the set in (20) may
contain more than one point. Since & and ¢, are continuous and all maximisers lie to the left of x*,
this set is closed and bounded from above, so ¥ is well-defined and a maximiser in case A. For any
stopping time T with P*{X; > ¥} > 0, it is immediate from assertion 3 of Lemma 6 that 7 is not
optimal for the problem V,(x), x > ¥. Part b) follows directly from cases B and C of Theorem 1. [

Corollary 1 confirms that it is optimal for the battery operator to buy energy only when the EIM
price is strictly lower than the price x* which would trigger immediate power delivery to the system
operator. Thus the battery operator (when acting optimally) does not directly conflict with the system
operator’s balancing actions.

2.3. Two exhaustive regimes in the lifetime problem

Turning to the lifetime problem, we begin by letting {(x) in definition (16) be a general
nonnegative continuation value depending only on the EIM price x, and studying the normalised
stopping problem (15) in this case (the payoff /1 is therefore defined as in (17)).

We now wish to study the value of n cycles A1-A3, and hence the lifetime value, by iterating
the operator 7. To justify this approach it is necessary to check the timing of action A2 in the lifetime
problem. With the actions A1-A3 defined as in Section 1.1, recall that the timing of action A2 is trivial
in the single problem: after Al it is optimal to perform A2 immediately. Lemma 10, which may be
found in the appendices, confirms that the same property holds in the lifetime problem.

We may now provide the following answer to objective M1 for the lifetime problem.

Corollary 2. Assume that conditions S1* and S2* hold. In the lifetime problem with { = V., either:
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(a) the quantity

5 h(x,{) h(y,{)
= I: = — 27 21
* max{"e or(x) o @(y)} =

is well-defined, i.e., the set is non-empty. Then X is the highest price at which the battery operator can buy

energy when acting optimally in the lifetime problem, and we have ¥ < x* (cases 1 and 2a in Lemma 9); or
(b) there is no price at which it is optimal for the battery operator to purchase energy. In this case the lifetime

value function may either be infinite (case 3) or finite (case 2b in Lemma 9).

Proof. The proof proceeds exactly as that of Corollary 1 with the exception of showing that ¥ < x*
(this is because Lemma 9 in the appendices, which characterises the possible solution types in the
lifetime problem, does not guarantee the strict inequality X < x*). Assume then ¥ = x*. At the EIM
price X; = ¥ = x* the power delivery to the system operator is immediately followed by the purchase
of energy by the battery operator and this cycle can be repeated instantaneously, arbitrarily many
times. However since each such cycle is loss making for the battery operator by condition S2*, this
strategy would lead to unbounded losses almost surely in the lifetime problem started at EIM price x*
leading to V(x*) = —co. This would contradict the fact that V > 0, so we conclude that ¥ < x*. [J

Pursuing aim M2, we will show now that there are two regimes in the lifetime problem: either the
lifetime value function is strictly greater than the single problem’s value function (and the cycle A1-A3
is repeated infinitely many times), or the lifetime value equals the single problem’s value. Although
the latter case appears counterintuitive, it is explained by the fact that the lifetime problem’s value
is then attained only in the limit when the purchase of energy (action Al) is made at a decreasing
sequence of prices converging to a, the left boundary of the process (X;). In this limit, the benefit of
future payoffs becomes negligible, equating the lifetime value to the single problem’s value.!

Theorem 2. There are two exclusive regimes:

() \:/(x) > Vi(x) forall x > x*,
(B) V(x) = Ve(x) forall x > x* (or both are infinite for all x).

Moreover, in regime (a) an optimal stopping time exists when the continuation value is { = {, = T"0 for
n > 0 (that is, for a finite number of reserve contracts), and when { = V (for the lifetime value function).

Proof. We take the continuation value ¢ = V, in Lemma 9 from the appendices and consider separately
its cases 1, 2a, 2b and 3. Firstly in case 3 we have V. = oo, implying that also V = co and we have
regime ().

Case 2 of Lemma 9 corresponds to case B of Theorem 1, when there is no optimal stopping time
in the single problem and V. (x) = Lc¢,(x) for all x € I. Considering first case 2b and defining ¢, as in
Lemma 11, it follows that {,(x) = Legy(x) = V.(x) for x € I and consequently V = V., which again
corresponds to regime (B).

In case 2a of Lemma 9, suppose first that the maximiser £ < x* is such that ML) — [ Then for

¢r(2)
x > x* > % we have {»(x) = ¢(x) ;él) = Lc¢,(x), which also yields regime (B). On the other hand,
when h;,f(il)) > L. we have for x > x* > £ that {>(x) = ¢,(x) qf(il > Ler(x) = {1(x), and so regime

(«) applies by the monotonicity of the operator 7. From the definition of /i in (17), and holding the

point £ < x* constant, this monotonicity implies that (x g,,) > L forall n > 1 and that 45 & )) > L. We
conclude that case 2a of Lemma 9 applies (rather than case 2b) for a finite number of reserve contracts
and also in the lifetime problem.

1 If the lifetime value is infinite then so is the single problem’s value and they are equal in this sense. When the lifetime value

is zero then it is optimal not to enter the contract, and so the single problem’s value is also zero.
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Considering now the maximiser £ defined in case 1 of Lemma 9, we have for x > x* > £ that

) > i/\l(forél> > fl(ﬁor )

1 :
) Z ) T ey T

and regime («) again follows by monotonicity. Also, trivially, case 1 of Lemma 9 applies for { =
and{=V. O

The following corollary follows immediately from the preceding proof.
Corollary 3. Regime (B) holds if and only if T20(x) = T0(x) for all x > x*.

To address the implicit nature of our answers to M1 and M2 for the lifetime problem, in the next
section we provide results for the construction and verification of the lifetime value function and
corresponding stopping time. For this purpose we close this section by summarising results obtained
above (making use of additional results from Appendix C).

Theorem 3. In the setting of Theorem 2 assume that regime («) holds. Then the lifetime value function V is
continuous, is a fixed point of the operator T and T"0 converges to V exponentially fast in the supremum norm.
Moreover, there is ¥ < x* such that Ty is an optimal stopping time for TV (x) when x > ¥ and, furthermore, ¥
is the highest price at which the battery operator can buy energy when acting optimally.

2.4. Construction of the lifetime value function

In this section we discuss a numerical procedure for solution of the lifetime problem. It is based
on the problem’s structure as summarised in Theorem 3. Lemma 4 provides a means of constructing
the lifetime value function, together with the value ¥ of Theorem 3, using a one-dimensional search.
We assume that regime («) of Theorem 2 holds.

In the circumstance when the above procedure is not followed, complementary findings in
Appendix E enable one to verify if a candidate buy price £ is optimal for the lifetime problem.

Lemma 4. The lifetime value function evaluated at x* satisfies

V(x*) = max y(z), (22)

z€(a,x*)

where

4 pet+ EOK,
V&)= o e,

(23)

¢r(x*) lP()

Proof. Fix z € (a,x*). In the normalised lifetime problem of Section 2.1.3, suppose that the strategy
7, is used for each energy purchase. Writing y for the total value of this strategy under P*", by
construction we have the recursion

¢r(x*) ¥r(2)
(Pr<z) ¢T<x*)

Rearranging, we obtain (23). By Theorem 3, there exists an optimal strategy 7y of the above form under
P*" and (22) follows. O

y= (—z+pc+ (Ke+ 4y) ).

Hence under P*" an optimal stopping level £ can be found by maximising y(z) over z € (a, x*).
The value ¥ of Theorem 3 is given by ¥ = max{x : y(x) = max¢(4+)y(2)}-
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3. Results

The general theory presented above provides optimal stopping times for initial EIM prices x > X,
where X is the highest price at which the battery operator can buy energy optimally. In this section, for
specific models of the EIM price we derive optimal stopping times for all possible initial EIM prices
x € I when the sustainability conditions S1* and S2* hold. In the examples of this section the stopping
sets I' for the single and lifetime problems take the form (g, ¥] although, in general, stopping sets may
have much more complex structure. Interestingly, the stopping sets for the single and lifetime problem
are either both half-lines or both compact intervals.

Note that condition §2* is ensured by the explicit choice of parameters. Verification of condition
S1* is straightforward by checking, for example, if the left boundary a of the interval I satisfies
a < pe+limy_, %KC, i.e., thatlimsup,_, h(x) > 0. In particular, S1* always holds if a = —oo.

Our approach is to combine the above general results with the geometric method drawn from
Section 5 of Dayanik and Karatzas (2003). Although Proposition 5.12 of the latter paper gives results
for natural boundaries, we note that the same arguments apply to entrance-not-exit boundaries. In

particular we construct the least concave majorant W of the obstacle H : [0,00) — R, where

h(E1().0)
H(y):={ ¢FTw)” y>0 (24)
llm Supx—)u 4)(:2/5)) = LC/ ]/ = 0/

(the latter equality was given in (41) in the appendices). Here the function F(x) = ¢,(x)/¢.(x) is
strictly increasing with F(a+) = 0. Writing [ for the set on which W and H coincide, under appropriate
conditions the smallest optimal stopping time is given by the first hitting time of the set T := F~1(T")
(Dayanik and Karatzas 2003, Propositions 5.13-5.14).

The Ornstein-Uhlenbeck (OU) process is a continuous-time stochastic process with dynamics

adX; = 9(]/17Xt)di’+0'dw,}, (25)

where 6,0 > 0 and p € R. It has two natural boundaries, 2 = —co and b = co. This process extends
the scaled Brownian motion model by introducing a mean reverting drift term 6(y — X;)dt. The mean
reversion is commonly observed in commodity price time series and may have several causes (Lutz
2009). In the present context, the mean reversion can also be interpreted as the impact on prices of
the system operator’s corrective balancing actions. Appendix F collects some useful facts about the
Ornstein-Uhlenbeck process. In particular, when constructing W it is convenient to note that H” o F
has the same sign as (£ — r)h, where L is the infinitesimal generator of X defined as in Appendix F.

3.1. OU price process

Assume now that the EIM price follows the OU process (25) so that L, = 0 (see Equation (55)
in Appendix F) and, by Lemma 3, case A of Theorem 1 applies. We are able to deal with the single
and lifetime problems simultaneously by setting { equal to 0 for the single problem and equal to (the
positive function) V in the lifetime problem. The results of Sections 2.2-2.3 yield that in both problems,
the right endpoint of the set I' equals F(¥) for some co < ¥ < x*. Further, since , is a solution to
(L —r)v = 0and since ¥ < x*, for x < x* we have

(L=h(xQ) = (L= —x+pe+ L5 (K + al(x))) (26)
= (L—r)(=x+pc) (27)
= (r+60)x —rp. — 0. (28)

~ S

Therefore, the function (£ — r)h(-, () is negative on (—co, By) and positive on (By, o), where By =

% ;rg K This implies that H is strictly concave on (0, F(By)) and strictly convex on (F(B), o). Since
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the concave majorant W of H cannot coincide with H in any point of convexity, so necessarily ¥ < By
and H is concave on (0, F(¥)). Hence we conclude that W is equal to H on the latter interval and so
I'=(—o0o0,%].

3.2. General mean-reverting processes

The above reasoning can be extended to mean-reverting processes with general volatility
dXt = 9(}[ — Xt)dt + O'(Xt)dwt

for a measurable function o such that the above equation admits a unique solution, c.f. Section 2,
and L. = 0 (c.f. (24)). Recall that we assume that (X;) has two non-exit boundaries 4, b (natural or
entrance-not-exit boundaries) satisfying a < x* < b. Since £ = 6(y — x) % + %az(x)ﬁ, equations
(26)-(28) still apply. In particular, we see that the diffusion coefficient o(-) does not affect the sign of (28)
and thus does not influence the concavity properties of H on (0, F(x*)). Proceeding as above, we argue
that case A of Theorem 1 applies and the single and lifetime problems can be solved simultaneously.
Particularly, the largest buy price is given by 2 < ¥ < x* (different for the single and lifetime problems).
Note that the form of the stopping set is purely determined by y, 6, the left boundary a and the initial

premium p.. Obviously, the mean price level y satisfies y > a because a is an unreachable boundary.
Lemma 5. If p. > a, then the stopping sets for the single and lifetime problems are of the form T = (a, X|.

Proof. The same arguments as in the OU case are directly applicable to the present setting and, under
the assumptions of the lemma, we have By = £ ;jg £ > 4. Hence for each problem the stopping set has
the form I' = (a, %] for some ¥ < By. O

In the particular case of the CIR model (Cox et al. 1985)
dXt = G(nyt)dt+a\/ Xtth, (29)
we havea = 0, b = oo. Then:

Corollary 4. If X is the CIR process (29) with 20u > o2 and y > 0 then the boundary a = 0 is
entrance-not-exit. Further, if p. > 0 then the stopping sets for the single and lifetime problems are of the
form T = (0, X].

Proof. If follows from (Cox et al. 1985, p. 391) that the condition 26y > ¢ is necessary and sufficient
for the boundary 0 to be entrance-not-exit. By Lemma 3, we have L, = 0. An application of Lemma 5
concludes. [

Remark 1. More generally, suppose that the imbalance price process follows
dX; = 9(‘1/1 — Xt)dt + O'X?th,

for some v > 0.5. Then the left boundary a = 0 is entrance-not-exit for any choice of parameters 6, yu,o > 0
since the scale function p given in (3) converges to negative infinity at 0. Therefore, the arguments in the above
corollary apply and the stopping sets for the single and lifetime problems are also of the form T = (0, X|.
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3.3. Shifted exponential price processes

In order to first recover and then generalise previously obtained results (Moriarty and Palczewski
2017), take the following shifted exponential model for the price process:

f(z) = D+de', (30)
Xe = f(Z), (31)

where Z is a regular one-dimensional diffusion with non-exit (natural or entrance-not-exit) boundaries
a? and b? (we will use the superscripts X and Z where necessary to emphasise the dependence on the
stochastic process). The idea is that Z models the physical system imbalance process while f represents
a price stack of bids and offers which is used to form the EIM price. In this case the left boundary for X
isa = f(a?) > D and, by Lemma 3, L, = 0 and case A of Theorem 1 applies. Rather than working
with the implicitly defined process X, however, we may work directly with the process Z by setting:

2= fTH ), (32)
l[JVZ(z) KC 7 < z*
he(z) = —fE) +pet {w%(z*> )
KC/ zZ 2 Z*,
— lPVZ(Z) K 14A * %
he(z,) = f(z)+pc+ ¢TZ(Z*)(AC+ £z, z<7z*, o
—f(2) + pe + Ke + AL (2), -

and modifying the definitions for T, T, V. and 1% accordingly. We then have

Theorem 4. Taking definitions (30) and (32)—(34), assume that conditions S1* and S2* hold. Then

i —fz) _
Lc:= hl;LSalle o7z 0.

Also:
i) (Single problem) There exists Z < z* that maximises Zf;((?) , the stopping time s is optimal for z > 2, and
hy(2)
Ve(z) = ¢Z(z) L2, z>3.
TR

ii) (Lifetime problem) The lifetime value function V is continuous and a fixed point of T~ There exists
h(z,V)

Z € (2,z") which maximises and Tz is an optimal stopping time for z > Z with

¢7(2)
V(z) = 7"7(2) = (])rz(z)h(j'(z)), z >z

Proof. The proof follows from the one-to-one correspondence between the process X and the process
Z, and direct transfer from Theorems 1 and 3. O

In some cases, explicit necessary and/or sufficient conditions for S1* may be given in terms of the
problem parameters. Assume that a? = —co as in the examples studied below. If p. > D and K, > 0,
this is sufficient for the condition S1* to be satisfied as then f¢(z) > —f(z) + pc > 0 for sufficiently
small z. When p. = D and K, > 0, it is sufficient to verify that e?* = o(y%(z)) as z — —oo since
then h¢(z) = —deb* + 97 (z) K. /97 (z*) for z < z*. On the other hand, our assumption that S1* holds
necessarily excludes parameter combinations with p. — D = K. = 0, since the reserve contract writer
then cannot make any profit because /¢(z) < 0 for all z.
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In Section 3.3.1 we take Z to be the standard Brownian motion and recover results from the single
problem of Moriarty and Palczewski (2017) (the lifetime problem is formulated differently in the latter
reference, where degradation of the store is not modelled). In Section 3.3.2 we generalise to the case
when Z is an OU process.

3.3.1. Brownian motion imbalance process

When the imbalance process Z = W, the Brownian motion, we have
A X 1
(£ =y (2, 0) = (£ = 1)(=F )+ po) = et {1 = 382 b 41D = po)

We have several cases depending on the sign of (D — p.) and (r — 1b?).

1. Assume first that r > %bz.

(i) We may exclude the subcase p. < D, since then H(y) = % l=( FZ)-1(y) s strictly convex

on (0, F#(z*)) for any { and T cannot intersect this interval, contradicting Theorem 4 and,

consequently, violating S1* or S2*.
(ii) If p. > D, H is concave on (0, F#(B)) and convex on (FZ(B), o), where

1 r(pc — D)
B=_log| ——+- |-
b8 (d(r— ;b2)>
By Theorem 4 and the positivity of H on (0, F#(2)) we have ' = (—0,2] and T = (—c0, 2]
for the single and lifetime problems respectively, with Z < £ < B.

2. Suppose that r < %bz.

(i) When p, > D, the function H is concave on (0, c0). Hence the stopping sets I' for single and

lifetime problems have the same form as in case 1(ii) above.
(ii) If p. < D, the function H is convex on (0, F#(B)) and concave on (F#(B), ). The set T

must then be an interval, respectively [2o, 2] and [Zy, Z]. For explicit expressions for the left
and right endpoints for the single problem, as well as sufficient conditions for S1*, the
reader is refered to Moriarty and Palczewski (2017).

3. In the boundary case v = %bz, the convexity of H is determined by the sign of the difference
D — pc. As above the possibility D > p. is excluded since then H is strictly convex. Otherwise H
is concave and the stopping sets I' have the same form as in case 1(ii) above.

3.3.2. OU imbalance process

When Z is the Ornstein-Uhlenbeck process, by adjusting d and b in the price stack function f (see
(30)) we can restrict our analysis to the OU process with zero mean and unit volatility, that is:

dzZ; = —0Zdt + dW;.
Then for z < z*

(L—=1)hf(z,) = (L—r)(=f(z)+pc) (35)
= de? {b <92 - ;b) —|—r} +7(D — pe) =:1(z). (36)

Differentiating 17 we obtain

/ bz r— %bz
n'(z) = dbfe” | bz +1+ 5
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1p2_
which has a unique root at z° = % ( zbe L 1). The function # decreases from r(D — p.) at —oo until

7(z°) = —de?® 0 +r(D — p.) at z° and then increases to positive infinity.

1. If pc > D then the function # is negative on (—co, 1), where u is the unique root of 7. Hence H is
concave on (0, FZ(u)) and convex on (F#(u), ). The stopping sets I' for the single and lifetime
problems must then be of the form (—oo, 2] and (—oo, Z], respectively, c.f. case 1(ii) in Section
3.3.1.

2. The case p. < D is more complex.

(i) Letz® > z*. We exclude the possibility #(z*) > 0, since then the function H is convex on
(0, FZ(z*)) and the set T has empty intersection with this interval, contradicting Theorem
4 and, consequently, violating S1* or S2*. When 7(z*) < 0, H is convex on (0, F#(u))
and concave on (F#(u), F#(z*)), where u is the unique root of 7 on (0,z*). Therefore
the stopping sets I’ for the single and lifetime problems are of the form [2y, £] and [Zp, Z],

respectively, with min(2y, Zg) > u, c.f. case 2(ii) in Section 3.3.1.
(ii) Consider now z° < z*. As above we exclude the case 77(z°) > 0, since then H is convex

on (0, F#(z*)). The remaining case 7(z°) < 0 implies that the stopping sets T have the
same form as in case 2(i) above, as H is convex and then concave if #(z*) < 0, and
convex-concave-convex if 77(z*) > 0.

4. Benchmark case study and economic implications

In this section we use a case study to draw qualitative implications from the above results. An
OU model is assumed, which captures both the mean reversion and random variability present in EIM
prices, and is fitted to relevant data. The interest rate is taken to be 3% per annum, and the degradation
factor for the store to be A = 0.9999.

Our data is the ‘balancing group price” from the German Amprion system operator, which is
available for every 15 minute period (AMPRION 2016). Summary statistics for the period from 1 June
2012 to 31 May 2016 are presented in Table 1. To address the issue of its extreme range, which impacts
the fitting of both volatility and mean reversion in the OU model, the data was truncated at the values
-150 and 150. The parameters obtained by maximum likelihood fitting were then 6 = 68.69 (the rate of
mean reversion), 0 = 483.33 (the volatility), # = 30.99 (the mean-reversion level). The effect of the
truncation step was to approximately halve the fitted volatility.

Table 1. Summary statistics for the 15 minute balancing group price per MWh in the German Amprion
area, 1 June 2012 to 31 May 2016.

Min. 1st Qu. | Median | Mean | 3rd Qu. Max.
-6002.00 0.27 33.05 31.14 66.97 6344.00

The left panel of Figure 3, and Figure 4, show the lifetime value V(x*), while the right panel of
Figure 3 plots the stopping boundary ¥, which is the maximum price at which the battery operator can
buy energy optimally. These values of ¥ are significantly below the long-term mean price D, indeed
the former value is negative while the latter is positive. Thus in this example the battery operator
purchases energy when it is in excess supply, further contributing to balancing. To place the negative
values on the stopping boundary in Figure 3 in the statistical context, recall from Table 1 that the first
quartile of the price distribution is approximately zero. Indeed negative energy prices usually occur
several times per day in the German EIM. In the present dataset of 1461 days there are only 11 days
without negative prices and the longest observed time between negative prices is 41.5 hours.

We make the following empirical observations. Firstly, defining the total premium as the sum
pc + K, altering its distribution between the initial premium p. (which is received at x = ¥) and the
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Figure 3. Results obtained with the Ornstein-Uhlenbeck model fitted in Section 4, as functions of
the total premium, with interest rate 3% per annum. Solid lines: x* = 100, dotted: x* = 75, dashed:
x* = 50. Left: lifetime value V(x*). Right: the stopping boundary ¥, the maximum price for which the
battery operator can buy energy optimally.

utilisation payment K. (which is received at x = x*) results in insignificant changes to the graphs, with
relative differences on the vertical axes of the order 1073 (data not shown). It is for this reason that
the figures are indexed by the total premium p. + K, rather than by individual premia. Secondly, it is
seen from the right hand panel of Figure 3 that the (negative valued) stopping boundary increases
with the total premium, making exercise more frequent. Thus as the total premium increases, both
the frequency and size of the cashflows increase, yielding a superlinear relationship in the left hand
panel of Figure 3. This superlinearity is not very pronounced since the stopping boundary is relatively
insensitive to the total premium in the range presented in the graphs (see the right hand panel), so that
the lifetime value is driven principally by the size of the cashflows. Thirdly, the grey horizontal line of
Figure 4 is placed at a level indicative of recent costs for lithium-ion batteries per megawatt hour. Thus
the investment case for battery storage providing reserve is significantly positive for a wide range of
the contract parameters. Finally the contours in Figure 4 have an S-shape, the marginal influence of x*
being smaller in the range x* < 110 and larger for greater values of x* (with the marginal influence
eventually decreasing again in the limit of large x*).

These phenomena are explained by the presence of mean reversion in the OU price model. The
timings of the cashflows to the battery operator are entirely determined by the successive passage times
of the price process between the levels x* and X. These passage times are relatively short on average
for the fitted OU model. This means that the premia are received at almost the same time under each
reserve contract, and it is the total premium which drives the real option value. Further the passage
times between x* and ¥ may be decomposed into passage times between x* and D, and between D
and ¥. Since the OU process is statistically symmetric about D, let us compare the distances |¥ — D|
and |x* — D|. From Figure 3 we have ¥ ~ —70 so that |¥ — D| ~ 100. Therefore for x* < 110 we have
|x* — D| < |¥ — D| and the passage time between D and ¥, which varies little, dominates that between
x* and D. Correspondingly we observe in Figure 4 that the value function changes relatively little as
x* varies below 110. Conversely, as x* increases beyond 110 it is the distance between x* and D which
dominates, and the value function begins to decrease relatively rapidly.

These results provide insights into the suitability of the considered arrangement for correcting
differing levels of imbalance. As the distance between x* and the mean level D grows, the energy
price reaches x* significantly less frequently and the reserve contract starts to provide insurance
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Figure 4. Lifetime value V(x*) as a function of x* with the Ornstein-Uhlenbeck model fitted in Section 4,
with interest rate 3% per annum. Dashed line: p. + K; = 20, solid: p. + K. = 30, dotted: p. + K. = 40,
mixed: p. + K. = 50. The horizontal grey line indicates the current price of lithium-ion battery storage
per MWh (IRENA 2017, Figure 33).

against rare events, resulting in infrequent power delivery and low utilisation of the battery. These
observations suggest that the contractual arrangement studied in this paper is more suitable for the
frequent balancing of less severe imbalance. In contrast, the more rapid reduction in the lifetime value
for large values of x* suggests that such arrangements based on real-time markets are not suitable for
balancing relatively rare events such as large system disturbances due to unplanned outages of large
generators. The system operator may prefer to use alternative arrangements, based for example on
fixed availability payments, to provide security against such events.

5. Discussion

In this paper we investigate the procurement of operating reserve from energy-limited storage
using a sequence of physically covered incremental reserve contracts. This leads to the pricing of a
real perpetual American swing put option with a random refraction time. We model the underlying
energy imbalance market price as a general linear regular diffusion, which, in particular, is capable of
modelling the mean reversion present in imbalance prices. Both the optimal operational policy and
the real option value of the store are characterised explicitly. Although the solutions are generally
not available in an analytical form we have provided a straightforward procedure for their numerical
evaluation together with empirical examples from the German energy imbalance market.

The results of the lifetime analysis in particular have both managerial implications for the battery
operator and policy implications for the system operator. From the operational viewpoint, under the
setup described in Section 1.1 we have established that the battery operator should purchase energy as
soon as the EIM price falls to the level ¥, which may be calculated as described in Section 2.4. Further
the battery operator should then sell the reserve contract immediately. Our real options valuation may
be taken into account when deciding whether to invest in an energy store, and whether to sell such
reserve contracts in preference to trading in other markets (for example, performing price arbitrage in
the spot energy market).

Turning to the perspective of the system operator, we have demonstrated that the proposed
arrangement can be mutually beneficial to the system operator and battery operator. More precisely,
the system operator can be protected against guaranteed financial losses from the incremental capacity
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contract purchase while the battery operator has a quantifiable profit. The analysis also provides
information on feedback due to battery charging by determining the highest price X at which the battery
operator buys energy, hence identifying conditions under which the battery operator’s operational
strategy is aligned with system stability.

We address incremental reserve contracts, which are particularly valuable to the system operator
when the margin of electricity generation capacity over peak demand is low. Decremental reserve may
also be studied in the above framework, although the second stopping time (action A2) is non-trivial
which leads to a nested stopping problem beyond the scope of the present paper. Further we assume
that the energy storage unit is dedicated to providing incremental reserve contracts, so that the
opportunity costs of not operating in other markets or providing other services are not modelled. The
extension to a finite expiry time, the lifetime analysis with decremental reserve contracts, and also the
opportunity cost of not operating in other markets would be interesting areas for further work.

The methodological advances of this paper reach beyond energy markets. In particular they are
relevant to real options analyses of storable commodities where the timing problem over the lifetime
of the store is of primary interest. The lifetime analysis via optimal stopping techniques, developed
in Section 2.3, provides an example of how timing problems can be addressed for rather general
dynamics of the underlying stochastic process. In this context we provide an alternative method to
quasi-variational inequalities, which are often dynamics-specific and technically more involved.

Funding: This research was funded by the UK Engineering and Physical Sciences Research Council grant number
EP/K00557X/2 and MNiSzW grant UMO-2012/07/B/ST1/03298.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A Lemmas and proofs from Section 2

The following three lemmas classify solutions to the stopping problem (7). Note that if
sup, #(x) < 0 then no choice of the stopping time 7 gives a value function greater than 0. The
optimal stopping time in this case is given by T = co. In what follows we therefore assume

sup d(x) > 0. (37)
x€(ab)

These results can be derived from Beibel and Lerche (2000); however, for the convenience of the
reader we provide simple proofs.

Lemma 6. Assume that there exists £ € I which maximises 9(x) /¢y (x) over 1. Then the value function v(x)
is finite for all x, and for x > %:

1. the stopping time T3 is optimal,
9(%
2. v(x) = <Pr(3?))¢r(x)'
3. any stopping time T with P*{9(X<)/¢r(Xc) < 8(2)/¢r(2)} > 0 s strictly suboptimal for the problem

v(x).

Proof. Since ¢, is r-excessive (Borodin and Salminen 2012, Section I1.5), for any finite stopping time T

EX{e™ " (X0)} < ¢r(x).
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Let now T be a stopping time taking possibly infinite values. Let b, be an increasing sequence
converging to b with b; > x, the initial point of the process X. Then 7, is an increasing sequence of
stopping times converging to infinity and

§r(x) = liminf B {e ") ¢ (Xonq, )}
> E*{liminfe """ )gy (Xeng, )} = E*{e” T ¢r(Xe) Lrceo},

where ¢, (b—) = 0 was used in the last equality.
For any stopping time T

Ex{e_m—ﬂ(xr 1T<oo} Ex{ _rT(Pr XT l9 XT) 1T<oo}
o (Xr)
< 8(%)

r(%)

(38)

8(2)
¢r(%)

]Ex{ _rTﬁbr(XT 1T<00} <

¢T(x)r

where the final inequality follows from the first part of the proof and (37) (so e x)) > 0). Hence, v(x) is
finite for all x € I. To prove claim 1, note from (6) that for x > £ the upper bound is attained by %,
which is therefore an optimal stopping time in the problem v(x). The assumption on 7 in claim 3 leads
to strict inequality in (38), making T strictly suboptimal in the problem v(x). O

It is convenient to introduce the notation

+
L := limsup 8(x)

. 39
x—a  Pr (x) (39)

Lemma 7 corresponds to cases when there is no optimal stopping time but the optimal value can be
reached in the limit by a sequence of stopping times.

Lemma 7.

1. If L = oo then the value function is infinite and there is no optimal stopping time.

2. IfL < ooand L > 0(x)/¢r(x) forall x € 1, then there is no optimal stopping time and the value function
equals v(x) = Loy (x).

Proof. Assertion 1. Fix any x € I. Then for any £ < x we have

E* (e 0(Xr,)) = 0(2) 24,
' ¢r(2)’
which converges to infinity for £ tending to a over an appropriate subsequence. Since the process is
recurrent, the point x can be reached from any other point in the state space with positive probability
in a finite time. This proves that the value function is infinite for all x € I.
Assertion 2. Recall that due to the supremum of % being strictly positive we have L > 0. From
the proof of Lemma 6, for an arbitrary stopping time T we have

B (e O T} = BXe 0 (X)) (0 T re) < LEXE 7 0r (X0 Trcw} < Ly ().

However, one can construct a sequence of stopping times that achieves this value in the limit. Take x,
such that lim, o #(x,)/¢r(xn) = L and define 7, = Ty,. Then

Jim B (e 70Xz = fim 00 25— g1,
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so v(x) = ¢,(x)L. This together with the strict inequality above proves that an optimal stopping time
does not exist. [J

The results developed in this section also have a ‘mirror’ counterpart involving

+
R :=limsup 0(x)

P () 40

rather than L. In particular, the value function is infinite if R = oo, and

Corollary 5. If £ € I maximises 9(x)/r(x) then for any x < £ an optimal stopping time in the problem v(x)
is given by Tz.

This also motivates the assumptions of the following lemma which collects results from Dayanik
and Karatzas (2003, Section 5.2). Again, although those results are obtained under the assumption that
both boundaries are natural, their proofs require only that they are non-exit.

Lemma 8. Assume that L, R < oo and ¢ is locally bounded. Then the value function v is finite and continuous
on (a,b).

All the stopping problems considered in this paper have a finite right-hand limit R < co. Therefore,
whenever L < oo, their value functions will be continuous.

Proof of Lemma 2. 1f S1* does not hold then the payoff from cycle A1-A3 is not profitable (on
average) for any value of the EIM price x, so S1 does not hold. Conversely if S1* holds then there
exists x such that 70(x) > h(x) > 0. For any other x’ consider the following strategy: wait until the
process X hits x and proceed optimally thereafter. This results in a strictly positive expected value:
70(x") > 0 and by the arbitrariness of x’ we have 70 > 0.

Suppose that S2* holds. Then the system operator makes a profit on the reserve contract (relative
to simply purchasing a unit of energy at the power delivery time 7., at the price X(%,) > x*) in
undiscounted cash terms. Considering discounting, the system operator similarly makes a profit
provided the EIM price reaches the level x* (or above) sufficiently quickly. Since this happens with
positive probability for a regular diffusion, a certain financial loss for the system operator is excluded.
When S2* does not hold, suppose first that p. + K. > x*: then the system operator makes a loss in
undiscounted cash terms, and if the reserve contract is sold when x > x* then this loss is certain. In
the boundary case p. + K. = x* the battery operator can only make a profit by purchasing energy and
selling the reserve contract when X; < x*, in which case the system operator makes a certain loss.
This follows since instead of buying the reserve contract, the system operator could invest p. > 0
temporarily in a riskless bond, withdrawing it with interest when the EIM price rises to x* = p. + K..
The loss in this case is equal in value to the interest payment. [

Appendix B Lemmas for the lifetime problem

It follows from the optimal stopping theory reviewed in Section 2.1.1 and Appendix A that the
following definition of an admissible continuation function, is natural in our setup. In particular, the
final condition corresponds to the assumption that the energy purchase occurs at a price below x*.

Definition 1. (Admissible continuation value) A continuation value function { is admissible if it is continuous
(%)

on (a, x*| and non-negative on I, with ™) non-increasing on [x*,b).

The following result now characterises the possible solution types in the lifetime problem.
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Lemma 9. Assume that conditions S1* and S2* hold. If  is an admissible continuation value function then

h(x,{)

= lim

lim sup

X—a ¢7( ) X—a ¢r(x)

and with cases A, B, C defined just as in Theorem 1:

sup =L,

1. In case A, there exists £ < x* which maximises ]:P(:Ef )
value function
o(x) =TE(x) = ¢r(x) (2,¢) X=X

¢r(%)

Denoting by %o the corresponding % in case A of Theorem 1, we have £9 < £.

2. In case B, either

a) there exists x; € (a,b) with % > L.: then there exists £ € (a, x*| which maximises

Ty is an optimal stopping time for x > & with value function v(x) = ¢r(x )L for x > X; or

(41)

j and Tz is an optimal stopping time for x > £ with

b) there does not exist x;, € (a,b) with b f) > L.: then the value function is U( ) = Lc¢r(x) and

¢r(x)

there is no optimal stopping time.

3. In case C, the value function is infinite and there is no optimal stopping time.

Moreover, the value function v is continuous in cases A and B.

Proof. Note that

h(x) = h(x,0) < h(x,{) =

+ lz’“;‘) Al(x*), x < x*,

(42)

AC(x), x> x*.

This proves (41), since limy_,q P (x) /¢, (x) = 0. We verify from (42) and the assumptions of the lemma
that R < oo in (40). Hence, whenever L. < oo the value function v is finite and continuous by Lemma
8. As noted previously (in the proof of Theorem 1), 1 is negative and decreasing on [x*,b), hence the
ratio h(x)/¢y(x) is strictly decreasing on that interval. It then follows from (42) and the admissibility

of { that the function x hxd) i strictly decreasing on [x*, b). Therefore the supremum of x —

¢r(x)

h(x£)
¢r(x) 7

which is positive by (42) and S1%, is attained on (a, x*] or asymptotically when x — a. In cases 1 and
2a, the optimality of 7z for x > £ then follows from Lemma 6. To see that £y < £ in case 1, take x < %.

Then from (42) we have
h(x,0) _ h(x) L) AL(x) _ h(%o) G o) AL(x*) _ h(%0,8)
¢r(x) ¢r(x)  ¢r(x) Pr(x*) — Pr(R0) fl’r( 0) ¥r(x*) — Pr(%0)

() -

since x :/;: @ is strictly increasing. Case 2b follows from Lemma 7 and the fact that L. > 0, while

Lemma 7 proves case 3. [J

Before proceeding we note the following technicalities.

Remark 2. The value function v in cases 1 and 2a of Lemma 9 satisfies the condition that v(x)/¢,(x) is

non-increasing on [x*,b). Indeed,

S
~—

=
~—

=

‘Pr(x) ¢r(%)

forx > %

Remark 3. For case 3 of Lemma 9, the assumption that L

€29)

= const.

Lx).

( ) is non- ZTlCT’E{IISlTlg on

[x*,b) can be dropped.
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Lemma 10. The timing of action A2 remains trivial when the cycle A1-A3 is iterated a finite number of times.

Proof. Let us suppose that action Al has just been carried out in preparation for selling the first in a
chain of n reserve contracts, and that the EIM price currently has the value x. Define T4, to be the time
at which the battery operator carries out action A2. The remaining cashflows are (i) the first contract
premium p. (from action A2), (ii) the first utilisation payment K. (from A3), and (iii) all cashflows
arising from the remaining cycles A1-A3 (there are n — 1 cycles which remain available to the battery
operator). The cashflows (i) and (ii) are both positive and fixed, making it best to obtain them as soon
as possible. The cashflows (iii) include positive and negative amounts, so their timing is not as simple.
However it is sufficient to notice that

o their expected net present value is given by an optimal stopping problem, namely, the timing of
the next action Al:
sup E*{e”""hjjj) (X ) lr<oo }, (43)
T>0*
where ¢* := inf{t > T4 : X; > x*}, for some suitable payoff function f ),
o the choice T4, = 0 minimises the exercise time ¢* and thus maximises the value of component
(iii), since the supremum in (43) is then taken over the largest possible set of stopping times.

It is therefore best to set 745 = 0, since this choice maximises the value of components (i), (ii) and
(iii). O

The next result establishes the existence of, and characterises, the lifetime value function V.

Lemma 11. In cases A and B of Theorem 1,

1. Foreach n > 1 the function {, := T"0 is an admissible continuation value function and is decreasing on
[x*, D).

2. The functions T"0 are strictly positive and uniformly bounded in n.

3. The limit { = limy_,o0 770 exists and is a strictly positive bounded function. Moreover, the lifetime
value function V coincides with {.

4. The lifetime value function V is a fixed point of T.

Proof. Part 1 is proved by induction. The claim is clearly true for n = 1. Assume it holds for n. Then
Lemma 9 applies and {1 (x)/¢,(x) = i(%,{,)/¢r(%) for x > % when the optimal stopping time
exists and £, (x)/¢,(x) = L. otherwise. Therefore, {,, 1 (x) = c¢(x) for x > x* and some constant
¢ > 0. Since ¢, is decreasing, we conclude that {,,, ; decreases on [x*,b).

The monotonicity of 7~ guarantees that if 70 > 0 then 770 > 0 for every n. For the upper bound,
notice that

TEn(x) = sup Ex{e*rr (m — Xo + EX {7 (K, + Aby(X2)) })1T<w}

< sup Ex{e’” (pc — X+ KCEXT{e’VfE}) 1T<oo} AL (x*) = Vo(x) + Abu(x"),
T

where V, = 70 is the value function for the single problem and the inequality follows from the fact
that , is decreasing on [x*,b). From the above we have {,(x) = 7"0(x) < V.(x) + %Vc(x*).
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Recalling that A € (0,1) yields that the {,(x) are bounded by V;(x) + 117 Ve(x*), so there exists a
finite monotone limit { := lim;, o {,;, and

£(x) = lim T8u(x) = supsup B {e ™ (pe — X¢ + EX {7 (Ko + ALu(X2,))} ) Treoo )
n—o0 n T
— sup Jim B {7 (o= Xob B (e (K ALy (60)) e
=supE* {e*” (pc — X +EX* {e*’f‘-’ (Ke + Aé(X@)) }) 1T<oo}
T
=T{(x),
by monotone convergence. The equality of V and { is clear from (14). [

Appendix C Uniqueness of fixed points
Corollary 6 below establishes the uniqueness of the fixed point of 7. Lemma 13 shows that 770

converges exponentially fast to this unique fixed point as n — oo.

Lemma 12. Let &, &’ be two continuous non-negative functions with ¢ satisfying the assumptions of Lemma 9
together with the bound & > &'. In the problem T &, assume the existence of an optimal stopping time T under
which stopping occurs only at values bounded above by x' < x*. Then

17¢ =T e < pllg = &ll4,

where p = A$r((§i)) < land ||f|l4 = |f(x*)| is a seminorm on the space of continuous functions. Moreover,

0<T¢(x) = T¢ (x) < 12— &l (44)
Note that in general, an optimal stopping time for 7 &(x) depends on the initial state x. However,

under general conditions (cf. Section 2.1.1), T* = inf{t > 0 : X; € I'}, where T is the stopping set.
Then the condition in the above lemma writes as ' C (4, x’] for some x" < x*.

Proof of Lemma 12. By the monotonicity of 7, for any x we have
02T - e < B e (et gt (et A2() X))
B (= X gt (Kot A2 () BT
—m e a () g6 B

_ U x ) —rt* wi’(XT*)

This proves (44). Also we have

x* 7rT*l/J1’(XT*) (Pr(x*) ¢r(x/)
AE {e W}gA

O

Lemma 13. Assume that there exists a fixed point {* of T in the space of continuous non-negative functions.
In the problem TC*, assume the existence of an optimal stopping time under which stopping occurs only at
values bounded above by x" < x* (c.f. the comment after the previous lemma). Then there is a constant p < 1
such that ||&* — T70||s < ™| T* |4 and ||C* — T"0|ee < ™ Y|C*||4, where || - || oo is the supremum norm.
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Proof. Clearly, ||(* — 0|l < oo. By virtue of Lemma 12 we have |70 — {*|ls < p"[|0 — *||4 for
_ ¥r(x)

p= Pr(x*)

have

< 1. Hence, 7"0 converges exponentially fast to {* in the seminorm || - ||4. Using (44) we

18" = T"0lleo = [|TC" = T 0 T"0lo0 < p" 11" l4-
O

Corollary 6. Let {* be a fixed point of T~ and suppose that the problem T {* admits an optimal stopping time
t* satisfying X+ < x' < x*, for some constant x'. Such a fixed point £* is unique.

Proof. By Lemma 13 if * is a fixed point satisfying the assumptions of the corollary, it is approximated
by 770 in the supremum norm, hence, it must be unique. [

Appendix D Note on Lemma 3

—X
¢r(x)
Indeed, choosing z € I, we have E*{e™ "™} = % for x < z, hence E*{e™"™} > < for some constant
¢ > 0 and x sufficiently close to —oo. To illustrate the speed of escape, assume for simplicity that X is a
deterministic process. Then the last inequality would imply 7 < 1 (log(—x) —log(c)), i.e., X escapes
to —oco exponentially quickly.

An example of a model that violates the assumptions of Lemma 3 is the negative geometric
Brownian motion: X; = —exp ((u — 0®/2)t + cW;) for p, 0 > 0. With the generator A = %(723(2% +

yx%, we have ¢,(x) = (—x)72 and ¥,(x) = (—x)7, where 77 < 0 < 7, are solutions to the

quadratic equation ‘772'72 + (p — ‘772)7 —r=0,ie,y=B+,/B>+2%5 with B = I- 5. Hence,
limy s o %_Tff) = limy—,—oo(—x)'772 > 0 if and only if 7, < 1. It is easy to check that 7, = 1 for yu = r
and 7, is decreasing as a function of y. Therefore, the condition v, < 1 is equivalent to u > r.

In summary, the negative geometric Brownian motion violates the assumptions of Lemma 3 if
u > r. If y = r then case B of Theorem 1 applies with L. = 1, while if 4 > r then L. = oo and so case C
applies. Both cases may be interpreted heuristically as the negative geometric Brownian motion X
escaping ‘relatively quickly’ to —oo, that is, relative to the value r of the continuously compounded
interest rate. In the latter case this happens sufficiently quickly that the single problem’s value function
V. is infinite.

The inequality limy_; —eo > 0 when a = —oo asserts that the process X escapes to —oo quickly.

Appendix E Verification theorem for the lifetime value function

We now provide a verification lemma which may be used to verify if a given value £ is an optimal
buy price in the lifetime problem. The result is motivated by the following argument using Theorem 3.

We claim that for all x € I, 7V (x) depends on the value function V only through its value at
x = x*. The argument is as follows: when the battery operator acts optimally, the energy purchase
occurs when the price is not greater than x*: under P* for x > x*, this follows directly from Theorem
3; under P* for x < x¥, the energy is either purchased before the price reaches x* or one applies a
standard dynamic programming argument for optimal stopping problems (see, for example, Peskir
and Shiryaev (2006)) at x* to reduce this to the previous case. In our setup the continuation value is
not received until the EIM price rises again to x* (it is received immediately if the energy purchase
occurs at x*).

Suppose therefore that we can construct functions V; : I — R, i = 1,2, with the following
properties:

i) Tvi=Vs,
i) V1(x*) = Va(x"), X
iii) fori = 1,2, the highest price at which the battery operator buys energy in the problem 7'V; is not
greater than x*.
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Then we have V, = TV; = TV, so that V; is a fixed point of T.
We postulate the following form for V;: given y > 0 take
Vi(x) = ’fg(x) = Ty<ary, (45)
Va(x) = §Y(x) = TEpx). (46)

For convenience define h(x, y) to be the payoff in the lifetime problem when the the continuation value
is Cfg Thus we have

>

1

o

hlxy) = h(x&), (47)
F(x) = T&(x)=supE*{e”"h(Xr,¥)Lrcco}- (48)

Lemma 14. Suppose that £ € (a, x*) satisfies the system

9:(2) o or(x) @)
_ Pr(x) oo 50

y (@) h(,y), (50)

y > 0. (51)

Then the function & of (48) is a fixed point of T, is continuous and strictly positive, and

& (x) = (Zr((;*)) y, forx>%. (52)

Proof. Consider first the problem (48) with x > %. By construction & is an admissible continuation
value in Lemma 9, and cases 1 or 2a must then hold due to the standing assumption for this section
that regime («) of Theorem 2 is in force. By (49) the stopping time 73 is optimal, and the problem’s
value function ¢/ has the following three properties. Firstly, & is continuous on I by Lemma 8.
Secondly, using (50) we see that ¢V satisfies (52). This implies thirdly that &Y /¢, is constant on [x*, b)
and establishes that & (x*) = v, giving property ii) above. Since y > 0 by (51), the strict positivity of
& everywhere follows as in part 1 of the proof of Lemma 2. Our standing assumption S2* implies that
the payoff h(x, y) of (47) is negative for x > x*, which establishes property iii) for problem (48).

The three properties of ¢¥ established above make it an admissible continuation value in Lemma
9, so we now consider the problem 7A’§y for x > £. Under P* for x > x*, claim 2 of Lemma 6 prevents
the battery operator from buying energy at prices greater than x* when acting optimally; under P* for
x < x*, the dynamic programming principle mentioned above completes the argument. [

The following corollary completes the verification argument, and also establishes the uniqueness
of the value y in Lemma 14.

Corollary 7. Under the conditions of Lemma 14:

i) the function & coincides with the lifetime value function: V = &,
ii) there is at most one value y for which the system equations (49) and (50) has a solution % € (a, x*).

Proof. i) We will appeal to Lemma 13 by refining property iii) above for the problem 7V, = T¢&
(as was done in the proof of Corollary 2). Suppose that the battery operator buys energy at the
price x*. Then since the function & is a fixed point of 7" under our assumptions, we may consider
TE& (x*) = —x* + pe + Ko + &(x*) and then S2* leads to 7&(x*) < & (x*) which is a contradiction.
Thus from Lemma 13, 770 converges to ¢ as n — 0. As the limit of 770 is the lifetime value function
we obtain V = .
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740 ii) Assume the existence of two such values y; # y>. Then (52) gives ?(x*) = {fyl (x*) =y #
a1 yp = %2 (x*) = V(x*), a contradiction. [

742 We recall here that, on the other hand, the value £ in Lemma 14 may not be uniquely determined
73 (cf. part (a) of Corollary 2). In this case the largest £ satisfying the assumptions of Lemma 14 is the
74 highest price ¥ at which the battery operator can buy energy optimally.

7s  Appendix F Facts about the OU process

Let us temporarily fix 4 = 0 and § = ¢ = 1. Consider the ordinary differential equation (ODE)
1 1
" L L2 _
w (z)+<v+2 17 )w(z) 0.

There are two fundamental solutions D, (z) and D, (—z), where D, is a parabolic cylinder function.
Assume that v < 0. This function has a multitude of representations, but the following will be sufficient
for our purposes (Erdelyi et al. 1953, p. 119):

—z2/4 0
Dy(a) = frgy ) 20t

Then D, is strictly positive. Fix ¥ > 0. Define

(x=p)20 (_m) (=6 (m)

Pr(x) =e 22 D_, g -

By direct calculation one verifies that these functions solve

Lv=rv, (53)
where 1
Lo(x) = Eazv"(x) +0(pu—x)0'(x) (54)
is the infinitesimal generator of the OU process (25). Setting v = —r/6 we can write

¢r(x) — F(lv) /O e(xfy)tgf%tztfvfldt’ (Pr(x) — r(iv) /0 e*(x*ﬂ)t@*%tztfvfldt.
s Hence 1, is increasing and ¢, is decreasing in x. Also, by monotone convergence i, (—o0) = ¢, (o) = 0
7z and P, (o0) = ¢y(—o0) = oo. The functions ¢, and ¢, are then fundamental solutions of the equation
7e  (53). Further they are strictly convex, which can be checked by passing differentiation under the
70 integral sign (justified by the dominated convergence theorem). Defining F(x) = ¢, (x)/¢;(x), then F
70 is continuous and strictly increasing with F(—oco) = 0 and F(o0) = o0.

Using the integral representation of ¢, and 'Ho6pital’s rule we have

- —1
Iim —— = lim
x——eo Py (X)  x——eo e Ji e = ( _ t@)t—v—ldt
— lim L
/26 x——oo r(lu) foooef(xﬂ‘)t@’%tzt—vdt (55)
1

:0/

lim
/26 x>0 r;zt)l) 1“(—11/-1-1) fO e*(x*ﬂ)t@*%tzt*vdt

71 as the denominator is a scaled version of ¢; corresponding to a new 7 such that —7/0 =v -1 <v <0,
752 and so it converges to infinity when x — —oo.



756

757

758

759

760

761

770

771

772

773

774

775

785

786

787

788

789

790

791

800

801

802

803

Version March 28, 2019 submitted to Risks 29 of 29

AMPRION. 2016. AMPRION imbalance market data.

Beibel, M. and H.R. Lerche. 2000. Optimal stopping of regular diffusions under random discounting. Theory of
Probability and its Applications 45(4), 547-557.

Benth, Fred Espen, Jurate Saltyte Benth, and Steen Koekebakker. 2008. Stochastic modelling of electricity and related
markets, Volume 11. World Scientific.

Borison, Adam. 2005. Real options analysis: where are the emperor’s clothes? Journal of Applied Corporate
Finance 17(2), 17-31.

Borodin, Andrei N and Paavo Salminen. 2012. Handbook of Brownian motion - Facts and formulae. Birkhéuser.

CAISO. 2016. Energy Imbalance Market (EIM) Overview.

Carmona, René and Savas Dayanik. 2008. Optimal multiple stopping of linear diffusions. Mathematics of
Operations Research 33(2), 446—460.

Carmona, René and Michael Ludkovski. 2010. Valuation of energy storage: An optimal switching approach.
Quantitative Finance 10(4), 359-374.

Carmona, René and Nizar Touzi. 2008. Optimal multiple stopping and valuation of swing options. Mathematical
Finance 18(2), 239-268.

Cox, John C., Jonathan E. Ingersoll, and Stephen A. Ross. 1985. A theory of the term structure of interest rates.
Econometrica 53(2), 385—407.

Dayanik, Savas and Ioannis Karatzas. 2003. On the optimal stopping problem for one-dimensional diffusions.
Stochastic Processes and their Applications 107(2), 173-212.

Dixit, Avinash K and Robert S Pindyck. 1994. Investment under uncertainty. Princeton University Press.

Erdelyi, A, W Magnus, F Oberhettinger, and FG Tricomi. 1953. Higher Transcendental Functions, Vol. 2. McGraw
Hill, New York.

Fudenberg, D., J. Tirole, ].A. Tirole, and MIT Press. 1991. Game Theory. Mit Press. MIT Press.

Ghaffari, R. and B. Venkatesh. 2013. Options based reserve procurement strategy for wind generators — using
binomial trees. IEEE Transactions on power systems 28(2), 1063-1072.

IRENA. 2017. Electricity storageand renewables: Costs and markets to 2030. Technical report, International
Renewable Energy Agency, Abu Dhabi.

Just, Sebastian and Christoph Weber. 2008. Pricing of reserves: Valuing system reserve capacity against spot
prices in electricity markets. Energy Economics 30(6), 3198-3221.

Karatzas, I. and S.E. Shreve. 1991. Brownian Motion and Stochastic Calculus. Springer New York.

King, ], B Kirby, M Milligan, and S Beuning. 2011. Flexibility reserve reductions from an energy imbalance market
with high levels of wind energy in the Western Interconnection. Technical report, National Renewable Energy
Laboratory (NREL), Golden, CO.

Lenhart, Stephanie, Natalie Nelson-Marsh, Elizabeth J. Wilson, and David Solan. 2016. Electricity governance and
the Western energy imbalance market in the United States: The necessity of interorganizational collaboration.
Energy Research & Social Science 19, 94-107.

Lutz, B.. 2009. Pricing of Derivatives on Mean-Reverting Assets. Lecture Notes in Economics and Mathematical
Systems. Springer Berlin Heidelberg.

Mastropietro, Paolo, Fulvio Fontini, Pablo Rodilla, and Carlos Batlle. 2018. The Italian capacity remuneration
mechanism: Critical review and open questions. Energy Policy 123, 659-669.

Moriarty, John and Jan Palczewski. 2017. Real option valuation for reserve capacity. European Journal of Operational
Research 257(1), 251-260.

National Grid plc. 2016. Enhanced Frequency Response.

National Grid plc. 2017. Future of Balancing Services.

New Zealand Electricity Authority. 2016. What the system operator does.

Ocker, Fabian and Karl-Martin Ehrhart. 2017. The “German paradox” in the balancing power markets. Renewable
and Sustainable Energy Reviews 67, 892-898.

Peskir, Goran and Albert Shiryaev. 2006. Optimal stopping and free-boundary problems. Springer.

Pflug, G.C. and N. Broussev. 2009. Electricity swing options: Behavioral models and pricing. European Journal of
Operational Research 197, 1041-1050.



804

805

806

Version March 28, 2019 submitted to Risks 30 of 29

Szab6, David Zoltdn and Randall Martyr. 2017. Real option valuation of a decremental regulation service provided
by electricity storage. Phil. Trans. R. Soc. A 375(2100), 20160300.

UK Office of Gas and Electricity Markets. 2017. Upgrading Our Energy System.

Xu, Bolun, Yury Dvorkin, Daniel S. Kirschen, C. A. Silva-Monroy, and Jean-Paul Watson. 2016. A comparison of
policies on the participation of storage in U.S. frequency regulation markets. arXiv:1602.04420.

Zervos, Mihail, Timothy C Johnson, and Fares Alazemi. 2013. Buy-low and sell-high investment strategies.
Mathematical Finance 23(3), 560-578.

(© 2019 by the authors. Submitted to Risks for possible open access publication under the terms and conditions
of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Objectives
	Approach and related work

	Methodology
	Formulation and preliminary results
	Optimal stopping problems and solution technique
	Single problem
	Lifetime problem formulation and notation
	Sustainability conditions revisited

	Three exhaustive regimes in the single problem
	Two exhaustive regimes in the lifetime problem
	Construction of the lifetime value function

	Results
	OU price process
	General mean-reverting processes
	Shifted exponential price processes
	Brownian motion imbalance process
	OU imbalance process


	Benchmark case study and economic implications
	Discussion
	Lemmas and proofs from Section 2
	Lemmas for the lifetime problem
	Uniqueness of fixed points
	Note on Lemma 3
	Verification theorem for the lifetime value function
	Facts about the OU process
	References

