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Abstract

Minimizing the sum of completion times when scheduling jobs on m identical parallel machines is a fundamental schedul-
ing problem. Unlike the well-understood deterministic variant, it is a major open problem how to handle stochastic
processing times. We show for the prominent class of index policies that no such policy can achieve a distribution-
independent approximation factor. This strong lower bound holds even for simple instances with deterministic and
two-point distributed jobs. For such instances, we give an O(m)-approximative list scheduling policy.
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1. Introduction

It is a classical and well-understood problem to schedule
jobs on identical parallel machines with the objective of
minimizing the sum of completion times. In this problem,
we are given a set of jobs J = {1, . . . , n}, where each job5

j 2 J has a processing time pj that indicates for how
many time units it has to be processed non-preemptively
on one of the m given machines. At any point in time,
a machine can process at most one job. The objective
is to find a schedule that minimizes the total completion10

time,
P

j2J Cj , where Cj denotes the completion time of
job j. This problem is denoted as P| |

P
Cj in the standard

three-field notation [11]. It is well-known that scheduling
the jobs as early as possible in Shortest Processing Time

(SPT) order solves the problem optimally on a single [27]15

as well as on multiple machines [3].

Stochastic scheduling. Uncertainty in the processing times
is ubiquitous in many applications. Although the first
results on scheduling with probabilistic information date
back to the 1960s, the question how to schedule jobs with20

stochastic processing times is hardly understood.
We investigate a stochastic variant of the minsum

scheduling problem. The processing time of a job j is
modeled by a random variable Pj with known probability
distribution. We assume that the processing time distri-25

butions for individual jobs are independent. The objective
is to find a non-anticipatory scheduling policy ⇧ that de-
cides for any time t � 0 which jobs to schedule. A non-
anticipatory policy has to base these scheduling decisions
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only on observed information up to time t and/or on a pri-30

ori knowledge about the distributions. In particular, the
policy is not allowed to use information about the actual
realizations of processing times of jobs that have not yet
started by time t. For a more thorough introduction to
non-anticipatory scheduling policies see [17, 20, 25].35

For a non-anticipatory policy ⇧, the value of the objec-
tive function

P
j C

⇧
j is a random variable. A natural gen-

eralization of P| |
P

Cj is to ask for minimizing the expected
value of this random variable, i.e., to minimize

P
j E[C⇧

j ]
by linearity of expectation. We drop the superscript when-40

ever it is clear from the context. This stochastic scheduling
problem is commonly denoted by P| |E[

P
Cj ].

List scheduling and index policies. An important class of
policies in (stochastic) scheduling is list scheduling [10]. A
list scheduling policy maintains a (static or dynamic) prior-45

ity list of jobs and schedules at any time as many available
jobs as possible in the order given by the list. The afore-
mentioned SPT rule falls into this class. List scheduling
policies are the simplest type of elementary policies, that
is, policies that start jobs only at the completion times of50

other jobs (or at time 0). For further details on the classi-
fication of (non-preemptive) stochastic scheduling policies
we refer to [20, 21].
A prominent subclass of list scheduling policies is called

index policies [6, 28]. An index policy assigns a priority55

index to each unfinished job, where the index for a job is
determined by the (distributional) parameters and state of
the job itself but independent of other jobs. If job preemp-
tion is not allowed, then these priority indices are static,
that is, they do not change throughout the execution of60

the scheduling policy. Moreover, index policies assign jobs
with the same probability distribution the same priority
index and do not take the number of jobs or the number
of machines into account.
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Concerning stochastic minsum scheduling, a natural65

generalization of the SPT rule, the Shortest Expected Pro-

cessing Time (SEPT) rule, plays an important role. This
index policy is optimal for minsum scheduling on a single
machine [23]. This is true also for the weighted setting
and the weighted SEPT rule, WSEPT. Moreover, SEPT70

is known to be optimal for P| |E[
P

Cj ] when processing
times follow exponential distributions [1], geometric dis-
tributions [8], or if the processing time distributions are
pairwise stochastically comparable [29].

Other index policies that perform provably well for cer-75

tain stochastic scheduling settings, are, e.g., the Longest
Expected Processing Time (LEPT) [30] and Largest Vari-
ance First (LVF) [22] rules, and the Gittins Index [5]. For
an overview on theory and applications of index policies
(with a focus on interruptible jobs) we refer to [7, 9].80

Further related results. For arbitrary instances of
P| |E[

P
Cj ], there is no optimal policy known. In

the past decade, research has focused on approxima-
tive policies. A stochastic scheduling policy ⇧ is an
↵–approximation, for ↵ � 1, if for all problem in-85

stances I it holds that
P

j2JI
E[C⇧

j ]  ↵
P

j2JI
E[C⇤

j ].
Here, C⇤

j denotes the completion time under an optimal
non-anticipatory scheduling policy on the given instance I.

Starting with the seminal paper [19], several scheduling
policies have been developed for this problem (with arbi-90

trary job weights) and generalizations such as precedence
constraints [26], heterogeneous machines [12, 25] and on-
line models [12, 17, 24]. In all cases, the approximation
guarantee depends on the probability distributions of the
processing times. More precisely, the guarantee is in the95

order O(�) where � is an upper bound on the squared
coe�cients of variation of the processing time distribu-
tions Pj , that is, Var[Pj ]/E[Pj ]2  � for all jobs j.

Besides linear programming relaxations, the (W)SEPT
policy plays a key role in the aforementioned results. This100

index policy, being optimal on a single machine, has been
studied extensively as a promising candidate for approxi-
mating P| |E[

P
Cj ] well. Recently, the upper bound for

WSEPT has been decreased to 1+(
p
2�1)/2 ·(1+�) [14].

On the negative side, it has been shown independently that105

neither WSEPT [15] nor SEPT [2, 13] can achieve approx-
imation factors independent of �, when there are many
machines.

A remarkable recent result is a list scheduling policy
for P| |E[

P
Cj ] with the first distribution-independent ap-110

proximation factor of O(m log n+log2 n) [13]. This policy
is based on SEPT but in addition it takes carefully into
account the probability that a job turns out to be long.

Nevertheless, it remains a major open question whether
there is a constant factor approximation for this problem115

even if all weights are equal. Interestingly, there is an in-
dex policy with an approximation factor 2 for the preemp-

tive (weighted) variant of our stochastic scheduling prob-
lem [18]. It is natural to ask whether index policies can

achieve a constant approximation factor also in the non-120

preemptive setting.

Our contribution. As our main result, we rule out any
constant or even distribution-independent approximation
factor for index policies. More precisely, we give a lower
bound of ⌦(�1/4) for any index policy for P| |E[

P
Cj ].125

This strong lower bound implies that prioritizing jobs only
according to their individual processing time distribution
cannot lead to better approximation factors. More sophis-
ticated policies are needed that take the entire job set and
the machine setting into account. Somewhat surprisingly,130

our lower bound holds even for very simple instances with
only two types of jobs, identical deterministic jobs and a
set of stochastic jobs that all follow the same two-point
distribution. For this class of instances we provide an al-
ternative list scheduling policy—carefully taking the num-135

ber of jobs and machines into account—that is an O(m)-
approximation.

2. Lower bound for index policies

In this section we prove our main result, a distribution-
dependent lower bound on the approximation factor that140

any index policy can achieve.

Theorem 1. Any index policy has an approximation fac-

tor ⌦(�1/4) for P||E[
P

j Cj ].

To prove this lower bound we consider a simple class of
instances that we call Bernoulli-type instances. This class145

consists of two types of jobs, deterministic jobs Jd and
stochastic jobs Js, with jobs of each type following the
same distribution. A deterministic job j 2 Jd has process-
ing time Pj = p, and a stochastic job j 2 Js has processing
time Pj = 0 with probability q 2 (0, 1) and Pj = l > 0150

with probability 1� q.
For the stochastic jobs, i.e., j 2 Js, let Xj = 1{Pj=l}.

Then, Xj is a Bernoulli-distributed random variable that
indicates if j 2 Js is long. As the processing time variables
Pj are independent, the same holds for Xj , j 2 Js. Hence,155

X :=
P

j2Js
Xj follows a Binomial distribution with suc-

cess probability q and size parameter ns := |Js|, denoted
by X ⇠ Bin(ns, q), with expected value E[X ] = ns · q.
Intuitively, X counts the number of jobs that turn out to
be long.160

In the proof, we rely on the following concentration
result for Bernoulli variables, which is a variant of the
Cherno↵-Hoe↵ding bound [16].

Lemma 2. For 1  i  n let Xi be independent, identi-

cally distributed Bernoulli variables and let X :=
Pn

i=1 Xi.165

For 0 < " < 1, it holds

1. P[X � (1 + ")E[X ]] exp(�"
2 E[X ]/3) and

2. P[X  (1� ")E[X ]] exp(�"
2 E[X ]/2).

2
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Proof of Theorem 1. We define two families of Bernoulli-
type instances, I1(�,m) and I2(�,m), for the prob-
lem P| |E[

P
Cj ] where � is the upper bound on

Var[Pj ]/E[Pj ]2. The instances di↵er only in the number
of deterministic and stochastic jobs, nd and ns, but not in
the processing time distributions. We define the process-
ing time for deterministic jobs in Jd to be p = 1, and for
stochastic jobs j 2 Js we define

Pj =

(
0 with probability 1� 1/�

�3/2 with probability 1/�.

Note that E[Pj ] = �1/2 and Var[Pj ] = �2
� 1 for

j 2 Js. Hence, the squared coe�cients of variation,170

Var[Pj ]/E[Pj ]2, are indeed bounded from above by �.
For such Bernoulli-type instances there are only two in-

dex policies, one where the deterministic jobs have higher
priority, denoted by Jd � Js, and one where the stochastic
jobs have higher priority, denoted by Js � Jd. We show175

that for any fixed� > 1, there exists a value ofm such that
the cost of the schedule produced by Jd � Js on instance
I1(�,m) is greater by a factor of ⌦(�1/4) than the cost of
the schedule produced by Js � Jd, and vice versa for in-
stance I2(�,m). As the instances I1(�,m) and I2(�,m)180

are indistinguishable by a index policy, this result implies
the lower bound.

The first instance. Instance I1(�,m) is defined by nd =
�3/4

m and ns = 1
2 �m; w.l.o.g. we assume that nd/m 2

Z. We distinguish both priority orders.185

Deterministic jobs before stochastic jobs. When the
deterministic jobs in Jd are scheduled first, then no job
in Js starts before nd/m. Thus,

E
 X

j2J

Cj

�
�

nd

m
ns =

1

2
�7/4

m.

Stochastic jobs before deterministic jobs. Let X be
the random variable counting the number of jobs in Js

that turn out to be long. Then, X ⇠ Bin(ns, 1/�) and
E[X ]= m/2. We distinguish two cases based on the value
of X.190

X  3/4m. Every stochastic job starts at time 0.
Thus,

E

2

4
X

j2Js

Cj |X 
3

4
m

3

5
3

4
�3/2

m.

Furthermore, at least m/4 machines are free for scheduling
deterministic jobs, Jd, at total cost bounded by

E

2

4
X

j2Jd

Cj

����X 
3

4
m

3

5
nd(nd + 1)

1
4m

 8�3/2
m.

X > 3/4m. We get a (very crude) upper bound on the
expected cost by assuming all jobs have processing time

�3/2 and then scheduling them on a single machine:

E

2

4
X

j2J

Cj

����X >
3

4
m

3

5<
1

2
(nd + ns)(nd + ns + 1)�3/2

 3�7/2
m

2
.

We use Lemma 2 to bound the probability of the second
case, that is, P[X > 3/4m]< exp(�m/24). Using the law
of total expectation, we get

E
 X

j2J

Cj

�
 P


X 

3

4
m

�
E
 X

j2J

Cj

����X 
3

4
m

�

+ P

X >

3

4
m

�
E
 X

j2J

Cj

����X >
3

4
m

�


3

4
�3/2

m+ 8�3/2
m+ exp

⇣
�
m

24

⌘
· 3�7/2

m
2

= O(�3/2
m),

for su�ciently large m. Thus, on su�ciently many ma-
chines, the index policy Jd � Js has total cost greater by
a factor of ⌦(�1/4) than the cost of policy Js � Jd.

The second instance. Instance I2(�,m) is defined by
nd = �5/4

m and ns = 2�m. Let X again denote the195

number of jobs in Js that turn out to be long. Then,
X ⇠ Bin(2�m, 1/�) and hence, E[X ]= 2m. We analyze
both index policies.
Deterministic jobs before stochastic jobs. We con-
dition on two events regarding the realized value of X.200

X  3m : Every machine is assigned at most nd/m =
�5/4 deterministic jobs and at most three long stochastic
jobs. Hence, every (stochastic) job has completed by time
�5/4 + 3�3/2. Thus,

E

2

4
X

j2J

Cj

����X  3m

3

5
n
2
d

m
+
⇣
�5/4 + 3�3/2

⌘
ns

= O(�5/2
m)

X > 3m : Lemma 2 implies that P[X > 3m] 

exp(�m/6). Using again the fact that scheduling all jobs
on one machine and assuming Pj = �3/2 for j 2 J is an
upper bound, we have

E

2

4
X

j2J

Cj

����X > 3m

3

5 3�7/2
m

2
.

With the law of total expectation, we get

E

2

4
X

j2J

Cj

3

5= O(�5/2
m).

Stochastic jobs before deterministic jobs. Here, we
condition on the event thatX > m, whereX is the random
variable counting the number of long stochastic jobs.

3
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X > m : Lemma 2 implies that P[X  m] 

exp(�m/4). Hence, P[X > m]� 1/2 for m � 4. If X > m,
then every machine receives at least one stochastic job be-
fore it starts processing the first deterministic job. Thus,

E

2

4
X

j2Jd

Cj

����X > m

3

5� �3/2
nd = �11/4

.

With the law of total expectation we conclude that

E

2

4
X

j2J

Cj

3

5�
1

2
E

2

4
X

j2J

Cj

����X > m

3

5= ⌦(�11/4).

Thus, on su�ciently many machines, the index policy
Js � Jd has total cost greater by a factor of ⌦(�1/4) than205

the cost of policy Jd � Js.

In summary, we have provided two instances I1(�,m)
and I2(�,m) which are indistinguishable by any index pol-
icy. We have shown that, on the one hand, the policy
Jd � Js has total expected cost greater by a factor of210

O(�1/4) than the policy Js � Jd for the first instance
I1(�,m). On the other hand, the total expected cost of
the policy Js � Jd is greater by a factor of ⌦(�1/4) than
Jd � Js on the second instance I2(�,m). Thus, the ap-
proximation ratio of any index policy is lower bounded by215

⌦(�1/4).

3. Upper bound for Bernoulli-type instances

We show that taking the number of machines and
jobs into account allows for a list scheduling policy that
is O(m)-approximative for the class of Bernoulli-type in-220

stances considered in the previous section.

Theorem 3. There exists an O(m)-approximative

list scheduling policy for Bernoulli-type instances of

P| |E[
P

Cj ].

By rescaling, we can assume w.l.o.g. that deterministic
jobs j 2 Jd have processing time Pj = p and stochastic
jobs j 2 Js have processing time

Pj =

(
0 with probability 1� 1/l

l with probability 1/l,

where l > 0.225

Regarding the total scheduling cost of any policy, we
observe the following.

Observation 4. Individually scheduling Jd or Js on m

machines starting at time 0 gives a lower bound on the

cost of an optimal policy. We denote these job-set indi-

vidual scheduling cost by
P

j2Jt
E[C0

j ] where t 2 {s, d}.

Obviously, the sum of both also is a lower bound on the

optimum cost,

X

j2J

C
⇤
j �

X

j2Jd

E[C0
j ] +

X

j2Js

E[C0
j ].

For deterministic jobs, the job-set individual scheduling
cost can easily be bounded by an averaging argument:

X

j2Jd

E[C0
j ] �

nd(nd + 1)

2m
· p. (1)

We prove the main result of this section, the existence
of an O(m)-approximation, through a careful analysis of
the relation between the parameters of a Bernoulli-type230

instance. In Lemma 5 we consider the case of few deter-
ministic jobs before analyzing the case that there are less
stochastic jobs than deterministic ones in Lemma 6. In
Lemma 7, we make a useful observation on X, the random
variable counting the stochastic jobs with long processing235

time. This observation is the basis for Lemma 8 which
handles the remaining cases.
Firstly, note that in case of few deterministic jobs, Js �

Jd is an O(1)-approximation.

Lemma 5. Js � Jd is a 2-approximation for Bernoulli-240

type instances satisfying nd  m.

Proof. The cost of scheduling Js � Jd is at most the cost
of Js and the cost of one deterministic job per machine
starting at the completion of the last stochastic job on
that machine. Then, by linearity of expectation,

X

j2J

E[Cj ] =
X

j2Js

E[C0
j ] +

X

j2Jd

E[Sj + p]

 2
X

j2Js

E[C0
j ] + ndp

 2
X

j2J

E[C⇤
j ].

Moreover, if there are less stochastic jobs than deter-
ministic ones, Jd � Js is O(1)-approximative.

Lemma 6. Jd � Js is a 5-approximation for Bernoulli-

type instances with nd > m and ns  2nd.245

Proof. When scheduling in order Jd � Js, machines start
processing jobs in Js no later than

⌃
nd
m

⌥
p  2nd

m p when
all jobs in Jd have completed. Thus, the total cost of
scheduling Js after Jd is

X

j2Js

E[C0
j ] + ns · 2

nd

m
p 

X

j2Js

E[C0
j ] + 4

X

j2Jd

E[C0
j ] ,

which follows from (1). Adding the total cost of the deter-
ministic jobs Jd implies the 5-approximation.

To handle the remaining instances, recallX, the random
variable counting the number of stochastic jobs that turn
out to be long. Furthermore, fix a sequence of the stochas-250

tic jobs Js and let Zi denote the position of the ith long
job in that sequence. The following lemma states some
elementary properties of Zi. For the sake of completeness,
we give a proof in the appendix.

4
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Lemma 7. For X and Zi defined as before and 1  i 255

�m, k  ns for � 2
�
1, . . . , bns

m c
 
, the following holds:

(i) E[Zi | X = k] = i
k+1 (ns + 1).

(ii) E[Zi | �m  X < (�+ 1)m]  i
�m+1 (ns + 1).

(iii) E[ns �⇧m | m  X < 2m] � ns
4m .

With the previous lemma, we are now ready to analyze260

the remaining cases, i.e., instances with twice as many
stochastic jobs as deterministic ones and more determin-
istic jobs than machines.

Lemma 8. Js � Jd is an O(m)-approximation for

Bernoulli-type instances with ns > 2nd > 2m.265

Proof. We analyze the performance of Js � Jd by condi-
tioning on the number X of long jobs.

0  X < m : Let 0  k < m and consider all realiza-
tions such that X = k. Then, there exist at least m � k

machines that do not schedule stochastic jobs. Hence,

E

2

4
X

j2J

Cj

����X = k

3

5 k · l +
nd(nd + 1)

2(m� k)
p

 k · l + n
2
dp.

The optimal policy also has to process the k long stochastic
jobs and due to (1) applied on m� k machines it follows

E

2

4
X

j2J

C
⇤
j

����X = k

3

5� k · l +
n
2
dp

2m
,

where C
⇤
j again denotes the completion time of j in an

optimal schedule. Thus,

E

2

4
X

j2J

Cj

����X = k

3

5 2mE

2

4
X

j2J

C
⇤
j | X = k

3

5.

�m  X < (� + 1)m for � 2
�
1, . . . , bns

m
c
 
: All

stochastic jobs are finished at the latest by (�+1) l. Hence,
from time (� + 1) l on, all machines process deterministic
jobs only. Thus,

X

j2J

E[Cj | �m  X < (�+ 1)m]



X

j2J

E[C0
j | �m  X < (�+ 1)m] + (�+ 1)lnd. (2)

As noted in Observation 4, the first term is a lower
bound on the optimum cost and it remains to bound the
second term, i.e., (�+ 1)lnd.270

Note that a non-anticipatory policy does not know the
positions of the long jobs. Thus, such a policy cannot start
any of the stochastic jobs coming after the (k ·m)th long
ones before time k · l for 1  k  �. Recall that Zkm gives
the position of the (k · m)th long job. Hence, ns � Zkm275

stochastic jobs are delayed by k · l.

For � = 1, Lemma 7 (iii) implies that scheduling only Js

costs at least l ns
4m , i.e.,

X

j2Js

E[C0
j | m  X < 2m] � l

ns

4m
�

1

4m
(�+ 1)lnd.

For 2  �  b
ns
m c let E denote the event that �m 

X < (�+ 1)m. With Lemma 7 (ii) it follows

X

j2Js

E[C0
j | E ] �

�X

k=1

lE[ns � Zkm | E ]

� lns

�X

k=1

�m� km

2�m

�
l�nd

8

�
1

8
(�+ 1)lnd.

Using again the law of total expectation, we combine
the above results for the di↵erent values of X and obtain

X

j2J

E[Cj ]  max{8, 4m}

X

j2J

E[C⇤
j ].

We conclude with a policy for scheduling Bernoulli-type
instances of the scheduling problem P| |E[

P
Cj ].

Algorithm 1: List scheduling policy for Bernoulli-type instances

At any time schedule as many available jobs as there are280

machines available in the following priority order:
if m = 1

use SEPT
else if nd < m and m � 2

use Js � Jd285

else if ns  2nd and nd � m � 2
use Jd � Js

else
use Js � Jd

end290

Proof of Theorem 3. Algorithm 1 is a list scheduling pol-
icy that selects one out of three index policies, SEPT,
Jd � Js, and Js � Jd, depending on the numbers of jobs
and machines. The approximation guarantee follows from295

the fact that SEPT is optimal on a single machine [23] as
well as Lemmas 5, 6, and 8.

4. Concluding remarks

In this note, we rule out distribution-independent ap-
proximation factors for minsum scheduling for simple in-300

dex policies, including SEPT, LEPT, and LVF. This strong
lower bound holds even for Bernoulli-type instances. It
may surprise that such most simple, yet stochastic, in-
stances already seem to capture the inherent di�culties
of stochastic scheduling. We believe that understand-305

ing the seemingly most simple Bernoulli-type instances
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is a key for making progress on approximative policies
for stochastic scheduling problems.The general importance
of high-variance jobs has also been observed in earlier
work [19, 17, 24, 13, 12].310

For Bernoulli-type instances we also give an O(m)-
approximative list scheduling policy. This result can be
easily generalized to instances with arbitrary deterministic
jobs when replacing (1) by a well-known lower bound [4].
The key ingredient to this analysis is the improved lower315

bound on the optimal cost due to exploiting the proper-
ties of the underlying probability distributions. It would
be a major improvement to generalize this lower bound to
arbitrary probability distributions. Generally, it is a com-
mon understanding that improving upon lower bounds is320

fundamental for designing O(1)-approximative scheduling
policies.

The setting with a fixed number of machines, m, is of
particular interest. While the special case m = 1 is solved
optimally by SEPT [23], even the problem on m = 2 ma-325

chines is wide open. For simple Bernoulli-type instances,
the index policy we give in this note is, in fact, a constant
factor approximation. Any generalization would be of in-
terest. Notice that our lower bound for arbitrary index
policies as well as earlier lower bounds on SEPT [13, 2]330

rely on a large number of machines. Thus, even SEPT
or some other simple index-policy might give a constant
factor approximation for constant or bounded m.

For general instances, our lower bound for index poli-
cies suggests that future research shall investigate more335

sophisticated scheduling policies.
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[21] R. H. Möhring, F. J. Radermacher, and G. Weiss. Stochastic

scheduling problems II – set strategies. Zeitschrift für Opera-405

tions Research, 29:65–104, 1985.
[22] M. Pinedo and G. Weiss. The “largest variance first” policy

in some stochastic scheduling problems. Operations Research,
35(6):884–891, 1987.

[23] M. H. Rothkopf. Scheduling with random service times. Man-410

agement Science, 12(9):707–713, 1966.
[24] A. S. Schulz. Stochastic online scheduling revisited. In Proceed-

ings of COCOA, volume 5165 of Lecture Notes in Computer

Science, pages 448–457, Berlin, 2008. Springer.
[25] M. Skutella, M. Sviridenko, and M. Uetz. Unrelated machine415

scheduling with stochastic processing times. Math. Oper. Res.,
41(3):851–864, 2016.

[26] M. Skutella and M. Uetz. Stochastic machine scheduling with
precedence constraints. SIAM J. Comput., 34(4):788–802, 2005.

[27] W. E. Smith. Various optimizers for single–stage production.420

Naval Research Logistics Quarterly, 3(1-2):59–66, 6 1956.
[28] J. Walrand. An Introduction to Queueing Networks. Prentice

Hall, Englewood Cli↵s, NJ, 1988.
[29] R. Weber, P. Varaiya, and J. Walrand. Scheduling jobs with

stochastically ordered processing times on parallel machines to425

minimize expected flowtime. Journal of Applied Probability,
23:841–847, 1986.

[30] R. R. Weber. Scheduling jobs by stochastic processing require-
ments on parallel machines to minimize makespan or flowtime.
Journal of Applied Probability, 19(1):167–182, 1982.430

Appendix

In this section we prove the technical result about prop-
erties of Zi (Lemma 7). Recall that Zi is the random

6

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354



variable that denotes the position of the ith long job in a
fixed sequence of the stochastic jobs Js. We are not aware435

of any references regarding the distribution of Zi condi-
tioned on X, the number of long stochastic jobs. Thus, we
give the prove here for the sake of completeness.

Lemma 7. For X and Zi defined as before and 1  i 

�m, k  ns for � 2
�
1, . . . , bns

m c
 
, the following holds:440

(i) E[Zi | X = k] = i
k+1 (ns + 1).

(ii) E[Zi | �m  X < (�+ 1)m]  i
�m+1 (ns + 1).

(iii) E[ns �⇧m | m  X < 2m] � ns
4m .

Proof. We fix 1  r  ns. Then, X(r) :=
Pr

j=1 Xj fol-
lows a Binomial distribution with size parameter r and445

success probability 1/l as Xj are independent Bernoulli-
distributed random variables with success probability 1/l.

Let us recall that P[E | F ] := P[E \ F ]/P[F ] for two
events E and F with P[F ]> 0.
ad (i). Let 1  i  z  k. Then,

{Zi = z} = {Xz = 1} \ {X
(z�1) = i� 1},

i.e., the event that the ith long job is job z is equivalent to450

observing that the zth job is long after having seen i � 1
long jobs among the stochastic jobs 1, . . . , z � 1.

Intersecting with the event {X = k}, we obtain

{Xz = 1} \ {X
(z�1) = i� 1} \ {X = k} =

{Xz = 1} \ {X
(z�1) = i� 1} \ {X �X

(z) = k � i}.

As the three events in the last line are independent of each
other, we conclude

P[Zi = z | X = k]=

P[Xz = 1]· P
⇥
X

(z�1) = i� 1
⇤
· P
⇥
X �X

(z) = k � i
⇤

P[X = k]
=

�z�1
i�1

�
·
�ns�z

k�i

�
�ns

k

� ,

where we used that X(z�1) and X �X
(z) are Binomially

distributed with success probability 1/l and size parameter
z � 1 and ns � z, respectively.455

With the convention
�r
q

�
= 0 for r, q 2 N with q > r , it

follows
✓
ns

k

◆
E[Zi | X = k ]=

nsX

z=0

z P[Zi = z | X = k]

✓
ns

k

◆

= i

nsX

z=0

✓
z

i

◆✓
ns � z

k � i

◆

= i

✓
ns + 1

k + 1

◆
.

where the last equality follows from an index shift –Pns

z=0

�z
i

��ns�z
k�i

�
=
Pns+1

z=1

�z�1
i

��ns+1�z
k�i

�
– and the follow-

ing observation: The last line in the above calculation asks

in how many ways you can pick k+1 successes among ns+1
trials. We can partition this based on the position of the460

(i + 1)st success for a fixed i with a similar idea as used
above. The (i+1)st success can be positioned between the
(i+1)st and the (n� k+ i)th trial. If the (i+1)st success
is at position l, there have to be i successes among the first
l� 1 trials and, since we want to pick k + 1 successes, the465

remaining ns +1� l trials have to contain k� i successes.
Summing over all positions l of the i + 1st success, yields
the equality.

ad (ii). With the law of total expectation, we can use (i)

to prove the statement as follows. Indeed, conditioning on
the event X = k for �m  k < (�+ 1)m yields

E[Zi | �m  X < (�+ 1)m ]

=

(�+1)m�1X

k=�m

E[Zi | X = k ]P[X = k | �m  X < (�+ 1)m].

Applying (i), we get

=

(�+1)m�1X

k=�m

i

k + 1
(ns + 1)P[X = k | �m  X < (�+ 1)m].

As k = �m clearly is an upper bound on every summand,
this yields



(�+1)m�1X

k=�m

i

�m+ 1
(ns + 1)P[X = k | �m  X < (�+ 1)m].

The law of total expectation concludes the calculation:

=
i

�m+ 1
(ns + 1).

ad (iii). With (i) it follows that

E[ns �⇧m | X = m ]= ns �
m

m+ 1
(ns + 1)

=
nsm+ ns � nsm�m

m+ 1

�
ns

4m
,

where we used ns > 2m for the last inequality. Using
again the law of total statement as in (ii), the statement470

follows.
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