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Abstract 

Metabolic reprogramming plays an important role in cancer development and 

progression and is a well-established hallmark of cancer. Despite its inherent 

complexity, cellular metabolism can be decomposed into functional modules that 

represent fundamental metabolic processes. Here we performed a pan-cancer study 

involving 9428 samples from 25 cancer types to reveal metabolic modules whose 

individual or coordinated activity predict cancer type and outcome, in turn highlighting 

novel therapeutic opportunities. Integration of gene expression levels into metabolic 

modules suggests that the activity of specific modules differs between cancers and the 

corresponding tissues of origin. Some modules may cooperate, as indicated by the 

positive correlation of their activity across a range of tumors. The activity of many 

metabolic modules was significantly associated with prognosis at a stronger magnitude 

than any of their constituent genes. Thus, modules may be classified as tumor 

suppressors and onco-modules according to their potential impact on cancer 

progression. Using this modeling framework, we also propose novel potential 

therapeutic targets that constitute alternative ways of treating cancer by inhibiting their 

reprogrammed metabolism. Collectively, this study provides an extensive resource of 

predicted cancer metabolic profiles and dependencies. 
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Introduction 

Changes in metabolism were first linked to cancer almost one century ago (1), 

particularly from the observation of enhanced aerobic glycolysis (also known as the 

Warburg effect) (2). It is well known that the common proliferative phenotype of cancer 

cells require intensive support for the biosynthesis of cellular components and 

generation of energy, which overall are accomplished by reprogramming metabolism 

(2,3). Actually, it has long been known that key signaling pathways that are altered in 

cancer are important regulators of metabolism (4). In fact, in addition to the Warburg 

effect, other alterations in the synthesis of nucleotides, amino acids and lipids (5), 

mutations in metabolic genes and accumulations of key metabolites (6) have been 

reported. Consequently, reprogramming of cellular metabolism is a recognized essential 

feature for cancer development and progression (7), and is therefore a recognized 

neoplastic hallmark (7,8). This observation, along with the discovery of the therapeutic 

potential of metabolic targets in cancer (9), has sparked a growing interest in cancer 

metabolism (3,4). Recent studies show that genes involved in metabolic pathways 

shows a remarkable heterogeneity across various cancer types (8), which suggests that 

personalized therapies are likely to be successful if the context of the intervention is 

accurately depicted. In this context, synthetic lethality, defined as combined molecular 

perturbations with a drastic effect on cell viability, but with no individual effect, offers a 

promising range of potential therapeutic interventions based on cancer metabolic 

dependencies (10). 

Despite the inherent complexity of the metabolism, various approaches based on the 

integration and modeling of functional genomic data have allowed the reconstruction of 

genome-scale metabolic networks (11). Indeed, recent studies have demonstrated that 

complex phenotypes or outcomes such as patient survival (12,13) and drug activity (14) 

are better predicted by the inferred activity of pathways, than by the activity of their 

constituent genes and/or proteins. Constraint-Based Models (CBMs), which use maps of 

metabolic networks in combination with gene activity inferred from transcriptomic 

profiles, have been applied to decipher relationships between various aspects of the 

cellular metabolism and phenotypes (15). In fact, CBMs have enabled the analysis of 

metabolism in different scenarios at an unprecedented level of detail (16). However, 

CBMs have several analytical and modeling limitations, such as the dependence of their 
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solutions on initial conditions or the sometimes unrealistic and arbitrary nature of some 

of the assumptions and difficulties of convergence on unique solutions (17)). 

Recently, realistic computational models of signal propagation have been successfully 

applied to predict complex phenotypes using estimates of signaling pathway activities 

inferred from gene expression data (13,14). In addition, such models provide important 

information about disease mechanisms and mode of action (MoA) of drugs (13). Here 

we generalize the application of this approach to describe the metabolic profiles and 

dependencies across 14 cancer types. Our study reveals common and specific metabolic 

modules that influence patient survival. We also identify metabolic dependencies based 

on targeted molecular predictions that point to novel beneficial therapeutic 

interventions.  

An interactive and intuitive web has been developed to explore the data predictions and 

perform further metabolic modeling base on users’ data and hypotheses 

(http://metabolizer.babelomics.org/).  

Material and methods 

 

Data 
 

Human samples and data processing 

RNA-seq counts for a total of 9428 samples, 8319 corresponding to cancer and 649 to 

healthy reference tissue, belonging to 25 cancer types, (see Table S1), as well as their 

subtype stratification, were downloaded from The International Cancer Genome 

Consortium (ICGC) repository (https://dcc.icgc.org/releases/release_20/Projects). The 

trimmed mean of M-values (TMM) normalization method (18) was used for gene 

expression normalization.  

Data on somatic mutation in genes from the modules was taken from the CDG cancer 

portal (https://portal.gdc.cancer.gov/files/995c0111-d90b-4140-bee7-3845436c3b42), 

Expression data on responses to drugs were taken from GSE25066, GSE50948, 

GSE5462 datasets downloaded from GEO. Probes mapping in more than one gene were 

discarded. The median value of the probes mapping on a gene was used as the 

expression value for this gene. Microarray data normalization and background 

correction was done using RMA method implemented in the affy Bioconductor package 

(https://bioconductor.org/packages/release/bioc/html/affy.html). Normalized samples 

Research. 
on April 2, 2019. © 2018 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on August 22, 2018; DOI: 10.1158/0008-5472.CAN-17-2705 

http://cancerres.aacrjournals.org/


were log-transformed and a truncation by quantile 0.99 was applied. The COMBAT 

method (19) was used for batch effect correction. Finally, data were re-scaled between 0 

and 1.  

Clinical data 

Clinical data were available through the cBIOportal (http://www.cbioportal.org/). These 

data included individual survival information that was used for survival analysis. 

Cell line expression values and cell line survival data 

A total of 212 cell lines were used in this study (Table S2). Gene expression data were 

taken from the Cancer Cell Line encyclopedia (https://portals.broadinstitute.org/ccle/). 

Cell survival measurements after gene KD were taken from the Project Achilles 2.4.3  

(https://portals.broadinstitute.org/achilles/datasets/5/download). Survival validation data 

were taken from the new release 2.20.2 of the project Achilles 

(https://portals.broadinstitute.org/achilles/datasets/15/download). 

 

Modelling framework 
 

A model of the activity of a pathway requires of: i) a description of the current map of 

relationships between the proteins that make up the pathway and ii) a function that 

relates the activity of the pathway to those of the constituent proteins.  

Module definition 

Pathway modules (20) are used to describe the map of interactions between the proteins 

that ultimately carry out the main metabolic transformations in the cell. Pathway 

modules are modular sequential metabolic reactions that consist of conserved functional 

units of enzyme complexes and metabolic sub-pathways, representing a summary of the 

known human metabolism (20). A total of 86 modules were downloaded from the 

KEGG MODULE (http://www.genome.jp/kegg/module.html) database (Table S3).  

Since seven of them ended in more than one metabolic product, these were decomposed 

into two sub-modules, resulting in a final number of 95 modules. The modules comprise 

a total of 446 reactions and 553 genes. Specifically, the metabolic pathways were 

downloaded as KGML files and were parsed to extract detailed information about the 

metabolites, genes and reactions. Reactions and metabolites in the module are 

represented as nodes that are connected by the edges of the graph in a way that 
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describes the sequence of reactions that transform simple metabolites into complex 

metabolites, or vice versa (see Figure S1). 

Module activity estimation 

Once a module has been formally described by a graph, its activity level can be 

described as a function of the activities of all the reaction nodes (composed of one or 

several isoenzymes or enzymatic complexes (21)) and the presence of all the 

intermediate metabolites. Reaction node activity can be estimated from the presence of 

the corresponding proteins. Since direct measurements of protein levels are commonly 

difficult to obtain, the presence of the corresponding mRNA expression level within the 

context of the module is widely used as a proxy (13,22,23). Normalized gene expression 

values are used for this purpose, as explained above. To estimate the potential activity 

of the reaction node two scenarios are considered (24): isoenzymes, where the activity is 

produced if at least one of them is present (ExpressionIsoenzyme1 OR ExpressionIsoenzyme2 

OR …) and enzymatic complexes, where the activity occurs only if all the enzymes are 

present (ExpressionEnzymeA AND ExpressionEnzymeB AND …). For example, in Figure 

S1, the last reaction transforming isocitrate into 2-oxoglutarate is catalysed by either an 

enzymatic complex or two alternative isoenzymes, represented as “(R01899 AND 

R00268) OR R00267 OR R00709”, which may be estimated from the normalized gene 

expression values of the mRNAs corresponding to proteins R01899, R00268, R00267 

and R00709 as: 

𝑛 = 𝑚𝑎𝑥{𝑚𝑖𝑛{𝐸𝑅01899, 𝐸𝑅00268}, 𝐸𝑅00267, 𝐸00709} 

where n is the activity of the node and Ep is the 90
th

 percentile of normalized expression 

of the gene corresponding to the enzyme p. This approach is very similar to computing 

the Gene-Protein-Reaction (GPR) rules in metabolic networks (24). It is worth noting 

that some enzymes can participate in more than one node (even in different modules), 

and thereby contribute to different reactions. 

As in the case of protein activities, metabolite measurements are typically not 

simultaneously available with gene expression measurements and therefore the 

metabolite nodes have been excluded here from the calculations (equivalent to setting 

all their values to 1, assuming that all of them are present). However, if metabolite 

measurements were available, they could easily be accommodated in this modelling 
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framework by normalising them and using the corresponding values in the graph. Once 

node activities have been estimated, the contribution of each node to the integrity of the 

chain of reactions leading from simple to complex metabolites can be computed using a 

recursive method. Starting with a value of 1, in the node corresponding to the simplest 

metabolite, the activity of the subsequent nodes is calculated by the formula: 

𝑆𝑖 = 𝑛𝑖 ∙ (1 − ∏(1 − 𝑠𝑎)

𝑠𝑎∈𝐴𝑖

) 

where ni is the activity of the current node n, A is the total number of edges arriving at 

the node that account for the flux of metabolites produced in other nodes with activity 

values sa, and Si is the flux of the current reaction node. 

The net value of integrity of the whole circuit of reactions represented in the module is 

summarized by the value of activity propagated until the last node that carries out the 

last reaction that produces the resulting metabolite of the chain of reactions. 

Differential module activity estimation 

Activity values for the modules calculated in this way are dimensionless values that, 

like normalized gene expression values, make sense in a comparative context that 

makes it possible to decide whether the activity of a given module exhibits a significant 

variation or not. The Wilcoxon test is used to assess the significance of the observed 

changes of module activity when samples of two conditions are compared.  

Since many modules were simultaneously tested, the popular FDR method (25) was 

used to correct for multiple testing effects. 

Survival analysis 
 

Kaplan-Meier (K-M) curves were used to relate module activity to patient survival in 

the different cancers. The value of the activity estimated for each module in each 

individual was used to assess its relationship with individual patient survival. 

Calculations were carried out using the function survdiff in the survival R package 

(https://cran.r-project.org/web/packages/survival/).  

Cox regression analysis (26) was used to relate combined module activity to survival in 

the different cancers. Calculations were carried out using the coxph function in the 
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survival R package (https://cran.r-project.org/web/packages/survival/). A stepwise 

algorithm implemented in the step function of the stats R package 

(https://stat.ethz.ch/R-manual/R-devel/library/stats/html/step.html), was used to add or 

remove modules according to the significance of their contributions to explain survival 

in the multiple regression model. The step function uses the Akaike Information 

Criterion (AIC) to select the best model by iteratively adding and removing variables. 

Finally, the method yields a list of modules whose combination is significantly related 

to survival. Adjustment for multiple testing was made by the FDR method (25). For 

patient stratification based on predicted module activity, high and low module activity 

groups were defined using the 80% and 20% percentiles, respectively. 

Module essentiality 
 

Simulation of the effect of gene knock-downs on module activity 

Given a set of gene expression values (wt expression), the activity of the modules was 

estimated as described above (wt activity). Then, the knocked down gene(s) expression 

value(s) were set to 0.001 (KD expression) and the activity of the modules was 

recalculated again (KD activity). The log-fold-change in module activities was then 

calculated from the comparison of KD and wt module activity profiles as  

Log-fold-change = log(KD module activity) - log(wt module activity) 

Relationship between module activity and cell survival 

To estimate module activity essentiality cell lines were grouped by cancer type. For 

each cancer type the impact of gene KDs on the activity of the modules was calculated 

as described above. Then, a Spearman correlation coefficient between log-fold-change 

values and cell survival, as described in the Project Achilles was calculated. Lower 

Achilles scores indicate higher mortality and, consequently, essentiality of the KD gene. 

Positive correlations indicate essentiality in module activity (the less activity the lower 

the Achilles index) in this particular cancer type.  

 

Validation of the essentiality predictions 
 

Independent dataset validation 
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In order to check the correspondences between gene expression data and protein 

expression data we have used the reverse phase protein array (RPPA) assays available 

in the ICGC repository. 

Data on cancer dependencies, which include estimates of cell viabilities after gene KD, 

from the Project Achilles 2.20.2  was used to check the validity of the predictions made 

with the Project Achilles 2.4.3 (TableS2 and references therein). It was expected that the 

inhibition of an onco-module would reduce the viability of cancer cells. Conversely, the 

inhibition of a tumor suppressor module should result in greater cell survival. In order to 

detect these increases or decreases, the Project Achilles 2.20.2 cell viability scores 

observed in the cell line in which an effect of KD on cell survival was predicted were 

compared with the scores reported for the other cell lines (background score). Increases 

or decreases in the mean values were taken as evidences of predicted effects on cell 

viability. 

 

Experimental validation 

The shRNAs targeting UPB1 were purchased from the MISSION library (Sigma 

Aldrich), catalog SHCLNG-NM_016327. Lentivirus was produced and transduced 

following standard protocols and cell cultures were selected with puromycin for 72 

hours before cell seeding for evaluation of proliferation/viability by methylthiazol 

tetrazolium (MTT)-based assays (Sigma-Aldrich). The data corresponds to sextuplicates 

and were replicated in different assays. UPB1 expression was detected with the Human 

Protein Atlas HPA000728 antibody (Sigma-Aldrich) and gene expression measured 

with primers 5´-TCGACCTAAACCTCTGCCAG-3’ and 5’-

TAAGCCTGCCACACTTGCTA-3’, using PPP1CA as control. 

 

Results 

Data pre-processing 

RNA-seq counts for 25 cancer types, totaling 9428 samples (Table S1) were 

downloaded from The International Cancer Genome Consortium (ICGC) repository. 

Principal component analysis (PCA) was used to detect possible batch effects. The 

results are shown by plotting samples with respect to disease status (Figure S2A and 

S2B), sequencing center (Figure S2C and S2D) and project (Figure S2E and S2F). An 

appreciable technical batch effect due to sequencing center was found (Figure S2 C) and 
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this was corrected by application of the COMBAT (19) method (Figure S2 D). Samples 

were normalized and preprocessed as explained in Methods. 

 

Concordance between gene expression, protein expression and module activity  

Since the predictions of the proposed method are based on gene expression values, data 

from protein expression measurements in reverse reverse-phase protein array (RPPA) 

were used to validate them. Excluding biochemical modifications, 13 genes encoding 

for enzymes contained in KEGG pathways were included in RPPAs; thus, 11 of these 

genes showed positive expression correlations (Spearman's rank correlation coefficients, 

p < 0.05) with their corresponding protein measures in at least one cancer type (Table 

S4A). Only two genes, GAPDH and ACACB, were negatively correlated with their 

RPPA measures in some cancer types, which is a similar proportion to that revealed by 

the analysis of genome-wide gene and protein expression profiles (27). Importantly, 

previous pan- and specific-cancer analyses have shown common and robust positive 

correlations between gene expression and RPPA measures (28). In addition, in seven of 

the ten modules including an enzyme that was measured by RPPAs, a positive 

correlation between predicted module activity and enzyme expression was found in at 

least three cancer types (Table S4B). Moreover, analysis of 201 proteins included in the 

RPPAs identified positive gene-protein expression correlations in 176 (88%) instances 

across any cancer type (Table S5). To further assess the validity of the predictions, 

metabolomic data from breast and kidney cancer were then analyzed (Table S6 and 

references therein). We used the balance between the initial and final metabolite fold-

changes as an indication of activation (relative increase in the final metabolite with 

respect to the initial one) or inactivation (relative decrease in the final metabolite with 

respect to the initial one). With the premise that both the initial and final metabolites of 

each module were measured in these studies, we found two datasets where three 

modules could be evaluated, and, for these settings, all of our five predictions proved to 

be correct (Table S6 and references therein). Therefore, the predictions from our study 

are generally transferable to the protein expression and metabolic activity levels. 

 

Pan-cancer metabolic activity profiles 

For this differential module activity analysis we used 14 cancer types in which at least a 

5% of healthy reference samples were available (totaling 6299 cancer samples and 687 

healthy samples). For each cancer type, the activity of the modules was calculated for 
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all tumors and for all healthy tissue samples as described in Methods. Briefly, gene 

expression profiles were converted into metabolic module activity profiles by applying 

a formula that takes into account the chain of metabolic reactions required to complete 

the transformation of simple into complex metabolites in each module. Next, the 

Wilcoxon test was used to assess differences between conditions. Figure 1 shows the 

significant activations and deactivations of modules in tumors with respect to the 

corresponding healthy tissue.  

 

Subtype-specific metabolic profiles 

Since ICGC provides subtype annotations for six cancer types, it is straightforward to 

produce a similar analysis of differential module activity at the subtype level. For each 

of the six cancer types analyzed, Table S7 recapitulates the modules that present 

significant differential activity in the subtypes of BLCA (Table S7A and S7B), BRCA 

(Table S7C), COAD (Table S7D and S7E), LUAD (Table S7F), PRAD (Table S7G) 

and STAD (Table S7H) with respect to the corresponding normal tissue (in red) and 

those whose differential activity is specifically detected only in one of the subtypes (in 

blue). In some cancer subtypes no subtype-specific activities were detected. In many 

cases this was due to the small number of samples available.  

 

Metabolic modules may be altered by oncogenic mutations 

Many cancer drivers are known to promote metabolic reprogramming in cancer. To test 

our predictions in this context, we analyzed the impact of relatively frequent oncogenic 

mutations in well-established drivers linked to metabolic reprogramming; AKT1 and 

PIK3CA in BRCA, and IDH1 in GBM (Table S8A and S8B). Consistent with a major 

role linked to metabolism, mutations in PIK3CA caused significant changes in the 

predicted values of many metabolic modules, with coherent changes in seven of the 

modules also being significantly altered by AKT1 mutations (Table S8C). Among the 

altered modules in PIK3CA mutants, some of the findings were consistent with current 

knowledge. The largest predicted metabolic activation in PIK3CA mutants is found to 

be the M00027 module of GABA shunt (end metabolite succinate), which is consistent 

with data of reprogrammed glutamine metabolism in this setting (Table S8C and 

references therein). In contrast, the activity of the M00034_1 module of methionine 

salvage is predicted to be higher in PIK3CA wild-type tumors, but interestingly this 

pathway becomes activated as a mechanism of resistance to PI3K inhibitors (Table S8C 
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and references therein). The IDH1 mutations in GBM caused fewer module alterations, 

probably in part because only seven mutated samples were included in the analysis. 

Nonetheless, the largest impact upon IDH1 mutations is predicted to be activation of 

proline biosynthesis (M00015), which links to metabolites downstream of IDH1 activity 

(Table 5A and references therein). Another predicted effect was the downregulation of 

glycosphingolipid biosynthesis (M00071), which is consistent with the major demand of 

citrate towards the substrate of the reaction catalyzed by IDH1. In turn, the major 

activation corresponds to components down-stream of its activity that is related to 

proline biosynthesis (M00015) (Table S8C). Thus, the predictions from this study may 

also support the identification of specific, cancer driver-linked, metabolic 

reprogramming and/or vulnerabilities. 

 

Cooperation between metabolic modules 

Metabolic modules do not function in isolation, but rather display highly correlated 

(positive or negative) patterns of activity that influence cancer development and/or 

progression (8,23). However, how these correlations vary from normal tissue to cancer 

is poorly understood. Our results document a variable proportion of modules, ranging 

from 5.3% (in LIHC) to 26.9% (in READ), that are significantly positively correlated in 

normal tissue but not in the corresponding tumor. This proportion is smaller for 

negative correlations, ranging from 1.1% (in LUSC) to 10.6% (in BLCA). 10-35% of 

the activity of metabolic modules is uncoupled when normal and cancer metabolic 

activities are compared (Figure 2). Figure S3 represents in detail the modules whose 

activities are correlated in normal and/or cancer tissue and those in which the 

significance or direction of the correlation change.  

 

Modules associated with cancer outcome  

Modules differentially activated between cancer and the corresponding normal tissue 

may highlight metabolic processes that are required for cancer development and/or 

progression. The availability of patient survival data in 21 cancer types (See Table S1) 

allows the identification of modules in which changes in activity are significantly 

associated with the progression of each cancer type.  

Table S9 portrays the modules whose change in activity is significantly associated with 

poorer patient survival in at least one cancer type. Since the number of deceased 

patients and, in general, data on mortality follow-ups is limited in the ICGC repository, 
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significant results were obtained for only a few modules. In particular, kidney (KIRC), 

liver (LIHC) and glioma (LGG) cancer types featured a remarkable number of modules 

influencing cancer outcome.  

Moreover, following from the observation of correlated modules, the impact on survival 

may be further determined by combinations of their metabolic activities. Thus, we 

applied Cox multiple regression analysis (26) to find the combination of module 

activities that best accounted for patient survival. Table S10 shows the combinations of 

module activities significantly related to survival in various cancer types.  

Previous results have shown that predicted activities of single or combined metabolic 

modules are associated with differences in cancer outcome, further emphasizing their 

fundamental role in cancer progression. In addition, we observed that the magnitude of 

their effect on survival was greater in some instances than for any of the individual 

activities of the genes that comprise a given module, which provides additional 

evidence that modules are real entities that contribute as whole units to cell functioning 

(see Table S11).  

 

Modules associated with differential cancer therapeutic responses 

Since we observed that metabolic activities influence cancer progression, they may also 

modify therapeutic responses. To examine this possibility, we analyzed gene expression 

data from three breast cancer studies involving different therapeutic settings: response 

to neoadjuvant taxane-anthracycline chemotherapy, response to neoadjuvant herceptin 

(NOAH trial), and early response to letrozole (Table S12A and references therein). 

Several metabolic modules were identified as potential modifiers of response to 

neoadjuvant taxane-anthracycline chemotherapy, including glycolysis (M00002), which 

has been extensively linked to chemoresistance and is thought to be a target for 

impairing this process (Table S12A and references therein). The analysis of the data 

from neoadjuvant herceptin identified a single significant metabolic module, 

catecholamine biosynthesis (M00042), a process that has been linked to resistance to 

anti-HER2 therapy (Table S12B and references therein). Evaluation of the metabolic 

modules that change significantly in response to letrozole identified several candidates, 

including serine biosynthesis (M00020) and methionine degradation (M00035_1), both 

of which processes have been linked to resistance to another endocrine therapeutic 

approach, based on tamoxifen (Table S12C and references therein). Therefore, 
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metabolic alterations predicted by this study may represent novel therapeutic 

opportunities for boosting the clinical benefit of standard treatments. 

 

Essentiality and module activity 

The availability of basal gene expression data from 212 cell lines of the Cancer Cell 

Line encyclopedia, along with the release of the results of Project Achilles (Table 2 and 

references terein), which assessed the consequences of individual silencing of thousands 

of genes across many cancer cell lines, allows the influence of predicted metabolic 

module activities on cancer robustness to be evaluated. The effect of every gene 

expression KD on the activity of the corresponding module was calculated as the log-

fold-change between the estimated activity using cell line gene expression values and 

the activity estimated by assigning a very low expression value (see Methods) to the KD 

gene. Subsequently, the correlations of the log-fold-change values with the Achilles 

score, which accounts for cell viability, were calculated. Given that different cancer 

types display specific patterns of differential module activations, essentiality in modules 

is also expected to be specific to particular cancer types. Therefore, cell lines were 

grouped by cancer type to obtain the correlations between module activity and cell 

viability. Considering only significant correlations (FDR adjusted p-value < 0.05) with a 

correlation coefficient > 0.5 (or < -0.5) obtained from at least eight data points (cell 

lines x KD genes), a total of 20 modules in 12 cancer types showed significant positive 

(Table 1 and Figure 3A) or negative correlations (Table 1 and Figure 3B). 

 

Validation of the gene essentiality predictions 

We used a recently published study on cancer dependencies (Table 2 and references 

therein) that provides extra data on cell survival after massive gene KD. The 

comparison of cell survival in the cancer types predicted with respect to survival in 

cancers validated 48 of the 77 predictions (62%), along with three less conclusive 

validations, which would result in a 66% validation rate, covering 24 of the 28 modules 

predicted to affect cell viability (see Table 1 and, in more detail Table S13). This is an 

excellent proportion of validations, especially if we consider that the method used for 

validation can fail to detect real KD effects when the KD also markedly affects 

background survival.  

Actually, independent experiments can confirm inconclusive validations of predicted 

inhibitions of essential modules. An interesting example is the small molecule, CBR 
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5884, which inhibits PHGDH causing selective toxicity in breast cancer cell lines by 

inhibiting serine biosynthesis (29), as predicted (see Table 1 and Table S13).  

Finally, to further validate of our predictions (Table 1), the impairment of cell 

proliferation upon depletion of UPB1 gene expression was assessed in two models of 

gastric cancer (AGS and MKN45 cell lines). This gene encodes an enzyme (β-

ureidopropionase) that catalyzes the final step in the pyrimidine degradation pathway, 

which in turn is required for epithelial-mesenchymal transition (30). Thus, two short 

hairpin shRNA sequences directed to UPB1 caused a significant decrease in 

proliferation of the two gastric cancer cell lines (AGS and MKN45), as predicted by the 

model. Conversely, the inhibition in a colon adenocarcinoma cell line (SW480), 

predicted as non-essential by our model did not result in a significant difference in 

growing (Figure 4), providing a negative control validation. Although additional 

experiments may be warranted to confirm cancer vulnerability or resistance based on 

predicted metabolic activities, these results can be considered independent validations 

that reinforce the predictions made by the model proposed (Table 1 and Table S13).  

 

Therapeutic targeting of metabolic modules 

Onco-modules are effective candidates for treating cancer (individually or in 

combinations), but interventions that activate some tumor suppressor metabolic 

modules may also offer useful therapeutic strategies. Table S14 lists 137 potential 

interventions with known drugs that are likely to affect cancer cell viability according to 

the predictions of the model proposed here.    

 

Discussion 

Although the role of metabolism in cancer has long been known (1,2), the results 

presented here provide a more detailed, mechanistic view documenting the relevance of 

specific metabolic module activities in cancer. This study is based on the integration of 

gene expression data into metabolic pathway modules and, therefore, may be limited by 

the lack of correlation between gene and protein expression, and with metabolic 

activities, in some instances; however, evaluation of RPPA data and module activity 

predictions, in accordance with independent studies (28), indicates that gene expression 

measures are generally a valuable proxy for protein expression and activities.  
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As expected, the production of nucleotides and their precursors (CDP and GTP) shows 

recurrent significant activation in all cancer types when compared with the 

corresponding reference tissues (Figure 1). Other pervasively activated modules include 

well-known cancer metabolic dependencies, like cholesterol biosynthesis (M00101), 

which is consistent with its essential role in cell membranes and as a precursor of 

steroid hormones (31), and proline biosynthesis (M00015), which is essential in many 

carcinogenesis settings (32). In addition, the predicted overexpression of L-

cystathionine and L-cysteine across many cancer types may reflect a defect in S-

adenosyl-L-methionine, which in turn is consistent with common DNA 

hypomethylation in cancer cells (33). On the other hand, this study reveals metabolites 

whose production is significantly reduced in several cancers types. For example, the 

well-known Warburg effect, i. e., the preference of cancer cells for anaerobic over 

aerobic metabolism is apparent in modules such as Citrate cycle, second carbon 

oxidation (M00011). It is also known that many human tumors do not express ASS1 

(34), one of the key enzymes of the Urea cycle (M00029) module, which is 

systematically downregulated in almost all cancer types.  

Specific observations also support the relevance of the predicted metabolic activities. 

Examples of cancer metabolic specificities are: upregulation of leucine (M00036) and 

catecholamine metabolism (M00042) in prostate (35) and colorectal (36) cancer, 

respectively, and downregulation of glycosaminoglycan (M00058) and polyamine 

biosynthesis (M00134) in liver (37) and breast (38) cancer, respectively. In turn, this 

study highlights less explored metabolic associations, such as downregulation of the 

pentose phosphate cycle (M00004) in head and neck cancer, or accumulation of cysteine 

(M00338_1) in several cancer types, which may indicate a link to altered metabolism of 

reactive oxygen species. Collectively, the results of this study depict biologically 

relevant metabolic profiles throughout human cancer and provide many novel 

hypotheses about metabolic alterations in the disease. 

Metabolic modules are also relevant for establishing the molecular basis that 

differentiates between cancer subtypes. Table S7 provides a detailed survey of 

differential and common metabolic module activities when cancer subtypes are 

compared. Although a detailed description of the findings is beyond the scope of this 

manuscript it is worthwhile highlighting some observations, such as the significant 

specific reduction of the activity of the module C21-Steroid hormone biosynthesis, 

progesterone (M00109) in basal-like breast cancer subtype (the only non-hormone 
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dependent form of the disease) (39). Experts in specific cancer types can use Table S7 

to identify relevant subtype-specific module activities that can be exploited for 

therapeutic purposes.  

Some of the modules that display different behaviors in cancer are expected to have a 

direct effect on patient survival. In spite of the limited patient survival data in the ICGC 

repository, Table S9 demonstrates that a remarkable number of modules are associated 

with poorer patient survival. Specifically, a high level of activity of the pentose 

phosphate module was found to be significantly associated with poor survival in five 

cancer types (see Table S9 and K-M plots in Figure 5A). This observation is consistent 

with the role of this module in the biosynthesis of nucleotides and NADPH, which is 

known to play a key role in facilitating cancer cells to cope with anabolic demands and 

to fight oxidative stress (40).  

The analysis of metabolic modules reveals their role as ultimate mechanistic entities 

whose activity is related to cancer cell fate. For example, the expression of EHHADH 

has recently been associated with poor prognosis of KIRC (41), but the corresponding 

module, Malonate semialdehyde pathway (M00013) better predicts outcome (see Table 

S11).  In fact, out of the 69 metabolic modules associated with differences in survival, a 

total of 27 (40%) modules (see Table S11) showed a stronger effect (based on hazard 

ratio estimations) than any of their corresponding genes. Other modules are also 

significantly related to survival in other cancer types as LGG (Figure 5B), KIRC 

(Figure 5C) or KIRP (Figure 5D). 

Moreover, in the same way that genes are co-regulated in higher-level entities 

(metabolic modules), the activations and deactivations of metabolic modules are not an 

independent process and, in fact, proper cell functionality seems to require a high 

degree of module activity coordination. Figure 2 illustrates how only a few core 

processes originally correlated in the normal tissues maintain the correlation in all 

cancer types. An example of this concordance is the positive coordination between 

fumarate, succinyl-CoA, and urea, which indicates the expected link between the citric 

acid and urea cycles (Figure S3). Unexpectedly, some modules uncorrelated in normal 

tissue emerge as being coupled in tumors (see Figure S3). Thus, according to cancer 

metabolic demands, bile acids (e.g. cholic acid, M00104_1) is positively correlated with 

cholesterol (M00101) and triacylglycerol (M00089). In turn, the negative correlation of 

the previous metabolites with a glycosphingolipid (globoside, M00068), which is linked 

to differentiation and antigenicity (42), is lost in cancer. Similarly, cholesterol is 
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positively correlated with nucleotide sugar biosynthesis (M00554 and M00632_1), but 

another glycosphingolipid (ganglioside, M00069) is negatively correlated with this 

process only in normal tissue. Collectively, these results further highlight the 

complexity of metabolic reprogramming in cancer. 

Available data on survival of cancer cell lines after extensive KD (Table 2 and 

references therein) allowed the model to be used to relate module activity to cell 

survival in cell lines. Positive correlations between module activity and cell viability 

(see Table 1) indicate that the corresponding module may play an essential role in the 

corresponding cancer type. Therefore, they can be classified as onco-modules. Such 

constitutively active modules include common cancer dependencies, like nucleotide 

sugar biosynthesis, necessary for cell proliferation, and heparan sulfate degradation, 

necessary for extracellular matrix biosynthesis and thereby, cancer progression and 

invasion (37). Conversely, tumor suppressor modules showed negative correlations with 

cell viability possibly indicating constraints in cancer development and/or progression. 

These modules include bile acid biosynthesis (M00104), which produces metabolites 

known to induce apoptosis and inhibit cancer cell proliferation (43) (Table 1 and Figure 

3B). In addition, the study identifies modules with contrary effects depending on the 

tissue of origin, which probably indicate specific cancer dependencies. For example, 

inosine monophosphate biosynthesis is positively (bone) or negatively (prostate) 

correlated depending on whether there is also reduced or enhanced oxidative 

phosphorylation, respectively (44).  

The detection of onco-modules and tumor suppressor modules was used to suggest 

previously unidentified potentially actionable genes (Table 1), because the model 

proposed predicted an effect of their KD on the activity of the corresponding modules. 

Recently published extra data on cell survival after massive gene KD (Table 2 and 

references therein) was used to validate the predictions made, confirming these for 62% 

of the genes (48 of the 77 predictions) included in 86% of the modules (24 of the 28), 

which constitutes a high rate of validation.  

Given the level of accuracy of the predictions of the model of metabolic module 

activities the obvious subsequent step was to predict the effect of drugs, with known 

targets within modules, in order to shed light on their mechanisms of action (MoA). 

Actually, components of some metabolic modules are targeted by well-known clinical 

drugs, such as gemcitabine, which is approved for the treatment of several cancer types 

(See Table S14 and specifically DB00441 entry in DrugBank). This drug is a nucleoside 
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analog that impairs DNA synthesis by specifically inhibiting the production process of 

GTP, CDP, and their precursor metabolites. In addition, consistent with recent findings 

for different cancer types (32,45), targeting proline (M00015), and less frequently serine 

(M00020) metabolism, may be efficient strategies for cancer treatment. 

Additional observations may extend the applications of cancer drugs. The predicted 

activation of isoprenoid biosynthesis (M00095) in breast cancer is consistent with a 

potentially protective role of simvastatin in progression of this cancer type (46). 

Following from this observation, predicted metabolic activities support similar 

applications in bladder and endometrial cancer (47). Furthermore, the use of 

pamidronate, which is currently applied to target bone metastasis in breast cancer and 

multiple myeloma, and targets isoprenoid biosynthesis (M00367) module, might also be 

applied to bladder and endometrial cancer (48). It is worth pointing out that other 

bisphosphonates show some benefit in these settings and in colorectal cancer (49), 

which was also predicted in this study. In addition, targeting accumulation of L-

cystathionine (M00035_1) by azacitidine, which causes global DNA hypomethylation, 

may be useful in at least 10 cancer types. The study also supports drug repurposing, like 

the potential use of an approved drug for rheumatoid arthritis, leflunomide (which 

targets UMP biosynthesis) to treat several cancer types (50). Therefore, this study 

describes cancer metabolic dependencies that highlight novel therapeutic opportunities 

either by using current drugs or compounds, or by developing targeted approaches 

against essential gene products.  

It is worth noting that a total of 16 commonly mutated genes from the COSMIC 

database (51) were present in 11 modules. Although it is likely that some of the samples 

used in this study contained any of these mutations, the information about the 

mutational status of the genes in the modules provided in the ICGC repository was 

scarce and so we could not include this information in the model. However, if this 

information were available, two scenarios could be considered by the model used here: 

i) activating mutation (e.g. a translocation to another constitutive promoter), which will 

be detected in the gene expression level itself, and ii) loss-of-function mutation, which 

can be simulated in the model by setting the gene expression value to 0 (an expressed 

non-functional gene is mechanistically equivalent to a non-expressed gene) (52,53).   

Although Project Achilles has yielded abundant data, its results are far from exhaustive 

and, consequently, those obtained here can be considered an underestimate of the actual 

total number of modules that are essential in cancer. 
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Summarizing, changes in metabolic processes play a key role in cancer development 

and progression and this phenomenon is a recognized cancer hallmark (7). However, 

metabolic maps are complex and understanding the global implications in cancer of 

changes in activity of processes or components is challenging. Recently, the metabolic 

map has been decomposed into modules, which consist on sequential reactions 

representing a summary of fundamental metabolic processes (20). Here we have 

explored the usefulness of modules to understand cancer metabolic profiles and their 

relation with cancer outcome and treatment. A simple model is used to predict module 

activity from the expression levels of its gene components.    

In a pan-cancer analysis, we demonstrate that the activity of certain modules change 

significantly between cancers and the corresponding tissues of origin. We also report 

changes in the correlated activity of modules. The activity of several modules is 

significantly associated with cancer prognosis and, moreover, these associations are 

stronger for the module than for any of their constituent genes. This finding strongly 

supports the notion that the effect on the phenotype arises from the coordinated activity 

of the genes in the module. Therefore, essentiality at the gene level would be a 

consequence of the impact of the activity of the corresponding gene product on the 

activity of the module. The associations with outcome and cell viability allow us to coin 

the concepts of tumor suppressor metabolic modules and onco-modules. Finally, using 

this modeling framework, we propose potential therapeutic targets to inhibit metabolic 

reprogramming in cancer.  

Certainly, the metabolic modules used in this modelling framework describe only a 

limited (although representative) portion of the whole known map of human 

metabolism. Therefore, the model presented here provides mechanistic insights into cell 

metabolic activities that are significantly linked to complex phenotypes, such as cancer 

prognosis, but probably has limitations in the accurate prediction of the fate of specific 

metabolites or phenotypes not affected by the metabolites resulting from the 95 

metabolic modules used in the model. More comprehensive models that encompass 

larger portions of the metabolism will, no doubt, increase the reliability of the 

predictions. We anticipate that the data and models produced will play an increasingly 

important role in personalized treatment (54). 

 

Research. 
on April 2, 2019. © 2018 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on August 22, 2018; DOI: 10.1158/0008-5472.CAN-17-2705 

http://cancerres.aacrjournals.org/


Acknowledgments 

This work is supported by grants BIO2014-57291-R and SAF2017-88908-R from the 

Spanish Ministry of Economy and Competitiveness (MINECO) to J. Dopazo, grant 

PI15/00854 from the FIS to M.A. Pujana, “Plataforma de Recursos Biomoleculares y 

Bioinformáticos” PT17/0009/0006 from the ISCIII, co-funded with European Regional 

Development Funds (ERDF) to J. Dopazo, FP7-PEOPLE-2012-ITN MLPM2012 (ref. 

318861) from the EU FP7 to J. Dopazo and EU H2020-INFRADEV-1-2015-1 ELIXIR-

EXCELERATE (ref. 676559) to J. Dopazo. 

 

References 

 

1. Warburg O. The metabolism of carcinoma cells. J Cancer Res 1925 9:148-63 

2. Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation 

in the limelight. Nat Rev Cancer 2013;13:227-32 

3. Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell 

2008;134:703-7 

4. Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: 

metabolism and tumor cell growth. Curr Opin Genet Dev 2008;18:54-61 

5. Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. 

Nat Rev Drug Discov 2011;10:671-84 

6. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. 

Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 

2009;462:739-44 

7. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 

2011;144:646-74 

8. Hu J, Locasale JW, Bielas JH, O'Sullivan J, Sheahan K, Cantley LC, et al. 

Heterogeneity of tumor-induced gene expression changes in the human 

metabolic network. Nat Biotechnol 2013;31:522-9 

9. Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, et al. 

Pyruvate kinase M2 activators promote tetramer formation and suppress 

tumorigenesis. Nat Chem Biol 2012;8:839-47 

10. Pfister SX, Markkanen E, Jiang Y, Sarkar S, Woodcock M, Orlando G, et al. 

Inhibiting WEE1 Selectively Kills Histone H3K36me3-Deficient Cancers by 

dNTP Starvation. Cancer Cell 2015;28:557-68 

11. Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S, Aurich MK, et al. A 

community-driven global reconstruction of human metabolism. Nat Biotechnol 

2013;31:419-25 

12. Fey D, Halasz M, Dreidax D, Kennedy SP, Hastings JF, Rauch N, et al. 

Signaling pathway models as biomarkers: Patient-specific simulations of JNK 

activity predict the survival of neuroblastoma patients. Sci Signal 2015;8:ra130 

13. Hidalgo MR, Cubuk C, Amadoz A, Salavert F, Carbonell-Caballero J, Dopazo J. 

High throughput estimation of functional cell activities reveals disease 

mechanisms and predicts relevant clinical outcomes. Oncotarget 2017;8:5160-78 

Research. 
on April 2, 2019. © 2018 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on August 22, 2018; DOI: 10.1158/0008-5472.CAN-17-2705 

http://cancerres.aacrjournals.org/


14. Amadoz A, Sebastian-Leon P, Vidal E, Salavert F, Dopazo J. Using activation 

status of signaling pathways as mechanism-based biomarkers to predict drug 

sensitivity. Scientific reports 2015;5:18494 

15. Bordbar A, Monk JM, King ZA, Palsson BO. Constraint-based models predict 

metabolic and associated cellular functions. Nat Rev Genet 2014;15:107-20 

16. Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T. Predicting 

selective drug targets in cancer through metabolic networks. Mol Syst Biol 

2011;7:501 

17. Opdam S, Richelle A, Kellman B, Li S, Zielinski DC, Lewis NE. A Systematic 

Evaluation of Methods for Tailoring Genome-Scale Metabolic Models. Cell 

systems 2017 

18. Robinson MD, Oshlack A. A scaling normalization method for differential 

expression analysis of RNA-seq data. Genome Biol 2010;11:R25 

19. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray 

expression data using empirical Bayes methods. Biostatistics 2007;8:118-27 

20. Muto A, Kotera M, Tokimatsu T, Nakagawa Z, Goto S, Kanehisa M. Modular 

architecture of metabolic pathways revealed by conserved sequences of 

reactions. J Chem Inf Model 2013;53:613-22 

21. Lee D, Smallbone K, Dunn WB, Murabito E, Winder CL, Kell DB, et al. 

Improving metabolic flux predictions using absolute gene expression data. BMC 

systems biology 2012;6:1 

22. Sebastian-Leon P, Carbonell J, Salavert F, Sanchez R, Medina I, Dopazo J. 

Inferring the functional effect of gene expression changes in signaling pathways. 

Nucleic Acids Res 2013;41:W213-7 

23. Montaner D, Minguez P, Al-Shahrour F, Dopazo J. Gene set internal coherence 

in the context of functional profiling. BMC Genomics 2009;10:197 

24. Jensen PA, Lutz KA, Papin JA. TIGER: Toolbox for integrating genome-scale 

metabolic models, expression data, and transcriptional regulatory networks. 

BMC systems biology 2011;5:147 

25. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and 

powerful approach to multiple testing. Journal of the Royal Statistical Society 

Series B 1995;57:289-300 

26. Cox D. Regression models and life-tables. Journal of the Royal Statistical 

Society Series B  (Methodological) 1972;34:187-220 

27. Vogel C, Marcotte EM. Insights into the regulation of protein abundance from 

proteomic and transcriptomic analyses. Nature Reviews Genetics 2012;13:227 

28. Akbani R, Ng PKS, Werner HM, Shahmoradgoli M, Zhang F, Ju Z, et al. A pan-

cancer proteomic perspective on The Cancer Genome Atlas. Nature 

communications 2014;5:3887 

29. Mullarky E, Lucki NC, Zavareh RB, Anglin JL, Gomes AP, Nicolay BN, et al. 

Identification of a small molecule inhibitor of 3-phosphoglycerate 

dehydrogenase to target serine biosynthesis in cancers. Proceedings of the 

National Academy of Sciences 2016;113:1778-83 

30. Shaul YD, Freinkman E, Comb WC, Cantor JR, Tam WL, Thiru P, et al. 

Dihydropyrimidine accumulation is required for the epithelial-mesenchymal 

transition. Cell 2014;158:1094-109 

31. Kuzu OF, Noory MA, Robertson GP. The role of cholesterol in cancer. Cancer 

research 2016;76:2063-70 

Research. 
on April 2, 2019. © 2018 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on August 22, 2018; DOI: 10.1158/0008-5472.CAN-17-2705 

http://cancerres.aacrjournals.org/


32. Sahu N, Cruz DD, Gao M, Sandoval W, Haverty PM, Liu J, et al. Proline 

Starvation Induces Unresolved ER Stress and Hinders mTORC1-Dependent 

Tumorigenesis. Cell metabolism 2016;24:753-61 

33. Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics 2009;1:239-59 

34. Dillon BJ, Prieto VG, Curley SA, Ensor CM, Holtsberg FW, Bomalaski JS, et 

al. Incidence and distribution of argininosuccinate synthetase deficiency in 

human cancers. Cancer 2004;100:826-33 

35. Wang Q, Tiffen J, Bailey CG, Lehman ML, Ritchie W, Fazli L, et al. Targeting 

amino acid transport in metastatic castration-resistant prostate cancer: effects on 

cell cycle, cell growth, and tumor development. Journal of the National Cancer 

Institute 2013;105:1463-73 

36. Coelho M, Moz M, Correia G, Teixeira A, Medeiros R, Ribeiro L. 

Antiproliferative effects of β-blockers on human colorectal cancer cells. 

Oncology reports 2015;33:2513-20 

37. Sasisekharan R, Shriver Z, Venkataraman G, Narayanasami U. Roles of 

heparan-sulphate glycosaminoglycans in cancer. Nature Reviews Cancer 

2002;2:521-8 

38. Huang Y, Keen JC, Pledgie A, Marton LJ, Zhu T, Sukumar S, et al. Polyamine 

analogues down-regulate estrogen receptor α expression in human breast cancer 

cells. Journal of Biological Chemistry 2006;281:19055-63 

39. Fadare O, Tavassoli FA. Clinical and pathologic aspects of basal-like breast 

cancers. Nature Clinical Practice Oncology 2008;5:149-59 

40. Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends in 

biochemical sciences 2014;39:347-54 

41. Dimitrieva S, Schlapbach R, Rehrauer H. Prognostic value of cross-omics 

screening for kidney clear cell renal cancer survival. Biology direct 2016;11:68 

42. Hakomori S-i. Glycosphingolipids as differentiation-dependent, tumor-

associated markers and as regulators of cell proliferation. Trends in biochemical 

sciences 1984;9:453-9 

43. Martinez JD, Stratagoules ED, LaRue JM, Powell AA, Gause PR, Craven MT, 

et al. Different bile acids exhibit distinct biological effects: the tumor promoter 

deoxycholic acid induces apoptosis and the chemopreventive agent 

ursodeoxycholic acid inhibits cell proliferation. Nutrition and Cancer 

1998;31:111-8 

44. Newman AC, Maddocks OD. One-carbon metabolism in cancer. British journal 

of cancer 2017 

45. Amelio I, Cutruzzolá F, Antonov A, Agostini M, Melino G. Serine and glycine 

metabolism in cancer. Trends in biochemical sciences 2014;39:191-8 

46. Ahern TP, Lash TL, Damkier P, Christiansen PM, Cronin-Fenton DP. Statins 

and breast cancer prognosis: evidence and opportunities. The lancet oncology 

2014;15:e461-e8 

47. Wang G, Cao R, Wang Y, Qian G, Dan HC, Jiang W, et al. Simvastatin induces 

cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ 

signalling pathway. Scientific reports 2016;6 

48. Coleman RE. Management of bone metastases. The Oncologist 2000;5:463-70 

49. Rennert G, Pinchev M, Rennert HS, Gruber SB. Use of bisphosphonates and 

reduced risk of colorectal cancer. Journal of Clinical Oncology 2011;29:1146-50 

50. Mathur D, Stratikopoulos E, Ozturk S, Steinbach N, Pegno S, Schoenfeld S, et 

al. PTEN regulates glutamine flux to pyrimidine synthesis and sensitivity to 

dihydroorotate dehydrogenase inhibition. Cancer discovery 2017 

Research. 
on April 2, 2019. © 2018 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on August 22, 2018; DOI: 10.1158/0008-5472.CAN-17-2705 

http://cancerres.aacrjournals.org/


51. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. 

COSMIC: exploring the world's knowledge of somatic mutations in human 

cancer. Nucleic acids research 2015;43:D805-D11 

52. Hernansaiz-Ballesteros RD, Salavert F, Sebastian-Leon P, Aleman A, Medina I, 

Dopazo J. Assessing the impact of mutations found in next generation 

sequencing data over human signaling pathways. Nucleic Acids Res 

2015;43:W270-5 

53. Salavert F, Hidalgo MR, Amadoz A, Cubuk C, Medina I, Crespo D, et al. 

Actionable pathways: interactive discovery of therapeutic targets using signaling 

pathway models. Nucleic Acids Res 2016;44:W212-6 

54. Dopazo J. Genomics and transcriptomics in drug discovery. Drug Discov Today 

2014;19:126-32 

 

 

Research. 
on April 2, 2019. © 2018 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on August 22, 2018; DOI: 10.1158/0008-5472.CAN-17-2705 

http://cancerres.aacrjournals.org/


Figure Legends 

 

Figure 1. Heatmap with the significant (FDR-adjusted p-value <0.05) changes in 

module activity when the 14 cancers analyzed were compared with the corresponding 

tissue of origin. Activity up-regulation is represented in red and downregulation in blue. 

The left-most column represents modules in which one or several gene products are 

targets of cancer drugs; the second column represents modules in which one or several 

gene products are targets of other types of drugs; the third column represents the general 

metabolic categories: carbohydrate (CH), amino acid (AA), lipid (LP) or nucleotide 

(NT). 

 

Figure 2. Changes in correlations of module activities from the normal tissue (inner 

circle) to the corresponding cancer type (outer circle).  The proportion of positive 

correlations in the activity of the modules is represented in red, while the proportion of 

negative correlations is represented in blue. 

 

Figure 3. Correlation between increase in module activity, expressed as log-fold-change 

(X axis) and cell survival (Y axis) corresponding to gene KDs in A) Heparan sulfate 

degradation module and B) Bile acid biosynthesis module.   

 

Figure 4. Graph showing relative cell proliferation upon UPB1 expression depletion 

(two different MISSION shRNAs were used as detailed in the inset) or transduced with 

control vector pLKO.1. The asterisk indicates significant differences (Mann-Whitney 

test p-values < 0.01) and the range of reduction (%) of cell proliferation is also shown. 

The prediction of UPB1 essentiality made by the model in lines AGS and MKN45 

(stomach gastric adenocarcinoma) was confirmed by a relatively more sensitive 

behaviors, while UPB1 does not seem to be relatively sensitive in SW480 (colon 

adenocarcinoma), as predicted by the model as well.  

 

Figure 5. K-M plots showing the relationship between module activity and patient 

survival in different cancer types. High and low module activity groups were defined by 

patients in the 80% and 20% percentiles of module activity, respectively. The X axis 

shows time in months and the number of patients at risk in the high activity and low 
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activity groups. A) Pentose phosphate pathway in LICH; B) C5 isoprenoid biosynthesis 

in LGG; C) Propanoyl-CoA metabolism in KIRC and D) Guanine ribonucleotide 

biosynthesis in KIRP. 
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Table 1. Essential modules. The first column contains the name of the module; the second column the genes knocked down in Project Achilles; the third column lists the other genes in the 

module, whose inhibition is predicted to cause inhibition of the corresponding module and therefore the same effect as the genes in the second column (codes are * confirmed effect, + 

inconclusive effect, - no information available for them); the fourth column states the correlation coefficient (r), whose positive and negative values respectively indicate an onco-module 

and a tumor suppressor module; the fifth column the p-value; the sixth column the cancer tissue from which the cell lines were derived; the seventh column lists the number of different cell 

lines derived from each tissue; the eight column the metabolite class (LP: lipid, CH: carbohydrate, AA: amino acid and NT: nucleotide) and the last column the final metabolite of the 

module.  

Module  KD Genes Predicted KD r p-value Tissue Cell Lines MC Module End Metabolite 

Bile acid biosynthesis AKR1D1 CYP8B1 SLC27A5 

CYP27A1- AMACR- ACOX2* 

CYP7A1 HSD17B4* SCP2- 

HSD3B7* ACOT8* 

-0.883 0.003 Urinary tract 3 LP C00695: Cholic acid 

Dermatan sulfate degradation IDS ARSB HYAL1 
IDUA- HYAL4- SPAM1 HYAL3* 

HYAL2* 
-0.812 0 Bone 6 CH  G00872: Chondroitin 4-sulfate  

C10-C20 isoprenoid biosynthesis IDI1 FDPS GGPS1 IDI2* -0.692 0.016 Stomach 4 LP C00353: Geranylgeranyl diphosphate 

Chondroitin sulfate degradation ARSB HYAL1 HYAL4- SPAM1 HYAL3* HYAL2* -0.662 0.019 Bone 6 CH  G00872: Chondroitin 4-sulfate  

Inosine monophosphate biosynthesis ATIC ADSL PAICS PFAS PPAT GART -0.622 0.035 Prostate 3 NT  C00130: IMP 

Serine biosynthesis PSAT1 PHGDH+ PSPH* -0.61 0.03 Breast 13 AA  C00065: L-Serine 

Leucine degradation DLD BCKDHA IVD BCAT1 

BCKDHB HMGCL HMGCLL1* 

AUH MCCC1 MCCC2* DBT* 

BCAT2 

-0.601 0.043 Urinary tract 3 AA  C00164: Acetoacetate 

beta-Oxidation ACAA1 HADHB EHHADH ECHS1 ACAA2* HADH HADHA -0.58 0 Esophagus 10 LP C02593: Tetradecanoyl-CoA 

Nucleotide sugar biosynthesis PGM1 HK2 HK3 UGP2 PGM2 HK1* HKDC1* -0.552 0.002 Skin 7 CH  C00029: UDP-glucose 

Pentose phosphate pathway (Pentose phosphate 

cycle) 
RPE PGD PGLS 

GPI* TKT* TKTL1* TKTL2* 

RPIA* RPEL1* G6PD* TALDO1 
-0.541 0 Breast 13 CH  C01172: beta-D-Glucose 6-phosphate 

Sphingosine degradation SPHK1 SGPL1 SPHK2* -0.532 0.017 Esophagus 10 LP C00346: Ethanolamine phosphate 

Ceramide biosynthesis 
CERS5 DEGS2 DEGS1 SPTLC1 

SPTLC2 

CERS1* CERS3 CERS6* CERS2 

CERS4* SPTLC3* KDSR* 
-0.523 0.045 Prostate 3 LP C00195: N-Acylsphingosine 

Melatonin biosynthesis AANAT ASMT* DDC* TPH2* TPH1 -0.515 0.044 Pancreas 16 AA  C01598: Melatonin 

Inositol phosphate metabolism ITPK1 IPMK IPPK -0.505 0.025 Kidney 10 LP C01204: Phytic acid 

Glycosphingolipid biosynthesis, ganglio series ST8SIA1 ST3GAL5  -0.5 0 Haematopoietic 27 CH  G00118: Ganglioside (GT3) 

C10-C20 isoprenoid biosynthesis.  IDI1 FDPS GGPS1 IDI2* 0.5 0.022 Skin 7 LP C00353: Geranylgeranyl diphosphate 

Heparan sulfate degradation IDS GNS 
SGSH HPSE2+ IDUA HGSNAT- 

NAGLU* GUSB* 
0.554 0 CNS 35 CH  G02632: glycan  

Pyrimidine degradation DPYD DPYS UPB1* 0.574 0.035 Skin 7 NT  C00099: beta-Alanine 

Pyrimidine degradation DPYD DPYS UPB1* 0.574 0.035 Skin 7 NT  C05145: 3-Aminoisobutyric acid 

Conjugated bile acid biosynthesis SLC27A5 BAAT  0.6 0.006 Kidney 10 LP C05122: Taurocholate 

Conjugated bile acid biosynthesis SLC27A5 BAAT  0.6 0.006 Kidney 10 LP C01921: Glycocholate 

Methionine salvage pathway 
ADI1 MRI1 SRM AMD1 MAT2B 

MAT1A 
APIP+ MTAP* MAT2A* ENOPH1* 0.618 0.032 Soft tissue 2 AA  C00147: Adenine 

Polyamine biosynthesis SRM AMD1 AZIN2* AGMAT* 0.639 0 Haematopoietic 27 AA  C00315: Spermidine 

Nucleotide sugar biosynthesis PGM1 HK2 HK3 UGP2 PGM2* HK1 HKDC1* 0.641 0.025 Urinary tract 3 CH  C00029: UDP-glucose 

Inosine monophosphate biosynthesis ATIC ADSL PAICS PFAS PPAT GART 0.677 0 Bone 6 NT  C00130: IMP 

Dermatan sulfate degradation IDS ARSB HYAL1 
IDUAI* HYAL4- SPAM1* HYAL3 

HYAL2* 
0.692 0 Esophagus 10 CH  G00872: Chondroitin 4-sulfate 

Pyrimidine degradation DPYD DPYS UPB1 0.762 0.037 Stomach 4 NT  C00099: beta-Alanine 

Pyrimidine degradation DPYD DPYS UPB1 0.762 0.037 Stomach 4 NT  C05145: 3-Aminoisobutyric acid 
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