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Abstract 

According to the somatic mutation theory of carcinogenesis, tumours are derived 

from a single mutated cell that clonally expands into a neoplasm. However, studies 

on familial adenomatous polyposis (FAP) colonic adenomas and some sporadic 

microadenomas have revealed tumours that are polyclonal in origin – they are 

derived from more than one clone. This has questioned the current dogma of how 

colonic tumours are initiated; however the mechanisms of how polyclonality is 

generated are unknown. Studies using chimeric mice have suggested that polyclonal 

adenomas arise through crosstalk between unique clones in close physical proximity. 

In this project, the local microenvironment surrounding human adenomas was 

characterised by investigating the non-dysplastic crypts in close proximity to 

adenomas, in particular their mutation burden, DNA damage status, crypt stem cell 

dynamics and the cellular makeup of the stroma. 

Immunohistochemistry was used to quantify cell proliferation (Ki67), DNA 

damage (γH2AX) and Wnt signalling status (nuclear β-catenin) in non-dysplastic 

crypts, stratified according to their physical distance from the nearest dysplastic 

crypt. Normal crypts within 250μm of an adenoma displayed increased cell 

proliferation, DNA damage and Wnt signalling. These effects were associated with 

an increase in T cell, macrophage and fibroblast infiltrate in the non-dysplastic 

stroma, however the concentration of intraepithelial CD8 T cells in dysplastic crypts 

showed a significant decrease. Furthermore, cytochrome c oxidase histochemistry (a 

marker of mitochondrial DNA (mtDNA) mutations - a proxy for mutation pressure 

on crypts) was used to demonstrate that crypts neighbouring an adenoma contained a 

higher mutation burden. Furthermore, the proximity of a crypt to an adenoma also 

affected stem cell dynamics: using somatic mtDNA mutations to trace clonal 

lineages, it was found that human intestinal stem cell evolution in adenomas and 

surrounding normal crypts followed neutral drift dynamics.  

The effects of an adenoma on gene expression in normal epithelium were 

investigated using murine organoid cultures. Wild type (WT) organoids when grown 

in the presence of fibroblasts previously exposed to mutant Apc1322/+ organoids 

demonstrated a significant upregulation of the MAPK, JAK/STAT and Wnt pathway 

when compared to WT only. Moreover, Tnf-α, MMP9 and collagen genes were 

found to be upregulated in exposed WT. 
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To conclude, clonal interactions between dysplastic and non-dysplastic 

epithelium driving clonal expansion were demonstrated: adenomas create a field 

effect, dysplastic crypts exert mutagenic pressure, and crypt-to-crypt crosstalk 

between adenomatous and immune cells takes place leading to a pro-tumourigenic 

environment. This work has made a significant contribution to the understanding of 

the initiation of cancer in the human colon. 
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1 Chapter I: Introduction 

1.1 General introduction 

The development of cancer is a process of clonal evolution due to somatic mutation 

and selection based on the effect of these mutations on the cell. Understanding 

cancer from an evolutionary perspective has extensive clinical implications for 

neoplastic progression, prevention and therapy (Greaves et al. 2012, Merlo et al. 

2006). In 1976, Peter Nowell’s landmark paper highlighted clonal evolution of 

tumour cell populations (Nowell 1976). The “somatic mutation theory” now states 

that each tumour is derived from a single mutated cell that clonally expands into a 

neoplasm acquiring additional mutations with each cell division (monoclonal-in-

origin). Subsequent progression to invasive cancer is due to further evolution within 

the neoplasm, as a series of mutations in oncogenes and tumour suppressor genes 

accumulate over time (Kinzler et al. 1996), with each additional mutation providing 

the mutated cell and its progeny with a growth or survival advantage, and so driving 

expansion of the tumour (Baker et al. 2013).  

The monoclonal origin of cancer has long been accepted in the scientific 

community. However, recent evidence has shown that tumours can be derived from 

multiple independently transformed cells, thus being polyclonal-in-origin (Merritt et 

al. 1997, Novelli et al. 2003, Novelli et al. 1996, Thirlwell et al. 2010, Thliveris et 

al. 2005). The mechanism that generates polyclonal tumours is unknown, as is the 

importance of polyclonality in driving tumour progression. Short-range interactions 

between multiple initiated clones within one or two crypt diameters of each other 

have been suggested to lead to the formation of polyclonal tumours. These clonal 

interactions might be critical, if not necessary, for initiation, growth, and progression 

of tumourigenesis. 

This thesis describes how clonal interactions between dysplastic and non-

dysplastic epithelium drives clonal expansion and alters stem cell dynamics. In 

addition, it provides an insight into the gene expression changes between normal 

epithelium and normal epithelium in close proximity to adenomas.  
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Hence, this chapter will focus on introducing the macroscopic and 

microscopic biology of colorectal cancer, the process that initiates and drives 

tumourigenesis, the stem cell dynamics, and the development and progression to 

cancer.  

 

 

1.2 Anatomy of the human intestine 

The colon (large intestine) is part of the digestive system that functions to absorb 

water and salt from waste material, and to transport it from the small intestine to the 

rectum. The entire adult colon is five to six feet long, and comprises the caecum, 

ascending colon, transverse colon, descending colon, sigmoid colon and rectum 

(Figure 1.1). The tube like structure of the colon is made up of three layers: the outer 

layer comprises sheets of innervated smooth muscle (muscularis externa), the middle 

layer is composed of connective tissue (submucosa) and the inner layer is a sheet of 

cuboidal epithelial cells termed the mucosa, processing and absorbing nutrients, and 

compacting the stool. While in the small intestine, absorption is increased through 

villi and crypts of Lieberkühn (invaginations into the submucosa), in the large 

intestine, there are only crypts, and instead of villi a flat surface epithelium (Figure 

1.2) (Sancho et al. 2004).  
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Figure 1.1: Anatomy of the human large intestine. 
The colon is divided into five major anatomic segments: the caecum, ascending colon, transverse 
colon, descending colon, sigmoid colon and rectum. Adapted from http://www.crcftlauderdale.com. 
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1.3 Intestinal epithelium 

The colonic epithelium is pitted with millions of cylinder like structures called 

crypts. The crypt is considered to be the smallest functional unit of the colorectal 

mucosa (Figure 1.2) (Clevers 2013, Humphries et al. 2008). The opening of the crypt 

is at the luminal surface of the mucosa and the base of the crypt lies superior to the 

muscularis mucosae.  

Human intestinal crypts are clonal populations, derived from a single stem 

cell (Barker et al. 2007, Gutierrez-Gonzalez et al. 2009, Ponder et al. 1985, Taylor et 

al. 2003). Each crypt has a population of stem cells at their base that generates 

epithelial cell lineages. However, intestinal stem cells (ISCs) do not directly form 

differentiated cells; they rather contribute to an intermediate pool, known as transit-

amplifying (TA) cells. These proliferative cells are confined to the bottom third of 

the crypt. TA cells divide approximately every 12 – 18 hours, 4 – 6 times prior to 

fully differentiating into the main epithelial lineages within the crypt: goblet cells, 

enteroendocrine cells and enterocytes (Heath 1996). Goblet cells protect the mucous 

lining, enteroendocrine cells secrete gastrointestinal hormones, and enterocytes 

absorb nutrients and make up the majority of epithelial cells (Sancho et al. 2004).  

TA cells, resulting from stem cell divisions, then migrate upwards towards 

the luminal surface where they differentiate while losing their proliferative capacity, 

eventually undergoing apoptosis (Crosnier et al. 2006, Potten 1998). Cells reach the 

top of the villus after around 5 days (van der Flier et al. 2009). Turnover of the entire 

epithelial lining is rapid, taking 7 days to replace it (Brittan et al. 2002). However, 

TA cells can dedifferentiate back into stem cells if the stem cell population is lost 

(Ritsma et al. 2014). 

Specific features for the murine small intestine are the presence of Paneth 

cells and intestinal villi. Paneth cells, although differentiated, reside at the crypt base 

and secrete antimicrobial peptides as well as growth factors, such as Wnt, EGF and 

Notch ligands, to maintain the stem cell niche (Figure 1.2A) (Farin et al. 2012, Sato 

et al. 2011).  
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Figure 1.2: The crypt–villus structure of the small intestine and the structure of a crypt of the 
large intestine. 
A) In the murine small intestine, LGR5+ stem cells are intermingled with Paneth cells at the crypt 
base. The +4 ‘reserve’ stem cells occupy the fourth position from the crypt base. The stem cells 
generate transit-amplifying (TA) cells. TA cells differentiate into various functional cells on the villi 
including goblet cells, enteroendocrine cells, tuft cells and enterocytes to replace epithelial cells, 
which are lost via anoikis at the villus tip (left panel). H&E staining of a crypt and villus (right panel). 
B) In the human colon, LGR5+ stem cell compartment resides at the base of the crypt, generating 
rapidly proliferating TA cells, which subsequently differentiate into the cells of the colon (goblet 
cells, absorptive enterocyte, enteroendocrine cells, and tuft cells) (left panel). H&E staining of a crypt 
in the large intestine (right panel). Scale bar = 100μm. Adapted from Barker 2014. 
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Moreover, Paneth cells are the exception to this rapid self-renewal, as they are 

renewed every 3 – 6 weeks (Ireland et al. 2005). Paneth cells are absent in the colon, 

but Reg4+ deep crypt secretory cells function as an epithelial niche for stem cells 

(Rothenberg et al. 2012, Sasaki et al. 2016).  

Intestinal villi are finger-like structures covered in simple columnar 

epithelium, projecting into the intestinal lumen to maximise the surface area for 

digestion and absorption (Barker 2014). 

 

1.4 Stem cells  

1.4.1 Stem cells are housed within a basal niche 

Stem cells are defined functionally by their potential for self-renewal and 

multipotency, generating all the differentiated cells found in the colonic crypt 

(Barker et al. 2008).  

Stem cells are located within the stem cell niche (Williams et al. 1992). The 

stem cell niche is defined as the local microenvironment that supports stem cells and 

molecular signals, and regulates their behaviour during tissue homeostasis and 

regeneration (Smith et al. 2017). The niche consists of the stem cells themselves and 

surrounding mesenchymal cells, including subepithelial myofibroblasts, fibroblasts, 

pericytes, endothelial cells, immune cells, neural cells, and smooth muscle cells (Tan 

et al. 2018). In addition to providing structural support, they have been shown to be 

involved in cross-talk with the intestinal epithelium (Powell et al. 2011). 

Wnt signalling is critical for stem cell maintenance, cell polarity and cell fate 

determination (Logan et al. 2004). Given that Wnt signalling is an essential pathway 

for stem cell maintenance, the Wnt ligand-producing cells therefore represent an 

important part of the niche. Wnt signalling can activate three distinct pathways: the 

canonical Wnt/β-catenin pathway, the non-canonical Wnt/β-catenin pathway and the 

Wnt/Ca2+ pathway (Logan et al. 2004), of which the canonical pathway is the most 

relevant pathway in the context of ISCs (Figure 1.3).  
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Figure 1.3: Canonical Wnt-β-catenin signalling pathway. 
The Wnt signalling pathway is shown in the “OFF” (left hand side) and “ON” (right hand side) states. 
In the absence of a Wnt signal, the destruction complex phosphorylates and ubiquinates β-catenin, 
therefore being destroyed by the proteasome. In the presence of a Wnt signal, as the dishevelled 
protein (Dvl) recruits Axin2 and inhibits GSK-3, β-catenin is not phosphorylated and therefore not 
destroyed. It can translocate to the nucleus and activate transcription genes (Kretzschmar et al. 2017). 
 

  

transduction repeat-containing protein (β-TrCP) that ubiquitinates β-
catenin for proteasomal degradation.

Canonical Wnt signaling remains inactive until Wnt ligands bind
with both Frizzled and LRP receptors causing the phosphorylation of
the latter receptor (Janda et al., 2012) (Fig. 1). Dishevelled (Dvl), as
part of the destruction complex, acts as adaptor for phosphorylated
LRP to recruit the entire intact complex to the plasma membrane (Li
et al., 2012). While the destruction complex is still able to bind β-
catenin and phosphorylate it, ubiquitination by β-TrCP is inhibited.
Newly synthesized β-catenin accumulates in the cytoplasm eventually
translocating into the nucleus. Nuclear β-catenin then replaces a
repressor of T-cell factor (TCF)/lymphoid enhancer factor (LEF)
transcription factors named Groucho (Roose et al., 1998; van de
Wetering et al., 1991; Verbeek et al., 1995). Interaction of β-catenin
and TCF/LEF recruits transcriptional co-activators and histone modi-
fiers such as the ATP-dependent helicase Brahma-related gene 1
(BRG1, also known as SMARCA4), cyclic adenosine monophosphate-
response element (CREB)-binding protein (CBP), p300, B-cell lympho-
ma 9 (BCL9) and pygopus (Korinek et al., 1997; Molenaar et al., 1996;
Morin et al., 1997; Schuijers et al., 2014; van de Wetering et al., 1997).
This complex is transcriptionally active allowing expression of β-
catenin target genes, which mediate an array of developmental and
homeostatic processes, some to be discussed in this review. Wnt/β-
catenin signal strength and the resulting transcriptional activity are
highly context dependent. It has been suggested that even low levels of
nuclear β-catenin accumulation may be sufficient to induce the
transcriptional program independent of the absolute levels of β-catenin
(Goentoro and Kirschner, 2009). Furthermore, cell type-specific Wnt/
β-catenin target gene expression may also be determined by splice
variants of TCF/LEF1 transcription factors present in the transcrip-
tional complex (Hovanes et al., 2001; Van de Wetering et al., 1996;
Wallmen et al., 2012).

A variety of extracellular and membrane-associated modulators
acting either as inhibitors or agonists tightly regulate Wnt/β-catenin
signaling. Several extracellular secreted molecules are Wnt pathway
inhibitors that directly bind Wnt ligands such as secreted Frizzled-
related proteins (SFRPs) (Leyns et al., 1997; Wang et al., 1997) or Wnt
inhibitory factor (WIF) (Hsieh et al., 1999). Other inhibitors, for
instance, members of the Dickkopf family (DKKs) (Glinka et al.,
1998; Mao et al., 2001), sclerostin (SOST) (Semenov et al., 2005)
and sclerostin domain containing 1 (SOSTDC1) (Ahn et al., 2010;

Itasaki et al., 2003), block Wnt signaling through interaction with
membrane-associated LRPs. Both Wnt ligands and LRPs are simulta-
neously bound by adenomatosis polyposis down-regulated 1 (APCDD1)
to inhibit Wnt/β-catenin activation (Shimomura et al., 2010). Apart
from its role as cytoplasmic effector of canonical Wnt signaling, β-
catenin interacts with the cytoplasmic domain of E-cadherin and is also
an intracellular component of adhesion junctions (Ozawa et al., 1989).
As such binding of β-catenin by E-cadherin at the plasma membrane
may therefore reduce the cytoplasmic pool of β-catenin available for
canonical Wnt signaling (Huelsken et al., 1994).

Wnt agonists, in contrast, potentate signal strength of canonical
Wnt signaling. The secreted protein Norrin, for instance, binds
Frizzled-4−LRP5 in the absence of Wnt ligands and, subsequently,
activates β-catenin target gene expression (Junge et al., 2009; Xu et al.,
2004). Secreted proteins of the roof plate-specific spondin (R-spondin
or RSPO) family were initially described to be co-expressed with Wnt
ligands and agonists of canonical Wnt signaling (Kazanskaya et al.,
2004). Later, research conducted independently by three different
groups revealed that R-spondins are the long unknown ligands of the
leucine rich repeat containing G protein-coupled receptor (LGR) family
(de Lau et al., 2011; Glinka et al., 2011; Ruffner et al., 2012).
Subsequently, it was discovered that the active LGR−RSPO complex
binds and inactivates the transmembrane E3 ubiquitin ligases zinc and
ring finger 3 (ZNRF3) and ring finger protein 43 (RNF43), which are
both β-catenin target genes and Wnt antagonists (Hao et al., 2012; Koo
et al., 2012). The above described mechanism for the inactivation of
ZNRF3 and RNF43 through LGR−RSPO is prerequisite for the
prolonged stabilization of β-catenin, subsequent expression of β-
catenin target gene and stem cell self-renewal (Yan et al., 2017), which
plays an essential role for adult homeostasis of epithelial tissues. Work
in the 1990s established that Wnt/β-catenin signaling is not only
required for early embryonic development in vertebrates (Korinek
et al., 1998b), but is also critical for regulating adult homeostasis in
mammals. In 1998, a study linked canonical Wnt signaling with the
maintenance of the adult stem cell compartment first using the mouse
intestine as a model stimulating a new direction of research (Korinek
et al., 1998a).

3. Wnt/β-catenin signaling in intestinal stem cells

The intestinal tract can be separated into two major parts, the small
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The canonical Wnt signalling pathway is initiated when WNT ligands bind to 

the Frizzled (FZD)/LRP5/6 co-receptor complex, interacting with cytoplasmic 

Dishevelled (DVL), that leads to its phosphorylation (Janda et al. 2012, Li et al. 

2012). This receptor activation also induces phosphorylation of LRP by protein 

kinases CK1γ1 and GSK3β, allowing AXIN to be sequestered from the β-catenin 

destruction complex (Clevers et al. 2014). This results in an accumulation of β-

catenin in the cytoplasm, which then translocates into the nucleus (Kretzschmar et al. 

2017). In the nucleus, Groucho is displaced from T-cell factor (TCF) transcription 

factor and thus activating the transcription of WNT target genes (Roose et al. 1998, 

van de Wetering et al. 1991), such as Axin2 (Lustig et al. 2002) and Lgr5 (Leucine-

rich repeat-containing G-protein coupled receptor 5) (Van der Flier et al. 2007). In 

general, nuclear translocation of β-catenin is used as an indicator for Wnt activity. 

Whereas Axin2 is a weak negative feedback regulator, Lgr5 amplifies Wnt signalling 

(Carmon et al. 2017). When Lgr5 (or Lgr4 and Lgr6) binds to its secreted ligand R-

spondin, they form a complex with Znrf3 and Rnf43, thereby preventing Fzd 

receptor degradation resulting in enhanced accumulation of β-catenin (de Lau et al. 

2011, Hao et al. 2016, Koo et al. 2012). 

Studies on the transcription mechanism downstream of Wnt signalling in 

Lgr5+ ISCs identified Ascl2 is the master regulatory transcription factor maintaining 

crypt stemness. Deletion of Ascl2 resulted in a loss of Lgr5+ ISCs, whereas its 

overexpression caused expansion, leading to hyperplastic crypts (van der Flier et al. 

2009). In addition, Ascl2 can co-occupy DNA with TCF4/β-catenin to activate a 

stem cell gene expression (Schuijers et al. 2015). These studies indicate the 

mechanisms by which Wnt activates specific transcriptional processes through Ascl2. 

Wnt ligands act as short-range signals and can be produced by any of the cell 

types present in the niche (Willert et al. 2003). The production of mature Wnt 

ligands and their transport to the membrane for secretion depends on two proteins: 

Porcupine (Porcn) and Wntless (Wls). Porcn enables functional Wnt ligands through 

catalysing palmitoylation (Kadowaki et al. 1996, van den Heuvel et al. 1993), and 

Wls enables the transport of the Wnt ligands to the vesicular membrane (Banziger et 

al. 2006). 

In normal intestinal crypts, Wnt signals are expressed as a gradient, in which 

they predominate at the crypt base in order to maintain normal stem cell behaviour 

and begin to differentiate as they migrate upward (Farin et al. 2016). Therefore, the 
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level of Wnt signalling must be tightly controlled. For instance, WNT receptor 

turnover is mediated by ZNRF3/RNF43 E3 ubiquitin ligases and deletion of these 

two E3 ubiquitin ligases in the intestinal epithelium led to adenoma formation and 

expansion of Lgr5+ ISCs, demonstrating the importance of balanced Wnt signalling 

(Hao et al. 2012, Koo et al. 2012). 

The level of Wnt signalling is also modulated by the WNT ligand gradient in 

the murine intestinal crypt (Van der Flier et al. 2007). Wnt responsive cells are 

stimulated by soluble ligands that are released from surrounding mesenchymal and 

epithelial cells (Crosnier et al. 2006). For instance, Paneth cells produce high levels 

of Wnt3 that act locally on stem cells by promoting stemness and the further away 

cells are from this signal, the more differentiated they become. Furthermore, frizzled 

receptors bind to Wnt on the stem cell membrane, which is diluted through cell 

division and thus, shaping the epithelial Wnt gradient (Farin et al. 2012). R-spondin 

engages Lgr4-Lgr6, RNF43 and ZNRF3 receptor classes enforcing the canonical 

Wnt/β-catenin signalling pathway, which induces intestinal organoid growth in vitro 

and Lgr5+ ISCs in vivo. A recent study by Yan et al. (2017) has identified the 

functional roles of Wnt and R-spondin ligands in the stem cell niche. By default, 

Lgr5+ ISCs differentiate, unless both R-spondins and Wnt ligands are present. Self-

renewal of Lgr5+ ISCs is an active process requiring Wnt as a priming and R-spondin 

as a self-renewal factor. Strikingly, Wnt proteins are unable to induce Lgr5+ ISCs 

self-renewal as they maintain R-spondin receptor expression instead, which then 

enables R-spondin ligands to actively drive stem cell expansion. This cooperative 

interaction between Wnt and R-spondin ligands has important implications in tissue 

homeostasis (Yan et al. 2017).  

Another key component of the niche are Paneth cells, and together with 

myofibroblasts, they provide essential factors for the survival of crypt base stem cells 

such as Wnt3a, epidermal growth factor (EGF) and BMP antagonists (Worthley et al. 

2010). Paneth cells play a unique role in the stem cell niche. Unlike other 

differentiated cells, they migrate down to the crypt base, where they persist for 

approximately three to six weeks. They are arranged in a way that a Paneth cell is 

always surrounding a crypt base columnar (CBC) cell and vice versa, and a crypt 

contains about 14±2 CBC cells and 10 Paneth cells (Snippert et al. 2010). In-vitro 

studies have shown that the removal of Paneth cells led to loss of stem cells. Sato et 

al. (2011) concluded that Paneth cells constitute the niche for stem cells in intestinal 
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crypts, because Paneth cells elaborate important signalling molecules such as Wnt3 

and EGF and in vitro organoid formation by stem cells was enhanced by co-culture 

with a Paneth cell–enriched population (Sato et al. 2011). Therefore, it seems 

essential for a Paneth cell to be in physical contact with a stem cell in order to 

maintain stemness, and it appears that the number of Paneth cells must be strictly 

controlled, which is accomplished through strong Wnt signals.  

However, in a different study it has been shown that ablating Paneth cells had 

no effect on the maintenance of functional stem cells (Kim et al. 2012), implying that 

other cell populations are involved in producing niche factors necessary for 

maintaining ISCs (Durand et al. 2012, Kim et al. 2012). Indeed, stromal cell 

populations function as stem cell niches secreting important WNT ligands (San 

Roman et al. 2014, Valenta et al. 2016). In fact, a recent study has demonstrated that 

stromal cells expressing the transcription factor Foxl1 play an essential role in the 

ISC niche component. Diphtheria toxin- mediated ablation of these stromal cells led 

to crypt cell arrest (Aoki et al. 2016). Myofibroblasts are the first layer of 

subepithelial cells interacting with stem cells, modulating stem cell behaviour by 

activating conserved signalling pathways, including Wnt, bone morphogenic protein 

(BMP), Hedgehog and the Delta/Notch families (Clevers et al. 2012).  

BMP signalling has a critical role in intestinal development, controls ISC 

replication and is further needed for terminal differentiation of mature cell lineages 

(Auclair et al. 2007). As opposed to Wnt signalling, an opposite gradient is observed 

for BMP signalling, with the highest level at the luminal surface. BMP expression is 

regulated by its antagonists Gremlin1 and Gremlin2. BMP signalling also suppresses 

Wnt, thus inhibiting self-renewal of ISCs (He et al. 2004).   

The Notch signalling pathway plays an important role in lineage specification 

of differentiated cells, regulates intestinal proliferation, and maintains intestinal 

homeostasis (Pellegrinet et al. 2011). It is also essential for maintenance of stem cell 

number and function, and for its regulation of cell fate decision between absorptive 

and secretory cell types (VanDussen et al. 2012). Recently, it has been shown that 

Notch signalling regulates fast- and slow cycling stem cells in colorectal cancer 

(CRC), making sure these two populations are in balance (Srinivasan et al. 2016). 

The Hedgehog signalling pathway controls tissue polarity and is critical for 

the development and homeostasis of many tissues (Varjosalo et al. 2008). The main 

Hedgehog protein, Indian hedgehog, is secreted in a paracrine manner by 
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differentiated epithelial cells to act on mesenchymal cells, where it maintains 

homeostasis of mesenchymal cells. It further regulates epithelial cell proliferation 

through negative feedback to ensure proliferation of CBC cells through BMP 

signalling (Buller et al. 2012). Specifically, to promote differentiation of intestinal 

epithelial cells, stromal cells respond to Hedgehog signalling by producing the 

BMP4 ligand, which antagonises Wnt signalling to inhibit stem cell expansion and to 

allow differentiation (He et al. 2004, Miyazono et al. 2010). To protect ISCs from 

BMP signalling activation, the pericryptal myofibroblasts and smooth muscle cells 

express the BMP inhibitors Gremlin1 and Gremlin2 (Kosinski et al. 2007). To 

conclude, these studies have shown that major developmental signalling pathways 

co-ordinately mediate mesenchymal and epithelial interactions to maintain proper 

crypt homeostasis. 

Therefore, activation of the Wnt and Notch cascade signalling pathways is 

required to maintain the undifferentiated ‘stem-like’ state (Fevr et al. 2007, van Es et 

al. 2005). Along with BMP antagonists Gremlin 1 and Gremlin 2, shown to be 

secreted by myofibroblasts (Kosinski et al. 2007), they are involved in the 

maintenance of the stem cells, cell migration and differentiation (Batlle et al. 2002, 

Crosnier et al. 2006, van Es et al. 2005). These signalling pathways are not only 

important for intestinal homeostasis, but have also been implicated in forming and 

sustaining the stem cell niche.  

 

1.4.2 Identifying intestinal stem cells  

Much evidence for the organisation of the intestinal crypt has come from murine 

labelling experiments using somatic mutations or chimeric mice, where one parent 

strain carries a marker.  

Evidence that the intestinal crypt is supported by a number of stem cells 

residing in a niche first came from Cheng and Leblond (Cheng et al. 1974) and 

Bjerknes and Cheng (Bjerknes et al. 1981). In these studies, mice were injected with 
3H-thymidine-labelled cells. Labelled DNA was incorporated during cell division 

and were found at the crypt base after 30h post injection, but had migrated towards 

position +1 and +4 after 66h, indicating that stem cells lie within the CBC cell 

population. Later on, Williams et al. (1992) marked crypt cells via mutagen-induced 
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loss of the X-linked enzyme glucose-6-phosphate dehydrogenase (G6PD), and 

compared the time-course of mutated phenotypes in both, the small and large 

intestine. Shortly after administration of the mutagen, partially mutated crypts were 

observed, which over time developed into fully mutated crypts. They concluded that 

stem cells within a crypt niche could explain the observed effect, and that the number 

of stem cells may differ between the small and large colon, with a greater number of 

niche stem cells in the small intestine (Williams et al. 1992). Since then, further 

studies have shown that the intestinal crypt is maintained by a stem cell niche in both 

mouse and human (Barker et al. 2007, Bjerknes et al. 1999, Yatabe et al. 2001).  

It is not possible to morphologically differentiate stem cells from other cells 

within the crypt, however using the unique ability of stem cells, once clonally-

marked, to re-populate the crypt with clonal descendants in all cell lineages, a 

number of markers has been proposed to label stem cells. Two positions are 

suggested for ISCs: CBC cells at the base of the crypt and at position +4 from the 

crypt base (Takeda et al. 2011). CBC cells are rapid cycling, whereas the +4 cells are 

quiescent or slow cycling (Carlone et al. 2012). 

By analysing the differential expression profiles of Wnt targets to identify 

those genes with restricted crypt base expression, the Leucine-rich repeat-containing 

G-protein coupled receptor 5 (Lgr5) gene was found to be specifically expressed on 

the surface of crypt base stem cells, and found throughout the entire gastrointestinal 

tract (Barker et al. 2009, Barker et al. 2007). Lineage tracing in transgenic mice 

expressing the Wnt target gene Lgr5 revealed that Lgr5+ cells could generate all cell 

types of the small intestine, and moreover, fulfilled all the requirements of being a 

functional stem cell: self-renewal, long-term maintenance, and production of 

specialised cell types (Barker et al. 2007). Thus, CBC cells were identified as stem 

cells at the crypt base in mouse intestine and colon. Not only do Lgr5+ stem cells 

maintain crypt homeostasis, they are also involved in mediating Wnt signal 

transduction by interacting with R-spondins, thus maintaining the stemness potential 

(Takashima et al. 2011).  

Further experiments studying the clonogenic capacity of Lgr5+ cells 

confirmed its expression as a specific intestinal stem cell marker (Sato et al. 2009). 

Single Lgr5+ cells isolated from mouse small intestine were able to generate long-

lived organised crypt-villus structures in culture that contained all differentiated cell 

types. They concluded that a non-epithelial niche is not required for the formation of 
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a small intestinal crypt (Sato et al. 2009). The same group further challenged the role 

of the myofibroblasts in maintaining stem cells by showing evidence that Paneth 

cells in the mouse colon produce Wnt and other essential niche signals for stem cell 

maintenance (Sato et al. 2011). In addition to Lgr5, Ascl2 is also a marker for highly 

proliferative CBC cells (van der Flier et al. 2009). 

Subsequent to the discovery of Lgr5, other stem cell markers have been 

identified and validated with lineage-tracing experiments. B cell specific Moloney 

murine leukemia virus integration site 1 (Bmi1+) cells are located at the +4 cell 

position and have been found to serve as a reserve stem cell pool (Sangiorgi et al. 

2008). Bmi1+ intestinal cells act as secretory precursors of Paneth and 

enteroendocrine cells during normal homeostasis (Buczacki et al. 2013). Precursors 

of the absorptive enterocytes have the capacity to replace lost Lgr5+ stem cells 

(Tetteh et al. 2016). Moreover, Tert expression was found more broadly along the 

crypt axis marking slow cycling ISCs. They also exist alongside Lgr5+ populations 

(Montgomery et al. 2011). Hopx is also a specific marker for +4 cells. Cells 

expressing Hopx can develop into all intestinal cell lineages (Takeda et al. 2011). In 

addition, the Notch ligand Dll1 has been identified as a stem cell marker. Lineage 

tracing of Dll1 knock-in mice showed that Dll1 cells produced all four cell types 

found in the intestinal crypt (van Es et al. 2012). 

While Lgr5 cells divide approximately once a day, cells in the +4 position are 

quiescent and slow cycling (Buczacki et al. 2013, Takeda et al. 2011). Together, 

these two stem cell populations follow a bidirectional relationship and are not 

completely mutually exclusive. Lgr5+ ISCs are considered to be the primary ISC 

pool, while cells at the +4 position remain as a quiescent reserve of stem cells with 

the ability to reconstitute crypt integrity, also indicating crypt cell plasticity (Smith et 

al. 2017). Lgr5+ are responsible for homeostatic self-renewal, whereas Bmi1+ stem 

cells are part of the injury-induced regeneration (Tian et al. 2011), further indicating 

that mammals use more than one stem cell population to maintain homeostasis in the 

small intestine (Sangiorgi et al. 2008).  
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1.5 Stem cell dynamics 

The discovery of Lgr5 made it possible to study stem cells and their dynamics. The 

behaviour of stem cells determines the dynamics and differentiation potential within 

a colonic crypt. They continuously transfer their genetic information to the next 

generation. The current technique to assess stem cell activity is clonal lineage tracing 

(Blanpain et al. 2013). In this technique, a stem cell is labelled with a permanent 

genetic marker, such as the expression of a fluorescent protein, and this marker is 

inherited by all of the descendants of that cell. When multiple cell types of a single 

traced clone can then be detected that persist over the entire lifetime of the organism, 

multipotency and self-renewal capabilities of the original labelled cell have been 

proven.  

Snippert et al. (2010) investigated how homeostatic self-renewal is controlled 

and how crypts drift towards clonality over time. Crossing Lgr5-EGFP-Ires-CreERT2 

mice to a R26R-Confetti reporter, individual Lgr5 stem cells were lineage-traced and 

the behaviour of clones developing from Lgr5 cells investigated. The short-term 

clonal tracing revealed an overall expansion of clone size of a few clones, balanced 

out by ongoing extinction of other clones, so that clones became larger and less 

frequent over time. Long-term lineage tracing (up to 30 weeks) documented the drift 

towards clonality of a few, but larger clones occupying a whole crypt. Starting out 

with a highly heterogeneous pattern, a significant expansion was observed at later 

time points, demonstrating stem cell loss and expansion of neighbouring clones until 

crypts became fully labelled by one colour on average after 3 months. This reflects 

neutral drift dynamics in normal crypt homeostasis: stem cells remain their numbers 

and a clone reaches fixation (Snippert et al. 2010). Additional data to support this 

model was derived from pulse-chase experiments. It was shown that stem cells form 

an equipotent population at which stem cell multiplication is compensated by the loss 

of a neighbour, resulting in neutral drift dynamics. Clones expand and take over the 

crypt or become lost at random (Lopez-Garcia et al. 2010).  

Neutral drift dynamics lead to neutral competition among stem cells (Kozar 

et al. 2013, Snippert et al. 2010). Neutral drift is defined as a stochastic process in 

which each stem cell is equally prone to become extinct over time and has the chance 

to produce zero, one or two stem cells. If a stem cell produces zero stem cells but 



 37 

instead TA cells, then the stem cell clone information is lost and the stem cell is 

replaced by a neighbouring stem cell. Therefore, symmetric cell division is essential 

for homeostatic conditions in the crypt, and that homeostasis is maintained by neutral 

competition at the population level (Lopez-Garcia et al. 2010). Thus, new lineages 

appear randomly, and by chance a single stem cell lineage can persist and occupy the 

entire crypt (= niche succession) (Ro et al. 2001). An individual stem cell is capable 

of replacing other stem cells in the niche. Niche succession occurs on average every 

8 years in the normal human colon (Yatabe et al. 2001). Eventually, the entire crypt 

will be colonised with its mutant progeny, a process called monoclonal conversion 

(Humphries et al. 2008). This is a slow process, as fully mutated crypts are rarely 

observed before the age of 40 and only in 80 year olds clonal conversion is only 

observed in 15% of all colonic crypts (Taylor et al. 2003). Cooperation among 

different cell types within and around the niche has been observed, for instance, Lgr5 

stem cells receive niche support from Paneth cells (Sato et al. 2011). 

ISCs are characterised by a bi-compartmental organisation, meaning one 

compartment is responsible for regeneration, whilst the other one controls the stem 

cell niche. Ritsma et al. (2014) have shown that there are two groups of stem cells in 

the niche: border stem cells and central stem cells. Together they collaborate to 

maintain tissue homeostasis. Central stem cells are located in the middle of the stem 

cell niche (position +1 and +2) and are mostly responsible for controlling the number 

of stem cells. Furthermore, central stem cells tend to maintain their population and 

produce border cells. Border stem cells are located between the central stem cells and 

the TA cells (position +3 and +4) and are responsible for regulating the number of 

non-stem cells. They tend to produce mainly cells on the border region and rarely 

contribute to the central stem cell population. Moreover, Ritsma and colleagues have 

shown that the probability of differentiation of border stem cells is 0.5, while the 

probability of proliferation is 0.2. In contrast, the offspring of central stem cells are 

stem cells, and the probability of division is 0.3. Division of a central stem cell led to 

the displacement of neighbouring cells, which could lead to a nearby cell being 

pushed out of the stem cell niche. Thus, central stem cells are in the “Goldilocks 

spot” (Walther et al. 2014) (Figure 1.4), as their chance of being displaced from the 

stem cell niche is minimised. However, they also observed occasional migration 

from border stem cells to central stem cells (Ritsma et al. 2014).  

 



 38 

 
Figure 1.4: The stem cell niche. 
Long-term functional stem cell behaviour (orange cells) is maintained when a cell with stem cell 
potential is located within the niche. Through cell divisions at the crypt base and the resulting placing 
of the progeny, cell positions are shuffled around: cells that are located in the central region (the 
Goldilocks spot) are more likely to remain in the basal region of the crypt and function as stem cells, 
whereas cells in the border region are more likely to be displaced and lost from the niche. Adopted 
from Walther et al. 2014. 
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Thus, stem cells are highly plastic and its long-term functioning is mainly 

determined by their position within the niche. Central stem cells are those with long-

lived lineages, whereas border stem cells are biased for loss. Therefore, only a small 

number of stem cells are functional.  

This was previously shown by Kozar et al. (2013) who detected only five or 

six functioning stem cells in each crypt by using a continuous clonal labelling 

approach based on a mutation-induced clonal mark that allowed measuring the rate 

of mutation together with neutral drift dynamics. This approach quantified the 

dynamics of stem cell replacement and thereby allowed tracing stem cells over a 

lifetime in vivo. They concluded that Lgr5 expression may be enough to assume stem 

cell potential, but the actual number of functional stem cells is smaller and cannot be 

determined using the stem cell marker (Kozar et al. 2013). This was further 

confirmed by Vermeulen et al. (2013), who estimated the number of functional stem 

cells to be five with a rate of replacement equal to 0.1 per stem cell per day. They 

further confirmed that a sizable fraction of Lgr5+ cells are more committed 

progenitor cells and thus, do not function as stem cells in homeostasis (Vermeulen et 

al. 2013). 

Shahriyari et al. (2017) have developed a model to investigate the spread of 

mutants within the stem cell niche. They have shown that the probability for a 

mutant clone to become fixed is independent of the type of stem cell division as long 

as stem cells do not fully divide asymmetrically. Furthermore, the progeny of central 

stem cells have a much higher change to take over the entire niche as compared to 

border stem cells. Interestingly, they found that the migration of border stem cells to 

central stem cells will delay the spread of mutant clones (Shahriyari et al. 2017). 

ISCs divide daily to produce new ISCs and differentiated cells, while 

maintaining their numbers. The immediate progeny of Lgr5+ ISCs produce 

absorptive and secretory lineages via lateral inhibition, a means for reciprocal cell 

specification (Pellegrinet et al. 2011, Stamataki et al. 2011). Kim et al. (2016) 

characterised the earliest cells to exit the stem cell compartment in vivo by measuring 

stem- and lineage-specific transcripts in single Lgr5+ cells. Two distinct cell 

populations were identified, one expressing stem cell markers, the other one 

simultaneously expressing stem cell markers as well as mature absorptive and 

secretory cell markers, concluding only one activates terminal cell markers. They 

demonstrated multilineage priming, as markers for both the absorptive and secretory 
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daughter lineages were present in the earliest progeny of Lgr5+ ISCs. The earliest 

cells to leave the ISC compartment activate genes of both intestinal lineages, 

detected on the basis of single-cell RNAseq (Kim et al. 2016). Producing precise 

numbers of functional differentiated cells is crucial to maintain crypt homeostasis. In 

fact, ISCs differentiate early to form a precise 1:3 ratio of secretory (goblet cells) to 

absorptive cells (enterocytes), which is surprising given the small number of 

functional stem cells in the colonic crypt (Tóth et al. 2017). 

 

 

1.6 Investigating stem cell dynamics in normal human tissue 

Stem cell dynamics have been well defined in transgenic mice experiments using 

clonal lineage tracing techniques. These methods are impractical in humans, and 

stem cell dynamic studies have been based on rare hereditary changes, such as X-

inactivation in glucose-6-phosphate dehydrogenase (G6PD) heterozygotes (Novelli 

et al. 2003), polymorphisms in the gene coding for the enzyme O-acetyltransferase 

(Fuller et al. 1990), and an isolated patient with XO/XY chimerism (Novelli et al. 

1996). More recently, stem cell dynamic observations were based on somatic 

mitochondrial DNA (mtDNA) mutations to trace clonal lineages. MtDNA mutations 

are naturally occurring and can thus be used as clonal markers to uniquely identify 

clonal expansion of a population of cells with the same ancestry in human epithelial 

tissue (Fellous et al. 2009). The mitochondrial genome is prone to non-pathological 

mutations (passenger mutations), conferring no evolutionary constraints, thus they 

can be considered as neutral markers (Walther et al. 2016). 

Mitochondria are intracellular organelles, found in all nucleated human cells. 

They generate ATP by oxidative phosphorylation, incorporate the electron-

transferring respiratory chain (complexes I-IV) and the ATP synthase (complex V). 

Mitochondria contain the only non-chromosomal DNA in human cells; they contain 

their own mtDNA (Taylor et al. 2005) and are thus under the dual control of nuclear 

and mitochondrial DNA (Taylor et al. 2003). Unlike the nuclear DNA, the mtDNA is 

permanently turning over and not integrated in the cell cycle (=relaxed replication) 

(Elson et al. 2001). The mitochondrial genome is polyploid: each cell harbours 

several thousand copies (Stewart et al. 2015). Inheritance of mtDNA differs from 
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Mendelian genetics, as mtDNA is strictly inherited through the maternal line and 

mtDNA lineages are therefore clonal. The mitochondrial genome is subject to 

homoplasmy, where all copies of the genome are identical, and heteroplasmy, 

described as mixed mitochondrial genotypes. Mutations in the mitochondrial genome 

can thus either be homoplasmic (= identical mutations affecting all copies of the 

mitochondrial genome) or heteroplasmic (= a mixture of mutated and wild type). The 

transmission of mutant mtDNA together with the high mutation rate leads to the 

accumulation of new mtDNA mutations within the population (Chinnery et al. 2000, 

Taylor et al. 2005). 

The mitochondrial genome has a higher mutation rate compared to the 

nuclear genome, which can be explained by its lack of protective histones – instead 

they are packed into chromosome-like organellar nuclei termed nucleoids (Lee et al. 

2017), by its lack of DNA repair mechanisms (He et al. 2002, Taylor et al. 2001), 

and by its production of high levels of reactive oxygen species (ROS) triggering 

apoptosis (Proietti et al. 2017, Richter et al. 1988). The overall amount of mtDNA 

mutations is low (<2%), but individual cells may contain high levels of mutant 

mtDNA (Elson et al. 2001). Based on a mathematical simulation, mtDNA mutations 

arise in the stem cells through random genetic drift with a mutation rate in humans in 

vivo of 5 x 10-5 mutations/genome/day (Taylor et al. 2003). Over time, a mutation 

can evolve from a heteroplasmic state into a homoplasmic or near-homoplasmic state 

(Figure 1.5A-D).  

Unsurprisingly, this process of genetic drift can take up to many years, 

implying that only stem cells are sufficiently long lived to acquire the near-

homoplasmic state, enabling detection by the lack of an encoded protein: cytochrome 

c oxidase (CCO) (Zeki et al. 2012). CCO-deficient cells in humans increase with 

age, and only few mutants are seen before the age of 40 in the human colon (Greaves 

et al. 2006). This also enables to estimate the time required for homoplasmy to occur 

and for neutral competition between stem cells to take over the niche. Moreover, it 

provides evidence that stem cells are the source of these mutations, as whole crypts 

become clonally mutated and these mutations get passed on to their daughter cells. 

Hence, lineage tracing mtDNA mutations provide a method of tracing the stem cell 

progeny. 
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Figure 1.5: Lineage tracing in human epithelial tissues using mitochondrial DNA (mtDNA).  
A) MtDNA mutations can occur spontaneously in a single circular genome and B) through genome 
duplication and turnover become visible within a single mitochondrion and then C) through the many 
mitochondria in a single cell, evolving from a heteroplasmic state to a near-homoplasmic state. A cell 
in which at least 80% of its mtDNA is mutated results in cytochrome c oxidase (CCO) deficiency: 
CCO-proficient cells will stain brown, whereas CCO-deficient cells will stain blue. D) Sequencing of 
blue and brown cells can identify mutations. If all CCO-negative cells in a patch harbour an identical 
mutation, the population is considered to be clonal. E) Dual-colour cytochrome c oxidase (CCO) 
/succinate dehydrogenase (SDH) histochemistry can detect partially mutated colonic crypts, which 
indicate the presence of multiple stem cells within the crypt. Taken from Walther et al. 2016. 
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CCO is primarily a mitochondrial-encoded enzyme (Nooteboom et al. 2010), 

and a major regulatory site for oxidative phosphorylation. It is thus essential for the 

assembly and respiratory function of the enzyme complex. CCO-deficiency in the 

cells leads to a compromised mitochondrial membrane potential, decreased ATP 

levels, and essentially to apoptosis (Li et al. 2006).  

CCO-deficient cells are known to contain high levels of mutated mtDNA, but 

importantly these are essentially passenger mutations conferring little to no selective 

advantage to normal colonic crypts. Mutations in the mtDNA CCO gene arise 

spontaneously and are detectable when > 80% are mutated in a cell (Nooteboom et 

al. 2010). Cells expressing CCO stain brown and cells deficient in CCO stain blue 

(Figure 1.5E). Distinctive CCO-deficient areas suggest cells have a common origin, 

but without sequencing the mtDNA genome of several of those clones, it remains 

speculation. If all cells within a CCO-deficient patch possess identical mutations, 

then a clonal population presumably with its origin in stem cells has been identified. 

Presence of multiple cell lineages within a CCO negative clone demonstrates 

multipotentiality (Humphries et al. 2013). Therefore, using somatic mtDNA 

mutations allows tracing clonally derived cell populations, to identify the location of 

their stem cell niche and to demonstrate stemness (Fellous et al. 2009). 

The efficiency of tracing lineages of human stem cells using mtDNA 

mutations has already been proven successful in the intestine (Greaves et al. 2006, 

Gutierrez-Gonzalez et al. 2009, Humphries et al. 2013, Taylor et al. 2003), stomach 

(Gutierrez-Gonzalez et al. 2011, McDonald et al. 2008), Barrett’s oesophagus 

(Nicholson et al. 2012), prostate (Gaisa et al. 2011) and in various other tissues 

(Fellous et al. 2009) and has led to a better understanding of how tumours evolve and 

how mutations spread. Moreover, sequencing of CCO-proficient and CCO-deficient 

clones has revealed that colorectal adenomas are clonal and maintained by 

multipotent stem cells, as the same mutation was detected in all deficient crypts, but 

not in the surrounding normal CCO-proficient crypts (Humphries et al. 2013). 

Partially mutated crypts were identified in the intestine indicating that these crypts 

contain multiple stem cell lineages (Gutierrez-Gonzalez et al. 2009). Furthermore, 

CCO-deficient crypts were found in clusters and the size of these patches increased 

with age (Greaves et al. 2006). 

To investigate stem cell dynamics in vivo in human colonic crypts, Baker et 

al. (2014) have reconstructed crypt maps from serial en face sections of partially 
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mutated mtDNA crypts and generated clonal ribbon images, called ‘Wiggles’. They 

have recognised that the width of the clonal ribbon reflects mtDNA mutated stem 

cell expansion and contraction infers temporal evolutionary dynamics from a single 

time point. Expansion of the ribbon equals expansion of the mutant cell pool, 

whereas contraction equals lineage death. By analysing the size and distribution of 

the changes is clone size, they have shown that human ISCs follow neutral drift 

dynamics and the number of functional, symmetrically dividing stem cells is five to 

six (Baker et al. 2014); similar to what has been observed in the mouse small 

intestine (Kozar et al. 2013).  

A recent study by Winton’s group investigated stem cell dynamics and the 

timing by which somatic mutations become fixed in the adult human colonic 

epithelium (Nicholson et al. 2018). As opposed to Baker et al. (2014), they have 

found that crypts are maintained by approximately 7 stem cells, of which one stem 

cell is replaced on average every 9 months, and a replacement rate that is between 

0.65 and 2.7 stem cell replacements per crypt per year. This was further validated 

using various different clonal markers. This contradicts heavily the stem cell 

replacement rate in mice, which is almost 100-fold faster (Kozar et al. 2013), as well 

as the estimate calculated by Baker et al. (2014). According to Nicholson et al., such 

fast replacement is not compatible with observed times to monoclonality described 

for human crypts (Kim et al. 2002, Yatabe et al. 2001). Moreover, they found other 

processes, such as variation in the number of amplifying cells and lateral expansion 

of mutant clones due to crypt fission to generate large patches within the epithelium, 

which can explain the slower replacement rate. Furthermore, they have estimated the 

rate of monoclonal conversion to take many years - 13 years for 90% conversion.  

Similarly to Baker et al. (2014), they have confirmed biased behaviour for both 

fixation and expansion in age-related mutation burden (Nicholson et al. 2018).

 Interestingly, another recent study using age-related mitochondrial oxidative 

phosphorylation defects to trace clonal lineages in human colonic crypts have found 

approximately 5 functional stem cells, and a stem cell replacement rate ranging from 

0.14 to 1.7 per crypt per year, thus showing similar results as the Nicholson study 

(Stamp et al. 2018). 

As seen in transgenic mice experiments, the ability to identify stem cells and 

their progeny is leading to a better and clearer understanding of stem cell evolution. 
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However, the underlying mechanisms why the dynamics of clonal expansion are 

faster in mice than in human colonic crypts remain to be established. 

 

 

1.7 Clonal expansion in the normal intestine 

Clones expand by crypt fission, where a crypt bifurcates from its base and divides 

into two independent crypts (Cheng et al. 1986, Wong et al. 2002). The crypt fission 

rate in the human normal colon was estimated to be every 30-40 years. This number 

was estimated based on the patch size distribution of CCO-deficient crypts in normal 

epithelium. The low basal rate of crypt fission in the adult human colon is 

comparable to the murine small intestine (Li et al. 1994). With different approaches, 

the rate of crypt fission ranged between 3% and 22% (Baker et al. 2014, Totafurno et 

al. 1987), however a recent estimate of 0.7% (Nicholson et al. 2018) is consistent 

with genomic methylation pattern studies, suggesting that most crypts can survive 

adult life without undergoing fission (Kim et al. 2002, Kim et al. 2004).  

The underlying mechanism controlling how crypt fission is regulated in the 

normal intestine depends on the arrangement of Paneth cells and Lgr5+ cells in the 

stem cell niche. Whilst Paneth cells shape the crypt base, Lgr5+ cells can proliferate 

to expand into daughter crypts. The site of where crypt fission occurs depends on the 

stiffness and adhesiveness of Paneth cells. A cluster of Lgr5+ cells located between at 

least two Paneth cells can initiate fission (Langlands et al. 2016). 

Recently, the existence of crypt fusion has been discovered in adult mouse 

intestines. This phenomenon is almost exactly the reverse to crypt fission, in which 

two parental crypts fuse to one daughter crypt. Using in vivo imaging, Bruens et al. 

(2017) have found that while 3.5% of all crypts were undergoing fission, 4.1% were 

in the process of fusion, suggesting that fusion counteracts fission and is a 

counterbalancing mechanism for crypt birth. They speculated that crypt fission and 

crypt fusion regulate crypt and ISC numbers during the lifetime of a mouse (Bruens 

et al. 2017). However, using stochastic simulations to investigate such effect of crypt 

fusion, Nicholson et al. (2018) have shown that the observed patch size is due to 

crypt fission rather than crypt fusion for both, neutral and advantageous mutations 

(Nicholson et al. 2018). 
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1.8 Colorectal cancer  

Colorectal cancer (CRC) is the third most common cancer worldwide (Amaro et al. 

2016), and the second most common cause of cancer death in Europe (Roseweir et 

al. 2017). In 2012, CRC accounted for 9.7% of all cancers with a subsequently high 

global mortality rate (Ferlay et al. 2015). The incidence and mortality rate has 

declined over the last two decades. The decline in incidence in Western countries is 

likely to be explained by the improvement in prevention (Siegel et al. 2014). CRC 

death can be prevented by early detection, usually through colonoscopy (Brenner et 

al. 2014, Citarda et al. 2001). Such preventative interventions allow the detection of 

polyps and adenomas in an early stage, which can then be removed surgically 

(Amaro et al. 2016). Patients diagnosed with early stage CRC have a five-year 

survival rate of greater than 90%. Patients diagnosed with locally advanced or 

metastatic disease only have a 11% survival rate, and patients with metastatic CRC 

have a median survival of only two years, despite multiple available treatment 

modalities (Anderson et al. 2011). 

 

 

1.9 Sporadic CRC 

The majority of CRC cases are considered sporadic (about 95% of cases) in that they 

develop spontaneously typically after 50 years of age, and approximately 70% 

develop in the distal colon (Yamagishi et al. 2016). In these cases, somatic mutations 

occur by chance.  

Sporadic CRCs develop through the accumulation of somatic genetic and 

epigenetic clonal events, including loss-of-function defects among tumour 

suppressor genes and gain-of-function defects in oncogenes (Vogelstein et al. 2013). 

These defects may confer a selective growth advantage to a cell, which characterises 

it as a “driver” event. It was estimated that for the ~20,000 identified human genes 

there are 138 driver genes (74 tumour suppressor genes and 64 oncogenes) 

(Vogelstein et al. 2013). However, a typical sporadic CRC consists of 2 - 8 driver 

gene alterations and “passenger” gene defects, which have no effect on neoplastic 
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progression (Tomasetti et al. 2015). This explains why each patient’s tumour is 

genetically and epigenetically unique (Network 2012). 

 Sporadic CRCs can be grouped into two categories: hypermutated (15% of 

sporadic CRCs) and non-hypermutated (85% of sporadic CRCs) (Network 2012). 

Hypermutated CRCs are characterised by microsatellite instability and CpG island 

methylation phenotype (CIMP) resulting from DNA mismatch repair (MMR) 

deficiency, specifically due to the hypermethylation of the MLH1 promoter. Other 

common genetic mutations in hypermutated tumours are APC, TGF-β, and POLE, as 

well as MSH2, MSH3, and MSH6 of the DNA MMR genes. Most mutations occur in 

intrinsic coding microsatellites. Non-hypermutated tumours are usually microsatellite 

stable and characterised by aneuploidy, somatic copy number alterations, tumour 

suppressor gene mutations coupled with loss of heterozygosity (LOH) and oncogene 

activation. APC, TP53, KRAS, PIK3CA and SMAD4 among others are commonly 

mutated at high frequency in non-hypermutated tumours (Fearon 2011, Grady et al. 

2008).  

Although hypermutated and non-hypermutated tumours progress through 

different sequences of genetic events, there is some overlap. For instance, APC is 

mutated in both, hypermutated and non-hypermutated tumours. Loss of APC is 

responsible for 90% of sporadic CRC cases (Shih et al. 2001). In total, there are ~25 

genes commonly affected by somatic mutations in sporadic CRCs, whereby tumour 

suppressor genes and oncogenes occur at a 4:1 ratio (Network 2012). It has been 

shown that defects in driver genes affect general cell functions, such as cell fate, cell 

survival and genome maintenance, thus affecting pathways such as DNA damage 

control, transcriptional regulation, APC, MAPK and STAT among others (Carethers 

et al. 2015, Vogelstein et al. 2013). Detailed analysis revealed that in 93% of all 

sporadic tumours Wnt signalling was activated. Additionally, in nearly 100% of 

sporadic CRCs changes in MYC transcriptional targets were detected, indicating its 

important role in the development of sporadic CRCs (Network 2012). 
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1.10 Familial adenomatous polyposis 

Familial CRCs account for 5% of the total number of CRC cases (Centelles 2012). 

Hereditary CRCs are broadly divided into non-polyposis colorectal cancers 

(Hereditary Non-Polyposis Colorectal Cancer, HNPCC; or Lynch syndrome), and 

polyposis cancers (Familial Adenomatous Polyposis, FAP; and Attenuated Familial 

Adenomatous Polyposis, AFAP), both of which are autosomal dominant (Takane et 

al. 2016). Patients with inherited conditions are of much higher risk to develop 

cancer early in life (Giglia et al. 2016). Lynch syndrome is the most common form 

of hereditary CRC with 90% of mutations caused by MMR genes, e.g. MHL1, 

MSH2, and MSH6 (Nagy et al. 2004, Wells et al. 2017). Mutations in these genes 

can cause microsatellite instability (MSI) affecting cell growth and apoptosis, thus 

leading to tumour initiation and progression (Jacob et al. 2002). 

FAP is the second most common hereditary CRC and patients with FAP have 

a 100% lifetime risk of developing CRC (Leoz et al. 2015). FAP has an incidence of 

0.6 – 2.3 per million and accounts for about 0.5% - 1% of all CRCs, resulting in a 

heterogeneous genetic syndrome that is characterised by the development of > 100 

colorectal adenomatous polyps during adolescence and the development of CRC by 

an average age of 40 years (Esplin et al. 2014, Wells et al. 2017). The condition 

when patients presenting with fewer than 100 polyps and having a later onset of CRC 

(an average of 59 years) is termed AFAP. These patients are typically offered 

prophylactic colectomy due to a high risk of cancer (Miyaki et al. 1994). 

FAP and AFAP are caused by a mutation in the adenomatous polyposis coli 

(APC) gene, located on chromosome 5q21, and these germline mutations have been 

associated with 80% of patients (Groden et al. 1991, Kwong et al. 2009). The APC 

gene has been called a “gatekeeper gene” and is responsible for maintaining 

homeostasis in the intestinal epithelium. Loss of APC function causes immediate 

alterations of the intestinal epithelium: cells proliferate rapidly, migrate slowly and 

fail to differentiate, and eventually lead to tumour growth (Sansom et al. 2004). 

Patients with FAP carry an inactivating mutation in one copy of their APC gene, and 

loss of the remaining wild-type allele (either by mutation or LOH) is sufficient to 

initiate polyposis. Deletions at codon 1309 and truncating mutations at codons 1250 

and 1464 are associated with an aggressive phenotype with early onset of polyposis. 
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Mutations located between codon 157 and 1595 are associated with intermediate 

polyposis (Wells et al. 2017). 

In 1971, Knudson formulated the ‘two-hit hypothesis’ of tumourigenesis. 

Based on work undertaken on retinoblastomas, it was found that this cancer appeared 

to be caused by two mutational events; if the patient had an inherited predisposition, 

one mutation was germline and the second mutation was somatic, otherwise both 

mutations were somatic (Knudson 1971). This principle applies to APC mutations in 

FAP, where patients have one inherited mutant APC gene, and loss of function of the 

other allele will initiate tumourigenesis. Powell et al. (1992) demonstrated that every 

tumour they analysed contained APC mutations. This implies that loss of function of 

the APC gene is one of the earliest events occurring in tumourigenesis (Powell et al. 

1992). The location of the second mutation depends on the location of the original 

germline mutation (Lamlum et al. 1999).  

 

 

1.11 Colorectal tumourigenesis 

1.11.1 The adenoma-carcinoma sequence and molecular pathways for CRC 

Traditionally, colorectal tumourigenesis has been defined by Vogelstein’s adenoma-

carcinoma sequence (Fearon et al. 1990), which describes a stepwise tumour 

progression from normal to pre-invasive stages to carcinoma with the capacity to 

metastasise due to the increasing accumulation of genetic alterations (Figure 1.6A) 

(Fearon 2011, Leslie et al. 2002). This sequence also allows studying the timing of 

genetic alterations and the accompanying cancer-related signalling pathways. Genes 

involved in these genetic alterations are oncogenes, tumour suppressor genes and 

DNA repair genes. APC mutations are the initiating factor in the adenoma-carcinoma 

sequence and their frequency remains similar throughout tumour progression. LOH 

occurs also at early stages, but its frequency increases with tumour progression. 

Following APC initiation, LOH and mutations in AXIN2 and CTBNN1, oncogenic 

KRAS mutations, and mutations in SMAD2 and SMAD4 appear as the tumour 

progresses.  
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Figure 1.6: Traditional and alternative genetic pathways for CRC.  
A) The traditional pathway. APC mutations are required for the initiation of most sporadic CRCs, 
followed by KRAS mutations also occurring early in the adenoma development. B) Alternative 
genetic pathways. Wnt signalling is the gatekeeper for all 3 pathways. The CIMP pathway contributes 
to both the MSI-H (through hypermethylation of MLH1) and CIN pathways, and specifically 
characterises a serrated pathway. CIN, chromosomal instability; MSI-H, microsatellite instability-
high; CIMP, CpG island methylation phenotype. Adapted from (Carethers et al. 2015). 
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As the sequence progresses to a solid adenoma, more hits are acquired, such as TP53 

mutations and loss of apoptosis, along with increasing genomic instability, 

eventually leading to CRC. In addition to the adenoma-carcinoma sequence, three 

major distinct genetic pathways have been described after which sporadic CRCs 

develop: chromosomal instability (CIN; non-hypermutated), microsatellite instability 

(MSI; hypermutated), and CpG island methylation phenotype (CIMP; both 

hypermutated and non-hypermutated) (Figure 1.6B). 

Approximately 85% of sporadic CRCs are non-hypermutated and follow the 

chromosomal instability pathway, a process that generates gene deletions, gene 

duplications, and chromosomal rearrangements, which usually results in aneuploidy 

and LOH (Pino et al. 2010, Puccini et al. 2017). CIN tumours can be distinguished 

by the accumulation of specific mutations in oncogenes and tumour suppressor genes 

(Fearon et al. 1990, Pino et al. 2010). APC mutations together with LOH appear to 

be the initial event in tumour initiation, followed by KRAS mutations (Stephens et 

al. 2011). Mutant KRAS causes increased proliferation and an increase in tumour 

size and moreover, is part of the ERBB/KRAS/BRAF/MAPK signalling axis. KRAS 

mutations were found in 41% of CIN CRCs and overall 55% of all CRCs showed 

KRAS and BRAF mutations (Cancer Genome Atlas Network, 2012). CIN tumours 

also show genetic alterations in TGFBR1, TGFBR2, SMAD2, SMAD3 and 

SMAD4 genes as part of the TGF-β signalling pathway (Jung et al. 2009). Mutations 

and LOH in TP53 initiates the conversion from benign to malignancy in CIN 

tumours (Starzynska et al. 1992), and 60% of TP53 alterations were found in CIN 

tumours conferring poor prognosis for the patient (Jorgensen et al. 2015). 

15% of CRCs develop following the microsatellite instability (MSI) pathway 

(Azzoni et al. 2011, Koi et al. 2018). Microsatellites are sequence repeats located in 

both coding and non-coding regions (Subramanian et al. 2003). MSIs are insertion or 

deletion mutations at microsatellites, and these structures are prone to DNA 

replication. Consequently, these stretches of DNA microsatellites are not repaired 

due to a defect in the MMR system (Centelles 2012). Thus, MSI is caused by DNA 

MMR deficiency and is characterised by frequent mutations at simple nucleotide 

repeat sequences (Lengauer et al. 1998). MMR deficiency in these hypermutated 

sporadic cases is mainly due to the MLH1 gene (>80% of cases) (Network 2012, 

Weisenberger et al. 2006), preventing its gene transcription (Veigl et al. 1998). MSI 
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cases are classified according to the altered size of various mono- and di-nucleotide 

repeat sequences (Umar et al. 2004). CRCs with more than two altered repeat 

sequences are defined as MSI-high, as opposed to MSI-low types that typically only 

have one altered repeat sequence. MSI-high tumours are usually associated with 

frameshift mutations in genes, such as TGFBR2, IGF2R, MSH6, MSH3, and CASP5 

(Markowitz et al. 1995, Schwartz et al. 1999, Souza et al. 1996, Yamamoto et al. 

1997). These frameshift mutations result in a stop codon creating neo-antigenic 

proteins to the patient’s immune system, while inactivating pathways controlling cell 

proliferation (Schwitalle et al. 2008). Moreover, in MSI-high tumours, APC and 

BRAF are often mutated, but KRAS mutations and LOH are rare. Interestingly, MSI-

high tumours are mostly located on the proximal side of the colon and show better 

prognosis (Jenkins et al. 2007, Kim et al. 1994). 

The third pathway, the CpG island methylation phenotype (CIMP), is also 

described as epigenetic instability that influences CRC pathogenesis (Hughes et al. 

2012, Puccini et al. 2017). CIMP is characterised by an excess of epigenetic 

methylation of genetic loci that contain CpG islands typically in the promoter region, 

thus affecting gene transcription (Tahara et al. 2014). CIMP can be subdivided into 

CIMP-high and CIMP-low tumours based on the number of markers positive for 

methylation. CIMP-high tumours occur in ~20% of sporadic CRCs. These tumours 

show mostly BRAFV600E mutations as well as hypermethylation of MLH1, and are 

classified as hypermutated tumours (Levine et al. 2016, Tahara et al. 2014). CIMP-

low tumours occur also in ~20% of sporadic CRCs, but these are mostly 

microsatellite stable, containing KRAS mutations, and are classified as non-

hypermutated tumours (Luo et al. 2014). However, one has to notice that this 

classification is not absolute and CIMP CRCs overlap with MSI-H and CIN CRC 

pathways. 

In summary, there are multiple genetic pathways involved in colorectal 

tumourigenesis and Wnt signalling is the gatekeeper. Importantly, these three genetic 

pathways are not mutually exclusive (Wong et al. 2011). For instance, the CIMP 

pathway contributes to MSI-high tumours through MLH1 promoter methylation and 

the CIN pathway. Furthermore, MSI CRCs can show signs of CIN (Simons et al. 

2013).  
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1.11.2 Role of stem cells in tumour initiation 

It is generally believed that the earliest event in tumourigenesis occurs in the stem 

cell compartment, since only stem cells live long enough to acquire sufficient 

mutations to initiate the tumour process. 

While we are now confident that cancers can be traced back to genetic events 

in the normal adult crypt stem cells, demonstrating this in humans has been a 

challenge. According to the bottom-up model, dysplasia arises in stem cells at the 

base of the crypt and their dysplastic progeny migrate upwards along the length of 

the crypt (Preston et al. 2003), as opposed to the top-down model, which assumes 

that early adenomatous lesions develop on the luminal surface without being in 

contact with the stem cell niche and is observed largely in advanced in adenomas. 

Murine studies have strongly supported the bottom-up model: Wnt-activating Apc 

mutations induced in Lgr5+ CBC cells result in adenoma development and sustained 

growth, whereas inducing the same mutations in the TA-cells shows limited 

adenoma growth and eventual loss (Barker et al. 2009).  

 

1.11.3 Altered Wnt signalling in tumourigenesis 

Intestinal homeostasis depends on functional Wnt signalling. It is therefore 

unsurprisingly that mutations commonly occur in components of this pathway in 

CRC. In 80% of the cases, mutations in the APC gene lead to the activation of the 

Wnt/β-catenin pathway and subsequently the formation of adenomas (Cerami et al. 

2012, Clevers 2006). Loss of function of the Wnt signalling pathway, particularly 

caused by APC, has been linked to CIN (Aoki et al. 2007). Adenomas that do not 

have an APC mutation often have oncogenic mutations in the β-catenin gene 

(CTNNB1) (Harada et al. 1999, Morin et al. 1997). Therefore, most CRCs have 

mutations in components that activate the Wnt/β-catenin pathway. In addition, in 

some CRCs, FZD and Wnt ligands are overexpressed and thus also modulate the 

Wnt pathway (Vincan 2004, Zhan et al. 2017). Moreover, mutations in R-

spondin/Lgr5/RNF43 have been shown to drive Wnt-dependent tumour growth (Eto 

et al. 2018). For instance, R-spondin3 mutations have been described in 10% 

(Seshagiri et al. 2012) and deleterious RNF43 mutations in 19% of CRC cases 
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(Giannakis et al. 2014). RNF43 mutations are mutually exclusive to APC mutations, 

but depend on Wnt secretion (van de Wetering et al. 2015). 

As opposed to the WNT-OFF state (absence of a Wnt ligand and degradation 

of β-catenin; see section 1.4.1), in the WNT-ON state the pathway becomes active 

upon Wnt binding (Figure 1.3). Following Wnt binding to Frizzled and its co-

receptor LRP, the intra-cellular domain of LRP is phosphorylated, which causes the 

destruction complex to transduce the signal. Ubiquitylation of β-catenin is then 

inhibited, which enables β-catenin to escape degradation. Thus, it accumulates in the 

cytoplasm and eventually translocates into the nucleus where it replaces Groucho 

and forms a complex with the transcription factors TCF/LEF, thus initiating the 

expression of Wnt/β-catenin target genes involved in cell proliferation, 

differentiation and apoptosis (Daniels et al. 2005, Reya et al. 2005). Of note, 

deficiency of Tcf4 results in a lack of ISCs during the development, as it switches off 

Wnt signalling (Korinek et al. 1997). Once the Wnt pathway is mutated, the 

adenoma cells can maintain their progenitor status and persist for many years 

allowing for further mutations to be acquired (Reya et al. 2005). It has been shown 

that elevated β-catenin expression in the cytoplasm and nucleus is a biomarker for 

metastasis and poor prognosis (Cheah et al. 2002, Wong et al. 2004). β-catenin is 

mainly expressed in the membrane of normal cells, whereas in adenocarcinomas its 

nuclear expression is increased (Hao et al. 1997, Wong et al. 2004). 

However, it is important to note that it is rather the fold change of the β-

catenin level than the absolute amount in the nucleus that leads to Wnt signalling 

activation and dictates the outcome (Goentoro et al. 2009). There is a Wnt gradient 

throughout the intestine (Leedham et al. 2013), which supports the “just right” 

hypothesis or led to the “Goldilocks” model of Wnt signalling (Albuquerque et al. 

2002, Driehuis et al. 2017). 

Interestingly, different APC mutations cause distinct levels of Wnt activity 

and are associated with characteristic tumour locations within the large intestine for 

both, human CRC samples and murine tumours (Buchert et al. 2010, Christie et al. 

2013). Dow et al. (2015) have shown that if the APC function is restored, adenomas 

could regress, thus indicating the importance of continuous Wnt signalling for 

tumour maintenance (Dow et al. 2015). A recent study has shown that even subtle 

alterations in Wnt signalling levels can reduce the fitness of ISCs (Young et al. 

2018). Using an Apc2-/- mouse model, increased levels of nuclear β-catenin were 
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detected indicating that Apc2 regulates Wnt signalling in the murine small intestine. 

Furthermore, Apc2 deficiency caused an increase in Lgr5 expression, but did not lead 

to an increase in the stem cell number, however it affected the function and 

maintenance of intestinal homeostasis in Apc2-/- organoids. Apc2 is a homolog of 

Apc, but less efficient. Nevertheless Apc2 is able to form a destruction complex 

capable of binding β-catenin (Schneikert et al. 2013, van Es et al. 1999). This study 

highlights that even small changes in Wnt signalling can compromise the function 

and fitness of ISCs (Young et al. 2018). 

Moreover, the tumour microenvironment also influences the Wnt pathway, 

indicating a more complex regulation of tumourigenesis (Brabletz et al. 2001). In 

fact, most CRCs have shown heterogeneity regarding the expression of β-catenin 

levels (Fodde et al. 2007). High Wnt activity has been observed in tumour cells that 

are located close to stromal myofibroblasts and myofibroblast-secreted factors can 

activate β-catenin dependent transcription, and thus inducing stemness features in 

CRC cells (Vermeulen et al. 2010). 

 

1.11.4 The development of adenomas and carcinomas 

The earliest observation in the development of adenomas in the colon is the 

monocryptal adenoma where a single dysplastic or hyperplastic crypt is seen. There 

has been a debate on whether dysplastic cells develop through a top-down 

mechanism to invade and colonise adjacent crypts (Shih et al. 2001), or whether they 

develop through a bottom-up model, where the monocryptal adenoma spreads by 

crypt fission (Preston et al. 2003) (see section 1.11.2). Clonal expansion by crypt 

fission has been accepted to be the prominent mode of spread of an adenomatous 

crypt (Wong et al. 2002). 

Clonal crypt structures are maintained within adenomas (Humphries et al. 

2013), and so it is important to appreciate that the crypt is the basic unit of natural 

selection in the colon even after the initiation of tumour growth (Barker et al. 2009). 

A somatic mutation in the tumour suppressor gene APC is thought to be the initial 

genetic change in most colorectal adenomas, resulting in a stem cell niche that is 

APC+/- (Kim et al. 2002).  
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Monocryptal adenomas are the earliest detectable lesions in the adenoma-

carcinoma sequence. These clonal lesions frequently occur in FAP patients (Novelli 

et al. 1996) and have been observed in sporadic patients (Woda et al. 1977), but are 

difficult to detect due to the size of the human mucosa. It is thought that APC+/- cells 

appear normal, and become dysplastic after the second APC hit (Lamlum et al. 

2000), and as a result monocryptal adenomas are often dysplastic. Loss of APC in 

stem cells appears to confer an ability to divide by fission at a greater rate than WT 

crypts resulting in a field of dysplastic crypts: the microadenoma (Park et al. 1995, 

Wong et al. 2002). 

Stem cells that possess the second hit in APC colonise the base of the crypt 

before taking over and replacing the non-mutant cells in the stem cell niche, a 

process called niche succession (Humphries et al. 2008). Niche succession can take 

place as a result of symmetric stem cell divisions (Kim et al. 2002). APC-/- cells 

colonise the niche with mutant stem cells, which then migrate up the crypt and the 

crypt becomes filled with its progeny. Niche succession and monoclonal conversion 

results in a dysplastic APC-/- crypt in an otherwise normal tissue, giving rise to a 

monocryptal adenoma (Figure 1.7) (Nakamura et al. 1984).  

The next step in the progression from a monocryptal adenoma is the 

development of a microadenoma or aberrant crypt focus (ACF). ACF are defined as 

small numbers of histologically, abnormal crypts, considered to be the first 

morphological change of the pathway that leads to the formation of adenomas (Jass 

et al. 2002).  

There are two types of ACF: dysplastic and non-dysplastic ACF. Although 

non-dysplastic ACF are associated with the formation of hyperplastic polyps, their 

role in colorectal tumourigenesis remains unclear. They appear to be initiated by 

mutations in the KRAS gene (Takayama et al. 2001). Dysplastic ACF are easily 

recognisable in the mucosa of FAP and non-FAP patients. Studies of FAP lesions 

have shown that all dysplastic ACF contain APC mutations, whereas in sporadic 

lesions mutations in the KRAS gene are much more frequent (Otori et al. 1998, 

Takayama et al. 2001). Thus, a single dysplastic crypt can arise and expand via crypt 

fission to become an established adenoma. During adenomatous growth the normal 

crypt hierarchy appears to be maintained, but rates of crypt fission are increased. 
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Figure 1.7: Niche succession and crypt fission. 
Stem cells reside at the crypt base. A mutated stem cell (highlighted in orange) within the stem cell 
niche is able to expand via niche succession. Subsequently, all progeny of that stem cell lineage take 
over the crypt, known as monoclonal conversion, resulting in a monocryptal adenoma. The mutated 
crypt then clonally expands by crypt fission forming a microadenoma.   



 58 

Development of a large adenoma usually requires further mutations, for 

instance in KRAS or BRAF oncogenes, and progression to carcinoma usually 

involves acquisition of mutations in the transforming growth factor-β (TGF-β) and 

p53 pathways (Luebeck et al. 2002). The progression to a malignant colorectal 

tumour is thought to take many years. CRC is characterised by genomic instability, 

which is an early event in the progression to cancer. It is thought to be caused by a 

defect in cell cycle checkpoints, DNA damage or a non-repaired mutation and can 

manifest itself as CIN and MSI (see section 1.11.1) (Horvat et al. 2011). 

The evolutionary events behind the progression from adenomas to 

carcinomas remain largely unknown. Multi-region sequencing of benign and 

malignant colorectal tumours has shed light on the evolutionary fitness landscape of 

those tumours. The fitness landscape is a concept to understand the relationship 

between genotypes and, in this case, the fitness of sub-clones. The fitness landscape 

of adenomas evolved wavy-like, whereas with carcinomas, the fitness landscape 

showed sharper peaks, most likely due to stabilising selection. While adenomas were 

found to frequently harbour sub-clonal driver mutations and to have high genetic 

heterogeneity, carcinomas showed chromosomal abnormalities that evolved due to a 

punctuated manner (Cross et al. 2018). In a recent study using whole-exome 

sequencing, the somatic mutation landscape of premalignant adenomas was 

characterised. A gene panel of 20 genes was identified with which colorectal 

adenomas can be distinguished from adenocarcinomas. This could potentially be of 

help for targeted surveillance programmes and preventive interventions to reduce the 

number of patients with adenomas progressing to CRC (Lin et al. 2018). 

Intratumour heterogeneity (ITH) has been well documented in CRC and 

occurs when distinct subclones carry genomic and epigenomic alterations that are not 

present in the bulk of the tumour or other subclones. Genomic instability, a hallmark 

of many cancers, is thought to generate ITH and is a feature of CRC (Amaro et al. 

2016). The big bang model best explains the mutation pattern observed in CRC: after 

initiation, the tumour grows predominantly as a single expansion. Mutations are 

acquired early followed by a flat evolution with limited expansion resulting in ITH. 

Mutations that arise later in the process are only present in small regions of the 

tumour. This finding supports their hypothesis that some precursor lesions might be 

‘born to be bad’ and early events dictate later events in tumour growth and 
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progression (Sottoriva et al. 2015). Another study by Kang and colleagues has shown 

that by measuring point mutations, chromosome copy number alterations and DNA 

methylation patterns from individual glands of opposite ends in colorectal adenomas, 

ITH was present between tumour sides and individual glands, but private mutations 

were side-specific and subdivided the adenoma into two major subclones. The 

methylation studies have shown that glands were diverse and relatively old 

populations, indicating that mutations detected in ITH arose during the first few 

divisions and expanded into a star-like tree with co-clonal expansion (Kang et al. 

2015). In addition, by analysing sub-clonal genetic divergence from multi-region 

sequencing, it is possible to distinguish tumours that are driven by strong selection 

from those that are under weak selection, having implications on how tumours 

progress and accumulate ITH (Sun et al. 2017). 

A recent study has examined the role of early tumour cell mobility regarding 

the shaping of private mutations detected in the “final tumour”. Using computational 

models, they have shown that early cell mixing in the first tumour gland resulted in 

private mutations that can be detected on both sides of the tumour, whereas lack of 

early cell mixing led to distinguished mutation patterns. This was further validated 

using single gland data from human colorectal tumours, showing evidence of 

abnormal cell mobility in 60% of invasive colorectal carcinomas, while none were 

found in benign adenomas. This indicates that the start of benign and some malignant 

tumours can be differentiated, and that abnormal cell mobility, which is required for 

invasion, is already present at the early stages of tumour growth (Ryser et al. 2018).   

 

1.11.5 Niche succession by tumour clones 

Through symmetrical divisions and random apoptosis of stem cells, a stem cell 

lineage can via neutral drift or via a selective advantage become dominant in a niche 

- a process termed niche succession (Kim et al. 2002). The progeny of this stem cell 

will then occupy the whole crypt - a process known as monoclonal conversion. 

The work done by Shibata and colleagues has given substantial insights into 

the mechanisms of niche succession in the human colonic epithelium (Kim et al. 

2002, Nicolas et al. 2007, Yatabe et al. 2001). They proposed that the progeny of 

stem cell lineages might be distinguished by analysing their methylation pattern, 
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since it is known to increase with age even in the normal colon (Issa 2000). 

Methylation at CpG loci become polymorphic with age, inferring that stem cell 

lineages that are closely related should exhibit similarities in epigenetic signatures, as 

they are not subjected to selective pressure. Therefore, cell histories can be inferred 

by comparing epigenetic tags between cell populations. This further indicates that 

niche succession cycles occur as a consequence of stem cell divisions and neutral 

drift dynamics within the colonic niche (Simons et al. 2011). 

During the process of niche succession and monoclonal conversion, 

mutations become fixed (see Figure 1.7). Stem cells are prone to genetic drift and a 

single mutated stem cell can dominate the entire niche as a result of stochastic non-

selective events. Therefore, neutral mutations can become fixed over time without 

affecting the fitness of a cell in a population. These neutral alterations can be 

detected, as they expand through the crypt by clonal expansions driven by selection 

or drift (Stratton 2011). Occasionally, mutations can have a selective growth 

advantage, especially mutations in tumour suppressor genes, such as APC. This 

allows speeding up the process of niche succession and monoclonal conversion, and 

the mutated stem cell progeny can occupy the whole crypt.  

It is assumed that mutant clones expand by natural selection and genetic drift, 

whereby the fitness of neoplasms is dependent on their interactions with other cells 

and their microenvironment (Greaves et al. 2012). Mutations can be defined as 

drivers when they confer a selective advantage to the cell, and passengers when they 

do not alter fitness but occur in a cell that has already acquired a driver mutation 

(Bozic et al. 2010). The progressive accumulation of mutations may result in a 

selective sweep, which is defined as a process where natural selection rapidly drives 

the advantageous clone to fixation (Greaves et al. 2012). 

Even though it has been established that KRAS and APC mutations have a 

competitive advantage over WT clones, this does not necessarily infer that a clone 

will become fixed. The proportion of a mutant Apc-/- clone to become fixed in an 

Apc+/- background is ~55%. The majority of Apc+/- mutant stem cells will be replaced 

by WT stem cells through a stochastic, albeit biased process and thus disappear from 

the tissue, indicating that the accumulation of mutations is actually a very inefficient 

process (Vermeulen et al. 2013). Another cellular defence mechanism is senescence 

and apoptosis, which also minimises the accumulation of mutations (Vermeulen et 

al. 2014). 
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1.11.6 Crypt fission is the mechanism of clonal expansion in the gastrointestinal 

tract 

Progression and expansion from a monocryptal adenoma to an established adenoma 

within the colon is due to crypt fission (Wong et al. 2002) (see Figure 1.7). In the 

normal adult colon, crypt fission is rare, but in response to epithelial damage, such as 

inflammation, the proportion of crypt fission increases (Cheng et al. 1986, Snippert 

et al. 2014, Wong et al. 2002). 

Crypt fission is generally accepted as the most important mechanism for 

clonal expansion in early adenomas (Wong et al. 2002). Current dogma states that 

adenomas are monoclonal and therefore are derived from a single crypt. Therefore, 

crypt fission results in patches of related crypts and is frequently observed in normal 

colon increasing with age. Mechanistically, an adenomatous crypt would start 

dividing at the crypt base in the stem cell region and bifurcate into two adenomatous 

crypts (Greaves et al. 2006).  

There is evidence that APC mutant crypts show an increased ability to 

undergo fission. In FAP patients, the crypt fission rate is increased compared to 

normal mucosa and further evidence suggests that APC mutations cause expansion of 

the crypt base cell populations, indicating that APC+/- crypts are able to expand at a 

faster rate than normal crypts (Wasan et al. 1998). The crypt fission rate of non-

dysplastic colon of FAP and AFAP patients was comparable to the crypt fission rate 

of normal colon. However, the estimated crypt fission rate within APC-/- adenomas 

increased drastically, thus providing a plausible explanation for the expansion of 

mutant clones (Baker et al. 2014). Genetic lineage tracing studies in mice have 

shown the crypt fission rate is increased 30-fold by an oncogenic KRAS mutation 

compared to the normal murine colon (Snippert et al. 2014). Crypt fission is also 

increased in conditions of inflammation and adenomas resulting in extensive clonal 

expansion (Cheng et al. 1986, Galandiuk et al. 2012, Leedham et al. 2009).  

Crypt fission is thought to be the mechanism for field cancerization, which is 

defined as the replacement of the normal cell population by a non-dysplastic mutant 

clone predisposed to tumour development (Hawthorn et al. 2014). The concept of 

“field cancerization” was first described by Slaughter et al. in 1953 as the 

“preconditioning of an area of epithelium to cancer growth by a carcinogenic agent” 
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to explain the development of primary tumours and recurrent cancer types (Slaughter 

et al. 1953).  

Thus, the mutant clone grows into large patches, or fields, of cells, which 

eventually progress to a neoplasm (Braakhuis et al. 2003). Over time, the clone with 

the fittest phenotype will dominate the cancerized field (Driessens et al. 2012). In 

addition, the surrounding microenvironment is altered by the cancerized field, and 

thus the interplay between the microenvironment and the mutant cells determines the 

selection of mutations (Curtius et al. 2018). The cancerized field can vary in size, 

starting from a single lineage, which evolves to cancer over time (Garcia et al. 1999). 

A characteristic of a cancerized field is the mutational diversity existing 

within the field and genetic drift. Mutational diversity is likely to be a substrate for 

natural selection and the fittest clone will dominate the field (Simons et al. 2011). 

Furthermore, changes in the microenvironment, such as of stromal cells, can also 

promote field cancerization. However, a study in the skin has shown that stromal 

cells provide selective pressure for a tumour to form, but are unable to actually cause 

the formation of a tumour (Hu et al. 2012). As the stroma does not transform into a 

tumour, it is not considered to be cancerized.  

Mutations that are important for generating a field are recognised as driver 

mutations. In the skin, a high density of driver mutations (~140 per cm2) has been 

found (Martincorena et al. 2015) and more interestingly, driver mutations were 

found in small patches of morphologically normal skin compared to skin basal cell 

carcinoma (Bonilla et al. 2016). In the inflamed small intestine, TP53 is a driver 

mutation for field cancerization (Vermeulen et al. 2013), indicating that the interplay 

between the microenvironment and the mutant clones provides a growth advantage. 

However, multiple driver mutations are necessary for a field to progress to cancer 

(Weaver et al. 2014). Field cancerization has also been shown in the colon 

(Hawthorn et al. 2014, Leedham et al. 2009), in Crohn’s disease (Galandiuk et al. 

2012), the stomach (Gutierrez-Gonzalez et al. 2011), and the skin (Hafner et al. 

2010).  

The altered microenvironment enables field cancerization due to changes of 

fitness effects of mutations in epithelial cells. As a consequence, cancerized lineages 

can expand (Elinav et al. 2013). It is not surprising that a cancerized clone is found 

in a specific microenvironment. Clones need to adapt to the selective pressures 
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emanating from the microenvironment in order to progress to malignancy. Gatenby 

and Gillies identified six microenvironmental challenges a clone had to overcome to 

develop into a malignant phenotype: apoptosis, inadequate growth promotion, 

senescence, hypoxia, acidosis and ischaemia (Gatenby et al. 2008). Thus, clonal 

adaptation and the generation of a cancerized field can only occur if such 

microenvironmental challenges are met. 

Three evolutionary measures – genetic diversity, the quantification of 

mutation rates and rates of clonal expansion – are factors with prognostic value for 

sensitive detection of a cancerized field that is of high risk (Curtius et al. 2018). 

Genetic diversity is a proxy measure for indicating that a more diverse field is more 

likely to have adapted to new selective pressures (Greaves et al. 2012). Quantifying 

the mutation rates indicates at what speed new adaptive lineages are produced. 

Clonal expansion shows how quickly a clone can grow, thus assessing the size of a 

cancerized field. Clonal expansion is also providing evidence for positive selection 

of those growing clones within the field, which has been shown to have prognostic 

value in ulcerative colitis (Salk et al. 2009). 

Understanding the evolutionary dynamics of cells within a cancerized field is 

crucial in accurately determining the clinical risk of cancer development from a 

cancerized lesion, as cancerized fields are common but only a few do actually 

progress to cancer (Welch et al. 2010). 

 

 

1.12 Stem cell dynamics in tumourigenesis 

ISCs and CRC are closely linked in that ISCs are the cells of origin for CRC 

(Vermeulen et al. 2014). Thus visualising their behaviour is necessary for monitoring 

tumour progression. The effect of oncogenic mutations in ISC behaviour describes 

the basis of tumourigenesis in the gut. Various methods have been described to 

investigate stem cell dynamics in murine and human tissue. For murine tissue, the 

approach of using the lineage tracing technique is the most informative. Stem cell 

lineage tracing enables to trace the progeny of a stem cell (Blanpain et al. 2013).  

The stem cell marker Lgr5 has also been proven useful to label stem cells in 

adenomatous crypts. Schepers et al. (2012) have used the multicolor Cre-reporter 
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R26R-Confetti to study the behaviour of Lgr5+ cells within Apc-mutant adenomas 

and demonstrated that adenomas developed from Apc-depleted Lgr5 stem cells 

(Schepers et al. 2012). This indicates that Lgr5 also labels a subpopulation of 

adenomatous stem cells. Moreover, these Lgr5+ cells were found to be intermingled 

with Paneth cells at the base of the crypt, which is similar to what has been observed 

in the normal crypt base architecture (Sato et al. 2011), indicating an adenoma stem 

cell niche. This was also shown using markers enriched in normal colon Lgr5+ stem 

cells to detect stem cell population in CRC, which were also shown to reside at the 

base of the crypt resembling normal crypts (Merlos-Suarez et al. 2011). The presence 

of such Lgr5+ stem cells and their differentiated lineages was confirmed using single 

cell polymerase chain reaction (PCR) (Dalerba et al. 2011). 

Clonogenic analyses from Lgr5-GFPhi and Lgr5-GFPlo cells from 30-day-old 

adenomas showed that Lgr5-GFPhi stem cells grew out into organoids with an 

efficiency that was 20 times higher than for Lgr5-GFPlo stem cells, implying 

multipotent stem cells (Schepers et al. 2012). Only 5 to 10% of the adenoma cells 

were Lgr5-GFPhi , which is again similar to number of stem cells in the niche of 

normal crypts (Kozar et al. 2013, Vermeulen et al. 2013). Kozar et al. (2013) applied 

a continuous clonal labelling approach to quantify the dynamics of such clonogenic 

stem cell replacement, but found a lower number of nine functional stem cells per 

adenomatous crypt. Furthermore, these stem cells were replaced at a lower rate as 

well, indicating that the purpose of tumour stem cell division is to replace stem cell 

loss (Kozar et al. 2013). 

Snippert et al. (2014) used a tamoxifen- induced Cre-LoxP transgenic system 

to induce activating KrasG12D mutations in Lgr5+ ISCs in mice to trace lineages via 

expression of β−galactosidase (β-gal) or confetti expression. After only 3 days post 

tamoxifen injection, β-gal clones in Kras mice were significantly larger and had 

more Lgr5+ cells than WT mice. After 14 days a higher frequency of those clones 

was identified and many crypts became entirely β-gal+ (fixation), which was not 

observed in WT clones induced using similar methods. Concurrently, clonal 

extinction occurred less frequent in Kras mutant stem cells compared to WT clones, 

indicating that stem cells with Kras mutations have a survival advantage. It has been 

shown that labelled clones in the stem cell compartment expand or contract due to 

the frequency of loss and replacement (Snippert et al. 2014).  
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To determine the mechanism and rate of how such mutations affect intra-

crypt stem cell competition, Snippert et al., (2014) applied a model of neutral drift to 

commonly observed mutations. This model is based on the stem cell number in a 

crypt and calculating the loss (displacement from the niche) and replacement rate to 

predict clone size distributions. Their model also assumed that a mutant clone can 

expand through stochastic stem cell division replacing a WT clone at a higher rate to 

account for the observed survival advantage over WT clones. It was found that Kras 

mutant clones have a 4-5 larger survival probability than WT clones. This 

competitive survival advantage mutant clones have over WT clones was partly 

explained by a faster cell cycle rate in Kras mutant epithelia, however, mutant clones 

expanded faster due to increased crypt fission rates to up to 30-fold (Snippert et al. 

2014).  

Understanding stem cell differentiation is important in understanding disease 

progression. Stem cells can interact and sense their neighbouring cells, and cell-cell 

interactions are important factors in determining the progeny of a daughter cell 

(Smith et al. 2015). In a mouse model with activated Kras mutations, clones have an 

advantage as they expand and become fixed more rapidly as compared to WT 

lineages. In the Snippert et al. study, KrasG12D mutant stem cell clones replaced the 

WT crypt stem cell population in approximately 80% of the experiments, based on 

biased drift. In mice with an inactivating heterozygous APC mutation, the mutated 

stem cell replaced the WT stem cell in 62% of the time, whereas inactivating 

homozygous Apc mutations conferred a 79% advantage over WT clones. Moreover, 

Apc-/- stem cells had a 69% clonal benefit over Apc+/- stem cells under neutral 

competition, although clones harbouring a mutation in Apc clearly had an advantage 

over WT clones (Vermeulen et al. 2013).  

The functional role of ISCs in CRC initiation has recently been defined in 

mice with Apcmin/+ and KrasLSL-G12D mutations labelled with Lgr5 that express a 

diphtheria toxin (DT) receptor fused to an enhanced green fluorescent protein 

(eGFP) (AKL model) (de Sousa e Melo et al. 2017). To further imitate the classical 

CRC progression, Trp53 (AKPL model) and Smad4 (AKSL model) gene mutations 

were introduced in these mice. Organoid cultures were established and 

subcutaneously transplanted into animals expressing WT Lgr5. Moderate growth was 

observed in AKL and AKPL mice, whereas in AKSL mice tumours grew 

exponentially, thus mimicking gradual disease progression as seen in patients. Lgr5 
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cells were shown to mark tumour-initiating cells, as a higher fraction of Lgr5+ cells 

was found in mice with increased tumourigenic potential. Interestingly, ablation of 

Lgr5+ stem cells with DT does not lead to tumour regression. Instead, the tumour 

remained static and maintained by proliferative Lgr5- cells upon treatment was 

stopped, which then led to a rapid re-initiation of tumour growth, indicating that 

Lgr5+ cells are required for tumour progression and that the Lgr5+ cell state is 

reversible (de Sousa e Melo et al. 2017).  

Clonal outgrowth has not only been attributed to Lgr5, but also to colon 

cancer cells with high MAPK activity, also providing evidence for cellular hierarchy 

(Blaj et al. 2017). A recent study using multicolour lineage tracing in colon cancer 

xenografts has shown that clonal expansion starts at the leading edge of the tumour 

with tumour cells competing for outgrowth towards the tumour centre, indicating that 

the position of tumour cells may be more important for a lineage to persist than the 

tumour cell phenotype (Lamprecht et al. 2017). 

In conclusion, a complex interplay between mutations and clonal dynamics is 

involved in the evolution of cancer. Oncogenic mutations alter the fate of a clone, 

thus giving it a competitive advantage that can persist and colonise the entire crypt 

and tissue, posing an increased risk for cancer development.  

 

1.12.1 Investigating stem cell dynamics in human tumourigenic tissue 

Genetic lineage-tracing studies in human tumours are unfeasible and the inference of 

stem cell dynamics relies on so called ‘molecular clocks’, which are essentially any 

stable and detectable neutral mutation occurring at a rather high rate. An example of 

a molecular clock is the use of CCO activity in mtDNA mutations, which has 

revealed that adenomatous crypts are predominantly clonal (Humphries et al. 2013). 

 Lineage tracing has been a powerful tool in understanding tumour evolution 

over time. Investigating stem cell dynamics in vivo using somatic mtDNA mutations 

to trace clonal lineages in human colonic crypts of FAP and AFAP patients has 

revealed that APC+/- and APC-/- adenomatous crypts follow a neutral drift type 

process. The functional stem cell number was calculated to be between five and six 

in FAP patients. Interestingly, in APC-/- adenomatous crypts a 2-fold increase in both 

the number of functional stem cells and the loss/replacement rate was observed 
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(Baker et al. 2014). This is the first study to show that APC mutations have a distinct 

role in regulating stem cell dynamics in the human colon.  

Two recent studies implemented CRISPR-Cas9 gene-editing technology to 

insert cassettes into the LGR5 locus in organoids from patients with CRC. 

Xenografts obtained from these organoids were used to study stem cell dynamics in 

tumours (Cortina et al. 2017, Shimokawa et al. 2017). Both experiments have 

identified that Lgr5+ CRC produce progeny over long periods of time. Using a 

tamoxifen-inducible Cre knock-in allele of Lgr5 followed by selectively ablating 

Lgr5+ in stem cells in organoids, the tumour ceased but re-grew when Lgr5+ stem 

cells re-emerged (Shimokawa et al. 2017). The number of daughter cells produced 

by Lgr5+ tumour cells was found to be proportional to the size of the xenografts 

(Cortina et al. 2017). These studies show that human CRCs are composed of 

heterogeneous cell populations organised into hierarchies, similar to that of the 

normal colonic epithelium. Using human organoids and xenografts allows 

quantifying stem cell dynamics in the human intestine. 

Another approach to visualise stem cell dynamics in human intestinal tissue is 

through the analysis of methylation pattern diversity (Nicolas et al. 2007). 

Methylation events occur at CpG sites of non-expressed genes, which means that 

methylation is not strongly regulated and can occur randomly during DNA 

replication in stem cells. Thus, the resulting epigenetic signature to the stem cell 

lineage can be analysed to study dynamics and infer rates of clonal expansion (Ro et 

al. 2001). The number of methylated CpGs will increase with the longevity of stem 

cells, meaning that the older a stem cell lineage, the greater the chance of detecting 

methylation pattern diversity (Chu et al. 2007). 

It has been proposed that age-related methylation predisposes a risk to CRC 

because methylation alters the physiology of aging cells and tissues (Issa et al. 2001, 

Kulis et al. 2010). Thus, higher levels of age related methylation signatures were 

associated with a greater risk of developing CRC. The clonal origin can be inferred 

by comparing the methylation signatures between any two cells. If two cells share 

similar methylation patterns, they are likely to share a recent common ancestor 

(clonal relationship). In a seminal study, Yatabe and colleagues investigated stem 

cell population dynamics in the crypt using methylation patterns (Yatabe et al. 2001). 

With the identification of individual crypts having a limited number of distinctive 

methylation signatures, they were able to prove that crypts housed multiple long-
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lived stem cells. The rate of change of methylation status at CpG sites was estimated 

at approximately 2x10-5 per CpG site per division (Kim et al. 2002, Yatabe et al. 

2001). Moreover, methylation pattern diversity within a crypt demonstrated that stem 

cells were challenging each other to remain within the niche (Nicolas et al. 2007, 

Yatabe et al. 2001). Similar niche dynamics have also been demonstrated within the 

small intestine (Kim et al. 2005). 

The study of methylation patterns in the colon has revealed that age-related 

methylation is consistent with colonic crypts being maintained in niches that contain 

multiple related stem cells. This indicates that successive niche succession cycles 

take place in human colonic crypts, which is a natural consequence of stem cell 

divisions and neutral drift within the niche (Simons et al. 2011). This led to the 

estimation that every 8 years all stem cell lineages within a crypt niche except for 

one become extinct (Kim et al. 2002). 
Methylation patterns also allow the study of clonal expansion of human 

intestinal crypts (Graham et al. 2011). By comparing the methylation patterns 

between clonal populations of adjacent CCO-deficient colonic crypts, clonality was 

established. The authors discovered that patches of related crypts had different 

methylation patterns and so did adjacent crypts, suggesting that clonal expansion 

rates are very slow in the normal gut. Even bifurcating crypts had different patterns, 

indicating that once a crypt has undergone fission, clone ancestry can no longer be 

followed. The observed dissimilarities in methylation pattern were most likely due to 

stem cell dynamics and epigenetic drift. Resulting from this observation is that 

epigenetically diverse tumours are likely to be old populations, while a similar 

methylation pattern within a clone suggests recent clonal expansion (Graham et al. 

2011). 

In another study, adenomas were shown to have diverse methylation patterns, 

indicating that each of the adenomas analysed had enough time to evolve distinct 

intra-tumour methylation patterns (Humphries et al. 2013). By comparing 

methylation patterns of adenomas with normal colon, the authors found that on 

average the growth rates did not differ significantly. Moreover, analysing 

methylation patterns revealed that adenomatous crypts have similar stem cell 

dynamics compared to normal crypts, suggesting that each crypt contains a number 

of stem cells, which are competing with one another for space within the niche. 
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Methylation pattern diversity has also been proven to be useful in 

distinguishing between tumour and normal breast, colon, liver and lung tissue (Hao 

et al. 2017). DNA methylation analysis distinguished cancer vs. normal tissue in 

more than 95% of the time, indicating the use of methylation biomarkers for 

molecular characterisation of cancer, thereby improving diagnosis and prognosis 

(Hao et al. 2017). 

 

 

1.13 Genetic and environmental interactions  

Increasing evidence suggests that in addition to genetic and epigenetic changes, 

environmental factors also drive tumour progression. Moreover, the evolution of 

CRC depends on reciprocal interactions between transformed epithelial cells and 

stromal cells that form the tumour microenvironment (Mroue et al. 2013). The 

stroma in healthy tissue acts as a barrier against tumourigenesis and maintains 

homeostasis, but the presence of tumour cells effects stromal cell gene expression 

changes that convert the microenvironment into one that supports tumourigenesis 

(Junttila et al. 2013). Inappropriate activation of the stroma implicates migration of 

stromal cells, ECM remodelling, reprogrammed metabolism, activated transcription, 

and expansion of the vasculature (Scherz-Shouval et al. 2014, Valencia et al. 2014). 

Regions under selective pressure influence tumour progression as well as 

environmental factors selecting for specific mutations that assure survival of cancer 

cells, which eventually lead to tumour heterogeneity (Meric-Bernstam et al. 2012). 

Once the stroma supports tumour progression, the stromal cells co-evolve with 

tumour cells: they become educated and modified by tumour cells to synthesise 

cytokines, chemokines and growth factors (Valkenburg et al. 2018). 

The stroma constitutes a large fraction of solid tumours and in some 

carcinomas makes up more than 80% of the tumour mass. The tumour stroma is 

composed of infiltrating immune cells, and specialised fibroblasts (termed cancer-

associated fibroblasts (CAFs)), blood vessels and muscle cells, all embedded in a 

network of extracellular matrix (ECM) proteins (Belov et al. 2010, Rupp et al. 

2015).  
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1.13.1 The role of activated fibroblasts in colorectal carcinogenesis 

Fibroblasts in the activated stroma are termed CAFs. CAFs form a favourable 

microenvironment for tumour cells, and have been shown to initiate and promote 

tumourigenesis in CRC (Nakagawa et al. 2004). They express high levels of 

extracellular factors, such as chemokines and insulin-like growth factor binding 

proteins, which leads to the formation of an inflammatory niche (Rupp et al. 2015, 

Torres et al. 2013). Fibroblasts can be activated through growth factors, cell-cell 

communications, and ROS among other factors (Kalluri et al. 2006). If they stay 

activated after the first mutational event, they start working together with other 

molecular pathways to enforce tumour initiation. CAFs then recruit inflammatory 

cells, and stimulate tumour cell proliferation by secreting growth factors, inducing 

angiogenesis, secreting cytokines and through mesenchymal-epithelial cell 

interactions (Kalluri et al. 2006). 

A commonly used marker to identify CAFs is α-smooth muscle actin (SMA). 

In CRC, the number of positive stained myofibroblasts is increased compared to 

normal stroma, and α-SMA- fibroblasts change to α-SMA+ ones (Adegboyega et al. 

2002). CAFs are a useful marker for prognosis in CRC (Mukaida et al. 2016). 

Tumours with α-SMA positive cells have been associated with worse prognosis for 

stage II and III after CRC surgery (Tsujino et al. 2007). Patients with a high intra-

tumour stroma proportion also show a shorter overall survival rate and metastasis 

(Henry et al. 2007). The prognostic value of CAFs can be recognised from the gene 

expression signature, as some genes predict recurrence in CRC patients with high 

accuracy (Berdiel-Acer et al. 2014). CRC subtypes with poor prognosis can be 

attributed to genes expressed by stromal cells. Especially CAFs increased the 

frequency of tumour initiating cells, which was further enhanced by TGF-β 

signalling (Calon et al. 2015). Another study has found a subtype of CRC also 

attributed to stromal cells rather than tumour epithelial cells, as unregulated genes 

were mostly expressed by stromal cells. High expression of CAFs was associated 

with poor prognosis in untreated CRC patients (Isella et al. 2015). 
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1.13.2 The role of immune cells in colorectal carcinogenesis 

Progression of CRC also relies on infiltration of immune cells, providing a complex 

signalling environment. Inflammatory cells are a major component of the tumour 

stroma (Fridman et al. 2012), and their presence has been associated with a better 

prognosis for CRC patients, which is heavily dependent on the type of immune cells 

and their gene expression (Fridman et al. 2012).  

The immune system is divided into an adaptive and innate immune system. 

The adaptive immune system contains T-cells and B-cells, while the innate immune 

system contains dendritic cells, natural killer cells, macrophages, granulocytes and 

mast cells (Angell et al. 2013). Immune cell types and their concentrations are 

heterogeneous between tumour types and between patients with the same tumour 

type. T cells can further be subdivided into T helper cells (CD4+) and cytotoxic T 

cells (CD8+). Specifically CD8+ cells have been linked to a better clinical outcome, 

as opposed to regulatory T cells that can facilitate tumour immune avoidance or 

suppression (Quigley et al. 2015). In two pioneering studies, it has been 

demonstrated that high T cell infiltrates did correlate with improved overall survival 

in CRC patients (Galon et al. 2006), and that high number of tumour-infiltrating 

memory T cells do not show signs of metastasis (Pages et al. 2005). T cell 

infiltration is now an established prognostic marker in CRC (Funada et al. 2003, 

Halama et al. 2011, Reissfelder et al. 2015). 

Tumour inflammatory infiltrate typically includes T and B cells, macrophages, 

dendritic cells, mast cells, and natural killer cells (Fridman et al. 2012). The tumour 

is able to alter its antigens, which can be presented to T cells, resulting in an adaptive 

immune response to the tumour consisting of helper T cells (CD4). CD4+ cells then 

drive the expansion and differentiation of cytotoxic T cells (CD8), which leads to the 

influence of the tumour microenvironment on the T cell response and the generation 

of T regulator cells that aid the escape of the immune system (Chirica et al. 2015).  

CD4 cells, important for anti-tumour immunity, stimulate cytotoxic CD8 cells, 

macrophages and B cells. They are subdivided in T helper-1 cells or T helper-2 cells. 

While T helper-1 cells drive the proliferation by producing IL-2 and IFNγ favouring 

cellular immunity, which acts on cytotoxic CD8+ cells, NK cells and macrophages, T 

helper-2 cells produce IL-4, IL-5 and IL-13 favouring humoral immunity (Chirica et 

al. 2015, Fridman et al. 2012). Although a few studies in CRC have shown that 
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CD4+ cells alone can initiate tumour elimination, in most cases it’s the combination 

of CD4+ and CD8+ cells, as most CRC only express human leukocyte antigen (HLA) 

class I molecules, which are recognised by CD8+ cells (Deschoolmeester et al. 2010).  

Another type of T helper cells, T 17 cells, produce IL-17 and IL-22 acting on 

epithelial and endothelial cells, fibroblasts and immune cells. CD4+ T cells secrete 

IL-22, which acts through activation of STAT3 signalling to influence cancer stem 

cell stemness. When IL-22 signalling is neutralised, it can decrease and even reverse 

an inflammation driven mouse model of CRC (Kirchberger et al. 2013). A recent 

study has shown that CRC derived intra-tumoural T cells expressed FZD proteins as 

Wnt receptors and in addition, β-catenin levels were elevated. They found that 

enforced expression of β-catenin in CD4+ cells increased IL-17a expression, and that 

those cells also enhanced proliferation, while apoptosis was inhibited, indicating a 

mechanism by which CRC derived Wnt ligands suppress T cell immunity in the 

tumour microenvironment (Sun et al. 2017). 

CD8 cells have an important effector mechanism of anti-tumour immunity. 

They recognise antigens when expressed on HLA class I proteins and once activated 

they can mediate the tumour destruction (Deschoolmeester et al. 2010). An increased 

number of cytotoxic T lymphocytes has recently been shown to be associated with 

improved survival of CRC patients. Tumours with higher immune infiltration were 

characterised by MSI-high, CIMP-high or BRAF mutation status and greater 

infiltration was found in the proximal colon (Prizment et al. 2017). 

CD8+ cells are not only detectable in the stroma, but also in the epithelium of a 

crypt. These intraepithelial lymphocytes (IELs) are predominantly CD8+ cells and, 

more importantly, are involved in the immune surveillance (Saurer et al. 2009). 

Approximately one IEL is found for every 30-50 intestinal epithelial cell in a healthy 

colon. Given the location of IELs, they are capable of rapid activation while keeping 

the epithelial lining intact (Baker et al. 2009).  

Macrophages make up a great proportion in the tumour microenvironment 

(Badawi et al. 2015). There are two types of macrophages, M1 and M2 that were 

found to have dual functions in terms of tumour development and progression. M1 

macrophages secrete pro-inflammatory cytokines, release reactive oxygen species, 

and have a pro-inflammatory role, whilst M2 macrophages have an anti-

inflammatory role (Zhong et al. 2018). CD68 is a marker for tumour-associated 

macrophages (TAMs), recognising both M1 and M2 macrophages (Zhang et al. 
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2013). TAMs are able to switch between M1 and M2 phenotypes depending on the 

microenvironmental stimuli: they might exhibit pro-inflammatory M1 phenotypes in 

the beginning, but can convert to the M2 phenotype during progression (Chen et al. 

2017). TAMs resemble M2 macrophages and function to promote tumour growth by 

secreting growth and angiogenic factors as well as enzymes necessary for cell 

invasion, thus escaping the immune surveillance (Hernandez et al. 2014).  

Numerous studies have shown that high macrophage infiltration enables CRC 

growth, progression and is associated with poor survival (Franklin et al. 2014, 

Hamm et al. 2016). However, several studies have reported the opposite effect: 

heavy macrophage infiltration in the tumour microenvironment was associated with 

improved survival in CRC patients. In colorectal adenocarcinomas, higher TAM 

infiltration has been linked to better clinical outcome for CRC patients (Cavnar et al. 

2017, Zhang et al. 2012). This was also confirmed in another study, shown that high 

CD68 counts correlated with improved overall survival in CRC cells and CD68 

infiltration was associated with significantly less tumour budding (Koelzer et al. 

2016). 

The mechanisms of when macrophages are tumour promoting and when 

suppressing remain unclear. Further studies are required to understand the 

macrophage plasticity and how its phenotype changes with progression towards CRC 

(Zhong et al. 2018). 
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1.14 Polyclonality and clonal interactions 

The traditional view of cancer is that initially a single transformed cell clonally 

expands to form a pre-cancerous lesion. Progression towards cancer is driven by 

somatic evolution within the population of neoplastic cells. However, there is now 

clear evidence that the traditional view of cancer as monoclonal-in-origin is rather 

simplistic, and instead a neoplasm can be derived from one or more independently 

transformed cells and the interaction between clones is a novel driver of 

tumourigenesis (Figure 1.8) (Marusyk et al. 2014, Wu et al. 2010). This has 

questioned the current dogma of how colonic tumours are initiated. The mechanisms 

causing a tumour to be fundamentally polyclonal-in-origin are unknown, as is how 

polyclonality drives neoplastic progression. Understanding polyclonality in tumour 

origins is fundamental for understanding the carcinogenic process, and also 

ultimately for preventing cancer initiation.  

During the expansion of a dysplastic monoclonal adenoma, presumably 

clonal interactions between it and its surrounding non-dysplastic crypts occur (Figure 

1.9). As a consequence, a new, independent clone within a stem cell of a 

neighbouring crypt arises that confers a selective advantage in order to persist and 

also colonises the entire crypt, resulting in a polyclonal adenoma (Figure 1.9A). The 

mutant clones then further expand by crypt fission (Figure 1.9B). Over time, a 

selective sweep may occur where the successful sub-clone outgrowths the other sub-

clones and the lesion appears monoclonal once more (Figure 1.9C). Short-range 

interactions between multiple independent transformed cells have been suggested as 

a possible mechanism for survival and growth of the adenoma (see section 1.15). As 

time continues, new clones emerge generating ITH.  
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Figure 1.8: Monoclonal vs. polyclonal origins in cancers. 
A) Monoclonal origin. A tumour is derived from a single somatic progenitor cell (stem cell) and as the 
tumour progresses from a benign to malignant form it accumulates a series of mutations in oncogenes 
and tumour suppressor genes. B) Polyclonal origin. Tumours are composed of at least two different 
progenitors. A spontaneous mutation in a single stem cell could generate a field of crypts composed 
entirely of cells carrying this mutation. The exposure of this field could then generate an additional 
independent mutation and consequently lead to a polyclonal tumour. 
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Figure 1.9: Development of a polyclonal adenoma. 
A) A stem cell acquires a mutation, possibly in the APC gene, and colonizes the crypt with APC–/– 

cells to give rise to a monocryptal adenoma. There is evidence for short-range interactions in the 
development of polyclonality. In some way, possibly through altered signalling by the niche cells, 
known to form a network in the lamina propria, mutations are induced in an adjacent crypt(s), which 
also clonally converts, forming a polyclonal adenoma. B) The adenoma then expands by crypt fission, 
until eventually the expansion of a dominant clone leads to clonal outgrowth and the more advanced 
adenoma appears monoclonal C). 
  



 77 

1.14.1 Evidence for polyclonality in human intestinal adenomas 

In 1996, Novelli and his colleagues were the first to show that colorectal adenomas 

from a XO/XY mosaic male (20% of cells lack the X chromosome) with FAP were 

polyclonal. By using in situ hybridisation for the Y chromosome, which can 

determine patch size and tissue clonality in the large intestine, they reported that 94% 

were XY, 2% were XO, and 5% were mixtures of XY/XO crypts. Based on the 

overall frequencies of the XO and XY alleles, they estimated that 76% of colorectal 

microadenomas were polyclonal in origin (Novelli et al. 1996). 

Due to the importance of APC mutations in colorectal tumourigenesis, it is 

typical that most polyclonality studies have used APC mutations as their marker 

(Thirlwell et al. 2010). Therefore, given the gatekeeper role of the APC gene, 

polyclonal tumours can also be identified by detecting clones with distinct APC 

mutations within the same tumour (Thirlwell et al. 2010); since APC mutations are 

considered sufficient for tumour growth in the intestine, a monoclonal-in-origin 

tumour would arise from crypts that share a common APC mutation. Thirwell et al. 

(2010) analysed polyps from the same XO/XY mosaic male and confirmed 

polyclonality. Clonality was analysed using X/Y chromosome fluorescence in situ 

hybridisation and analysis of 5q loss of heterozygosity. Out of 55 adenomas, 51 were 

of XY, 1 was completely XO, and 3 adenomas were of mixed XO/XY crypts. In 13 

additional microadenomas, 10 polyps showed no change in LOH, but 3 lesions 

showed heterogeneity in LOH, indicating somatic mutation polyclonality (Thirlwell 

et al. 2010). 

Additionally, they analysed samples from patients with FAP and small 

sporadic adenomas. Clonality was assessed by analysing mutations in the APC gene. 

Out of 36 dissected crypts from 5 FAP patients, all showed two different somatic 

APC mutations in adjacent crypts, indicating that all FAP adenomas were polyclonal 

in origin (Figure 1.10). Remarkably, not only FAP associated adenomas, but also 

sporadic lesions are polyclonal in origin. Two out of 12 lesions were identified with 

a heterotypic APC mutation (Thirlwell et al. 2010).  
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Figure 1.10: Polyclonal FAP with distinct APC mutations.  
Laser-capture microdissection of individual crypts from around the polyp and somatic APC mutations 
sequencing revealed two clones with independent APC mutations surrounding an entrapped 
genotypically WT crypt. Taken from Thirlwell et al. 2010.  
 

  

that colorectal polyps are removed as soon as they are
found means that no longitudinal data can ever be
obtained. Thus, the analysis of clonal evolution and
the construction of tumor phylogeny can be achieved
only by examining the spatial distribution of shared
mutations in different phenotypic regions across sin-
gle lesions; a technique that has been termed clonal
ordering or genetic dependency analysis.13

The specific aims of this study were as follows. First,
to re-investigate the XO/XY mosaic patient, this time
together with individual crypt APC LOH analysis in
colorectal adenomas, to assess clonality in this unique

tissue with both chromosomal and genetic markers.
This experiment addressed the possibility that sponta-
neous loss of the Y chromosome14 could have caused
our original results. Second, to search for and quantify
polyclonality in a larger set of FAP/attenuated FAP
(AFAP) and sporadic polyps using the identification of
different somatic APC mutations, generally regarded as
the initial gate-keeping lesion in colorectal carcinogen-
esis.5 This study used a clonal marker specific to the
underlying pathogenesis of the disease. Third, to assess
the individual crypt mutation burden and clonal rela-
tionship of different phenotypic areas in advanced

Figure 2. Polyclonal FAP polyp with distinct APC mutations. Colectomy specimen showing solitary polyp. Microdissection of individual crypts
circumferentially from around the polyp and somatic APC mutation sequencing reveals 2 clones with independent APC mutations enveloping an
entrapped genotypically wild-type crypt.
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In a recent study, Gausachs et al. (2017) performed high-depth next-

generation sequencing and SNP arrays in whole lesions of 37 FAP colorectal 

adenomas, and argued that by studying adenomas of FAP, the accumulation of 

multiple somatic events is sufficient to detect polyclonality, since these patients 

already have a germline APC mutation. Indeed, a second hit in APC was detected in 

81% of adenomas and in 16% double somatic events in APC were observed. These 

were either two different mutations or a combination of one mutation associated with 

a 5q loss. Additionally, KRAS mutations were detected. Interestingly, two different 

KRAS and two APC mutations were found in one adenoma. Using colony analysis 

they were able to confirm that the somatic APC mutations were polyclonal 

(Gausachs et al. 2017).   

Besides in human colorectal cancers, polyclonality has been evident in 

prostate cancer (Gaisa et al. 2011), melanomas (Lin et al. 2011), bladder tumours 

(Paiss et al. 2002), and breast adenomas (Kuijper et al. 2002) among others (Parsons 

2008).  

 

1.14.2 Clonality of murine intestinal adenomas 

Merritt and colleagues (1997) developed a mouse model to assess the clonality of 

intestinal tumours knowing patch size and structure (Merritt et al. 1997). They 

investigated intestinal tumours from chimeric mice composed of ApcMin/+ cells and 

ApcMin/+ cells expressing ROSA26-driven LacZ expression. Min mice are 

heterozygous for a germline mutation in the APC gene and, like FAP patients, 

develop numerous intestinal tumours and adenoma formation requires loss of the 

remaining wild-type allele of APC. They reported that 22 out of 260 tumours were 

heterotypic being composed of ROSA26- (white) and ROSA26+ (blue) neoplastic 

cells, indicating that a significant number of tumours were polyclonal. Further, after 

taking patch size into account, the authors estimated that 79% of the adenomas in 

this mouse model were actually polyclonal, remarkably similar to the ratio found in 

human FAP (Merritt et al. 1997, Novelli et al. 1996).  

 Thliveris et al. (2013) generated aggregation chimeras by fusing together 

embryos with unequal predisposition to tumour development. In a first experiment, 

ApcMin/+ mice (develop on average 95 ± 53 tumours, n = 228) were fused together 
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with Apc1638N/+ R26+ mice (develop on average 0.98 ± 1.17 tumours, n = 94). Out of 

105 tumours, 97 were white homotypic, one was blue homotypic and 7 were 

heterotypic. To further contrast this result, aggregation chimeras were generated 

from ApcMin/+ mice and Apc+/+R26+ mice, the latter developing no tumours. Strikingly, 

out of 54 tumours, 25 were homotypic white and 8 heterotypic, composed of blue 

and white neoplastic cells. This shows that polyclonal tumours are relatively 

common in aggregation chimeras generated from embryos with unequal tumour 

susceptibilities, even when one genetic component was highly resistant to 

spontaneous tumourigenesis in the intestine (Thliveris et al. 2013).  

 

 

1.15 Mechanisms for the development of polyclonal tumours 

Merritt et al. (1997) proposed four mechanisms to explain the heterotypic tumour 

formation: (1) the ROSA26 marker is lost within a ROSA26+ adenoma, but unlikely 

since ROSA26 does not show any mosaicism in ApcMin/+ROSA26+ mice; (2) the 

ROSA26 marker is silenced epigenetically, again an unlikely mechanism to account 

for tumour formation, since these heterotypic tumours that were white did not carry 

the ROSA26 marker; (3) random collision between two or more distinct tumour; or 

(4) an active interaction between independently initiated clones (Merritt et al. 1997). 

Given the high tumour multiplicity in Min mice, it was difficult to eliminate the 

possibility that polyclonality was the result of random collision. To address the issue 

of multiplicity, Thliveris et al. (2005) analysed tumours from similar chimeric 

ApcMin/+ mice, but which were additionally homozygous for the tumour resistance 

gene Mom1 – these compound transgenic mice had a significantly lower tumour 

burden than a standard Min mouse. Despite a reduction of the number of intestinal 

tumour, 22% of the adenomas in ApcMin/Mom1 mouse were observed to be 

polyclonal in origin. Statistical analyses ruled out the random collision hypothesis, 

and further investigation of spatial distribution led the authors to the conclusion that 

short-range interactions of multiple initiated clones between one or two crypt 

diameters could best explain the observed frequency of polyclonal tumours 

(Thliveris et al. 2005). Indeed, a histological study of the crypts surrounding 
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intestinal tumours showed that they had full-length APC protein, but were grossly 

hyperplastic (Bjerknes et al. 1999). Similarly, in humans, Thirlwell et al. (2010) 

found the frequency of polyclonal tumour in FAP patients to be higher of what could 

be reasonably expected by random collision of independently initiated clones 

(Thirlwell et al. 2010). 

Thliveris et al. (2013) sought to better understand the nature of clonal 

interactions. Two models, recruitment or cooperation, could explain the formation of 

a polyclonal tumour. Under recruitment, a single progenitor having lost Apc activity 

subsequently facilitates neoplastic transformation of one or more neighbouring 

clones. Alternatively, cooperation between multiple independently derived 

progenitor cells arising in close proximity could explain polyclonality. On the basis 

of aggregation chimeras from embryos with unequal tumour susceptibilities, it was 

found using a statistical approach that the recruitment model is much more likely to 

account for the formation of polyclonal tumours. It further strengthens the notion that 

polyclonal tumours arise because of an initial progenitor, following the loss of Apc 

activity, transforming one or more neighbouring cells. The range of this recruitment 

was best explained within 144μm of the initial transformed progenitor (Thliveris et 

al. 2013).  

Wu et al. (2010) investigated how such interactions contribute to 

tumourigenesis using the model system Drosophila melanogaster. Two transgenic 

strains were created; one expressing the oncogenic protein RASV12 and the other 

lacking the tumour suppressor gene scribbled (scrib). Single mutant clones showed 

increased cell proliferation without any evident pathology. If both mutations were 

expressed within the same clone, large tumours developed. Interestingly, if single 

mutations were expressed within distinct cells adjacent to each other, large tumours 

developed, suggesting inter-clonal cooperation. If the JAK/STAT pathway was 

blocked, the tumours did not develop, signifying that this pathway was the 

mechanism behind this effect (Wu et al. 2010). Cleary et al. (2014) found that in 

tumours of a murine breast cancer model, tumour development required independent 

clones cooperating with each other to produce Wnt to maintain tumour growth 

(Cleary et al. 2014). A tumour cell population may be able to be maintained by a 

minor cell subpopulation, which drives proliferation in the whole tumour (Marusyk 

et al. 2014).  

However, very little research has been done to understand these interactions 
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between mutated and normal clones. It is therefore clear that the standard model of 

tumourigenesis, of a single cell forming a tumour, is too simplistic and understanding 

how clones interact may determine risk of malignancy in adenomas. 

 

1.15.1 Field cancerization as a mechanism of polyclonality 

As described above, an active mechanism is likely to be responsible for the 

formation of polyclonal tumours. Field cancerization is an appealing mechanism in 

that the first mutated crypt produces signals that alter the behaviour of neighbouring 

stromal cells. This altered stromal field is then responsible for a second mutation 

occurring in neighbouring crypts (Graham et al. 2011). On the one hand, if the 

stromal field increases the size of the progenitor cell compartment, more cells 

susceptible to transformation would be produced, increasing the mutation rate, 

similar to what is observed as hyperplasia (Rubin 2011). As a consequence, 

signalling alters the cell-cell interactions in the epithelia. On the other hand, the 

stromal field might be a direct mutagenic environment, thus leading to polyclonal 

tumour formation (Graham et al. 2011).  

 

 

1.16 The incidence of polyclonal tumours may be underestimated 

Studies on the clonality of hereditary or sporadic colorectal cancers may have been 

underestimated because observing a polyclonal tumour depends on the size and 

structure of lineage patches throughout the intestinal epithelium. The patch size 

greatly influences the probability that a tumour will have a polyclonal origin 

especially, if interactions between initiated clones are limited to a short distance. In a 

region with very small patches, all crypts lie on borders between patches, thus 

polyclonal tumours are more likely to form. As the patch size increases, the 

percentage of crypts lying on borders decreases. Therefore, a tumour arising from 

interactions between initiated clones in a region would be much more likely to be 

homotypic (Halberg et al. 2007). 

Most clonality studies were based on tumours in females that are mosaic for 

X-linked markers. In X-inactivation studies, a tumour can only be demonstrated to be 
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polyclonal if it is initiated at the border between two patches with different patterns 

of X-inactivation. Novelli et al. (2003) have analysed the size and structure of 

patches in the intestinal epithelium of humans from random inactivation of X-linked 

genes. Glucose-6- phosphate dehydrogenase (G6PD) expression in nine samples of 

normal intestinal tissue was analysed, but patches were relatively large, with only 8% 

of crypts lying on the border. They estimated that 43 adenomas must be shown to be 

monoclonal to exclude the possibility that all human colorectal tumours are 

polyclonal. Thus, assessing tumour clonality based on the analysis of mosaicism of 

X-linked genes in which patch size is large is heavily biased towards the conclusion 

that tumours are monoclonal because polyclonal tumours in this situation are likely 

to be homotypic (Novelli et al. 2003).  

Mouse models for FAP allow studying clonality of intestinal tumours, since 

aggregation chimeras can be generated by fusing together embryos with different 

genotypes. Hence, the patch size and structure is known (Merritt et al. 1997), which 

permits accurate estimation of polyclonal tumours.   

Together these studies suggest that polyclonality is common and the 

consequence of some active mechanism driving short-range interactions between 

neighbouring intestinal crypts.  

 

 

1.17 Importance of clonal interactions for the development of 

polyclonal adenomas 

It has been demonstrated that tumours can be derived from more than one 

independently initiated cell, but it remains unclear how polyclonal tumours develop 

and what are the underlying mechanisms responsible for the formation of a 

polyclonal tumour. Understanding the clonal origin of tumour development is 

important for the following reasons: (1) for developing an accurate scientific 

understanding of the initial events in carcinogenesis, (2) for improving cancer risk 

assessment, (3) for developing accurate mathematical models of tumour 

development, and (4) for more accurate insight regarding the merits of different 

therapeutic approaches (Parsons 2008). 
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Crosstalk between clones has been shown in Drosophila to initiate tumour 

growth (Wu et al. 2010). Clonal interactions between crypts and their neighbours 

remain the most plausible mechanism to explain polyclonal tumour formation. 

Thereby, interactions between multiple initiated clones could occur either between 

crypts promoting somatic LOH of APC, or cooperation between initiated clones that 

favour growth or survival (Thliveris et al. 2005). It is still unknown whether 

polyclonality is essential for the formation of adenomas and whether single, isolated 

transformed crypts are important progenitors (Thliveris et al. 2005). More 

specifically, it is unknown how one crypt could cause sufficient mutations in a 

neighbouring crypt to become initiated. Mitotic pressure might be involved in the 

process of how a mutated clone in one crypt transforms the neighbouring crypt. The 

cellular proliferation of normal neighbouring crypts could be influenced when a 

dysplastic crypt releases mitogenic factors. It can be hypothesised that growth factors 

are produced by the crypt with the mutated clone, so that cells within the 

neighbouring crypts, which respond to these factors, divide at a higher rate, and so 

are more likely to acquire a mutation. In fact, normal epithelium surrounded by a 

tumour is often hyperplastic (Bjerknes et al. 1999).  

A further hypothesis on how one crypt could initiate mutations in its 

neighbours is that the mutated crypt could release a mutagenic signal, either through 

a direct inhibition of DNA repair in a neighbouring crypt, or through changes in the 

microenvironment resulting in an over abundance of mutagenic molecules, such as 

ROS or other inflammatory stresses. It is important to note that crypts are not 

directly in contact with their neighbours, and are separated by stroma containing 

fibroblasts, immune cells and blood vessels. The role of the stromal cells in these 

earliest phases of polyclonal lesions remains to be determined. However, it has been 

shown that genetic alterations occur in the stroma in early forms of tumourigenesis 

(Ishiguro et al. 2006). An initiated clone may induce local environmental changes 

affecting the proliferative rates in neighbouring clones. Further, the stroma may also 

initiate and drive cancer progression, but the mechanism by which these oncogenic 

signals enable the generation of malignant cells remains to be examined (Tlsty 

2001). Pertinent to this project is the question of how the stroma responds to a 

dysplastic crypt in the epithelium, and whether these responses could induce 

transformation in secondary crypts (tumour-stroma interactions).  
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1.18 Aims 

Short-range interactions have been suggested as the most plausible mechanism on 

how polyclonal tumours are formed in colonic adenomas. This investigation sought 

to better describe these clonal interactions in the context of adenomas and their 

surrounding non-dysplastic crypts and to determine the role of the stroma in this 

process. 

  

Therefore, the three major aims were: 

 

1. To demonstrate that clonal interactions between dysplastic and non-dysplastic 

colonic epithelium drive clonal expansion 

2. To investigate the stem cell dynamics between dysplastic and non-dysplastic 

colonic epithelium 

3. To investigate the underlying mechanisms responsible for the formation of a 

polyclonal tumour 
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2 Chapter II: Material & Methods 

2.1 Tissue and cell specimens 

2.1.1 Human 

Fresh frozen FAP samples were obtained from patients undergoing colonic resection 

at the Academic Medical Centre, Amsterdam, The Netherlands, in accordance with 

their national ethics guidelines on the procurement of human tissue (local protocol-

12). Sporadic adenoma samples (frozen and formalin-fixed, paraffin-embedded 

(FFPE)) were obtained from the University College Hospital, London and St. Marks 

Hospital London under ethical approval from the London Research Ethics 

Committee Stanmore (11/LO1613). Frozen FAP specimens from patients under 18 

years old were obtained from St. Marks Hospital, London under ethical approval 

(MREC 10/H0604/72). All patients consented to the use of their tissue for research 

purposes. 

 

2.1.2 Mice 

Wild type (WT) and mutant Apc1322/+ mice were housed at the animal unit at 

Functional Genomics Facility, Wellcome Trust Centre for Human Genetics, Oxford 

University, UK. WT ROSAmT/mG (membrane-Tomato/membrane-Green) mice were 

housed at the animal unit at the London Research Institute, Cancer Research UK, 

London, UK. All mice were derived on a C57BL/6J background. All procedures 

were carried out in accordance to Home Office UK regulations. 
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2.2 Protein analysis methods 

2.2.1 Tissue sectioning 

Frozen and FFPE sections were either cut on membrane slides (Zeiss, Oberkochen, 

Germany) for laser capture microdissection (LCM) (6-12µm thickness) or on normal 

charged glass slides (Fisher Scientific, Loughborough, UK) for general tissue 

histochemistry (4-6µm thickness). 

 

2.2.2 Dual Cytochrome c Oxidase (CCO) and Succinate Dehydrogenase (SDH) 

enzyme histochemistry 

Frozen human colon tissue sections were subjected to a two-colour enzyme 

histochemistry method used to detect mitochondrial DNA (mtDNA)-encoded CCO 

activity and nuclear DNA-encoded SDH activity to highlight CCO-deficiency. Cells 

deficient in CCO appeared blue on tissue sections and CCO-normal cells brown. 

Frozen sections were cut on membrane slides for LCM or on glass slides. Sections 

were air-dried for 30-60 min at room temperature before being incubated in CCO 

media (100mmol/l cytochrome c, 20µg/ml catalase, and 4mmol/l diaminobenzidine 

tetrahydrochloride in 0.2mol/l phosphate buffer, pH 7.0 (all from Sigma-Aldrich, 

Poole, UK)). Media was filtered through a 0.2µm syringe filter to remove particulate 

matter. 50-200µl of the CCO medium was then added to each tissue section, 

depending on section size, and was incubated at 37°C for up to 1 h, depending on 

tissue thickness, until a strong brown colour was obtained. Sections were then 

washed 3 times in phosphate-buffered saline (PBS), pH 7.4, for 3-5 min each and 

then incubated in SDH medium (130mmol/l sodium succinate, 200mmol/l phenazine 

methosulfate, 1mmol/l sodium azide, and 1.5mmol/l nitroblue tetrazolium in 

0.2mol/l phosphate buffer, pH 7.0 (all from Sigma-Aldrich, UK)) for a maximum of 

1 h at 37°C, or until a strong blue stain had developed. Sections were again washed 3 

times in PBS and dehydrated in an increasing graded ethanol series: 70% for 2 min, 

95% for 2 min, 100% for 2 min and a further 100% for 10 min. If sections were to be 

immediately cut on the LCM system, slides were left to air-dry for an hour before 

LCM. For normal tissue processing, sections were cleared with Histoclear (Lamb 
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Laboratory Supplies, Eastbourne, UK) and mounted with Eukitt mounting media 

(Sigma-Aldrich, UK). 

 

2.2.3 Immunohistochemistry (IHC) on formalin-fixed, paraffin-embedded 

(FFPE) sections 

FFPE sections were cut at a thickness of 4µm and allowed to air-dry overnight. 

Sections were then dewaxed in xylene for 5 min and rehydrated through decreasing 

alcohol concentrations (100% for 3 min, 90% for 3 min, 70% for 3 min) and placed 

into fresh water. Each section was subjected to a variety of antigen retrieval methods 

that were specific to each primary antibody (Table 2.1). Retrieval was performed 

either using 0.1M sodium citrate (pH 6.0) (Fisher Scientific, UK) or 1X 

ethylenediaminetetraacetic acid (tris-EDTA) (Sigma-Aldrich, UK). Each solution 

was brought to the boil, the slides were then added and then microwaved for 15 min. 

Sections were left to slowly cool for approximately 20 min before rinsing them twice 

in PBS/0.1% Tween (Sigma-Aldrich, UK) for 2 min. Sections were then blocked for 

endogenous peroxidase (3% hydrogen peroxide in ddH2O; Sigma-Aldrich, UK) for 

10 min, rinsed again twice in PBS/0.1% Tween for 2 min, and then blocked with 

Protein-Free block (Dako, Ely, UK) for 30 min at room temperature. Each primary 

antibody (Table 2.1) was diluted according to either the manufacturers 

recommendation or according to prior optimisation in PBS/0.1% Tween with 5% 

donkey serum, and applied to the section for 45 min at room temperature in a moist 

chamber. Sections again, washed 3 times in PBS/0.1% Tween for 5 min each, were 

then incubated for 30 min with appropriate secondary antibody conjugated to biotin 

at antibody-dependent concentrations in PBS/0.1% Tween with 5% donkey serum 

(Table 2.1). Sections were again washed 3 times in PBS/0.1% Tween for 5 min each 

and then incubated with HRP/Streptavidin (1:500 dilution in PBS/0.1% Tween with 

5% donkey serum; Dako, UK) for 30 min. Sections were then washed in PBS/0.1% 

Tween (3 times x 5 min) and colour developed in a solution containing 4mmol/l 

diaminobenzidine and 0.2% hydrogen peroxide (DAB substrate, Vector labs, 

Peterborough, UK). Once a vivid brown colour was obtained, sections were rinsed in 

ddH2O, placed in Gill’s hematoxylin II (Sigma-Aldrich, UK) for 10 sec and then 

again rinsed in water. Sections were then dehydrated through ascending ethanol 
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concentrations (70% for 2 min, 95% for 2 min, 100% for 2 min, 100% for 10 min), 

cleared with xylene (Fisher Scientific, UK) and mounted with Eukitt mounting media 

(Sigma-Aldrich, UK). 

 

 

 
Table 2.1: Antibodies used for immunohistochemistry. 
 
 

2.3 Quantifying immunohistochemistry 

2.3.1 Scanning and sectioning of images 

Slides stained for epithelial and stromal cell markers using immunohistochemistry 

and an accompanying hematoxylin and eosin (H&E) stained section were scanned 

using a high-resolution scanner (Pannoramic 250 Flash III, 3DHISTECH, Budapest, 

Hungary). Dysplastic areas were identified on H&E slides by an experienced 

gastrointestinal pathologist (Dr Marnix Jansen, University College London 

Hospitals) using the Pannoramic Viewer software (Version 1.15.4). For each 

adenoma, surrounding mucosa (containing only non-dysplastic crypts) was 
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segregated into zones according to distance from adenoma: zone 1 included all non-

dysplastic crypts less than 50µm away from the adenoma, zone 2 were those between 

50-150µm, and zone 3 were those 150-250µm away from the adenoma (Thliveris et 

al. 2013).  

Incomplete, damaged and crypts with weak staining were excluded. Crypts 

with nuclei that were excessively or incompletely stained, and consequently could 

not be discerned as positive or negative staining, were also excluded. Further, if there 

is an expected region of expression within a crypt (Ki67 is expressed in the lower 

third of each crypt) and no expression was detected, these crypts were also excluded. 

 

2.3.2 Cell counting of epithelial markers 

FAP and sporadic tissue sections were stained for cell proliferation (Ki67), DNA 

damage (γH2AX), Wnt-signalling (nuclear β-catenin), and intraepithelial 

lymphocytes (CD8) as per section 2.2.3. The annotation feature in the Pannoramic 

Viewer software was used to encircle the crypts in the adenoma and each zone in 

order to manually count the number of positively and negatively stained cells/crypt. 

The percentage of positively stained cells/crypt/zone was then calculated (Figure 

2.1). 
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Figure 2.1: Identification of adenomas and cell counting. 
A) Ki67 staining. B) Adenomas and non-dysplastic surrounding crypts were identified on H&E’s of 
serial sections and divided into three zones: adenoma in blue, zone 1 (< 50μm) in purple, zone 2 (< 
150μm) in red, and zone 3 (<250μm) in orange, shown for Ki67 staining. C) Single crypt stained for 
Ki67. D) Positive stained cells (red dots) and negative stained cells (turquoise dots) were manually 
counted. The percentage of positive stained cells within the crypts in each zone was calculated. E) 
Single crypt stained for CD8. CD8 stains for the cytotoxic T cells, but also for intraepithelial 
lymphocytes (IELs), which were counted (F) and the percentage of positive stained IELs calculated.  
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2.3.3 Semi-quantitative scoring system for stromal cells 

FAP and sporadic tissue sections were stained for stromal markers that identify 

helper T cells (CD4), cytotoxic T cells (CD8), macrophages (CD68), and fibroblasts 

(α-smooth muscle actin (SMA)). A semi-quantitative scoring system was applied 

based on the number and intensity of stained cells (Figure 2.2). For each sample, the 

area around the adenoma and each zone was marked and a score given, based on the 

percentage of cells present (Table 2.2). 

 

 
Table 2.2: Semi-quantitative scoring system for stromal markers. 
 
 

 
Figure 2.2: Illustration of semi-quantitative scoring of stromal markers.  
Semi-quantitative scoring system for stromal markers CD4, CD8, CD68, and α-SMA based on 
positively stained cell number and intensity (CD68 staining shown here). 
 

 

2.3.4 Assessing α-SMA+ cell density 

Intestinal subepithelial myofibroblasts were detected using α-SMA antibody. The 

density of myofibroblasts surrounding the adenoma and each zone was measured 

using the DensitoQuant application in the Pannoramic Viewer software. 

Myofibroblasts are difficult to individually count therefore densitometry was used as 

a proxy for cell number. An outer circle was manually drawn around the 

myofibroblasts and an inner circle around the crypt, the density of each circle then 
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assessed and the value of the inner circle subtracted from the outer circle to assess an 

overall measurement of myofibroblast density (Figure 2.3). 

 

 
Figure 2.3: Assessing α-SMA+ cell density.  
A) α-SMA staining of a FAP patient of the colon. B) Zoning of the adenomatous crypts (red). An 
inner and outer circle was drawn manually around the crypt and the subepithelial myofibroblasts. C) 
Measuring α-SMA+ cell density using the DensitoQuant application (Pannoramic Viewer software). 
Application measures the mean density of negative (blue), weak-positive (yellow), moderate-positive 
(orange), and strong-positive (red) pixels. Density was calculated by subtracting the sum of all 
positive pixels of the outer circle from the sum of all positive pixels in the inner circle. 
 

2.3.5 Measuring crypt phenotypic characteristics 

Crypt size (area per crypt in μm2) and the density of nuclei in the dysplastic zone and 

surrounding non-dysplastic zones were measured in H&E sections to assess 

phenotypic characteristics. For each crypt in each zone, the size was measured using 

the annotation tool in the Pannoramic Viewer software. Depending on the angle the 

section was cut, some crypts may have appeared larger. To account for cutting 

artefacts, serial sections were cut. The density of nuclei was assessed per zone of the 

crypts using the DensitoQuant tool provided by the Pannoramic Viewer software.  

 

2.3.6 CCO-mutant crypt counts 

For FAP patient samples stained for CCO (see section 2.2.2), mutated (blue) and 

non-mutated (brown) of both normal and adenomatous crypts divided into each zone 

were manually counted and the percentage of mutated crypts/zone calculated (Figure 

2.4).  
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Figure 2.4: Assessing mutational burden using cytochrome c oxidase.  
Section of a FAP patient stained for CCO/SDH. Identification and counting of CCO-deficient blue, 
and CCO-proficient brown crypts of both adenomatous and non-dysplastic crypts in zone 1 to zone 3. 
Adenomatous crypts are outlined by a blue dashed line, non-dysplastic crypts in zone 1 in purple, non-
dysplastic crypts in zone 2 in red, and non-dysplastic crypts in zone 3 in orange.  
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2.4 Quantification of stem cell dynamics in vivo 

2.4.1 Quantifying the change in clone size in CCO-deficient crypts between 

sequential sections  

Partially mutated (crypts with both CCO-deficient and CCO-proficient cells) crypts 

in zone 1, zone 2, and zone 3 were identified in FAP, AFAP and non-dysplastic 

human tissue. The circumference of the blue and brown areas of a partially mutated 

crypt of interest were measured between serial sections using the Pannoramic Viewer 

software as previously described (Figure 2.5A-C). The difference in CCO-deficient 

clone fraction between serial sections was multiplied by the number of nuclei per 

crypt for that patient, to normalise for crypt size between adenomas and non-

dysplastic crypts. The number of cell nuclei per crypt within zone 1, zone 2 and zone 

3 were counted and the circumference of each crypt was measured from a serial en 

face H&E sections. For each patient, a minimum of 20 crypts for each zone was 

quantified and the mean number of cells per circumference calculated. Data on the 

mean number of cells per circumference for the adenoma and non-dysplastic crypts, 

as well as data for partially mutated crypts in the adenoma, in non-dysplastic FAP 

and AFAP tissue, and normal tissue was obtained from previously published data 

(Baker et al. 2014).  

 

2.4.2 Crypt maps – tracking cell clones in the human colon 

Crypts showing partial CCO/SDH staining were identified in en face serial sections 

taken from frozen FAP samples (Figure 2.5B). Digital, serial images were taken of 

every crypt of interest and the surrounding area, to ensure equal alignment of each 

section. Each crypt was followed all the way to its crypt base using serial sections. 

Crypt images from every serial section were stacked on top of each other and then 

BiaQIm software (http://www.bialith.com) (Figure 2.5F) (Fellous et al. 2009) 

orientated to a best fit orientation with the section above and below to form a crypt 

map. Each map is a representation of an entire 3D tubular crypt with colour 

enhancement post-processing to illustrate the contrast between CCO-deficient and 

CCO-normal staining as the clone expands and contracts over the time taken to 

migrate up the crypt (Figure 2.5A). In brief, the software aligned the digital, serial 
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images of a crypt to form a 3D reconstruction. The centre point and circumference of 

the serial, cross-sectioned image of each crypt was manually drawn. Then, in each 

cross-sectional image a line was marked out from the centre point to the perimeter of 

the crypt at a fixed angle for all images of the same crypt (Figure 2.5D, E). The oval 

cross-sectional profile of the crypt was then digitally cut and a straight profile 

generated. The average of the most basal pixels was taken and transformed into a 

pixel strip (Figure 2.5G), which was then aligned three-dimensionally to form a crypt 

map from the base of a crypt to the luminal surface (Figure 2.5H). Colour 

discrimination was then applied to isolate the blue colour. In the final crypt map, 

non-mutated brown areas appear black and mutated blue areas appear blue (Figure 

2.5I). Thus, a crypt map is essentially a representation of the visual blue staining 

from the crypt base to the crypt surface (Fellous et al. 2009). 

 

 

2.5 Next generation sequencing (NGS) of mitochondrial DNA  

2.5.1 Laser Capture Microdissection  

Frozen FAP sections were cut serially on membrane slides and stained with dual 

CCO/SDH enzyme histochemistry (see section 2.2.2). Crypts of interest were cut 

using a PALM Combisystem and collected in sterile 0.5ml adhesive opaque caps 

(both from Zeiss, Germany). DNA extraction from laser microdissected crypts was 

then performed.  

 

2.5.2 Total DNA extraction 

DNA was extracted from crypts that had been laser capture microdissected from 

frozen colon samples using a QiaAmp Micro Kit (Qiagen, Manchester, UK) 

following manufacturer’s instructions. In brief, 15μl of ATL buffer and 10μl 

proteinase K was added to a laser-microdissected sample collected in a 0.2ml 

microcentrifuge tube and pulse-vortexed for 15 sec.   
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Figure 2.5: Measurement of CCO-deficient clone size and generation of a crypt map.  
A) Schematic diagram showing the expansion and contraction of a CCO-deficient (blue) clone arising 
in the crypt base and its migration upwards as a narrow band of cells. B) Partial CCO-deficient crypts 
were identified in serial sections through the crypt. Displayed is a non-dysplastic, partially CCO-
deficient crypt of zone 1 from a FAP patient. C) The circumference of blue vs. brown staining was 
measured. D) The circumference was delineated and a cut angle from the centre point was determined. 
E) For each image in the series, the approximately oval cross-sectional profile of the crypt is then 
digitally ‘‘cut’’. F) Serial sections were aligned and processed by the BiaQIm software to describe the 
position of the CCO-deficient cells in the crypt. G) The cross-sectional profile of the crypt was then 
warped into a straight profile. A single strip of an average of the first 10 pixels of the warped image 
was formed. H) Each single strip image was stacked from the base of the crypt to the surface forming 
a crypt map. I) A colour-processed representation of the original map (adapted from Baker et al. 2014, 
Fellous et al. 2009).  
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Tubes were then placed in a heat block and incubated at 56°C for 16 h. The 

incubation time may vary depending on the amount of tissue collected. After the 

incubation time, 25μl of ATL buffer and 50μl of AL buffer was added and mixed by 

pulse-vortexing for 15 sec. Then 50μl of 100% ethanol was added, thoroughly mixed 

by pulse-vortexing for 15 sec followed by a 5 min incubation time at room 

temperature. The mixture was then briefly centrifuged to remove drops from inside 

the lid. The entire lysate was transferred to a QIAamp MinElute column and 

centrifuged at 8000 rpm for 1 min before placed in a clean 2ml collection tube. The 

collection tube containing the flow-through was discarded. 500μl AW1 buffer was 

then added to a QIAamp MinElute column, centrifuged at 8000 rpm for 1 min and 

placed in a clean 2ml collection tube. The collection tube containing the flow-

through was discarded. Then, 500μl AW2 buffer was added to the QIAamp MinElute 

column, centrifuged at 8000 rpm for 1 min and placed in a clean 2ml collection tube. 

Again, the collection tube containing the flow-through was discarded. The QIAamp 

MinElute column was then centrifuged at 13200 rpm for 3 min to dry the membrane 

completely before being transferred to a 1.5ml low-binding protein collection tube 

(Fisher Scientific, UK). The collection tube containing the flow-through was 

discarded. 40μl of nuclease-free water was added to the centre of the membrane, 

incubated at room temperature for 5 min, and centrifuged at full speed for 1 min. The 

DNA collected in low binding tubes was stored at -20°C until further usage. 

 

2.5.3 Determination of DNA quantity and concentration 

DNA concentration was analysed using a Qubit dsDNA HS assay kit (Invitrogen, 

Paisley, UK) following manufacture’s instructions and measured on a Qubit® 2.0 

Fluorometer. To assess DNA quality and concentration more specifically, the DNA 

of the PCR product was run on a Agilent 2200 TapeStation (Agilent, Craven Arms, 

UK), which automates sample quality control including loading, separation, and 

imaging. This service was performed by the Genome Centre, Barts and The London 

School of Medicine and Dentistry, UK.  
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2.5.4 Mitochondrial DNA (mtDNA) polymerase chain reaction (PCR) 

DNA extracted from frozen FAP samples was amplified using two sets of genome-

spanning (16,569 bp) mtDNA primers: MTL1 and FRAG1. Primer pairs MTL1-

forward + MTL1-reverse were designed to generate a 9065 bp PCR product. Primer 

pairs FRAG1-forward + FRAG1-reverse generate a 11170 bp PCR product. The 

PCR reaction mixture was made up as following: 1μl of 100mM of forward and 

reverse specific primer (see Appendix Table 9.1). 2.5μl of 10X LA PCR buffer 

(Takara, Saint-Germain-en-Laye, France), 4μl of 2.5mM dNTPs (Applied 

Biosystems, Warrington, UK), 0.25μl of 5 U/ml AmpliTaq Gold (Applied 

Biosystems, UK), and 11.25μl of nuclease-free water (Qiagen, UK). 20μl of each 

master mix was pipetted into a 96 well plate (VWR, Lutterworth, UK). To each 

reaction, 5μl of extracted DNA was added and the plate sealed with an adhesive PCR 

film (Fisher Scientific, UK). All PCR reactions were prepared in a UV hood to avoid 

contamination. For each sample, the PCR mixture was set up in duplicates. Each 

PCR reaction was run on a G-Storm thermocycler (Fisher Scientific, UK) subjected 

to the following conditions: 5 min at 94°C, then cycled 30 times through 98°C for 15 

sec, 68°C for 10 sec (slow ramp from 68°C to 60°C at 0.2°C per second), 60°C for 

15 sec, 68°C for 11 min and after this round of cycles, incubated for 10 min at 72°C 

and thereafter at 10°C. PCR products were ran through a 1% agarose gel was run to 

confirm successful amplification. 

 

2.5.5 Gel electrophoresis of PCR product 

1% agarose (Bioline, London, UK) gels were prepared in a tris-acetate-EDTA (TAE) 

solution (Sigma-Aldrich, UK). The mixture was microwaved for 2 min until the 

agarose was melted. This was then cooled down under running water before adding 

Gel Red fluorescent nucleic acid dye (Cambridge Biosciences, Cambridge, UK). The 

gel was poured and allowed to set with combs placed within the gel to form wells. 

Once set, the gel was loaded into the electrophoresis tank and submerged in TAE 

solution. HyperLadder 100bp (Bioline, UK) was added to one comb for each row of 

wells to provide molecular weight markers. For the rest of the wells, a mix of 1.5μl 

loading dye (Bioline, UK) with 5μl DNA (PCR product) was added to each well. The 
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samples were run for 40 min at 135V, visualised using a UV transilluminator 

(Amersham Imager 600, GE Healthcare, Amersham, UK) and photographed. 

 

2.5.6 Library preparation and sequencing of the mitochondrial DNA 

Amplified mtDNA was run on an Agilent 2200 TapeStation to verify the size 

distribution and concentration of each PCR amplicon, and each sample was adjusted 

to 0.2ng/μl. Library preparation was performed using the Nextera XT DNA Library 

Prep kit (Illumina, Cambridge, UK). In brief, the input DNA was first fragmented 

and then tagged with an adapter sequence. 10μl of amplicon tagment mix and 5μl of 

tagment DNA buffer was added to 5μl of input DNA and heated for 5 min at 55˚C. 

5μl of neutralising tagment buffer was added to each well once the reaction cooled 

down to 10˚C, centrifuged at 280 x g for 1 min, and incubated at room temperature 

for 5 min. Next, 5μl of each Index 1 adapter and 5μl of each Index 2 adapter was 

added together with 15μl of the Nextera PCR master mix, and again centrifuged at 

280 x g for 1 min. Tagmented DNA was then amplified (72˚C for 3 min, 95˚C for 30 

sec, 12 cycles of 95˚C for 1 sec, 55˚C for 30 sec, and 72˚C for 30 sec, then 5 min at 

72˚C) and centrifuged at 280 x g for 1 min. Next, a limited-cycle PCR clean-up step 

was performed using AMPure XP beads that purified the library DNA and also 

removed short library fragments. 30μl of AMPure XP beads were added to 50μl of 

the PCR product, shaked at 1800 rpm for 2 min, and then placed on a magnetic stand 

(Life Technologies, UK) until the liquid was clear and the supernatant removed from 

each well. The library DNA was then washed twice with 80% ethanol and air-dried 

on the magnetic stand for 15 min. 52.5μl of resuspension buffer was then added to 

each well, shaked at 1800 rpm for 2 min, and incubated at room temperature for 2 

min. The supernatant was then transferred to a clean plate. Then, beads were used to 

normalise the quantity of each library ensuring more equal library presentation. 

4.4ml of library normalisation additives 1 (LNA1) was mixed with 800μl library 

normalisation beads 1 (LNB1). 45μl of combined LNA1/LNB1 was added to each 

well containing the libraries, and the mixture shaked for 30 min at 1800 rpm. 

Libraries were then placed on a magnetic stand and washed twice in 45μl LNW1 

before adding 30μl of 0.1M NaOH to each well. Next, 30μl of LNS1 was added to 

each well, shaked for 5 min at 1800 rpm, again placed on a magnetic stand until the 



 101 

liquid was clear, and the supernatant then transferred to a new plate. Then, equal 

volumes of bead-based normalised library were pooled and diluted. 5μl of each 

library was transferred to a new PCR 8-tube strip, and the contents of the PCR 8-tube 

strip were then combined in a new Eppendorf tube. Libraries were then sequenced on 

a MiSeq Bench-top Sequencer to generate 75 bp paired-end reads (Illumina, UK) at 

the Genome Centre, Barts and The London School of Medicine and Dentistry, UK.  

 

2.5.7 Analysis of mtDNA sequencing 

MtDNA sequencing data was analysed by Marc Williams (Barts Cancer Institute, 

London, UK). The quality of the raw sequencing reads (fastq files) was assessed 

using fastQC software (v0.11.3), where each base in each paired-end read is given a 

quality score, known as a PHRED score. A phred score is assigned to each 

nucleotide base call by the sequencing machine. If this score is above 20, the 

probability of an incorrect base call is 1 in 100 and the base call accuracy 99%. 

Samples with a score > 20 were accepted as good quality. All samples passed this 

quality control. Then, from the fastq files, bam files were produced using the 

Burrows-Wheeler Aligner (BWA) software (bwa mem v0.7.5), and aligned using the 

hg19 human genome as the reference, as bam files assign the reads to a location in 

the genome. Using the BamQC software (bamqc v0.5.6), the quality of the alignment 

can be scored. A score > 30 is an indicator for good alignment; at least 70% of all 

reads per sample had a score > 30. The output alignment files were then sorted 

according to the genomic coordinates of the mitochondrial genome. Coverage 

statistics were calculated using the Genome Analysis Toolkit (GATK) 

(software.broadinstitute.org/gatk/) to calculate the number of reads that have aligned 

at each position in the mitochondrial genome. To identify somatic variants, the 

deepSNV algorithm (Gerstung et al. 2012) was used. Stromal colon tissue was used 

as a normal control sample (obtained from the same sequencing run and with the 

same targeted panel) to identify somatic mutations in the test case that were not 

present in the control case. In this way, germline polymorphisms were excluded from 

the analysis. The algorithm produced two output files, one for each replicate that 

includes the number of mutations at a specific position in the genome, the variant 

and its variant allele frequency (VAF). Only if a mutation is detected in both 
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replicates it is considered a true mutation. The number of mutations per patients and 

the mutation range could then be counted to assess mutational burden. 

 

 

2.6 Murine intestinal organoids 

2.6.1 Crypt extraction  

The intestinal tract of wild type (WT), WT ROSAmT/mG, and Apc1322/+ mice was 

removed and the small intestine divided into proximal (SB1), middle (SB2), and 

distal (SB3) parts. The intestines were washed in PBS and opened longitudinally 

using a scalpel and a gut preparation apparatus (Rudling et al. 2006). The villi were 

scraped off the intestines using a glass slide by firmly, repeatedly drawing the edge 

of the slide along the entire length of the intestines. The intestines were then cut into 

small pieces and washed with cold PBS. For Apc1322/+ mice, polyps were dissected 

with a scalpel, and washed with ice cold PBS (Figure 2.6). 

 

2.6.2 Culture of murine intestinal WT crypts  

Murine intestinal fragments were isolated and cultured as previously described (Sato 

et al. 2011). In brief, tissue pieces were washed in ice cold PBS, allowed to settle and 

the supernatant was removed. Tissue pieces were then resuspended in 25ml of 

2.5mM EDTA/PBS and rotated for 30 min at 4°C. After removing the supernatant, 

tissue was resuspended in 10ml basic culture media (100μg/ml 

penicillin/streptomycin, 2mM Glutamax (both from Life Technologies, UK), 10mM 

HEPES (Sigma-Aldrich, UK), 1× N2-Supplement (Fisher Scientific, UK), 1× B27-

Supplement (Fisher Scientific, UK), 1mM N-acetylcysteine (Sigma-Aldrich, UK), 

and 0.25μg/ml Fungizone (Life Technologies, UK) in advanced Dulbecco’s modified 

Eagle medium/F12 (Life Technologies, UK)) (Table 2.3). The entire volume was 

pipetted up and down, and the supernatant collected in a new 50ml Falcon tube. At 

this point, the crypts were being dislodged from the pieces and were floating in the 

supernatant. This step was repeated 3-4 more times, each time adding the supernatant 

to the 50ml Falcon tube. The solution was centrifuged for 5 min at 1200 rpm at 4°C 
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and the supernatant poured off carefully. The pellet was resuspended in 10ml basic 

culture media, passed through a 70μm cell strainer (VWR, UK) to remove residual 

villous material and centrifuged at 300 x g for 3 min. The pellet was resuspended in 
2/3 Matrigel (SLS, Nottingham, UK) and 1/3 basic culture media, and 40μl was plated 

out in each well of a 24-well plate (Corning, UK). To each well, organoid media was 

added (500μl of basic culture media, 50ng/ml Epidermal Growth Factor (EGF) (Life 

Technologies, UK), 100ng/ml Noggin (PeproTech, London, UK) and 100μl/ml R-

spondin1 (R and D systems, Abingdon, UK)) (Table 2.3). The organoid media was 

changed every 2 days (Figure 2.6). 

 

 

 
Table 2.3: Basic culture and organoid media. 
 

2.6.3 Culture of mouse intestinal Apc1322/+ adenomas  

Polyps from Apc1322/+ mice were washed 5 times in ice cold PBS. After removing the 

supernatant of the last wash, the tissue fragments were incubated in 2mmol/L EDTA 
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cold chelation buffer (5.6mmol/L Na2HPO4, 8.0mmol/L KH2PO4, 96.2mmol/L 

NaCl, 1.6mmol/L KCl, 43.4mmol/L sucrose, 54.9mmol/L D-sorbitol, 0.5mmol/L 

DL-dithiothreitol) (all from Sigma-Aldrich, UK) for 1 h on ice. After removal of the 

chelation buffer, tissue fragments were vigorously resuspended in chelation buffer. 

The tissue fragments were allowed to settle and the supernatant was removed. This 

procedure was repeated 3-5 times. Tissue fragments were then incubated in digestion 

buffer (advanced Dulbecco’s modified Eagle medium supplemented with 2.5% fetal 

bovine serum (FBS), 2.5% penicillin/streptomycin, 125ug/ml Dispase type II (all 

Life Technologies, UK), and 75U/ml Collagenase type IX (Sigma-Aldrich, UK)) for 

30 min at 37°C. The supernatant was then enriched for crypts by centrifugation (300 

x g for 5 min) and resuspended in 10ml basic culture media. This fraction was passed 

through a 70μm cell strainer to remove residual villous material. Isolated crypts were 

centrifuged at 300 x g for 3 min and washed in cold PBS. This fraction consisted of 

essentially pure crypts. The pellet was resuspended in 2/3 Matrigel and 1/3 basic 

culture media, and 40μl was plated out per well in a 24-well plate (Corning, UK). 

The Matrigel was polymerised for 15 min at 37°C, and 500µl basic culture media 

was overlaid containing 50ng/ml EGF. The medium was changed every 2 days 

(Figure 2.6). 

 

2.6.4 Passaging and embedding of organoids 

After intestinal crypts had grown into spheroid structures, usually after 5-7 days, they 

were passaged by adding 500µl cold PBS to melt the Matrigel, spin down at 800 rpm 

for 3 min, and subsequently re-plated in fresh Matrigel. To collect material for 

embedding, Matrigel was melted with cold PBS and then multiple wells were 

combined. The cells were fixed in 500µl 4% paraformaldehyde (PFA) for 30 min at 

room temperature, centrifuged at 5000 rpm for 5 min and resuspended in 200µl 2% 

Agarose (in PBS). The cell pellet was then processed and embedded using standard 

protocols.  
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Figure 2.6: Extraction and culturing of murine organoids.  
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2.7 Co-culture of WT and Apc1322/+ murine organoids  

Apc1322/+ organoids were placed directly next to WT organoids in a 12 –well plate 

(Corning, UK) and controlled with WT with WT and Apc1322/+ with Apc1322/+ 

organoids only for 48 h and 72 h. 1ml of organoid media was overlaid. Each 

experiment was set up in triplicate. Organoids were collected separately after 48 h 

and 72 h. RNA was immediately extracted and stored at -80°C until further use. To 

assess the concentration and quality of the extracted RNA, 1µl of each sample was 

run on a RNA Nano Bioanalyser chip (Agilent Technologies, UK). RIN values > 8 

were chosen for mRNA sequencing (Figure 2.7) (see section 2.10.3). 

 

 
Figure 2.7: Co-culturing of WT and Apc1322/+ organoids and mRNA sequencing workflow.  
WT and Apc1322/+ organoids were co-cultured in close proximity to each other for 48 h and 72 h, and 
controlled with WT with WT (-ve CT) and Apc1322/ with Apc1322/+ organoids (+ve CT) only. Experiment 
was set up in triplicates and RNA extracted from all conditions followed by a quality control step 
before sequencing of the mRNA was performed. Gene expression profiles were analysed with the 
gene set enrichment analysis software (GSEA). 
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2.8 Transwell co-culture of WT and Apc1322/+ organoids 

WT organoids were placed in the top compartment of a transwell insert (CytoOne, 

Fisher Scientific, UK) and Apc1322/+ organoids were placed on the bottom of a 24-well 

plate  (Figure 2.8A). Experiment was controlled with WT with WT and Apc1322/+ with 

Apc1322/+ organoids only. 500µl organoid media was overlaid. Each experiment was 

set up in triplicate. Organoids were collected separately after 72 h. RNA was 

immediately extracted and stored at -80°C until further use. Quantity and quality of 

the RNA was assessed on the RNA Nano Bioanalyser chip (Agilent Technologies, 

UK). RIN values > 8 were chosen for mRNA sequencing (see section 2.10.3). 

 

 

2.9 Transwell co-culture of WT and Apc1322/+ organoids with murine 

fibroblasts… 

2.9.1 Isolation of intestinal murine fibroblasts 

The intestinal tract was dissected from a WT mouse and the small intestine opened 

longitudinally using a scalpel. The intestine was then cut into 5mm pieces and placed 

in Hank’s Balanced Salt Solution (HBSS) (Life Technologies, UK). The tissue was 

then washed 5 times in HBSS until all detritus was removed. 

 The epithelium was then removed by incubation in 25ml of 1mM EDTA 

(Life Technologies, UK) in HBSS at 37°C with constant shaking for 15 min. The 

fluid was carefully poured off and refilled with 25ml of 1mM EDTA. This step was 

repeated for a total of 5 washes or until no more cells could be removed. The tissue 

was then placed in 50ml RPMI media containing 10% FBS, 1% Pen/Strep, 1.5mg/ml 

Dispase (all Life Technologies, UK), and 1mg/ml Collagenase (Sigma-Aldrich, UK), 

and shaked at 250 rpm for 30 min until the tissue began to look stringy. The tissue 

was then pelleted at 1200 rpm for 5 min and the supernatant carefully discarded. The 

pellet was then resuspended in 10ml RPMI media containing 10% FBS and 1% 

Pen/Strep and plated out into a 75mm TC-treated flask (Corning, UK) and incubated 

at 37°C and 5% CO2. After 3 h, non-adherent cells were washed off and replaced 

with 12ml of fresh media (PRMI/10% FBS/1% Pen/Strep). Fibroblasts were then 
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slowly adjusted to basic culture media for co-culture with WT and Apc1322/+ 

organoids: after 2 days, 6ml of fresh media and 6ml of basic culture media was 

added, and after 4 days 12ml of only basic culture media was added to the 

fibroblasts. 

 

2.9.2 Organoid and fibroblast co-culture 

Extracted murine fibroblasts were transferred to the bottom of a 24-well plate 

(Corning, UK) and overlaid with organoid media. After 5 h, giving the fibroblasts 

time to adhere, transwell inserts with Apc1322/+ organoids were placed on top of the 

fibroblasts and incubated with 500μl organoid media. After 72 h, the Apc1322/+ 

organoids were collected. RNA was immediately extracted and stored at -80°C. 

Then, transwell inserts containing WT organoids were exposed to the same 

fibroblasts for 72 h that were previously exposed to Apc1322/+ organoids, and overlaid 

with fresh organoid media (Figure 2.8B). After 72 h, WT organoids were collected 

and RNA was immediately extracted. Each experiment was set up in triplicate. 

Extracted RNA of WT and Apc1322/+ organoids was run on a RNA Nano Bioanalyser 

chip (Agilent Technologies, UK). RIN values > 8 were chosen for mRNA 

sequencing (see section 2.10.3). 

 

 
Figure 2.8: Transwell experiment of WT and Apc1322/+ organoids with and without fibroblasts.  
A) WT organoids were placed in a transwell on top of Apc1322/+ organoids for 72 h and controlled with 
WT with WT and Apc1322/+ with Apc1322/+ organoids only. Experiment was set up in triplicates. B) 
Apc1322/+ organoids were grown on top of murine WT fibroblasts for 72 h. The transwell with the 
Apc1322/+ organoids was then taken off and replaced with WT organoids for 72 h. Here, the effect of 
fibroblasts – previously exposed to mutants – on WT organoids was studied.  
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2.10 RNA related methods 

2.10.1 Total RNA extraction 

RNA was extracted from organoids using a RNeasy micro Kit (Qiagen, UK) as per 

the manufacturer’s instructions. In brief, organoids were harvested in PBS, spin 

down at 5000 rpm for 5 min and the supernatant discarded before 350μl of RLT 

buffer and β-mercaptoethanol (10μl in 1ml RLT buffer) (Sigma-Alridch, UK) was 

added and vortexed for 30 sec. Then, 350μl of 70% ethanol was added to the lysate, 

mixed well by pipetting and then immediately transferred to a RNeasy MinElute spin 

column in a 2ml collection tube (supplied with kit). The lysate was centrifuged at 

8000 rpm for 15 sec and the flow-through discarded. Next, 350μl RW1 buffer was 

added to the RNeasy MinElute spin column, centrifuged at 8000 rpm for 15 sec and 

the flow-through discarded. The RNeasy MinElute spin column was placed in a new 

2ml collection tube and 500μl RPE buffer added to the spin column, centrifuged at 

8000 rpm for 15 sec and the flow-through discarded. Then, 500μl of 80% ethanol 

was added to the spin column, centrifuged at 8000 rpm for 2 min before placing the 

RNeasy MinElute spin column in a clean 2ml collection tube and spin for 5 min at 

full speed to dry the membrane. The collection tube containing the flow-through was 

discarded. Finally, the RNeasy MinElute spin column was placed in a new 1.5ml 

collection tube (provided by the kit). To elute the RNA, 12μl of RNase-free water 

was added directly to the centre of the spin column membrane and centrifuged at full 

speed for 1 min. Extracted RNA was kept at -80°C until further usage.  

 

2.10.2 Determination of RNA quality and quantity 

RNA concentration was analysed using a Qubit RNA assay kit (Invitrogen, UK) 

following manufacture’s instructions. To assess RNA quality, extracted RNA was 

run on the RNA Nano Bioanalyser chip (Agilent Technologies, UK), which 

measures the RNA Integrity Number (RIN) between 0-10 to demonstrate how intact 

the sampled RNA is. All samples passed quality and samples with a RIN value of > 

8.0 were chosen for sequencing.  
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2.10.3 Library preparation and sequencing of mRNA 

Extracted RNA samples from WT and Apc1322/+ organoids that passed quality control 

were normalised to 100ng/μl. Library preparation was performed using the 

NEBNext® Ultra™ Directional RNA Library Prep Kit (Illumina, UK). In brief, 

mRNA was isolated and fragmented from total RNA. NEBNext Oligo d(T)25 beads 

were resuspended in 50μl of RNA binding buffer and added to 50μl of total RNA. 

The mixture was placed on a thermal cycler for 5 min at 65˚C and held at 4˚C. Beads 

were then resuspended and incubated at room temperature for 5 min, before being 

placed on a magnetic stand for 2 min until the liquid was clear. The supernatant was 

removed and the beads washed twice with 200μl of wash buffer. Then, 50μl of Tris 

buffer was added to each tube and placed on a thermal cycler for 2 min at 80˚C and 

held at 25˚C. 50μl of RNA binding buffer was then added to each sample and 

incubated for 5 min at room temperature to allow the mRNA to re-bind the beads. 

Beads were then washed again in 200μl of wash buffer and incubated for 2 min at 

room temperature. 15.5μl of the first strand synthesis reaction buffer and random 

primer mix was added to elute the mRNA from the beads. The mixture was then 

incubated at 94˚C for 15 min, and immediately after placed on a magnetic rack. 

Purified mRNA was collected by transferring 13.5μl of the supernatant to a clean 

nuclease-free tube and placed on ice.  

First strand cDNA synthesis was performed by adding 0.5μl murine RNase 

inhibitor, 5μl Actinomycin D, and 1μl ProtoScript II reverse transcriptase to the 

purified mRNA, and incubated in a thermal cycler (10 min at 25˚C, 15 min at 42˚C, 

and 15 min at 70˚C).  

Second strand cDNA synthesis was performed by adding 8μl of second 

strand synthesis reaction buffer, 4μl of second strand synthesis enzyme mix, and 

48μl of nuclease-free water to the first strand reaction. The mixture was then 

incubated for 1 h at 16˚C.  

Double stranded cDNA was then purified with 144μl (1.8X) Agencourt 

AMPure XP beads, incubated for 5 min at room temperature, and placed on a 

magnetic stand. Once the liquid was clear, the supernatant was removed and the 

beads washed in 200μl of 80% ethanol. Next, cDNA was eluted from the beads into 

60μl 0.1X Tris-EDTA (pH 8.0) buffer. 55.5μl of the supernatant was transferred into 

a clean nuclease-free tube.  
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End prep of cDNA library was then performed by adding 6.5μl end repair 

reaction buffer and 3μl end repair enzyme mix to the purified double stranded cDNA 

and incubated in a thermal cycler (30 min at 20˚C and 30 min at 65˚C). 15μl of ligase 

master mix, 1μl of diluted adaptor and 2.5μl nuclease-free water was added to the 

end prep reaction to ligate adapters, and incubated for 15 min at 20˚C.  

Next, the ligation reaction was purified with 45μl (1.0X) of AMPure XP 

beads, then incubated for 5 min at room temperature, and washed twice in 200μl 

80% ethanol. cDNA was eluted in 52μl 0.1X Tris-EDTA (pH 8.0) buffer, and 

incubated at room temperature for 2 min. The purification step using 20μl AMPure 

XP beads was repeated and DNA eluted in 19μl 0.1X Tris-EDTA (pH 8.0) buffer. 

17μl of the supernatant was then transferred into a clean tube.  

A PCR was then performed to enrich the adapter ligated DNA. 3μl of USER 

enzyme, 5μl of the universal primer mix and 25μl of the PCR master mix was added 

to the cDNA and placed in a thermal cycler (37˚C for 15 min, 98˚C for 30 sec, 15 

cycles at 98˚C for 10 sec and 65˚C for 75 sec, and 65˚C for 5 min). The PCR reaction 

was then purified again using 45μl (0.9X) AMPure XP beads, incubated for 5 min at 

room temperature, and washed twice in 200μl 80% ethanol. cDNA was eluted into 

23μl 0.1X Tris-EDTA (pH 8.0) buffer, vortexed, and incubated for 2 min at room 

temperature. Mixture was placed in a magnetic stand until the liquid was clear, and 

20μl of the supernatant was transferred into a clean tube.  

The library quality was then assessed on a D1000 TapeStation (Agilent 

Technologies, UK) and the concentration measured using a Qubit dsDNA HS assay 

kit (Invitrogen, UK). Sequencing was performed on a NextSeq 500 High Output 

Flow Cell generating approximately 15 Million 75 bp paired-end reads per sample 

(Illumina, UK) at the Genome Centre, Barts and The London School of Medicine 

and Dentistry, UK. Sequencing reads from organoid samples were submitted to 

BaseSpace Illumina (https://basespace.illumina.com/s/OvBOgSa2z4Xa.). 

 

2.10.4 Transcriptome analysis 

Differential gene expression analysis was performed by Christian Owusu (Sanger 

Institute Cambridge, UK). The quality of the fastq files was assessed using fastQC 

software (v.0.11.4). All samples passed this quality control. Then, for each sample, 
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fastq files representing forward and reverse reads were aligned to the mouse 

reference using the splice-aware aligner, Tophat2 (v.2.1.0) (Kim et al. 2013). Briefly, 

the mouse reference genome (mm10) was downloaded from the Ensembl Genomes 

FTP server in fasta format and indexed prior to mapping using the bowtie2-build 

command. Reads were then mapped with Tophat2, which in turn makes use of the 

Bowtie2 aligner (v.2.1.0) (Langmead et al. 2012). Reads that could be 

unambiguously assigned to exons were counted with HTSeq-count (v 0.6.1) (Anders 

et al. 2015), using default parameters. Differential gene expression analysis was 

performed using DESeq2 v1.6.2 (Love et al. 2014) available from Bioconductor 

(Gentleman et al. 2004) and implemented in R v3.1.2. DESeq2 corrects for variation 

in library size among samples using a scaling factor calculated by dividing the counts 

of a gene in a particular sample by the geometric mean count of the gene across all 

samples. Counts are modelled using the negative binomial distribution, which is able 

to capture the overdispersion seen within biological replicates (Love et al. 2014) . 
The false discovery rate (FDR) was used to correct for multiple testing and only 

genes showing log2 fold changes of ≥ 1 and adjusted p-values ≤ 0.05 were considered 

biologically significant. In order to identify genes, DESeq2 results were cross-

referenced with the genes in the KEGG database (Kanehisa et al. 2000). Gene 

clustering was done using the R package MBCluster.seq (Si et al. 2014).  

 

2.10.5 Gene Set Enrichment Analysis  

Expression profiles were analysed using the Gene Set Enrichment Analysis (GSEA) 

software v.2.2.1 (Broad Institute, http://software.broadinstitute.org/gsea/index.jsp) 

(Subramanian et al. 2005) to detect up- and/or downregulated pathways. GSEA is a 

method of analysing and interpreting RNA sequencing data using biological 

knowledge and enables detection of gene sets enriched in genes that are significantly 

associated with a phenotype of interest.  

After choosing a pre-defined collection of gene sets as input, GSEA then 

provides a score to each gene set’s association with a phenotype. These predefined 

biological set of genes are published information about biochemical pathways. Here, 

the predefined gene set that was used in the analysis was the curated 

c2.cp.kegg.v5.1.symbols.gmt gene set, using the GSEA Pre-ranked tool.  
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Using the GSEA pre-ranked analysis, the analysis is run against the ranked 

list of genes and then determines whether a significant number of genes from 

predefined biological sets occur towards the top or bottom of ranked list. Such 

enrichment is computed using the Kolmogorov-Smirnov (KS) statistic. This statistic 

compares the anticipated random distribution of a set of genes and their actual 

distribution among a genome-wide list of genes ranked based on their association 

with the phenotype. The KS statistic is then normalised for gene set size and its 

significance is adjusted to take into account multiple hypotheses testing.  

The primary output of GSEA is an enrichment score (ES), which reflects the 

degree to which a gene set is overrepresented at the top or bottom of this ranked list 

of genes, depending on the correlation with the phenotype. The ES is the maximum 

deviation from zero encountered in walking the list. A positive ES indicates gene set 

enrichment at the top of the ranked list; a negative ES indicates gene set enrichment 

at the bottom of the ranked list. By normalising the enrichment score, GSEA 

accounts for differences in gene set size and in correlations between gene sets and 

the expression dataset; therefore, the normalised enrichment scores (NES) can be 

used to compare analysis results across gene sets. 

Parameters used for the analysis were as follows: 1000 permutations were 

used to calculate the p-value. All basic and advanced fields were set to default, 

except for “Enrichment statistics”, which was set to “classic”, and graphs for the top 

set of each phenotype was set to 200. 

 

2.10.6 Ingenuity pathway analysis 

The list of differentially expressed genes from the mRNA sequencing experiment 

was then analysed using the Ingenuity Pathway Analysis software (IPA) (Qiagen, 

Germany; http://www.ingenuity.com) to identify the main biological processes 

associated to the experimental system. IPA identifies significant networks, functions 

and canonical pathways associated with the differentially expressed genes for each 

comparison analysed in relation to larger biological or chemical systems. 

Importantly, the causal analytics are based on the Ingenuity Knowledge Base, which 

is a uniquely structured repository of biological and chemical findings curated from 

various sources including the literature and is continuously updated (Jimenez-Marin 
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et al. 2009, Kramer et al. 2014). IPA maps the differentially expressed genes onto 

proteins in its database and then organises the proteins into networks based on the 

number of members observed in the data set of significantly altered proteins, which 

then allows to detect new targets and candidate genes. The Ingenuity Knowledge 

Base currently contains approximately 5 million individual findings describing the 

relationships between molecules and/or diseases or biological functions (Kramer et 

al. 2014). 

 

2.10.7 Quantitative reverse transcriptase polymerase chain reaction (qRT-

PCR) of WT and Apc1322/+ organoids 

2.10.7.1 Complementary DNA synthesis 

Extracted RNA was normalised to 100ng/μl. The first strand cDNA was synthesised 

using the QuantiTect Reverse Transcription kit (Qiagen; UK) with integrated 

removal of genomic DNA contamination following manufacture’s instructions. In 

brief, the genomic DNA elimination reaction was prepared on ice by adding 1μl 

gDNA Wipeout Buffer to 100ng template RNA and topped up with RNase-free 

water to reach a final volume of 7μl per sample. This reaction was then incubated for 

2 min at 42°C and then immediately placed on ice. Next, the reverse-transcription 

master mix was prepared containing all components required for first strand cDNA 

synthesis. The template RNA (entire genomic DNA elimination reaction) of each 

sample was added to 0.5μl Quantiscript Reverse Transcriptase, 2μl Quantiscript RT 

Buffer, and 0.5μl RT Primer Mix to reach a final volume of 10μl. The mixture was 

then incubated for 30 min at 42°C followed by an incubation for 3 min at 95°C to 

inactivate Quantiscript Reverse Transcriptase. 40μl of RNase-free water was then 

added to the cDNA and stored at -20°C until further usage.  

 

2.10.7.2 qRT-PCR reaction preparation 

Prepared cDNA was thawed on ice, gently vortexed and centrifuged. Each reaction 

was prepared in duplicate, in a 20μl total reaction volume containing 10μl of 1X 

ABsolute Blue SYBR Green ROX Mix (Fisher Scientific, UK), 1μl of 100mM gene 

specific forward and reverse primer (Appendix Table 9.3), 1μl cDNA template, and 
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8μl nuclease-free water (Qiagen, UK) in a 96 MicroAmp, fast optical reaction plate 

(Applied Biosystems, UK). Reactions were run on an Applied Biosystems 

StepOnePlus Real Time PCR system (Amersham, UK) with thermal cycling 

conditions suggested by the manufacturer (Table 2.4). 

 

 
 Table 2.4: qRT-PCR thermal cycling conditions.  
 

2.10.7.3 qRT-PCR gene expression analysis 

Genes of interest (see Appendix Table 9.3) were normalised using the housekeeping 

gene GAPDH (Glyceraldehyde 3-phosphate dehydrogenase; reference sequence: 

forward: ttgtggaagggctcatgacc, reverse: tcttctgggtggcagtgatg) between samples in 

each set to calculate the relative expression of genes of interest. The ΔΔCT method 

(Schmittgen et al. 2008) was used to assess the relative expression level of each gene 

as follows: 

1. ΔCT was calculated by subtracting the average gene CT value from the 
average housekeeping CT value. 

2. ΔCT values from each sample were subtracted from the reference sample to 
get the ΔΔCT value: ΔΔCT = ΔCTWT exposed – ΔCTWT. The relative gene 
expression values 2(-log fold values) were calculated using the following equation: - 
2–ΔΔCT. 

3. The results were analysed in Prism 6.0 using a t-test with Welch correction 
on fold changes relative to the control sample. 
 
 

2.11 In situ hybridisation (ISH)  

ISH for Lgr5 expression was performed on 5μm FFPE sections using a RNAscope 

2.0 High Definition assay according to the manufacturer’s protocol (Advanced Cell 
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Diagnostics, Abingdon, UK). Briefly, sections were baked at 60°C for 1 h, followed 

by de-paraffinisation and incubation with Pretreat 1 buffer for 10 min at room 

temperature. Slides were boiled in Pretreat 2 buffer for 15 min, followed by 

incubation with Pretreat 3 buffer for 30 min at 40°C. Slides were incubated with the 

relevant probes for 2 h at 40°C, followed by successive incubations with Amp1 to 6 

reagents. Staining was visualised with DAB-A and DAB-B (brown staining) for 10 

min, and then lightly counterstained with Gill’s haematoxylin (Sigma-Aldrich, UK). 

RNAscope probes used were Lgr5 (NM_003667.2, region 560– 1589, # 311021), 

POLR2A (positive control probe, NM_000937.4, region 2514–3433, # 310451) and 

dapB (negative control probe, EF191515, region 414–862, # 310043).  

 Photographs of individual organoids were taken using a brightfield 

microscope and the number of positive stained Lgr5 probes per cell per organoid 

manually counted in each group in Photoshop CS6. 

 

2.12 Cytospin 

Normal charged glass slides were coated with 40μl poly-l-lysine (Sigma-Aldrich, 

UK) and left to dry in an incubator at 37°C for 20 min. Organoids were collected, 

spin down for 3 min at 800 rpm, the supernatant discarded and resuspended in 100μl 

ice cold PBS. The coated slides were then removed from the incubator and added on 

to a stainless steel Cytoclip slide clip together with filter paper and a Cytofunnel 

sample chamber. Organoids were then added into the little groove and centrifuged in 

a Shandon CytoSpin III Cytocentrifuge for 3 min at 500 rpm. After centrifugation, 

the slides were carefully taken out of the sample holder. A circle was then drawn 

around the organoids using a pap pen (Sigma-Aldrich, UK) before they were fixed in 

4% PFA followed by immunofluorescence staining. 

 

2.12.1 Immunofluorescence 

Immunofluorescence was performed on cytospin material of organoids. Organoids 

were fixed for 10 min in 4% PFA and permeabilised in PBS/0.5% Triton X (PBST) 

(Sigma-Aldrich, UK) for 30 min. Sections were then blocked with Protein-Free 

block (Dako, UK) for 10 min. Anti-Ki67 (Abcam, Cambridge, UK; dilution 1:100) 
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was diluted in PBST and 5% Donkey serum for 45 min and then washed 3 x 5 min in 

PBST. Organoids were then incubated in Alexa Fluor 488 donkey anti-rabbit 

secondary antibody (Life Technologies, UK) (1:800 dilution in PBST and 5% 

donkey serum) for 45 min and washed 3 x 5 min in PBST. Then, DAPI (Sigma-

Aldrich, UK) was diluted 1:2000 in PBST and added for 5 min following a 3 x 5 min 

washing step in PBST. Lastly, mounting medium (Vectorshield for fluorescence; 

Vector labs, UK) was applied to cover slip the sections. Immediately after, slides 

were stored in a box to prevent light exposure and kept dry at 4°C until being 

analysed with confocal microscopy. 

 

2.12.2 Confocal microscopy and image analysis 

Fluorescent stained slides were scanned in with a confocal microscope (LSM 710 

Zeiss, Germany) using the 20x objective. WT ROSAmT/mG (membrane-

Tomato/membrane-Green) organoids express strong membrane-targeted tdTomato 

(mT), a red fluorescent protein (https://www.jax.org/strain/007576). DAPI, tdTomato 

and Ki67+ cells were scanned in in separate channels and a z-stack was produced. 

Representative organoid images were analysed in Image J 1.48v 

(https://imagej.nih.gov/ij/). The percentage of Ki67+ cells/area was measured. In 

brief, the area of the organoid was assessed in the DAPI image by manually drawing 

around the organoid and the same area was kept for the Ki67+ stained image. The 

tdTomato image was used to identify WT ROSAmT/mG organoids when grown in 

presence of Apc1322/+organoids. A threshold was then applied to measure the 

percentage of Ki67+ cells/area, which was kept the same for each image (Figure 2.9). 

 

 
Figure 2.9: Assessing Ki67+ cells in WT ROSAmT/mG organoids. 
Three channels were scanned in using the confocal microscope: DAPI, tdTomato and green 
fluorescent Ki67+ cells. Area of organoid was assessed on the DAPI image. A threshold was applied 
to the Ki67 image to measure the percentage of positive stained cells per area. 
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2.13 Statistical analysis 

GraphPad Prism® 6 programme and R 3.3.0 were used for all statistical analyses. All 

statistical analyses are explained in further detail in the relevant section. Data was 

considered statistically significant when the P value was less than 0.05. All statistical 

tests were two-sided. Error bars represent standard error of the mean unless 

otherwise stated. 

 

2.13.1 Statistical test for the assessment of immunohistochemical analyses of 

Ki67, γH2AX, nuclear β-catenin, intraepithelial lymphocytes (CD8), α-
SMA, and phenotypic characteristics 

First, a Shapiro-Wilk normality test was performed in Prism 6 to test for normal 

distribution of the data. For each marker, the data did not pass the normality test. 

Thus, the non-parametric Kruskal-Wallis test was used. An unpaired t-test with a 

two-tailed Mann-Whitney test was performed to assess which of the ranks were 

significantly different (see section 3.2.1, 3.2.3, 3.2.4, 3.2.5).  

 

2.13.2 Statistical test for the assessment of immunohistochemical analyses of the 

stromal markers CD4, CD8, CD68, and α-SMA 

A Pearson’s χ2 test was performed (see section 3.2.2). 

 

2.13.3 Statistical test for the assessment enzyme histochemical analysis of 
cytochrome c oxidase and the measurement of mean cell number and 

circumference per crypt 

A Kruskal-Wallis test was performed and an unpaired t-test with a two-tailed Mann-

Whitney test (section 3.2.6). 
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2.13.4 Statistical test for the quantification of stem cell dynamics in vivo 

The relative change in clone size per section in terms of number of cells per crypt 

was plotted in R 3.3.0 using the density function and skewness was calculated 

(section 4.2.1). 

 

2.13.5 Statistical test for the quantification of cell proliferation in murine 

organoids  

A one-way ANOVA was performed and an unpaired t-test with a two-tailed Mann-

Whitney test (section 6.4.6). 

 

2.13.6 Statistical test for the quantification of Lgr5 expression in murine 
organoids 

Data passed Shapiro-Wilk normality test. A one-way ANOVA followed by a 

Bonferroni’s multiple comparisons test was performed. A Pearson’s χ2 test was 

performed on the stacked plot (section 6.4.7). Pairwise comparisons were done using 

an unpaired t-test with Welch correction. 
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3 Chapter III: Clonal Interactions 

3.1 Introduction 

Colonic crypts are clonal units, each cell is derived from a common stem cell and 

according to the somatic evolution of cancer theory, cancers are derived from clonal 

lesions, such as monocryptal adenomas (Humphries et al. 2008, Novelli et al. 1996). 

Therefore, at the root of CRC development lies the normal crypt stem cell (Brittan et 

al. 2002). Neoplastic changes occur when a crypt stem cell acquires sufficient 

mutations or genetic defects to confer a selective growth advantage over the other 

stem cells and by clonal conversion results in a mutant and perhaps premalignant 

phenotype. As the mutant crypt divides by fission, a monoclonal tumour forms 

(Nowell 1976). This theory has formed the bedrock of our knowledge of 

tumourigenesis in most tissues. However, clonal analysis of murine and human 

familial intestinal adenomas has shown that tumours can develop from more than one 

founder mutant crypt, leading to a polyclonal tumour (Gausachs et al. 2017, Merritt 

et al. 1997, Novelli et al. 2003, Novelli et al. 1996, Thirlwell et al. 2010, Thliveris et 

al. 2005, Thliveris et al. 2013). Using a mathematical model, it was predicted that 

recruitment occurs in short-range interactions between clones, and polyclonal 

tumours could be best explained by the transformation of a single neighbour within 

144μm from its initial progenitor (Thliveris et al. 2013) (see introduction 1.15).  

However, no data exists on the nature of these clonal interactions, the field 

effect this may cause and indeed there is no explanation on the role of the stroma in 

this process. The research that has been done to understand these interactions 

between mutated and normal clones suggests that when a crypt undergoes neoplastic 

changes it alters its local environment and begins to affect the stroma and 

neighbouring crypts (Bjerknes 1996, Bjerknes et al. 1999). Here, it is hypothesised 

that an initiated crypt exerts mutational or neoplastic pressure on surrounding 

neighbouring crypts, that results in the formation of two independently derived 

crypts that combine to form a polyclonal tumour. Further, multiple initiated crypts 

can interact to generate a dysplastic field effect. Evolution is based on natural 

selection (Merlo et al. 2006), therefore competition or cooperation between 
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independent crypts develops where a ‘winner’ crypt (or clone) proceeds to become 

the dominant lineage within an adenoma and therefore becomes the monoclonal 

origin of cancer. 

There is therefore an urgent need to understand if and how different clones 

interact, as it will determine risk of malignancy in adenomas. Thus, the aim of this 

chapter is to demonstrate clonal interactions between dysplastic and non-dysplastic 

epithelium driving expansion. Determining unique clones within the colon is difficult 

without large amounts of next generation sequencing of crypts. Further, adenomas 

are removed when detected making temporal analysis in the human colon difficult. 

Therefore, a phenotypic distinction of clones was used: the dysplastic crypts of the 

adenoma and surrounding non-dysplastic crypts. It is known through other 

sequencing studies that these are genetically distinct (Cancer Genome Atlas Network 

2012). Therefore, the field effect of adenomatous crypts on their non-dysplastic 

neighbouring will be studied as a proxy of a clonal interaction.  

To characterise this field effect, immunohistochemistry (IHC) was used to 

illustrate cellular behaviour in FAP and sporadic patient samples. Adenomatous and 

surrounding non-adenomatous crypts were analysed using markers for cell 

proliferation (Ki67) and DNA damage (γH2AX) and analysing the effect of distance 

on these markers in crypts away from an adenoma.  

Ki67, a nuclear protein expressed in all proliferating cells, was looked at 

because it is commonly used as a biomarker to estimate the proportion of dividing 

cells to aid tumour grading (Sobecki et al. 2017). High levels of Ki67 in carcinomas 

have been associated with poor prognosis (Li et al. 2015). Thus, a greater percentage 

of positive Ki67 cells was hypothesised to be present in adenomas and surrounding 

non-adenomatous crypts compared to normal crypts distant to the adenoma. 

The histone protein H2AX, a marker for DNA damage, was also chosen for 

this analysis since it is responsible for recruiting cell cycle checkpoint and DNA 

repair factors to sites of double strand breaks (DSBs). The human H2AX gene is 

located on chromosome 11 at position 11q23 – a region that is frequently associated 

with mutations or deletions in a large number of human cancers. DSBs are serious 

lesions that can initiate genomic instability (Bonner et al. 2008). Thus, it is of 

interest to investigate the status of DNA damage in dysplastic and surrounding non-

dysplastic crypts. Again, a greater percentage of positive γH2AX was hypothesised 

in adenomatous and non-adenomatous crypts compared to normal crypts far away 
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from the adenoma.  

To further investigate the behaviour of adenomatous crypts on surrounding 

non-adenomatous crypts, nuclear β-catenin was chosen as an additional marker, 

since there is strong evidence of an optimal level of WNT signalling critical for 

adenoma development (Albuquerque et al. 2002). In normal epithelium, β-catenin is 

mainly expressed in the membrane, whereas in adenocarcinomas cytoplasmic β-

catenin is translocated into the nucleus regulating tumour growth, a process 

associated with poor prognosis (Dai et al. 2012, Wong et al. 2004). Therefore, IHC 

for nuclear β-catenin was also performed in adenomatous and surrounding non-

adenomatous crypts as a modulator of Wnt signalling, hypothesising a greater 

percentage of nuclear β-catenin staining in adenomatous crypts and surrounding non-

adenomatous crypts compared to non-dysplastic crypts distant to the adenoma, and 

that this effect is again decreasing with increasing distance away from the adenoma.   

Very little is known on tumour-stroma interactions at the very early stages of 

tumour initiation and its progression. Understanding these interactions might help 

understanding how their progression is regulated. Therefore, the composition of the 

stroma was investigated by assessing the percentage of helper T-cells (CD4), 

cytotoxic T-cells (CD8), macrophages (CD68) and α-smooth muscle actin (α-SMA) 

in the stroma of adenomas and their neighbouring non-dysplastic stroma, as immune 

cells are important in anti-tumour immunity. α-SMA is a marker for fibroblasts, 

responsible for tissue remodelling and homeostasis. The aim here was to examine 

how signals emanating from the adenoma are affecting the stroma of nearby non-

adenomatous crypts.  

For all immune markers and fibroblasts, it was hypothesised to detect a higher 

percentage of staining in the stroma surrounding dysplastic crypts, as well as non-

dysplastic crypts surrounding the adenoma compared to non-dysplastic crypts far 

away from the adenoma, and that this effect is decreasing with increasing distance 

away from the adenoma.  

Furthermore, an increased susceptibility to mutations in non-dysplastic crypts 

neighbouring adenomas compared to distant crypts was hypothesised. The mutation 

burden of mtDNA mutations in adenomatous and neighbouring non-dysplastic crypts 

was investigated using CCO-deficiency as a marker for mutagenesis. It was 

hypothesised that adenomas harbour more CCO-deficient crypts than surrounding 
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non-dysplastic crypts in the zones and that this effect is decreasing with increasing 

distance away from the adenomatous zone.  

To further demonstrate this mutagenic field effect genetically, the nearest non-

dysplastic crypts to an adenoma were laser capture microdissected from FAP 

patients, sequentially dissected at an increasing distance from the adenoma, and next 

generation sequencing (NGS) of the mitochondrial genome performed. As stated 

earlier, mtDNA mutations are a good indicator for mutagenic pressure (see section 

1.6). Although genomic mutations provide a basis for the cellular phenotype that is 

selected for clonal expansion, they are rare in non-dysplastic tissue given the 

efficient DNA repair mechanisms (Walther et al. 2016). Therefore, it was proposed 

that adenomatous crypts have a greater mtDNA mutation burden and a greater 

diversity of mutations than normal crypts due to an increased mutation rate induced 

by dysplasia. The aim here was to compare the mutation burden of dysplastic and 

surrounding non-dysplastic epithelia and to demonstrate that mutagenic pressure is 

generated through a field effect of one clone onto another. 

These data will provide a comprehensive analysis of the field effect emanating 

from adenomas. 
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3.2 Results: Demonstrating clonal interactions 

Data presented in this chapter were primarily generated by myself, but collaboration 

with two BSc students Ashwin Sivaharan from Imperial College London and Yara 

Fadaili from Queen Mary University of London contributed to this work. 

Bioinformatic processing presented in sub-heading 3.2.7 was performed with the 

help of Marc Williams at Barts Cancer Institute, Queen Mary University of London. 

 

3.2.1 Greater cell proliferation, DNA damage and Wnt-signalling found in 

non-dysplastic crypts surrounding an adenoma  

To characterise the field effect of adenomatous crypts on non-dysplastic crypts of 

increasing distance away from adenomas, analysis of cell proliferation (Ki67), DNA 

damage (γH2AX), and Wnt-signalling (nuclear β-catenin) was performed using 

immunohistochemistry (see section 2.2.3). Sections of FAP and sporadic patients 

were stained with the appropriate antibody and slides were digitally scanned in (3D 

Histotech, Hungary). Adenomas were then identified with the help of pathologist Dr 

Marnix Jansen (University College Hospital, London) and the surrounding non-

dysplastic crypts divided into zones based on physical distance from the tumour. 

Crypts < 50μm away from the adenoma were categorised as zone 1, crypts 50-

150μm away from the adenoma as zone 2 and crypts 150-250μm as zone 3 (see 

section 2.3.1). Physical distances of the zones surrounding the adenoma were based 

on a mathematical model that suggested interactions should occur within 144μm of 

an initiated progenitor (Thliveris et al. 2013). Table 3.1 gives an overview of the 

number of adenomas counted for each of the markers. Positive (brown) and negative 

unstained cells within an adenoma and their surrounding non-dysplastic crypts (zone 

1 – 3) were counted manually in the Pannoramic Viewer software and the proportion 

of positive stained cells calculated (see section 2.3.2). This was controlled with 

counts of positive and negative stained cells of non-dysplastic crypts as far away as 

possible from each adenoma of FAP and sporadic patients, and are referred to as 

distant crypts. To assess overall significance, a Kruskal-Wallis (KW) test was used, 

and for pairwise comparisons a Mann Whitney test was performed, both in Prism 6 

(see section 2.13.1). 
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Table 3.1: Number of adenomas counted in samples stained for epithelial markers. 
For example, for Ki67, 13 samples (FFPE blocks) from 10 patients were used and of those samples 50 
adenomas were counted, of which were 28 FAP adenomas and 22 sporadic adenomas.  
 

Ki67 expression has been shown to be associated with progression to CRC (Barone 

et al. 2010, Li et al. 2015). Therefore, the percentage of Ki67+ staining was 

investigated in adenomas and neighbouring non-adenomatous crypts.  

A significant increase in the percentage of Ki67+ cells per adenomatous crypt 

compared to distant crypts was expected and also observed in both FAP and sporadic 

adenoma patients. There were significantly more Ki67+ cells in non-dysplastic crypts 

from all three zones compared to distant crypts in patients with FAP (Kruskal-Wallis 

test, p = 0.028) (Figure 3.1A, C) and patients with sporadic adenomas (p = 0.028) 

(Figure 3.1B, D). For FAP patients, there were significantly more proliferating cells 

in the adenoma compared to distant crypts (p = 0.003). Interestingly, no significant 

difference in cell proliferation was found between the adenomas and their 

surrounding zones. However, distant non-dysplastic crypts were significantly lower 

compared to zone 1 (p = 0.002), zone 2 (p = 0.014) and zone 3 (p = 0.002).  

Similar results were obtained from sporadic adenoma patients. No significant 

difference was found between adenomas and their surrounding zones, but the 

percentage of Ki67+ cells within sporadic adenoma crypts was significantly higher 

compared to distant crypts (p = 0.001). Cell proliferation in non-dysplastic crypts in 

zones 2 and 3 was also significantly higher compared to distant crypts (zone 2: p = 

0.021; zone 3: p = 0.006).  

Together these data suggest there is a strong local proliferative field effect on 

non-dysplastic crypts emanating from the adenoma. 
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Figure 3.1: Cell proliferation in adenomas and surrounding non-adenomatous crypts. 
Effect of dysplastic crypts on their surrounding non-dysplastic crypts in terms of cell proliferation 
(Ki67 marker) for FAP (A) and sporadic adenomas (B). The percentage of positive stained Ki67 
cells/crypt in adenomas (blue) and surrounding non-dysplastic crypts in zone 1 (purple), zone 2 (red), 
zone 3 (orange) and non-dysplastic distant crypts (green) for FAP patients (p = 0.028) and sporadic 
patient samples (p = 0.028). The box plot indicates the mean, upper and lower quartile. Staining for 
Ki67 is shown from a FAP adenoma (C; scale bar: 100μm) and from a sporadic adenoma (D; scale bar 
sporadics: 200μm). The dashed blue line outlines crypts within the dysplastic zone, the dashed purple 
line non-dysplastic crypts in zone 1, the dashed red line non-dysplastic crypts in zone 2, and the 
dashed orange line non-dysplastic crypts in zone 3.  
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DNA damage (γH2AX+ cells) is a common sign for cancer progression and 

was thus investigated in adenomatous and neighbouring non-adenomatous crypts. 

DNA damage within crypts within adenomas was significantly higher to γH2AX+ 

cells counted in the zones and in distant crypts for FAP patients (Kruskal-Wallis test; 

p < 0.0001) (Figure 3.2A, C) and for sporadic adenoma patients (Kruskal-Wallis test; 

p < 0.0001) (Figure 3.2B, D).  

In FAP patients, the percentage of γH2AX+ cells within adenomatous crypts 

was significantly higher compared to non-dysplastic crypts in zones 1 (p < 0.0001), 2 

(p < 0.0001) and 3 (p < 0.0001). There were no significant differences between 

crypts in each non-dysplastic zone. Interestingly, γH2AX+ cells in distant crypts 

were significantly lower to the γH2AX+ cell count in the adenoma (p < 0.0001), but 

not significantly lower to non-dysplastic crypts in zone 1 (p = 0.144), in zone 2 (p = 

0.229), zone 3 (p = 0.17) (Figure 3.2A).  

Similarly, for sporadic adenoma patients, DNA damage was significantly 

higher in adenomatous crypts compared to non-dysplastic crypts in zone 1 (p < 

0.0001), zone 2 (p < 0.0001), and zone 3 (p < 0.0001), and also to distant crypts (p < 

0.0001). Non-dysplastic crypts in each zone were not significantly different to each 

other and also not to distant crypts (Figure 3.2B).  

This suggests that DNA damaged crypts exert a field effect on surrounding 

non-adenomatous crypts. 
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Figure 3.2: DNA damage in adenomas and surrounding non-adenomatous crypts. 
Effect of dysplastic crypts on their surrounding non-dysplastic crypts in terms of DNA damage 
(γH2AX marker) for FAP (A) and sporadic adenomas (B). The percentage of positive stained γH2AX 
cells/crypt in the adenoma (blue) and surrounding non-dysplastic crypts in zone 1 (purple), zone 2 
(red), zone 3 (orange) and non-dysplastic distant crypts (green) for FAP patients (Kruskal-Wallis: p < 
0.0001) and sporadic patient samples (Kruskal-Wallis: p < 0.0001). The box plot indicates the mean, 
upper and lower quartile. Staining for γH2AX is shown from a FAP adenoma (C; scale bar: 100μm) 
and for a sporadic adenoma (D; scale bar sporadics: 200μm). The dashed blue line outlines crypts 
within the dysplastic zone, the dashed purple line non-dysplastic crypts in zone 1, the dashed red line 
non-dysplastic crypts in zone 2, and the dashed orange line non-dysplastic crypts in zone 3.  
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To further investigate whether dysplastic crypts have a field effect on their 

neighbouring non-dysplastic crypts, sections were stained for nuclear β-catenin, a 

marker for Wnt signalling, which is one of the most critical pathways in cancer 

progression (Clevers 2006). The percentage of nuclear β-catenin+ cells within crypts 

within adenomas was significantly higher to nuclear β-catenin+ cells counted in the 

zones and in distant crypts in FAP patients (Kruskal-Wallis test; p < 0.0001) (Figure 

3.3A) and in sporadic patients (Kruskal-Wallis test; p < 0.0001) (Figure 3.3B). 

Specifically for FAP patients, significant differences were found between the 

adenoma and zone 1 (p = 0.002), zone 2 (p = 0.0003) and zone 3 (p < 0.0001) and 

the distant crypts (p < 0.0001). A decreasing percentage of nuclear β-catenin can be 

seen as proximity to the adenoma decreases, with no nuclear β-catenin seen in distant 

crypts. Distant crypts displayed significantly less nuclear β-catenin than non-

dysplastic crypts in all zones (p < 0.0001). No significant differences were found 

between non-dysplastic crypts in the zones. 

In sporadic adenoma patients, significant differences in nuclear β-catenin 

were found between the adenoma and zone 1 (p = 0.015), zone 3 (p = 0.032) and the 

distant crypts (p = 0.008), but not to zone 2 (p = 0.055), although this was close to 

being considered significant. Non-dysplastic crypts in the control group were 

significantly lower than non-dysplastic crypts in zone 1 (p = 0.008), zone 2 (p = 

0.047) and zone 3 (p = 0.047). No significant differences were found among the non-

dysplastic crypts in the zones.  

This suggests that increased nuclear β-catenin expression is associated with a 

field effect emanating from the dysplastic zone. 

 

Overall, the results show that adenomatous crypts have a higher rate of cell 

proliferation, DNA damage and nuclear β-catenin compared to surrounding non-

dysplastic and distant crypts. Taken together, this demonstrates that clonal 

interactions occur in close proximity between dysplastic and surrounding non-

dysplastic crypts and further suggests, that the adenoma exerts a pro-tumourigenic 

effect. The percentage of cell proliferation, DNA damage and nuclear β-catenin 

within crypts increases the closer a non-dysplastic crypt is to an adenoma, indicating 

that adenomas are having a significant effect on neighbouring crypts. Thus, 

adenomas create a field effect.    
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Figure 3.3: Nuclear β-catenin in adenomas and surrounding non-adenomatous crypts. 
Effect of dysplastic crypts on their surrounding non-dysplastic crypts in terms of Wnt-signalling (β-
catenin marker) for FAP (A) and sporadic patients (B). The percentage of positively stained nuclear β-
catenin cells/crypt in adenomas (blue) and surrounding non-dysplastic crypts in zone 1 (purple), zone 
2 (red), zone 3 (orange) and non-dysplastic distant crypts (green) in FAP patients (p < 0.0001) and 
sporadic patients (p < 0.0001). The box plot indicates the mean, upper and lower quartile. C) Staining 
for nuclear β-catenin is shown for a sporadic patient (scale bar: 100μm). The dashed blue line outlines 
crypts within the dysplastic zone, the dashed purple line non-dysplastic crypts in zone 1, and the 
dashed red line the non-dysplastic crypt in zone 2. D) Asterisk in the adenomatous crypt shows 
positive stained nuclear β-catenin cells. 
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3.2.2 Stromal alterations in the mucosa surrounding adenomas 

The field effect was also investigated within the stroma using a semi-quantitative 

scoring system. Because crypts are physically separated by lamina propria, any 

potential field effect may be amplified through stromal cells. The aim here is to 

investigate whether non-dysplastic crypts surrounding the adenoma have a higher 

proportion of stromal cells than non-dysplastic crypts that are not in close proximity 

to the adenoma.  

IHC was performed using antibodies against CD4 (helper T-cells), CD8 

(cytotoxic T-cells), CD68 (macrophages), and α-smooth muscle actin (α-SMA, 

fibroblasts and smooth muscle cells) (Table 3.2). Adenomas were identified on serial 

H&E sections, and the adenoma and surrounding non-dysplastic crypts divided into 

zones as described in section 2.3.1. A semi-quantitative scoring method was used to 

quantify the proportion of positively stained cells in the dysplastic and non-

dysplastic zone (see section 2.3.3). The proportion was assessed according to the 

scoring system as shown in Table 2.2. Stromal cells surrounding distant non-

dysplastic crypts were used as control. A stacked bar plot visualised the percentage 

of positive stained cells in the stroma in each zone for each marker tested for FAP 

(Figure 3.4) and sporadic patients (Figure 3.5). Semi-quantitative scoring of 

inflammatory infiltration and fibroblasts of the adenoma, the three surrounding 

zones, and the distant stroma is given in Table 3.3 for FAP patients and in Table 3.4 

for sporadic patients.  

 

  

 
Table 3.2: Number of adenomas counted in samples stained for stromal markers. 
For example, for CD4, 11 samples (FFPE blocks) from 7 patients were used and of those samples 23 
were FAP adenomas and 25 sporadic adenomas. 
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Increased concentrations of helper T-cells have been associated with the 

progression to cancer (Chirica et al. 2015). Therefore, the concentration of CD4 cells 

was investigated in the stroma surrounding adenomas and its neighbouring non-

adenomatous crypts.  

For FAP patients, a statistically significant decrease of CD4+ cells in the 

stroma over distance was observed overall (χ2 test: p < 0.0001) (Figure 3.4A), 

indicating that a greater percentage of CD4+ cells was found surrounding adenomas, 

that decreases with distance. More specifically, a significant decrease between 

dysplastic crypts and zone 1 (p < 0.0001), from zone 1 to zone 2 (p < 0.0001), from 

zone 2 to zone 3 (p < 0.0001) and from zone 3 to the control group (p = 0.0024) was 

found suggesting an immune gradient towards adenomas. 

A similar trend was observed for sporadic adenoma samples. Positively 

stained cells for CD4 were found in significantly greater concentration in the stroma 

surrounding the dysplastic zone and this is gradually decreasing with increasing 

distance away from dysplasia (χ2 test:  p < 0.0001) (Figure 3.5A). 

This suggests that the adenoma alters the surrounding microenvironment, and 

also indicates it emanates a pro-inflammatory field effect.  

 

Cytotoxic T cells (CD8) have also been associated with the progression to 

cancer (Deschoolmeester et al. 2010, Liu et al. 2016), and were thus investigated in 

the stroma surrounding the adenoma and its non-dysplastic crypts. 

Results for CD8 show a very similar effect in FAP patients as compared to 

CD4. Cytotoxic T cells are significantly higher in the stroma surrounding the 

adenoma than in their surrounding non-dysplastic zones with overall significance (χ2 

test: p < 0.0001) (Figure 3.4B). Again, CD8+ cells are significantly higher in the 

adenoma than in zone 1 (p < 0.0001) and are significantly higher in zone 1 than in 

zone 2 (p = 0.0135). The same trend is observed when analysing the expression of 

cytotoxic T cells in sporadic adenoma patients. CD8+ cells were significantly higher 

expressed in the stroma surrounding the adenoma and this effect is decreasing over 

distance (χ2 test:  p < 0.0001) (Figure 3.5B). 

These results suggest that the adenoma exerts a pro-inflammatory response in 

the dysplastic and surrounding non-dysplastic region, potentially promoting clonal 

interactions. 
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Studies on macrophage infiltration have also shown its progression to cancer. 

Differences in the concentration in the tumour stroma and matching normal mucosa 

were detected (McLean et al. 2011). Thus, it was of interest to investigate 

macrophage concentration in the stroma surrounding the adenoma and in its 

surrounding non-adenomatous stroma.  

Macrophages (CD68) were significantly increased in the stroma surrounding 

the adenoma compared to their neighbouring non-dysplastic zones for FAP patients 

(χ2 test: p < 0.0001) (Figure 3.4C). The results show a pattern of gradual increase of 

score 1 (0 – 25% of positive stained cells) with it being lowest surrounding the 

adenomatous region and highest in the distant normal stroma (Dysplasia < Zone1 < 

Zone2 < Zone3 < Normal). This pattern is reversed with a gradual decrease of score 

3 (75 - 100% of positive stained cells) with it being highest surrounding the 

adenomatous region and lowest in the normal control region (Dysplasia > Zone1 > 

Zone2 > Zone3 > Normal). A statistical significant decrease between dysplastic 

crypts and zone 1 (p < 0.0001), from zone 1 to zone 2 (p = 0.0373), from zone 2 to 

zone 3 (p < 0.0001) and from zone 3 to the control group (p < 0.0001) was observed.  

A similar trend was observed for sporadic adenoma samples. Positive stained 

cells for CD68 were found in significantly greater concentration in the stroma 

surrounding the dysplastic zone and this is gradually decreasing with increasing 

distance away from dysplasia (χ2 test:  p < 0.0001) (Figure 3.5C). 

The here observed increased concentration of macrophage infiltration in the 

stroma of adenomas and its surrounding non-adenomatous crypts supports the 

hypothesis that the adenoma exerts a field effect leading to a pro-tumourigenic 

environment.   

 

Increased fibroblast concentrations in tumours have been associated with 

progression to cancer (Hinz et al. 2001, Mo et al. 2016), therefore the concentration 

of α-SMA+ cells in the adenoma and surrounding non-adenomatous crypts was 

investigated.  

Similar to the immune cell markers, a statistically significant decrease of α-

SMA+ cells in the stroma over distance away from the adenoma was observed overall 

for FAP patients (χ2 test: p < 0.0001) (Figure 3.4D), indicating that a higher 

proportion α-SMA+ cells was found surrounding the adenoma, but less positive 

stained cells gradually declining over distance away from the adenoma. α-SMA+ 
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cells are significantly higher in the stroma surrounding the adenoma compared to 

stromal cells in zone 1, significantly higher in zone 1 to zone 2, as well as 

significantly higher in zone 2 to zone 3 and in zone 3 to the control group (for all: p 

< 0.0001). 

Similarly to FAP patients, a significantly greater α-SMA expression 

surrounding the adenoma compared to non-dysplastic and distant crypts (χ2 test:  p < 

0.0001) (Figure 3.5D) was observed in the stroma of sporadic adenoma patients. 

This suggests that the adenoma exerts a pro-tumourigenic field promoting the 

progression of adjacent cells. 

 

Taken together, the obtained results suggest that the stroma surrounding the 

adenoma plays an essential role in tumour development and is actively involved in 

generating a field effect emanating from the adenoma leading to a pro-tumourigenic 

environment.  
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Figure 3.4: Proportion of stromal cells in dysplastic and surrounding non-dysplastic crypts of 
FAP patients.  
Stacked bar plot depicting the proportion of the intensity of stromal markers in adenomas and their 
surrounding non-dysplastic crypts that were positive for CD4, CD8, CD68, and α-SMA. Red bars 
show the proportion of positive stained cells in the stroma that were given score 3 (75 – 100%), 
salmon coloured bars the proportion of positive stained cells that were given score 2 (25 – 75%), 
turquoise coloured bars the proportion of positive stained cells that were given score 1 (0 – 25%), and 
samples that showed no staining were given score 0 (blue coloured bars). A statistically significant 
decrease of the number of CD4, CD8, CD68 and α-SMA positive stained cells as a function of 
distance was observed (χ2 test: p < 0.0001). 
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Table 3.3: Semi-quantitative scoring of inflammatory infiltration and fibroblasts in colonic 
adenomas of FAP patients. 
Semi-quantitative scoring of inflammatory infiltration and fibroblasts of the adenoma and the three 
different zones around the adenoma region, controlled with distant normal stroma, based on four 
levels of infiltration and fibroblast presence. Score 0 = no stained cells (0%); score 1 = low number of 
stained cells (0 – 25%), score 2 = medium number of stained cells (25 – 75%), score 3 = high number 
of stained cells (75 – 100%). Values are given as numbers (percentage). 
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Figure 3.5: Proportion of stromal cells in dysplastic and surrounding non-dysplastic crypts in 
sporadic adenomas.  
Stacked bar plot depicting the proportion of the intensity of stromal markers in adenomas and their 
surrounding non-dysplastic crypts that were positive for CD4, CD8, CD68, and α-SMA markers. As 
per Figure 1.4 Red bars show a score of 3 (75 – 100%), salmon bars a score of 2 (25 – 75%), 
turquoise bars a score of 1 (0 – 25%), and samples that showed no staining were given score 0 (blue 
coloured bars). A statistical significant decrease of CD4 (χ2 test: p < 0.0001), CD8 (p < 0.0001), 
CD68 (p < 0.0001) and α-SMA (p < 0.0001) positive stained cells over distance away from the 
adenomatous zone in the stroma was observed. 
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Table 3.4: Semi-quantitative scoring of inflammatory infiltration and fibroblasts in colonic 
adenomas of sporadic adenomas. 
Semi-quantitative scoring of inflammatory infiltration and fibroblasts of the adenoma and the three 
different zones around the adenoma region, controlled with distant normal stroma, based on four 
levels of infiltration and fibroblast presence. Score 0 = no stained cells (0%); score 1 = low number of 
stained cells (0 – 25%), score 2 = medium number of stained cells (25 – 75%), score 3 = high number 
of stained cells (75 – 100%). Values are given as numbers (percentage). 
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3.2.3 Intraepithelial CD8+ cell numbers increase with increasing distance from 

adenomas 

Cytotoxic T cells are not only present in the stroma, but also in the gastrointestinal 

epithelium of a crypt (Mowat et al. 2014). These intraepithelial lymphocytes (IELs) 

are crucial in maintaining intestinal homeostasis (Renuka et al. 2017) on the one 

hand, but have been associated with progression to cancer on the other hand 

(Cheroutre et al. 2011). Therefore, the role of IELs in adenomas and surrounding 

non-dysplastic crypts was investigated. 

IELs are predominantly CD8+ and can be visualised using the same CD8 

antibody as per Figure 3.4 and Figure 3.5. 34 FAP sections and 7 sporadic adenoma 

sections from a total of 9 patients were manually counted in each crypt within 

adenomas, each surrounding zone and in distant non-dysplastic crypts. The 

proportion of positive stained IELs as a proportion of the total number of epithelial 

cell nuclei was calculated to assess whether the levels of IELs are increased in crypts 

surrounding dysplasia.  

In FAP adenomas (Figure 3.6A), significantly more CD8+ IELs were 

observed in crypts further away from the adenoma. Indeed adenomatous crypts 

displayed the lowest concentration of CD8+ IELs. An increase in IEL numbers in 

surrounding non-dysplastic crypts in all three zones and distant crypts was observed 

(Kruskal-Wallis: p < 0.0001). Further, this appeared to increase as a gradient 

proportional to increasing distance. Thus, the number of IELs in the adenomatous 

zone was significantly lower compared to zone 1 (p < 0.0001), to zone 2 (p < 

0.0001), to zone 3 (p < 0.0001), and to the distant crypts (p < 0.0001). Moreover, 

distant crypts were significantly higher to zone 1 (p = 0.004), to zone 2 (p = 0.012) 

and to zone 3 (p = 0.005). No significant differences were found between non-

dysplastic crypts in the zones.  

In sporadic adenoma samples (Figure 3.6B, C), a similar gradient was 

observed with a lower percentage of IELs in the adenomatous crypts and an 

increasing number in crypts with increasing distance away from the adenoma, 

however this was not significant (Kruskal-Wallis: p = 0.1625). Pairwise comparison 

has shown that adenomatous crypts are significantly lower to non-dysplastic crypts 

in the control group (p = 0.012). No significant differences were found between non-

dysplastic crypts in the zones.  
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Figure 3.6: Intraepithelial lymphocytes are increased in non-dysplastic crypts surrounding an 
adenoma. 
A) Beeswarm plot visualising the percentage of positive stained IELs/crypt in the adenoma (blue) and 
surrounding non-dysplastic crypts in zone 1 (purple), zone 2 (red), zone 3 (orange) and non-dysplastic 
distant crypts (green) for FAP patients (p < 0.0001) and B) sporadic patients (p = 0.16). The box plot 
indicates the mean, upper and lower quartile. C) Staining for IELs is shown for a sporadic patient 
(scale bar: 100μm). The dashed blue line outlines crypts within the dysplastic zone, the dashed purple 
line non-dysplastic crypts in zone 1, the dashed red line non-dysplastic crypts in zone 2, and the 
dashed orange line non-dysplastic crypts in zone 3. High power images show positive IELs within the 
epithelial lining of a crypt from an adenoma and from non-dysplastic crypts located in zone 1 and 
zone2. Arrows indicate IELs.  
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The difference between FAP and sporadic cases could be explained by the 

size of the adenomas. Sporadic adenomas were on the whole far bigger and may 

generate a larger field effect. 

These results show a decrease of IELs in adenomatous crypts and a 

significant increase in non-dysplastic crypts as the distance increases away from the 

dysplastic area. This could indicate that IELs have lost their function and can no 

longer protect intestinal homeostasis.   

 

3.2.4 Higher density of subepithelial α-SMA+ cells adjacent to adenomas  

Fibroblasts (α-SMA+ cells) are found in the stroma but are also located surrounding 

the crypt as a fenestrated sheath (subepithelial myofibroblasts). Myofibroblasts 

provide structural support and its disruption has been associated with tumour 

progression (Yen et al. 2010).  

To characterise how these cells are affected by the presence of an adenoma, 

the density of α-SMA+ cells in tissue sections was measured using the DensitoQuant 

application in Pannoramic Viewer (see section 2.3.4). The mean density of negative 

and positive pixels was plotted for the adenomatous region, each surrounding zone 

and the distant crypts for both, FAP and sporadic tissue sections.  

For FAP patients, there is a gradient of the α-SMA+ cell density with a lower 

number of subepithelial myofibroblasts surrounding the adenoma compared to its 

surrounding zones, and an increase in α-SMA+ cells in the surrounding normal zone, 

whilst the α-SMA+ density count decreases again in distant crypts (Kruskal-Wallis 

test; p < 0.0001) (Figure 3.7A). The mean α-SMA+ density between the dysplastic 

region and all three zones shows an increase with statistical significance (p < 

0.0001). Pairwise comparison has shown that distant crypts are significantly lower to 

non-dysplastic crypts in zone 1 (p = 0.01), zone 2 (p = 0.0007), and zone 3 (p = 

0.0002). No significant differences were found between non-dysplastic crypts in the 

zones. Interestingly, the mean density of α-SMA+ cells in the dysplastic region and 

normal control region show no significance difference (p = 0.374).  
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Figure 3.7: Density of myofibroblasts in dysplastic and surrounding non-dysplastic crypts.  
Effect of dysplastic crypts on their surrounding non-dysplastic crypts shown for myofibroblasts (α-
SMA marker). A) Beeswarm plot visualising the density of myofibroblasts surrounding the adenoma 
(blue) and neighbouring non-dysplastic crypts in zone 1 (purple), zone 2 (red), zone 3 (orange) and 
non-dysplastic distant crypts (green) for FAP patients (Kruskal-Wallis: p < 0.0001) and B) sporadic 
patients (Kruskal-Wallis: p = 0.0078). The box plot indicates the mean, upper and lower quartile. C) 
Staining for α-SMA is shown for a sporadic patient (scale bar: 50μm). The dashed blue line outlines 
crypts within the dysplastic zone, the dashed purple line non-dysplastic crypts in zone 1, the dashed 
red line non-dysplastic crypts in zone 2, and the dashed orange line non-dysplastic crypts in zone 3. 
Zoomed in images show density of myofibroblasts surrounding an adenomatous crypt and a non-
dysplastic crypt in zone 1 and zone 2.  
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Similarly, for sporadic adenoma patients (Figure 3.7B, C), the α-SMA+ cell 

density is higher in the zones compared to the adenoma, whilst the α-SMA+ density 

count decreases again in distant crypts (Kruskal-Wallis test; p = 0.0078). There are 

significantly less myofibroblasts surrounding the adenoma compared to zone 1 (p = 

0.0266), to zone 2 (p = 0.0041), and to zone 3 (p = 0.0031), but not to non-dysplastic 

distant crypts (p = 0.305). However, myofibroblasts surrounding non-dysplastic 

crypts in zone 2 (p = 0.04) and zone 3 (p = 0.029) are significantly denser compared 

to distant crypts, but not to zone 1 (p = 0.155). There are no significant differences 

between non-dysplastic crypts in the zones. 

Taken together, this shows that the density of myofibroblasts decreased the 

closer to an adenoma. This suggests that adenomatous crypts have lost its structure 

with progression to cancer, and further indicating a field effect emanating from the 

adenoma. 

 

 

3.2.5 Adenomatous crypts are significantly larger and have more nuclei 
compared to their surrounding non-dysplastic crypts 

Phenotypic characteristics of crypt size and nuclei density were measured for both 

FAP (n = 30 adenomas and surrounding zones) and sporadic patient samples (n = 21 

adenomas and surrounding zones).  

The crypt size was manually measured in Pannoramic Viewer by contouring 

the area of each crypt in each zone (see section 2.3.5). Adenomatous crypts are 

significantly larger than non-dysplastic crypts for both FAP (Kruskal-Wallis: p < 

0.0001) (Figure 3.8A) and sporadic patients (p = 0.002) (Figure 3.8C). Pairwise 

comparison has shown that adenomatous crypts are significantly larger compared to 

non-dysplastic crypts in zone 1 (p < 0.0001), zone 2 (p < 0.0001), and zone 3 (p < 

0.0001), as well as to non-dysplastic crypts away from the dysplastic zone (p < 

0.0001) for FAP patients. Moreover, non-dysplastic crypts in zone 1 are significantly 

larger than in zone 3 (p = 0.042). However, there is no statistical significance 

between zone 1 and zone 2 (p = 0.767), as well as zone 2 to zone 3 (p = 0.057). Non-

dysplastic crypts were not significantly different in size to distant non-dysplastic 

crypts. This suggests that adenomatous crypts are significantly larger compared to 
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their surrounding non-dysplastic crypts and distant crypts, and moreover, 

independently of where non-dysplastic crypts are located, they do not become 

significantly larger when being in close proximity to an adenoma.  

Interestingly, pairwise comparison for sporadic patients has revealed no 

significant difference between the adenomatous crypts and non-dysplastic crypts in 

zone 1, however adenomatous crypts were significantly larger in size compared to 

non-dysplastic crypts in zone 2 (p = 0.0379) and zone 3 (p = 0.0099). Non-dysplastic 

crypts in zone 1 were significantly larger than crypts in zone 3 (p = 0.0348). Distant 

crypts were significantly larger compared to crypts in zone 2 (p = 0.0026) and zone 3 

(p < 0.0001). This might indicate that non-dysplastic crypts in zone 1 could be in the 

process of transformation, and additionally given that the adenoma is significantly 

larger as well, crypts in zone 2 and 3 might suffer from spatial constraints.  

 The nuclear density of crypts in the dysplastic and surrounding non-dysplastic 

zones and non-dysplastic distant control regions was assessed using the 

DensitoQuant tool in the Pannoramic Viewer software for both, FAP (Figure 3.8B) 

and sporadic patients (Figure 3.8D). The mean nuclear density of adenomatous 

crypts is significantly higher compared to the surrounding non-dysplastic zones, as 

well as to the distant non-dysplastic crypts for both FAP (Kruskal-Wallis: p < 

0.0001) and sporadic patients (p < 0.0001), indicating that more nuclei are present in 

the adenoma, and that the number of nuclei decreases with increasing distance away 

from the dysplastic zone. For both, FAP and sporadic patient samples, there is a 

greater density of nuclei in the dysplastic zone compared to zone 1 (p < 0.001), zone 

2 (p < 0.001), zone 3 (p < 0.001), as well as the non-dysplastic distant crypts (p < 

0.0001). However there is no significant difference between the non-dysplastic zones 

and between the non-dysplastic zones and the control group indicating a clear 

phenotypic difference in nuclei density between adenomatous and non-dysplastic 

crypts, but also suggesting that nuclei density is not changing in non-dysplastic 

crypts surrounding the adenoma. 
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Figure 3.8: Phenotypic characteristics of crypt size and nuclei density.  
A) Crypts (area in μm2) are significantly larger in the dysplastic zone compared to the surrounding 
non-dysplastic zones, as well as the distant non-dysplastic crypts for FAP (Kruskal-Wallis: p < 
0.0001) and C) sporadic samples (Kruskal-Wallis: p = 0.002). B) The mean density of adenomatous 
nuclei is significantly higher compared to the surrounding non-dysplastic zones, as well as the distant 
non-dysplastic crypts for both FAP (Kruskal-Wallis: p < 0.0001) and D) sporadic samples (Kruskal-
Wallis: p = 0.0003).  
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3.2.6 Higher concentration of mutant crypts surrounding adenomas 

It was hypothesised that polyclonal tumours are generated by a field effect. To this 

effect it would be reasonable to predict that crypts that immediately surround an 

adenoma show more mutations than those further away. To investigate whether 

adenomas induce a higher mutation burden in surrounding non-dysplastic crypts, the 

percentage of CCO-deficient crypts was assessed and used as a proxy for 

mutagenesis. Frozen FAP sections were stained for CCO activity, adenomas 

identified, and mutated blue vs. non-mutated brown crypts counted within the 

adenoma, its surrounding normal crypts (zone 1 – 3), and in distant non-dysplastic 

crypts (Table 3.5).  

 

 
Table 3.5: Number of adenomas counted in samples stained for cytochrome c oxidase.  
For example, 20 frozen samples from 3 patients were used and of those samples, 35 adenomas and 
their surrounding non-dysplastic crypts were assessed.  
 

The percentage of CCO-deficient crypts was significantly higher in adenomas 

compared to non-dysplastic crypts in the zones and the distant crypts (Kruskal-

Wallis; p = 0.009). Pairwise comparison showed that there is a significantly greater 

number of CCO-deficient crypts in the adenoma compared to zone 2 (p = 0.019) and 

zone 3 (p = 0.006) (Figure 3.9), suggesting that dysplastic, mutated crypts have an 

effect on their surrounding non-mutated crypts and that the surrounding normal 

crypts exhibit more neutral, non-pathological mtDNA mutations. No significant 

differences were found between the zones, but the percentage of CCO-deficient 

crypts was significantly higher in zone 1 compared to distant crypts (p = 0.023). 

Non-dysplastic crypts in zone 2 and zone 3 were not significantly different to distant 

normal crypts. 

 Taken together, this shows a higher concentration of mutant crypts in 

adenomas, as well as in non-dysplastic crypts surrounding the adenoma, and this 

effect decreases over increasing distance with lower mutation burden in distant 

normal crypts. This could potentially be explained by clonal expansion. 
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Figure 3.9: Effect of mutational burden from dysplastic crypts on non-dysplastic neighbouring 
crypts using the neutral marker cytochrome c oxidase (CCO). 
A) Beeswarm plot visualising the number of CCO-deficient crypts surrounding the adenoma (blue) 
and neighbouring non-dysplastic crypts in zone 1 (purple), zone 2 (red), zone 3 (orange) and non-
dysplastic distant crypts (green) for FAP patients (Kruskal-Wallis: p = 0.009) The box plot indicates 
the mean, upper and lower quartile. B) Staining for CCO is shown: CCO-deficient crypts are stained 
in blue, CCO-positive crypts in brown. The dashed blue line indicates dysplastic crypts, the dashed 
purple line non-dysplastic crypts in zone 1, the dashed red line non-dysplastic crypts in zone 2, and 
the dashed orange coloured line non-dysplastic crypts in zone 3. Scale bar = 200μm. 
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3.2.7 Mutation burden in surrounding non-dysplastic crypts 

To further investigate mtDNA mutation burden in crypts surrounding adenomas, a 

next generation sequencing approach was employed where crypts from each zone 

were microdissected and the mutation burden quantified to demonstrate a mutagenic 

field effect. H&E slides of frozen sections were digitally scanned and used to 

identify adenomas (Figure 3.10A). Zone distances of normal crypts were measured 

as before: zone 1 was considered to include all crypts less than 50μm away from the 

dysplastic area, zone 2 50-150μm and zone 3 150-250μm (Figure 3.10B). Frozen 

sections of the same samples were then cut serially on membrane slides and sections 

were then stained with dual CCO/SDH enzyme histochemistry (see section 2.2.2). 

Identified adenomas on H&E slides were then located on CCO/SDH stained 

membrane slides (Figure 3.10C), individual crypts of the adenoma and each zone 

were labelled in different colours (Figure 3.10D), and laser capture microdissected 

(Figure 3.10E). Stroma and distant non-dysplastic crypts were also laser captured 

and used as controls.  

In total, 10 adenomas and their surrounding zones were cut from 4 FAP 

patients, from here onwards referred to as FAP1 to FAP4, and DNA extracted (see 

section 2.5; Appendix Table 9.2). Both mtDNA amplicons from individual samples 

were pooled at the start of the library preparation and sequenced together. The entire 

mitochondrial genome was sequenced at a depth of approximately 1213-3316X with 

a mean average read depth from the 48 samples calculated to be 2183X.  

27 out of 48 samples had poor or no primer coverage and were excluded from 

further analysis. Due to the large sample drop out, there was only one complete set 

(crypts from an adenoma, the three zones and matching distant normal crypts) from 

patient FAP3. Poor average depth and poor primer coverage is likely the result from 

pooling the amplicons at the start of the library preparation. An example of the mean 

depth and primer coverage is given in Figure 3.11.  
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Figure 3.10: Laser capture microdissection of crypts from human colon frozen sections.  
A) H&E staining of an entire section of an FAP patient and all identified adenomatous regions (red 
squares). Scale bar = 2000μm. B) Enlargement of one of the identified adenomas. Blue dots represent 
all adenomatous crypts, purple dots all non-dysplastic crypts in zone 1, red dots all non-dysplastic 
crypts in zone 2, and orange dots all non-dysplastic crypts in zone 3. Scale bar = 200μm. C) 
CCO/SDH staining of the same sample as in B). In D), adenomatous (black labelling) and their 
surrounding normal crypts (red = zone 1, green = zone 2, blue = zone 3) were labelled. E) Crypts that 
were laser capture microdissected. Scale bar = 200μm. 
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Figure 3.11: Examples of sequencing depth and primer coverage. 
A) Average read depth. This graph demonstrates the coverage attained on analysis of patient FAP3 
and indicates an average read depth of 2457.72X. B) Average primer coverage. This graph shows the 
average coverage of the primers FRAG1 and MTL1 and for the overlaps 1 – 3. Overlap 1 -3 refers to 
the point in the genome when the primers FRAG1 and MTL1, as the mitochondrial genome are 
circular.  
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The quality of each PCR replicate was confirmed by checking the similarity 

of variant allele frequencies (VAFs) between each replicate shown (Figure 3.12A). 

Small differences between the VAFs of each PCR replicate were observed given the 

dots do not line up on the straight line. Therefore, the PCR process used to generate 

amplicons might have introduced errors to the NGS results. This again might have 

been due to the fact that amplicons of both primers were pooled before library 

preparation and sequencing. Nevertheless, it is noticeable that although the majority 

of mutations occur at low level of VAF, 2 mutations of patient FAP3 and 5 mutations 

of patient FAP4 occur at a frequency of > 10%, indicating large numbers of 

mitochondria share the same mutations.  

The most frequent occurring mutations per zone amongst all patients were 

investigated. C > T, as well as T > C base changes were observed to occur with high 

frequency in zone 2 and zone 3, and less often in the adenoma and zone 1. Base 

changes from C > A were only observed in zone 3, and C > G only in zone 2 (Figure 

3.12B). This profile has been previously associated with age related mutations 

(Milholland et al. 2015). 

Analysing the frequency of base changes per patient, the most common types 

of mutation found in all 4 patients were C > T and T > C changes. Additionally, for 

patient FAP2, base changes of C > G, and for patient FAP3, base changes of C > A 

were commonly occurring with detectable frequency (Figure 3.12C). An example of 

a T > C mutation is illustrated in Figure 3.12D. 

To assess the mutation burden of the remaining samples, the total number of 

crypts that were laser capture microdissected in each zone was counted and 

normalised in order to compare the mutational burden among the zones (Figure 

3.13). A table with the raw counts is given in the Appendix Table 9.2. 

For patient FAP1, two adenomas and their surrounding zones (Ad1 and Ad2) 

were sequenced. On average 3 mutations (range: 1 – 4) were detected (Table 3.6). 

After normalising the count, slightly more mutations were detected in zone 1 

compared to the adenoma of Ad1, and fewer mutations were identified in zone 3 

compared to the adenoma of Ad2. The mutation burden in the remaining zones could 

not be analysed as samples dropped out due to poor primer coverage. 
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Figure 3.12: Mutation profiles of FAP patients.  
A) Logarithmic scale of VAF for duplicates. Replicates are not very well matched along a best fit line 
indicating that there is some difference between the VAFs of each PCR replicate therefore the PCR 
process to generate the amplicons in duplicate might have introduced errors to the NGS sequencing. 
Although the majority of mutations occur at a low level of VAF frequency, some mutations show a 
level of heteroplasmy of >10% (VAF > 0.1) indicating that some mitochondria share the same 
mutations. B) Mutation profiles. Graph indicates the frequency of the most common mutations per 
zone. C) Mutation profiles. Graph indicates the frequency of the most common mutations of FAP 
patients. D) Illustration of a T > C mutation in the mitochondrial genome of an adenoma of patient 
FAP3 at position 72 using the Integrative Genomics Viewer (IGV) software. 
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For patient FAP2, two adenomas and their surrounding zones (Ad1 and Ad2) 

were assessed and an average of 12 mutations (range: 8 – 17) found. Most mutations 

were found in zone 2 of Ad1. The number of mutations in zone 1 and zone 3 was 

also greater compared to the number of mutations in the adenoma and zone 1 of the 

second adenoma assessed (Ad2).  

The average number of mutations for patient FAP3 was 2.86 (range: 1 – 5). 

The highest number of mutations was found in the adenoma followed by zone 3 and 

then zone 1. Distant non-dysplastic normal crypts had slightly more mutations 

compared to zone 2.  

For patient FAP4, two adenomas and their surrounding zones (Ad1 and Ad2) 

were sequenced. An average of 5.8 mutations (range: 2 – 15) was detected (Table 

3.6). Interestingly, most mutations were found in zone 3 of both adenomatous 

regions sequenced. 

Taken together, there is a clear association with age, even though there are 

only 4 patients investigated in this analysis. Patient FAP 2 (67 years old) and patient 

FAP 4 (39 years old) had on average more mutations than patient FAP 1 (16 years 

old) and FAP 3 (14 years old). 

To conclude, for all four patients, the number of mutations is too low to 

calculate statistical power. Due to the huge sample drop out and the low number of 

mutations, no conclusions on the mutational burden could be drawn. Therefore, the 

hypothesis that non-dysplastic crypts surrounding the adenoma harbour a higher 

mutation load could not be tested on this data set. Pooling of amplicons before the 

library preparation should be avoided in order to achieve better primer coverage and 

sequencing depth. Additionally, it would have been better to dissect on a crypt-by-

crypt basis rather than pooling all crypts from each zone together. Ideally, whole-

exome sequencing or whole-genome sequencing should be performed to detect 

greater number of mutations.  
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Figure 3.13: Assessing the mutation burden in adenomas and surrounding non-dysplastic crypts 
using mtDNA mutations. 
Number of mtDNA mutations found in each sample sequenced. Bars highlighted in grey belong to 
one adenoma and its surrounding non-adenomatous crypts; bars highlighted in green belong to 
another adenoma and its surrounding non-adenomatous crypts. 
 
 
 

 
Table 3.6: Patient characteristics and average number of mtDNA mutations/patient and range. 
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3.3 Discussion 

In colorectal carcinogenesis, studies on FAP and some sporadic microadenomas have 

revealed that tumours are polyclonal in origin (see section 1.14). However, the 

mechanism responsible for causing this polyclonality at the outset of tumour growth 

is unknown. The aim here was to demonstrate that dysplastic crypts interact with 

neighbouring non-dysplastic crypts and to characterise the field effect from the 

dysplastic crypt to the first initiated non-dysplastic crypt (zone 1) to the second (zone 

2) and to the third (zone 3), thus driving expansion. Using immunohistochemistry for 

cell behaviour and cell lineage markers on human FAP and sporadic samples, 

evidence was found that dysplastic crypts do indeed interact with their surrounding 

neighbouring non-dysplastic crypts generating a field effect.  

 

3.3.1 Adenomas create a field effect 

WNT is one of the most critical pathways involved in the carcinogenesis of many 

adenocarcinomas and proposed to be an early step in tumourigenesis (Peifer et al. 

2000). FAP patients carry a germline APC mutation, which interacts with β-catenin. 

This interaction activates the Wnt signalling pathway and results in alterations in cell 

proliferation (Wang et al. 2013). β-catenin is mainly expressed in the membrane of 

normal cells, whereas in adenocarcinomas cytoplasmic β-catenin is translocated into 

the nucleus, where it activates downstream signalling pathways regulating tumour 

growth (Hao et al. 1997, Wong et al. 2004). Elevated nuclear and cytoplasmic β-

catenin expression is a biomarker for metastasis and poor prognosis for the patient 

(Cheah et al. 2002, Wong et al. 2004). Therefore, the percentage of nuclear β-catenin 

was investigated in adenomas and surrounding non-adenomatous crypts to describe 

the early changes emanating from an adenoma. 

In this study, a significant increase in the percentage of nuclear β-catenin 

cells was found the closer a non-dysplastic crypt is to the adenoma and this effect 

was decreasing over distance for both, FAP and sporadic patient samples (Figure 

3.3). Moreover, positive nuclear β-catenin cells in non-dysplastic crypts in all three 

zones were significantly higher compared to distant non-dysplastic crypts, providing 

evidence of a field effect generated by the dysplastic epithelium. The shift from no 
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nuclear β-catenin staining in non-dysplastic distant crypts to a widespread 

distribution of nuclear β-catenin staining in the adenoma is in line with previous 

reports. For example, Wong et al. (2004) have reported no nuclear β-catenin 

accumulation in normal tissues, whereas it was present in 8% of polyps, 92% of 

adenomas, and 100% of carcinomas (Wong et al. 2004). In another study, nuclear 

accumulation of β-catenin was observed in 48% of the cancer samples (Elzagheid et 

al. 2008). Inomata et al. (1996) found a three times higher nuclear β-catenin 

expression in adenomas of FAP patients compared to their corresponding normal 

epithelia (Inomata et al. 1996). However, this is the first study to show that also non-

dysplastic crypts surrounding the adenoma accumulate nuclear β-catenin.  

These results demonstrate that increased nuclear β-catenin expression is 

associated with the field effect emanating from the dysplastic zone. These 

observations further indicate that β-catenin plays a critical role in the transformation 

and progression of CRC already in the early stages. 

 

A significant increase in the number of proliferating cells was found the 

closer a non-dysplastic crypt is to the adenoma and this effect is decreasing over 

distance for both, FAP and sporadic patient samples (Figure 3.1). Increased cell 

proliferation suggests that adenomas create a field effect as surrounding non-

dysplastic crypts exhibit a higher percentage of positive stained cells compared to the 

control group (distant non-dysplastic crypts). Interestingly, no significant difference 

was found between adenomatous crypts and non-dysplastic crypts in the surrounding 

zones. However, proliferating cells in the non-dysplastic crypts in the three zones 

were significantly higher compared to distant normal crypts. This demonstrates that 

mutant crypts have a profound field effect on their neighbours and that the dysplastic 

epithelium initiates the non-dysplastic epithelium in the development of CRC. It has 

been shown that Ki67 expression is significantly higher in malignant tissue as 

compared to normal epithelia and is associated with the development of CRC 

(Barone et al. 2010, Li et al. 2015, Oshima et al. 2005). Wang et al. (2013) 

specifically assessed Ki67 expression in FAP patients. They found 5% Ki67 

expression in non-dysplastic epithelium, 37% in low-grade adenomas, 32% in high-

grade adenomas and 41% in invasive carcinomas. Expression of Ki67 was 

significantly increased in high- and low-grade adenomas combined as compared to 
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non-dysplastic epithelium. The expression for carcinomas was not significantly 

different to adenomas but statistically significantly increased as compared to non-

dysplastic epithelium (Wang et al. 2013). The increase in cell proliferation mirrors 

the increase in nuclear β-catenin, as this factor drives cell proliferation. Barone et al. 

(2010) also observed a significant increase in Ki67 expression in high- and low-

grade dysplasia and carcinomas compared to normal crypts of FAP patients. The 

results present a progressive and significant increase in cell proliferation along with 

the progression to cancer (Barone et al. 2010). This has also been observed in 

sporadic colorectal tumours, where the Ki67 expression was greater in carcinomas 

(38.12 ± 11.01) then in adenomas (30.05 ± 7.6) (Saleh et al. 2000). 

A limitation of this study pertains specifically to the assessment of Ki67 

expression. Due to the fact that there are varying levels of proliferation as one moves 

up the crypt (most proliferation occurs in the lower third of the crypt), it was difficult 

to know at which point in the transit amplifying zone the section was at. However, to 

overcome this limitation, a large number of crypts was counted taking the natural 

variation into account. Crypts showing no Ki67 staining were excluded, as it implies 

that the section was not in the proliferative zone. This is all partly due to the fact that 

the tissue included was from archived blocks; they were not sliced in order for this 

manner of research, but rather, were obtained for the purpose of diagnostics. This 

means that most of the tissue did not contain the optimal orientation of the crypts. A 

more ideal methodology would have been to take serial sections of the tissue 

obtained, so that the entire proliferative zone was included.  

Nevertheless, the results presented here show that adenomatous crypts 

interact with their surrounding non-dysplastic crypts and initiating a field effect, as 

Ki67 expression is significantly higher in surrounding non-dysplastic crypts 

compared to distant normal crypts. 

 

In normal cells, the cellular genomic integrity is monitored by processes, 

such as cycle checkpoints and DNA repair pathways, that detect and repair DNA 

double-strand breaks (DSBs) and can stop the cell cycle progression until repair is 

performed. However, defects in these processes can lead to the accumulation of 

DNA errors and genomic instability, eventually leading to CRC (Broustas et al. 

2014). A key component in DNA repair is the histone protein H2AX. In this study, a 

significant increase in DNA damage was found in adenomatous crypts compared to 
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neighbouring non-dysplastic crypts for both, FAP and sporadic patients (Figure 3.2). 

This is consistent with previous investigations, where increased nuclear γH2AX 

staining was observed in carcinomas compared to low expression in normal 

epithelium (Beggs et al. 2012, Sedelnikova et al. 2006). Further, it has been shown 

that nuclear γH2AX is elevated in some precancerous lesions (Bartkova et al. 2006, 

Lord et al. 2012). No significant differences were found between the non-dysplastic 

crypts in the zones and the distant normal crypts, although non-dysplastic crypts in 

all three zones have elevated levels of DNA damage. To our knowledge, this is the 

first study to have investigated the status of DNA damage in surrounding non-

dysplastic crypts. 

Taken together, this also shows that dysplastic crypts interact with 

neighbouring non-dysplastic crypts and that adenomas create a field effect. 

 

3.3.2 The tumour microenvironment – the role of the stroma 

The adenomatous stroma is a complex medium in which a variety of interactions 

take place between adenoma and normal cells. Adenomatous cells proliferate and 

invade the stroma whereas immune cells congregate around the adenomas (Yen et al. 

2010). Cross-talk between adenomatous cells and immune cells provides the 

evolving adenoma with sufficient opportunity to acquire mutations and epigenetic 

alterations that are necessary for cell autonomy (Ferrone et al. 2010). Here, the 

inflammatory cell phenotype within the stromal microenvironment of human 

adenomas and their surrounding non-adenomatous crypts was defined. The healthy 

colon has a low-grade mucosal inflammatory activity with T helper and cytotoxic 

cells, macrophages, and plasma cell infiltrates being present. These stromal cells 

interact to maintain an appropriate local immune response, as they are constantly 

challenged by luminal antigens (Wittig et al. 2003).  

This study has shown that the stroma of adenomas exert a significantly higher 

number of immune infiltrates (CD4, CD8 and CD68) compared to distant normal 

stroma, and more importantly that the immune infiltrate of surrounding non-

dysplastic crypts is also significantly higher as in distant normal stroma, for both 

FAP and sporadic adenoma patients (Figure 3.4 and Figure 3.5). Adenomatous 

polyps are rich in pro-inflammatory T helper and cytotoxic cells, as well as 
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macrophages and this exerts a significant influence on their surrounding 

microenvironment. It became clear that a phenotypic change occurs early in the 

adenoma-carcinoma sequence with expression of inflammatory chemokines and 

cytokines dysregulated in the transition from normal mucosa to adenomas (Mo et al. 

2016). McLean et al. (2011) have investigated immune infiltrates in adenomas with 

matching normal mucosa. They also detected a significant increase of T helper cells 

(p = 0.004) and macrophages (p = 0.0002) in the adenoma compared to adjacent 

normal mucosa (McLean et al. 2011). In another study, the number of CD4+ T cells 

infiltrating the tumour stroma was significantly higher compared to those in the 

neighbouring mucosa, suggesting that the tumour induces modifications of the T cell 

populations in the surrounding normal stroma (Chirica et al. 2015). CD4+ cells might 

exert a pro-inflammatory response in the dysplastic region, thus promoting clonal 

interactions through the stroma. 

Macrophages mainly engulf and digest cellular debris, but also tumour cells, 

among others, which can explain the high number of CD68+ cells found surrounding 

the adenomatous region, but interestingly also adjacent to it. This supports the 

hypothesis that the adenoma exerts a field effect on the surrounding crypts, leading 

to the observed increased levels of macrophages. 

Deschoolmeester et al. (2010) investigated CD8+ cells in cancer invasive 

margins, inside the tumour and in the surrounding stroma. Most T lymphocytes were 

found in the invasive margin, but the cytotoxic T lymphocytes were also abundant in 

the stroma closer to the tumour cells (Deschoolmeester et al. 2010). This was 

confirmed by Liu and colleagues, who showed a significant increase in CD8 

infiltration in the adenoma compared to normal mucosa (Liu et al. 2016). In CRC, 

and specifically in MSI CRCs, it has been shown that high numbers of CD8+ cells 

show a much better clinical outcome compared to their microsatellite stable cancers 

(Amicarella et al. 2017, Baker et al. 2009, Deschoolmeester et al. 2010, Prall et al. 

2004). It was reasoned that the number of CD8+ T cells within the tumour could be a 

good indicator of a systemic immune surveillance mechanisms and that the tumour 

secretes substances into the stroma, which then can be recognised by the immune 

system that destroys the tumour (Deschoolmeester et al. 2010). However, with 

progression to colon cancer, T cell infiltration began to decline, indicating that not 

only the immune response varies between different stages in tumour progression, but 



 160 

also that due to a varying tumour microenvironment including genetic and epigenetic 

changes, cancer cells can survive and invade (Liu et al. 2016). 

Interestingly to note is the difference observed for normal distance crypts in 

FAP and sporadic patient samples. Generally a higher number of immune infiltrates 

was found in samples of sporadic patients compared to samples of FAP patients. This 

could be explained by the different underlying genetic background, indicating that 

patients with sporadic adenomas have much higher immune infiltrates also in normal 

non-dysplastic regions. 

 

Surprisingly, the opposite effect was found when analysing intraepithelial 

lymphocytes (IELs) (Figure 3.6). IELs consist mostly of CD8+ T cells and are found 

within the epithelial layer of the crypt. IELs are antigen experienced T cells and 

when spotting antigens, they immediately release cytokines or mediate killing of the 

infected target cells (Renuka et al. 2017). Given their location, they form a critical 

interface between the core of the body and the outside environment and present the 

front line of immune defence. Their functions include balancing protective immunity 

to keep the integrity of the epithelial barrier, but avoiding unnecessary immune 

response and therefore inflammation. Moreover, IELs are essential for the regulation 

of intestinal homeostasis, and epithelial cell healing and repair (Cheroutre et al. 

2011, Sheridan et al. 2010). However, they also have pathological responses: 

cytotoxic CD8+ induced IELs haven been implicated in the initiation and progression 

of inflammatory bowl disease (IBD) and the promotion of cancer development 

(Cheroutre et al. 2011, Nancey et al. 2006, Tajima et al. 2008). 

In this study, there were significantly less CD8+ cells in the adenoma 

compared to its surrounding non-dysplastic crypts and also less CD8+ cells in the 

crypts surrounding the adenoma compared to distant normal crypts for both, FAP 

and sporadic tissues. The literature has been quite controversial on the infiltration of 

IELs in dysplastic and non-dysplastic epithelia. Several studies have found a higher 

CD8+ infiltration in tumour epithelium (Baker et al. 2009, Van Acker et al. 2016). 

Menon et al. (2004) assessed infiltration of CD8+ cells in the tumour epithelium, 

stroma and advancing tumour margins of colorectal carcinomas and found a greater 

infiltration, which related to improved survival, thus concluding that infiltration of 

CD8+ cells are important prognostic factors in CRC (Menon et al. 2004). However, 

Koch et al. (2006) found no difference in the total number of infiltrating CD8+ cells 
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between CRC and normal mucosa. Interestingly, the percentage of infiltrating CD8+ 

cells of the total percentage of all T cells (CD8+ and CD4+ cells) was lower in the 

tumour compared to the normal mucosa. Given they found a significant enrichment 

of CD4+ cells in tumour samples compared to matching normal mucosa, they 

reasoned that this explains the decreased proportion of CD8+ cells in the tumour 

specimens. They explained the increase of CD4+ cells because helper T cells are 

required in early antigen-specific response to imprint CD8+ cells with the ability to 

develop into long-living functional memory cells (Koch et al. 2006).  

However, the induction of cytotoxic T lymphocytes responses takes time, 

leaving time for the tumour cells to escape the immune system (Deschoolmeester et 

al. 2010). The decrease of IEL CD8+ cells might be explained by immune escape or 

immune deviation mechanisms or even by regulatory T cells suppressing the host 

anti-tumour T-cell response (Zou 2006). IEL CD8+ cells may have lost their function 

and can no longer protect intestinal homeostasis. To our knowledge this is the first 

study assessing IELs in adenomas and their surrounding non-dysplastic crypt of FAP 

and sporadic patients. Previous studies only assessed IEL of CD8+ cells in tumour 

epithelium and tumour margins of CRC and normal mucosa. Furthermore, IELs have 

been implicated in the repair of intestinal epithelium (Chen et al. 2002). A lower 

concentration of IELs in the adenoma and the surrounding non-dysplastic crypts 

might indicate lack of repair mechanisms. 

 

 The stromal microenvironment is not only comprised of infiltrating immune 

cells, but also includes fibroblasts and myofibroblasts. In this study, the expression 

of fibroblasts (α-SMA) was significantly increased in the stroma surrounding 

adenomas and also significantly increased in the stroma of non-dysplastic crypts 

surrounding the adenoma compared to distant stroma, for both FAP and sporadic 

patients (see Figure 3.4D and Figure 3.5D), suggesting that these factors facilitate a 

pro-tumourigenic environment promoting the progression of adjacent cells. Mo et al. 

(2016) investigated α-SMA expression in aberrant crypt foci (ACF), defined as the 

earliest morphological identifiable mucosal abnormalities commonly found in the 

human colon, and normal mucosa. They found an increased number of stromal 

fibroblasts in ACF compared with normal stroma (p < 0.0001) (Mo et al. 2016). It 

has been shown that once activated, fibroblasts alter their cellular phenotype and the 

expression of α-SMA increases (Hinz et al. 2001). A senescent and secretory 
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phenotype is acquired promoting carcinogenesis by secreting growth factors and 

inflammatory cytokines (Coppe et al. 2010).  

The density of myofibroblasts was found to be lower surrounding the 

epithelia of adenomatous crypts but significantly increased with increasing distance 

away from the adenoma, with a highest density found in normal distant crypts 

(Figure 3.7). Myofibroblasts are associated with tumour cells at all stages of tumour 

development, and thus its disruption affects fundamental cellular processes that are 

essential for tumour progression (Yen et al. 2010). The main functions of 

myofibroblasts are to provide structural support, to confer protection for crypts, and 

to mediate signalling. The observation that myofibroblasts are higher in non-

dysplastic regions might be due to the fact that adenomatous crypts loose its structure 

with progression and thus its support from the myofibroblasts. Therefore the density 

of myofibroblasts is higher in non-dysplastic crypts in zone 3. Moreover, it has also 

been noted that the anti-inflammatory cytokine interferon- λ (IFN-λ) secreted by T 

cells plays an important role in density of SMA+ cells. This is because IFN-λ causes 

the inhibition of the expression of myofibroblasts and thus actively reduces the 

density of myofibroblasts (Tanaka et al. 2007). 

 

Taken together, these findings suggest that early transformed epithelial cells 

send signals, which directly influence the stromal microenvironment leading to its 

reorganisation. By directly analysing adjacent stromal tissue to an adenoma, it was 

demonstrated that reactive stromal changes accompany the earliest detectable stages 

of human colonic adenomas. A significant enrichment of the infiltrates of CD4, CD8 

and CD68, as well as fibroblasts were observed in the stroma surrounding the 

adenoma and in adjacent non-dysplastic crypts compared to distant stroma. It further 

suggests an influx of pro-inflammatory cells and a release of potent cytokines into 

the adenomatous stromal microenvironment. This supports the hypothesis that the 

adenoma exerts a field effect on the surrounding crypts, leading to increased levels of 

immune filtrates. Inflammation is a known driver of crypt fission and therefore 

clonal expansion (Cheng et al. 1986, Salk et al. 2009). Clonal expansions are a 

known cancer risk. Therefore, a potential explanation for the development of 

polyclonal adenomas could be that increased inflammation surrounding dysplastic 

tissue increases the likelihood that dysplasia can arise in the normal surroundings. 
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3.3.3 Mutation burden 

A higher mutation burden in non-dysplastic crypts compared to distant crypts was 

observed based on mtDNA mutations, which suggests that dysplastic, mutated crypts 

influence their surrounding non-mutated crypts and that the surrounding non-

dysplastic crypts exhibit more non-pathological mtDNA mutations. The mutation 

frequency can also be reflective of the here observed increased proliferation. It has 

been shown that mutations are increased when proliferation is increased, as 

proliferating cells are more mutable than quiescent cells, due to the lack of DNA 

repair mechanisms before DNA replication (Bielas et al. 2000). In addition, DNA 

damage can increase proliferation, thus accelerating this effect (Kiraly et al. 2015). 

Nevertheless, the result suggests that dysplastic crypts increase the mutagenic 

pressure in their surrounding non-dysplastic crypts. However, it has to be noted that 

mtDNA mutations increase naturally with age, and because of this there is an 

observed increase in the number of CCO-deficient crypts with age. Tissue from 

patients who were too young would not show any CCO-deficiency, irrespectively of 

how mutagenic the environment was (this cut-off has been shown to be about 40 

years of age (Greaves et al. 2006)).  

 

Having established that adenomas generate a field effect, the underlying 

genetic patterns were analysed by sequencing the mitochondrial genome of 

adenomatous and neighbouring non-adenomatous crypts. Unfortunately, it was not 

possible to investigate the mutation burden, since most samples sequenced failed due 

to poor primer coverage and additionally, of those remaining samples only a low 

number of mutations was detected. The poor primer coverage can partly be explained 

by the fact that amplicons were pooled at the start of the library preparation kit. This 

kit requires 0.2ng/μl of input DNA, but by pooling the amplicons, essentially 

0.1ng/μl of DNA of each amplicon was added. The amount of amplified mtDNA was 

calculated based on the TapeStation results, which verifies the size distribution of 

each PCR amplicon. The concentration of the amplicon can be determined by 

measuring the area under the peak. However, with the TapeStation, the limit of 

detection is already reached for this assay. The concentration was measured on the 

peak rather than across the whole area, which ideally should have been done. Thus, if 

there is a slight excess of one primer over the other, only one will get sequenced. 
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Given that the amount of input mtDNA was low in the beginning, the library 

preparation should have been done for each primer pair separately and pooled in the 

end before running them on the sequencer.  

 Nevertheless, the number and range of mutations detected in all of the four 

remaining patient samples was too low for any statistics to be performed. For FAP1 

and FAP3 the low number and range of mutations observed (FAP1: 3 (1 – 4); FAP3: 

2.86 (1 – 5)) can be explained by the fact that these patients were 16 and 14 years, 

respectively. MtDNA mutations are acquired with age (Greaves et al. 2006). 

Therefore, these patients were potentially too young to detect a meaningful mutation 

burden in adenomatous and surrounding non-adenomatous crypts. Patients FAP2 and 

FAP4 were 67 and 39 years of age, respectively, and consequently more mutations 

should have been observed (FAP2: 12 (8 – 17); FAP4 (5.8 (2 – 15)). However, this is 

not the case. This might be due to the fact that by sequencing all crypts in each zone 

together, mutations were diluted out. Each crypt in each of the adenomatous region 

and neighbouring zones were collected together. Ideally, a few single crypts of each 

zone should have been laser capture microdissected serially and sequenced 

individually to achieve higher VAFs. Nevertheless, the question remains whether 

single crypts will yield a much higher mutation burden to perform statistical analysis. 

This leads to the conclusion that using mtDNA to investigate the mutation 

burden in adenomas and surrounding non-adenomatous crypts is potentially not the 

correct method. Instead, whole-genome sequencing (WGS) or whole-exome 

sequencing (WES) could be an alternative method to detect a greater number of 

mutations. Advantages of using WGS include the detection of more mutations to be 

able to calculate meaningful statistical outputs and it allows to workout the absolute 

number of mutations per megabase inferring that each cell has a duplicate genome at 

this stage in FAP. Disadvantages usually include the high costs, however the 

Novaseq platform from Illumina is now available with a much higher capacity. 

Moreover, the starting amount of DNA for WGS used to be 5ng, but with the 

NEBNext Ultra2 library prep kit from Illumina allowing the amount of input DNA to 

be as low as 500pg, the amount of DNA is not a limiting factor anymore. In contrast 

to WGS, with WES fewer regions are sequenced, but deeper sequencing enables to 

detect low VAFs. A limiting factor of WES is the limited region of examination and 

that the genes in the region where they are sequenced might be under selection. 
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3.3.4 Conclusion 

In conclusion, these findings suggest that adenomatous crypts within the human 

colon of FAP and sporadic adenoma patients exert a field effect and thereby 

initiating increased cell proliferation and DNA damage in surrounding non-

adenomatous crypts, and additionally translocating β-catenin from the membrane to 

the nucleus, as increased levels of nuclear β-catenin were found in the adenoma and 

adjacent crypts as compared to distant crypt. These changes are associated with the 

induction of epithelial-stromal interactions that may influence the outcome of these 

early transformations. Most likely, inflammatory signalling pathways initiated by 

transformed epithelial cells may activate stromal fibroblasts and recruit immune cells 

within the stromal microenvironment. A potential mechanism explaining how 

adenomas generate a field effect is through the involvement of the JNK signalling 

pathway. Upregulation in genes encoding the JAK/STAT pathway was found, which 

encoded cytokines in both intra-clonally and inter-clonally mutated fruit flies 

(Drosophila). When a dominant negative form of the JAK/STAT receptor was 

expressed, invasive tumours were formed in both cases, suggesting cooperation 

between these mutations and the JAK/STAT pathway (Wu et al. 2010). Potential 

mechanism underlying the novel field effect and how clones interact will be 

investigated in greater detail in chapter 5 and 6. 

The results here also provide insights into the complex cross-talk between 

epithelia and stroma that occurs during the earliest stages in the progression to CRC, 

highlighting the active role of the stroma. 
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4 Chapter IV: Stem Cell Dynamics 

4.1 Introduction 

Studying stem cell dynamics in the intestinal crypt is essential for the understanding 

of tumourigenesis in the human colon, as cancer can be considered as a disease of 

mutated stem cells originating from the intestinal crypt base (Barker et al. 2009, 

Sangiorgi et al. 2008). Quantitative analyses in mouse models have shown that in 

crypt homeostasis stem cells are continuously in neutral drift competition (clonal 

expansion and contraction occurs in balance) and on average, each stem cell division 

results in loss and replacement of an individual stem cell lineage (Kozar et al. 2013, 

Lopez-Garcia et al. 2010, Snippert et al. 2010).  

Since this transgenic approach cannot be applied in humans, Baker et al. 

(2014) have circumvented this problem by using somatic mitochondrial DNA 

(mtDNA) mutations to trace clonal lineages in order to study stem cell dynamics in 

human colonic crypts. Somatic mtDNA mutations can result in a loss of cytochrome 

c oxidase (CCO) enzyme activity and when sufficient stem cells have acquired CCO 

loss, the entire crypt will become CCO-deficient. The rate at which this happens is 

proportional to the rate of stem cell expansions and contractions within the crypt 

stem cell niche and are detectable by enzyme histochemistry. Moreover, these 

mutations increase with age and are under neutral selection, meaning they confer no 

significant positive or negative selection to the mutant stem cell over neighbouring 

non-mutant stem cells (Greaves et al. 2012). Sequencing of mtDNA has shown that 

these mutations are clonally derived, thus they are an effective clonal marker for both 

normal and adenomatous tissue (Fellous et al. 2009, Greaves et al. 2006, Gutierrez-

Gonzalez et al. 2009, Taylor et al. 2003).  

Enzyme histochemistry for CCO activity allows for the observation of crypts 

that are CCO-proficient (brown, CCO+), crypts that are CCO-deficient (blue, CCO-) 

and crypts that are partially mutated (a mixture of CCO+ and CCO- cells). These 

mutations occur at the base of the crypt in the stem cell niche and passed on to their 

immediate progeny. Importantly, the distance the daughter cell travels up the crypt 

axis is proportional to the time since it was born in the crypt base, thus enabling 
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temporal evolutionary dynamics to be inferred from a single time point. When 

moving upwards the crypt axis, the CCO-deficient cells form a connecting ribbon 

(Taylor et al. 2003). These ribbons can contract when a CCO-deficient cell is 

replaced by a CCO-proficient cell, thus decreasing the ribbon width, or expand when 

a CCO-proficient cell is replaced by a CCO-deficient cell, thus increasing the ribbon 

width. These “wiggles” – the change in CCO-deficient clone size – represent a 

temporal record of the CCO-deficient stem cell population, which was further 

confirmed with a mathematical model (Baker et al. 2014).  

Baker et al. (2014) reconstructed the cellular composition of partially 

mutated adenomatous and normal crypts using adjacent serial sections and BiaQIm 

imaging software (http://www.deconvolve.net/bialith/BAQIFeatures.htm). The 

proportion of blue to brown staining was assessed between successive sections. By 

measuring these deviations in ribbon width between serial en face sections, the 

distribution of the deviation was found to be approximately symmetric around zero 

for partially mutated normal crypts, non-adenomatous FAP/AFAP crypts, and 

FAP/AFAP adenomatous crypts, indicating that expansion and contraction of the 

ribbon width is balanced. This implies that human ISCs evolve according to a neutral 

drift process. Furthermore, the functional stem cell loss and replacement rate was 

increased by a factor of approximately 2-fold in adenomas. The loss/replacement 

rates for non-adenomatous FAP and AFAP were comparable to those of normal 

tissue, indicating that it is loss of the second APC allele that accelerates the stem cell 

loss/replacement rate (Baker et al. 2014). 

In this chapter, the stem cell dynamics of non-dysplastic crypts in zones 1 to 

3 surrounding FAP and AFAP adenomas were studied using the same technique as 

described by Baker et al. (2014). It was hypothesised that these crypts should also 

evolve neutrally and that their stem cell loss/replacement rate is higher than in distant 

normal crypts.  

  



 168 

4.2 Results: Stem cell dynamics  

4.2.1 APC mutated crypts alter stem cell dynamics in surrounding non-

dysplastic crypts 

In order to investigate the stem cell dynamics in the intestinal crypt, frozen sections 

from three FAP, three AFAP and three healthy patients were stained with CCO/SDH 

(see section 2.2.2) (Table 4.1). The fraction of CCO-deficiency (blue staining) of 

crypts in the adenoma (n = 13), of surrounding non-dysplastic crypts in the zones 

(zone 1: n = 11; zone 2: n = 10; zone 3: n = 8), as well as non-dysplastic distant 

crypts in FAP (n = 12) and AFAP (n = 10), and crypts from normal patients (n = 11) 

was measured in successive serial sections throughout the crypt using the 

Pannoramic Viewer software and aligned to visualise stem cell dynamics using 

BiaQIm imaging software (see section 2.4.1) (Table 4.2). Data on the deviations in 

ribbon width in partially mutated crypts for the adenoma, non-dysplastic crypts of 

FAP and AFAP as well as for normal crypts was provided by Baker et al. (2014). 

Wiggles of the CCO-deficient clone size were quantified by differences in the CCO 

area between adjacent serial sections and expressed in terms of cell numbers to 

normalise for crypt size between adenomas and non-dysplastic crypts.  

The average number of nuclei per en face crypt section as well as the average 

crypt circumference was measured on H&E sections (Figure 4.1, Table 4.1). There 

were a significantly greater number of cells in the adenoma compared to the 

surrounding zones, the non-adenomatous crypts in FAP and AFAP, and the normal 

crypts (Kruskal-Wallis test; p = 0.0002) (Figure 4.1A). Pairwise comparison has 

shown that the number of nuclei in adenomatous crypts was significantly higher 

compared to zone 1 (Mann-Whitney test: p = 0.002), zone 2 (p = 0.002), zone 3 (p = 

0.002), but also to non-adenomatous FAP (p = 0.036), AFAP (p = 0.024) and normal 

crypts (p = 0.024). Interestingly, APC+/+ crypts had a significantly lower number of 

cells on average compared to non-dysplastic crypts in zone 1 (p = 0.0238), to zone 2 

(p = 0.0238) and to zone 3 (p = 0.0119). No significant difference in cell number was 

found between the control groups. 
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Table 4.1: Table showing age, sex, and number of cells per crypt for each patient.  
The number of cells per crypt circumference was counted using an en-face H&E-stained section, and 
these figures were used to convert ‘fractional clone size’ to ‘number of cells in the clone’. 
 

 

 
Table 4.2: Total number of partially mutated crypts measured.  
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Then, crypt circumference measurements were compared and it was shown 

that adenomas were on average larger compared to non-dysplastic crypts in the 

surrounding zones, to non-dysplastic crypts in FAP and AFAP, and to normal crypts 

(Kruskal-Wallis test; p = 0.0029) (Figure 4.1B). Pairwise comparison has shown that 

the circumference of adenomatous crypts was significantly larger compared to zone 

1 (Mann-Whitney test: p = 0.002), zone 2 (p = 0.002), zone 3 (p = 0.002), but also to 

non-adenomatous FAP (p = 0.024), AFAP (p = 0.024) and normal crypts (p = 0.024). 

There was no significant difference between the non-dysplastic crypts in the zones 

and each of the zones to non-dysplastic crypts in FAP and AFAP patients away from 

the dysplastic zone. However, normal crypts from healthy patients were significantly 

smaller on average compared to zone 1 (p = 0.0238), to zone 2 (p = 0.0238), and to 

zone 3 (p = 0.0476). No significant difference was found between the non-

adenomatous FAP/AFAP crypts, and normal crypts. The average number of cells per 

crypt was significantly correlated to the crypt circumference (R2 = 0.69, p < 0.001) 

(Appendix Figure 9.1E). Graphs showing the average number of nuclei per crypt and 

the crypt circumference for FAP and AFAP only are given in the Appendix Figure 

9.1A-D.  

The effect of APC mutation on stem cell dynamics was then quantified by 

examining the temporal evolution in partially mutated crypts. As previously reported 

(Baker et al. 2014), the distribution of deviation was found to be approximately 

symmetric around zero for partially mutated dysplastic crypts from adenomas 

(skewness = 0.268). Furthermore, non-dysplastic crypts in all surrounding zones also 

displayed this symmetric distribution (zone 1 skewness = -0.074, zone 2 skewness = 

-0.176, and zone 3 skewness = 0.125) (Figure 4.1C). The symmetry around zero 

indicates that clonal contraction is balanced by equal frequent clonal expansion 

through time. The flatter and broader distribution in adenomatous crypts and non-

dysplastic crypts within the zones as compared to normal indicates more frequent, 

larger fluctuations in clone size. This implies that clonal evolution of the crypt stem 

cells follow neutral drift dynamics. Consistent with neutral drift dynamics, examples 

of clone extinction, where CCO-deficient populations were disconnected from the 

crypt stem cell base (Figure 4.2A, B), mostly likely due to random loss, and clone 

fixation, where all cells become CCO-deficient (Figure 4.2C, D), were observed.  
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Figure 4.1: Crypt base stem cells follow a neutral drift type process.  
Average number of cells per crypt circumference was counted (A) and the crypt circumference (B) 
measured manually in H&E sections of adenomatous colonic crypts, non-dysplastic crypts in zone 1 – 
3, distant non-dysplastic crypts in FAP and AFAP, and non-dysplastic colonic crypts in normal tissue 
sections. Each point on the graph represents the average number of cells (A) and the average crypt 
circumference (B) in one patient, which was obtained by analysing at least 20 representative crypts. 
The line within each count represents the mean. A) Kruskal-Wallis test: p = 0.0002. B) Kruskal-
Wallis test: p = 0.0029. C) Density plot showing the change in the relative clone size between 
sequential sections (“wiggle”).  
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Figure 4.2: Representative examples of crypt maps for the adenoma and zones.  
The left column represents an en face image of the crypt of interest, the middle column the resulting 
crypt maps, and the right column represents the colour-processed maps (blue, CCO- cells, black, 
CCO+ cells). White lines represent missing sections. A) Crypt map of the adenoma representing clone 
extinction due to random loss. B) Example of a clone in zone 1 that was putatively in the process of 
becoming extinct, whereas crypt maps of zone 2 (C) and zone 3 (D) showing clones that putatively 
became fixed. 
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Analysis of non-dysplastic crypts from FAP and AFAP patients also showed 

that stem cells evolved neutrally (APC-/+ FAP skewness: n = -0.41; APC-/+ AFAP 

skewness: n = 0.76). The deviation in ribbon width in partially mutated normal 

crypts was also symmetric around zero (skewness = -0.472), indicating stem cells 

underwent neutral evolution.  

 To conclude, quantifying the effect of APC mutations on stem cell dynamics 

in the human colon has revealed that stem cells in adenomatous crypts, as well as in 

non-adenomatous surrounding the adenoma (crypts in zone 1 to zone 3) and non-

adenomatous crypts far away from the adenoma underwent neutral evolution. 

 Based on studies of neutral drift dynamics in ISCs in mice (Kozar et al. 2013, 

Lopez-Garcia et al. 2010, Snippert et al. 2010), the temporal evolution of the number 

of functioning stem cells in the CCO-deficient clones was analysed and hypothesised 

to follow a one-dimensional random walk and that the temporal evolution in the 

CCO-deficient ribbon width could be described a as one-dimensional diffusion 

process. The same model described by Baker et al. (2014) was applied here. In brief, 

if a CCO-deficient clone has a total number of functional stem cells at a specific 

time, the mean square change in cell number is predicted to vary linearly with a 

diffusion coefficient defining the functional stem cell loss/replacement rate (Baker et 

al. 2014). The measured diffusion coefficients are listed in Table 4.3. The 

experimental data (calculated by Trevor Graham) confirmed a linear dependence of 

the mean-square displacement for the adenoma, for non-dysplastic crypts in all 

surrounding zones, as well as APC-/+ FAP, APC-/+ AFAP and normal crypts (Figure 

4.3). This confirmed that neutral drift occurs also within the stem cell compartment.  

 The loss/replacement rate of functional stem cells was then calculated as 

described by Baker et al. (2014) for non-dysplastic crypts in all three surrounding 

zones. Taking into account the functional stem cell number in proportion to the cells 

at the crypt base (provided by Baker et al. (2014)) and the circumference of the 

crypts, assuming the ratio remains fixed, the loss/replacement rates for all three 

zones were comparable to those of APC-/+ FAP, APC-/+ AFAP and normal crypts. The 

loss/replacement rate was accelerated in adenomas by a factor of approximately 4, as 

compared to a factor of approximately 2 measured by Baker et al. (2014). This 

difference is most likely explained by inter-sample variability. 
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Figure 4.3: Mean squared difference in CCO-deficient ribbons. 
The mean squared difference in CCO-deficient ribbon width expressed as a function of distance along 
the crypt axis. 
 
 
 

 
Table 4.3: Measured diffusion coefficient.  
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4.3 Discussion 

Lineage tracing studies in transgenic mice have significantly improved our 

understanding of stem cell dynamics in intestinal crypts, but the significance 

remained poorly characterised for the human intestine. Baker et al. (2014) have 

shown that naturally occurring somatic mtDNA mutations together with the unique 

structure of the intestinal crypt allows tracing the evolutionary record of ISCs and 

concluded that clonal evolution is a neutral process.  

The purpose of this chapter was to show that even the stem cell niche of non-

dysplastic crypts in close proximity to an adenoma are governed by neutral drift 

dynamics, mimicking what has been observed in the murine crypt (Snippert et al. 

2010). APC mutations not only alter stem cell dynamics in dysplastic crypts, stem 

cell dynamics have already been altered in non-dysplastic crypts (zone 1 to zone 3) 

in close proximity to an APC adenoma (Figure 4.1C, Figure 4.3).  

The herein described stem cell loss/replacement rate contradicts recent 

findings. Nicholson et al. (2018) applied a different methodology and measured a 

replacement rate nearly a 100-fold slower, although the number of functional stem 

cells (mean = 7) was similar to Baker et al. (2014), who calculated around 6 

functional stem cells in each human colonic crypt. Interestingly, another recent study 

(Stamp et al. 2018) has also measured a slower stem cell loss/replacement rate, 

supporting the Nicholson study. 

Investigating human colonic crypt stem cell dynamics remains challenging as 

longitudinal studies are not possible and both studies, Baker et al. (2014) and 

Nicholson et al. (2018) relied on only one time point. In addition, studies in mice 

have shown that stem cells position themselves at the centre and at the border of the 

crypt base exhibiting different self-renewal probabilities, and the ability to exchange 

between these positions (Ritsma et al. 2014). Thus, the described neutral drift 

dynamics are the result of the total stem cell population. Nicholson et al. (2018) 

argued that given the larger crypt size in humans as compared to mice, such 

reciprocal exchange could be more complex and could explain the slower 

loss/replacement rates. This indicates that modelling the colonic stem cell niche is far 

more complex than we envisaged and more work needs to be done to try to reconcile 

the differences between these two measurements.  
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5 Chapter V: Crosstalk between adenomas and 

normal murine epithelia 

5.1 Introduction 

Precedent to the growth of a malignant lesion is the acquisition of pro-tumourigenic 

mutations in a normal cell lineage, which is positively selected for in the 

microenvironment. As a consequence, the now mutant lineage can grow to produce 

large patches or fields that predispose to cancer (field cancerization) (see section 

1.11.6, 1.15.1) (Curtius et al. 2018). During this process, it is assumed that 

interactions between clones are needed to generate such field. Interactions between 

transformed and non-transformed epithelial cells are important for understanding 

tumour initiation and progression (Mo et al. 2016).  

As described earlier, some early neoplastic lesions are polyclonal-in-origin 

(see section 1.14, 1.15). Even though the mechanisms causing a tumour to be 

polyclonal are unknown, the paradigm of field cancerization could explain the 

underlying cause. Potentially through signalling, the initial mutant clone may 

produce a field, thereby altering the behaviour of surrounding stromal cells, thus 

creating an environment that can promote mutations in neighbouring cells (Halberg 

et al. 2007). It has been shown that mutated colonic crypts have a profound effect on 

neighbouring non-dysplastic crypts (Bjerknes et al. 1999, Thliveris et al. 2005). 

Gene expression profiles and somatic mutations of the epithelial and stromal 

compartments of ACF compared to normal mucosa of the same patients 

demonstrated that the ACF epithelium and stroma displayed distinct patterns from 

nearby normal mucosa (Mo et al. 2016). Interactions have been suggested to aid 

clone survival and growth of the adenoma (Thliveris et al. 2005, Thliveris et al. 

2013). Mechanical pressure caused by hyper-proliferative cells can also contribute to 

tumourigenesis (Butcher et al. 2009). Mechanical activation emanating from 

adenomas onto surrounding non-adenomatous epithelium has been shown to initiate 

the tumourigenic β-catenin pathway in response to hyper-proliferative tumour 

growth pressure (Fernandez-Sanchez et al. 2015). Increased β-catenin expression 
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together with enlarged crypts led to the formation of early ACF. This indicates that 

even mechanical stimulation of tumourigenic pathways could occur in normal 

adjacent crypts, indicating that not only are signalling pathways responsible for 

tumour induction, and thus enhancing tumour growth, but also physical compression 

of intestinal crypts (Fernandez-Sanchez et al. 2015). This indicates the importance of 

clonal interactions in the establishment of cancerized fields. Further details regarding 

the evidence of clonal interactions and its importance in tumourigenesis have been 

discussed in the introduction in section 1.17. 

However, proper description and characterisation of these interactions in the 

early stages of tumourigenesis has been lacking. Having established in Chapter 3 that 

clones interact and adenomas create a field effect in surrounding non-dysplastic 

crypts, the question remains as to the nature of this interaction. To investigate the 

gene expression effects of an adenoma on normal colonic epithelium, an in vitro 

stem cell-derived three-dimensional organoid culture system was generated.  

 Organoids are derived from isolated colonic stem cells forming an organ-like 

tissue. Initially, stem cells form cystic structures with a single central lumen. Over 

time, the cysts form crypt like budding structures outward, eventually developing 

into mini-gut organoids containing Lgr5+ ISCs and all cell lineages present in the 

intestine (Drost et al. 2018). They possess the ability to recapitulate some specific 

function, mimicking partly the physiology and organisation of the intestine: crypt-

like structures including stem- and Paneth cells project outwards into the matrigel, 

while mature enterocytes migrate to the central cyst structure (Li et al. 2012, 

Middendorp et al. 2014). Thus, intestinal organoids provide an elegant system to 

study gene expression changes in vitro. 

Intestinal homeostasis in organoids is controlled by four major signalling 

pathways. The Wnt and Notch pathway are both required for stem cell maintenance, 

where Notch signalling keeps cells in an undifferentiated state (Sato et al. 2011), and 

Wnt signalling additionally drives proliferation at the crypt bottom, and terminal 

differentiation of Paneth cells (Hao et al. 2012, Koo et al. 2011). EGF signalling, 

which maintains the proliferative state and is essential for self-renewal, initiates the 

RAS/ERK MAP kinase and PI3K/Akt signalling pathways (Davies et al. 2014). 

BMP signalling is involved in epithelial differentiation and negatively regulates the 

number of ISCs. BMP inhibitors, such as Noggin or Gremlin, induce crypt formation 

in the villus and increase the number of ISCs, indicating that suppression of BMP is 
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necessary for self-renewal of ISCs (Davis et al. 2015). Pathways were discussed in 

more detail in the introduction (see section 1.4.1). 

Stem cell self-renewal is controlled by defined extrinsic niche factors: 

Matrigel, R-spondin, EGF, and Noggin. Therefore, to achieve long-term expansion, 

self-renewal, and stem cell maintenance of epithelial WT organoids, a cocktail of R-

spondin, EGF and Noggin was added. R-spondin induces crypt hyperplasia and is 

essential for the activation of Wnt in intestinal crypts. Therefore, WT organoids 

require R-spondin for propagation (Koo et al. 2012). Noggin is added because it 

antagonises BMP proteins and induces the expansion of crypt numbers, essential for 

long-term maintenance of intestinal organoids (Davis et al. 2015). Additionally, 

long-term culture requires EGF signalling to fuel organoid growth. Laminin is 

enriched at the crypt base in vivo, thus Matrigel is used to support organoid growth in 

vitro mimicking the basal lamina. Matrigel is composed of extracellular matrix 

molecules, including laminin, collagen type IV and growth factors, such as TGF-β 

and FGF (Sato et al. 2013, Sato et al. 2011, Sato et al. 2009). All of these signals are 

essential for establishing a WT organoid culture system. 

Using organoids as a model system to study the interactions and the effect of 

adenomas on normal epithelia provides a comprehensive understanding of how these 

interactions occur in very early stages of tumourigenesis and how their initiation 

might be regulated.  

The first part of this chapter presents the establishment of murine intestinal 

organoids of WT mice and mice with an Apc mutation. In humans, the most frequent 

APC mutation is at codon 1309, also associated with severe FAP. The APC1322T 

mouse model is equivalent to the 1309 codon changes in humans. These 1322T mice 

have severe intestinal polyposis (Lewis et al. 2010). The second part focuses in on 

how Apc1322/+ organoids influence WT organoids in a co-culture system. Therefore, 

gene expression changes were analysed in WT organoids exposed to Apc1322/+ 

organoids at two time points (48 h and 72 h).  
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5.2 Results: mRNA sequencing of co-cultured Apc1322/+ and WT 

organoids 

5.2.1 Establishment of murine intestinal organoids 

Murine intestinal organoids from WT and WT ROSAmT/mG organoids were 

successfully grown from single isolated crypts in vitro and cultured in a 3D matrix 

with organoid media following the established protocol by Sato et al. (2009) (see 

section 2.6.2, Figure 2.6). Both, WT and WT ROSAmT/mG organoids developed into 

initial cyst structures, which then initiated bud formation leading to the formation of 

numerous crypt-like structures (Figure 5.1A).  

 Apc1322/+ organoids were also successfully cultured in Matrigel. Polyps of 

Apc1322/+mice were dissected and tissue fragments incubated in EDTA-chelation 

buffer. Apc1322/+ organoids were then plated out in Matrigel and covered with basic 

culture media containing EGF (see section 2.6.3, Figure 2.6). Apc1322/+ organoids only 

require EGF for intestinal organoid growth. APC–deficiency confers R-spondin and 

Noggin independent growth of organoids (Schwitalla et al. 2013). In contrast to WT 

organoids that form budding structures, Apc deficient organoids formed cysts, which 

began to grow in size over time (Figure 5.1B). 

WT ROSAmT/mG organoids were successfully co-cultured with Apc1322/+ 

organoids in organoid media. WT mice homozygous for this mT/mG knock in 

express cell membrane-localised red fluorescence in all tissue and cell types (rosa 

locus) (https://www.jax.org/strain/007576). WT ROSAmT/mG organoids and Apc1322/+ 

organoids can be clearly distinguished using fluorescence microscopy: WT 

ROSAmT/mG organoids are red fluorescent, while Apc1322/+ organoids are non-

fluorescent (Figure 5.1A, B). Thus, when grown together, both types of organoids 

can be easily distinguished (Figure 5.1C).  
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Figure 5.1: Co-culturing of Apc1322/+ and WT ROSAmT/mG organoids.  
A) WT ROSAmT/mG organoids alone, A’) Tomato and A’’) merged. B) Apc1322/+ organoids alone, B’) 
Tomato and B’’) merged. C) Visualising Apc1322/+ and WT ROSAmT/mG organoids together in 
brightfield, C’) Tomato, and C’’ merged. Scale bar = 100μm. 
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5.2.2 WT and Apc1322/+ organoids display distinct expression profiles 

In order to investigate the effects of an adenoma on normal murine intestinal 

epithelium, WT and Apc1322/+ organoids were co-cultured in organoid media for 48 h 

and 72 h and controlled with WT and Apc1322/+ organoids only (see section 2.7, Figure 

2.7). RNA was extracted in triplicates from all organoid groups (see section 2.10.1, 

2.10.2) and cDNA generated, which was then subjected to mRNA sequencing (see 

section 2.10.3). After completing the transcriptome analysis (see section 2.10.4), 

principal component analysis (PCA) was used to evaluate broad transcriptional 

difference across all samples. 

PCA showed variation between WT and Apc1322/+ organoids for both time 

points (Figure 5.2). Apc deficient organoids (1322) alone and Apc deficient 

organoids exposed to WT (1322.WT) clustered together for both time points. Whilst 

WT and WT organoids exposed to Apc1322/+ organoids (WT.1322) clustered closely 

together for both time points, there was a clear separation between these two groups, 

with WT.1322 showing slightly more similarity to Apc deficient organoids.  

These results not only demonstrate that WT organoids are transcriptionally 

different from Apc deficient organoids, but also show that WT organoids are 

transcriptionally different from WT organoids exposed to Apc deficient organoids 

after 48 h and 72 h. 
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Figure 5.2: Expression profiles of Apc1322/+ organoids on WT organoids. 
Principal Component Analysis (PCA). Conditions are WT only (red), Apc1322/+ (green), WT grown in 
presence of Apc1322/+ (blue) (WT.1322) and Apc1322/+ grown in presence of WT (purple) (1322.WT) for 
48 h and 72 h indicated by the number 2 and 3, respectively. First principal component axis shows 
86% variance and nicely separates WT from Apc1322/+ organoids. PC2 has a variance of 4%.  
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5.2.3 Specific gene expression patterns in WT organoids exposed to Apc1322/+ 

organoids 

Differential gene expression analysis was then performed and results were cross-

referenced with genes in the KEGG database (see section 2.10.4) to assess the 

signalling pathways responsible for the distinction in clustering observed in the PCA. 

The KEGG pathway database is a collection of manually drawn pathway maps 

representing the knowledge on molecular interactions, reactions and relation 

networks for metabolism, genetic information processing, environmental information 

processing, cellular processes, organismal systems, and disease pathways 

(http://www.genome.jp/kegg/pathway.html). The mRNA expression profile of WT 

organoids co-cultured with other WT organoids was then compared to the mRNA 

profile of WT organoids exposed to Apc1322/+ organoids (WTxWT.1322). Two time 

points (48 h and 72 h) were examined using gene set enrichment analysis (GSEA) 

(Subramanian et al. 2005) to investigate the effects Apc deficient organoids have on 

WT organoids when grown in close proximity and sharing organoid medium. GSEA 

associates gene sets with phenotypes; its use is predicated on the choice of a pre-

defined collection of sets (here: KEGG; see section 2.10.5) (Subramanian et al. 

2005). 

GSEA identified pathways enriched in WT organoids grown in presence of 

Apc1322/+ organoids compared to WT organoids (WTxWT.1322) on the transcription 

data for both time points. Overall, differential expression analysis identified 10 

significantly upregulated pathways (false discovery rate (FDR) < 0.05) after 48 h. Of 

those, 60% were categorised into genetic information processing, 10% to 

metabolism, 10% to cellular processes, 10% to diseases (including pathways in 

cancer) and 10% to environmental information processing after 48 h (Figure 5.3A). 

Moreover, GSEA identified 15 significantly downregulated pathways. Interestingly, 

60% of those belong to metabolic pathways and only 7% were pathways categorised 

into genetic information processing, 13% to cellular processes, and the remaining 

20% belong to disease pathways (Figure 5.3B).  

After 72 h, GSEA identified 11 significantly upregulated and 16 significantly 

downregulated pathways. Strikingly, the distribution looked very different compared 

to the first time point, with only 28% of significantly upregulated pathways 

belonging to genetic information processing, as compared to 60% after 48 h. The 
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number of significantly induced pathways increased in the category diseases and 

environmental information processing with 27% each. Comparable to 10% detected 

in the first time point, 9% of the significantly upregulated pathways were metabolic 

pathways after 72 h, and 9% were found to part of organismal systems, as compared 

to 0% after 48 h (Figure 5.3C).  

A different pattern emerged for the significantly downregulated pathways 

after 72 h as compared to after 48 h. The number of significantly downregulated 

pathways decreased to 25% for metabolic pathways, slightly decreased to 12% for 

cellular processes, but increased to 38% for disease related pathways and increased 

to 25% for pathways in the category of genetic information processing. Additional 

13% of significantly downregulated pathways were categorised into organismal 

systems (Figure 5.3D).  

These results indicate that a number of pathways belonging to different 

categories were already significantly altered in WT organoids after only 48 h and 72 

h of being exposed to Apc deficient organoids. This further highlights the fact that 

exposure for only 48 h is sufficient to cause global regulatory profile changes in WT 

organoids exposed to Apc1322/+ organoids when grown in close proximity to each 

other. 
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Figure 5.3: Categorisation of enriched pathways. 
Pie charts show the percentage of up- and downregulated pathways of mRNA expression profiles of 
WT organoids grown in presence of Apc1322/+ organoids compared to WT organoids only 
(WTxWT.1322) for 48 h and 72 h analysed using GSEA based on the KEGG pathway database. 
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5.2.4 Exposure to Apc1322/+ organoids caused induction in DNA replication 

pathways in WT organoids after 48 h 

DNA replication was identified as the most upregulated pathway after 48 h (NES = 

3.088, FDR < 0.001) (Table 5.1A, Figure 5.4A), indicating that WT organoids have 

an increased rate of DNA replication as a consequence of being in close proximity to 

Apc1322/+ organoids. In general, WT organoids exposed to Apc1322/+ organoids 

demonstrated upregulation of pathways involved in the repair of DNA double strand 

breaks (DSBs), splicosome (NES = 3.075, FDR < 0.001), homologous recombination 

(NES = 2.878, FDR < 0.001), base excision repair (NES = 2.716, FDR < 0.001), and 

in the ribosome pathway (NES = 2.073, FDR = 0.034). Homologous recombination, 

for example, is involved in repairing DNA DSBs and damaged replication forks 

(Helleday 2010). Enrichment of homologous recombination suggests increased cell 

proliferation (Bishop et al. 2002).  

As part of cellular processes, the cell cycle pathway was significantly 

upregulated pathway (NES = 2.241, FDR = 0.019). Categorised as environmental 

information processing, the calcium signalling pathway was significantly 

upregulated (NES = 2.018, FDR = 0.038), indicating that after only 48 h the calcium 

signal has already been altered by Apc deficient organoids in exposed WT organoids. 

Intracellular calcium ions (Ca2+) play crucial roles in maintaining the cell’s 

physiology, including gene transcription, cell cycle control, migration and apoptosis. 

Disruption of intracellular Ca2+ homeostasis has been shown to contribute to tumour 

initiation and progression (Cui et al. 2017).  

Metabolic pathways accounted for the majority of downregulated pathways 

48 h post exposure to Apc1322/+ organoids. Of those, the most reduced pathway was 

oxidative phosphorylation (NES = -4.129, FDR < 0.001) (Table 5.1B, Figure 5.4B). 

Moreover, glutathione metabolism (NES = -2.336, FDR = 0.007), fatty acid 

metabolism (NES = -2.278, FDR = 0.01) and sphingolipid metabolism (NES = -

2.032, FDR = 0.036) were also significantly altered. This indicates that pathways 

involved in nutritional storage are significantly reduced. Oxidative phosphorylation 

is a process during which cells use enzymes to oxidize nutrients, thereby releasing 

energy, which is then used to produce adenosine triphosphate (ATP) (Korzeniewski 

2001). The reduction of these metabolic pathways shows a potential metabolic shift 

towards the Warburg effect (Zheng 2012). Taken together, these results 



 187 

demonstrated a conclusive change in cell status: proliferation/cell division was 

potentially increased whilst metabolism was decreased. 

In order to study gene expression changes, transcriptional profiles were 

compared between WT vs. WT organoids grown in presence of Apc1322/+ organoids 

(WTxWT.1322). Results can be visualised with a MA plot (statistical significance: 

FDR < 0.05 and effect size: log2 fold change ≥ 1), which plots the differences 

between measurements taken in WT and WT.1322 by transforming the data onto M 

(log ratio) and A (mean average) scales. MA plots detect significantly altered genes 

between WT and WT.1322. However, no significant gene expression changes were 

detected after 48 h (Figure 5.5A, Table 5.2).  

Nevertheless, GSEA identified genes that led to the enriched signature in 

DNA replication, some of which were Pold2, Pold3, Pold4, Pole, Mcm4 and Mcm6 

among others. The expression changes of these genes were verified using 

quantitative reverse transcriptase-PCR (qRT-PCR). It was shown that Pold3 (t-test 

with Welch’s correction: p = 0.047), Pold4 (p = 0.03) and Mcm6 (p = 0.031) were 

significantly upregulated in WT organoids exposed to Apc1322/+ organoids, indicating 

that these genes significantly contributed to the induction of this pathway (Figure 

5.5B). Pold3 and Pold4 also significantly contributed to the upregulation of 

homologous recombination and the base excision repair pathway. However, the 

genes Pold3 (0.24-fold, p > 0.05), Pold4 (0.13, p > 0.05), and Mcm6 (0.11, p > 0.05) 

were not significant in the RNA analysis. Thus, these results have to be analysed 

with caution. 

Taken together, this indicates that exposure to Apc1322/+ organoids for 48 h is 

not long enough to see global transcriptional changes in gene expression alteration in 

WT organoids.  
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Table 5.1: Altered pathways in WT organoids exposed to Apc1322/+ for 48 h.  
GSEA identified multiple enriched pathways based on the KEGG gene set. A) shows the ten most 
upregulated pathways and B) the ten most downregulated pathways after 48 h. Cut-off FDR-value = 
0.05. NES, normalised enrichment score; FDR, false discovery rate. 
 
 
 

 
Figure 5.4: GSEA expression profiles for WTxWT.1322 after 48 h.  
Representative enrichment plots resulting from the comparison between WT organoids exposed to 
Apc1322/+ and WT organoids only using the established gene set KEGG. WT organoids exposed to 
Apc1322/+ were positively enriched for DNA replication (A), while negatively enriched for genes in the 
oxidative phosphorylation pathway (B) after 48 h. Vertical lines indicate the positions of the gene 
along the comparison for each gene set. FDR, false discovery rate. 
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Figure 5.5: Gene expression changes of WT organoids exposed to Apc1322/+ organoids after 48 h. 
A) MA plots indicating the differential expression of genes between WT and WT organoids grown in 
presence of Apc1322/+ organoids after 48 h. Grey dots indicate genes that show no statistically 
significant difference in abundance between WTxWT.1322 organoids (FDR < 0.05). The blue line 
indicates the log2 fold change cut-off of 1. B) Gene expression changes measured with qPCR. Genes 
related to upregulated pathways of DNA replication, homologous recombination and base excision 
repair. Three genes were significantly upregulated (asterisk = p < 0.05) in WT organoids exposed to 
Apc1322/+ organoids after 48 h. Error bar represents standard error or mean (SEM). Pold2, Pold3, 
Pold4, DNA polymerase delta subunit 2, 3, 4, respectively; Pole, DNA polymerase epsilon; Mcm4, 
Mcm6, mini-chromosome maintenance complex component 4, 6, respectively. 
 
 
 
 

 
Table 5.2: Gene expression changes of WT organoids exposed to Apc1322/+ after 48 h. 
A) Shows the ten most upregulated and B) the ten most downregulated genes (log2 fold change) for 
WTxWT.1322 after 48 h. Statistical significance: p ≤ 0.05. 
 
 
 
 
  



 190 

5.2.5 Apc1322/+ organoids activate mismatch repair and ECM receptor 

interaction pathways in adjacent WT organoids after 72 h 

After 72 h, ribosome (NES = 3.347, FDR < 0.001) (Figure 5.6A), mismatch repair 

(MMR) (NES = 2.225, FDR = 0.01) and homologous recombination (NES = 1.938, 

FDR = 0.041) pathways were significantly upregulated in WT exposed to mutant 

organoids (Table 5.3A). Ribosomes play a major role in protein synthesis and the 

process includes ribosome DNA transcription in the nucleus, rRNA assembly in the 

neoplasm and ribosome completion in the cytoplasm (Cisterna et al. 2010). There is 

evidence that upregulation of ribosome biogenesis poses an increased risk of CRC 

onset (Derenzini et al. 2017). 

The MMR pathway is involved in multiple processes including apoptosis, 

and the MMR mechanism corrects mutations arising during DNA replication or 

damage. Lack of MMR-mediated DNA repair can initiate tumourigenesis resulting in 

a phenotype known as microsatellite instability (MSI) and strikingly loss of APC 

alone can contribute to MMR-deficient tumourigenesis, as mutations in MMR and 

APC can enhance MSI and lead to the accumulation of more mutations over time (Li 

et al. 2016).  

The calcium signalling pathway was still enriched after 72 h (NES = 2.477, 

FDR = 0.003), and was comparable to the change observed at the 48h time point, 

indicating that calcium signals were still altered and homeostasis disrupted.  

Interestingly, the ECM receptor interaction pathway (NES = 2.092, FDR = 

0.02), also categorised as environmental information processing, was significantly 

upregulated after 72 h in WT organoids when exposed to Apc deficient organoids. 

The extracellular matrix (ECM) plays an important role in the maintenance of cell 

tissue and structure, and function (Hayes et al. 2016). Specific interactions between 

cells and the ECM are mediated by transmembrane molecules, and these molecules 

control gene expression, cell proliferation, differentiation, and migration among 

other aspects of a cell’s life (Teller et al. 2001). Expression changes of ECM proteins 

were shown to have a high impact on tumour development, as ECM structurally 

supports tumour cells and their cellular functions (Hay 1993, Hayes et al. 2016, 

Stankevicius et al. 2016). Thus, upregulation of this pathway hints towards altered 

cell development and homeostasis. 
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GSEA revealed significantly downregulated pathways in the category of 

genetic information processing. The splicosome pathway was the most affected 

pathway in this category (NES = -3.759, FDR < 0.001) (Figure 5.6B, Table 5.3B), 

which was interesting, as it was significantly upregulated after 48 h. Other 

downregulated pathways included proteasome (NES = -3.438, FDR < 0.001), 

ubiquitin-mediated proteolysis (NES = -2.731, FDR < 0.001) and basal transcription 

factors (NES = -2.305, FDR = 0.006).  

Oxidative phosphorylation was still identified as the most reduced pathway in 

the metabolic pathway category (NES = -4.5, FDR < 0.001). Oxidative 

phosphorylation is the major energy provider of a cell, indicating that energy 

production is reduced after 72 h. However, it might also indicate that by 

downregulation of the oxidative phosphorylation pathway more ROS were 

accumulated, which are known to cause mutations (Yadav et al. 2015). Defects in 

oxidative phosphorylation are one of the key reasons for attenuation of apoptosis in 

cancer cells (Dey et al. 2000). Here, the apoptosis pathway was significantly reduced 

(NES = -2.003, FDR = 0.033) as well, strengthening the above stated hypothesis.  

Further, the insulin signalling pathway (NES = -2.464, FDR = 0.002) was 

significantly downregulated as part of the organismal systems category. Expression 

changes in components of the insulin growth factor system can contribute to the 

transformation of normal colonic epithelial cells (Vigneri et al. 2015).  

Transcriptional profiles were analysed and 54 upregulated and 26 

downregulated genes were detected in WT organoids exposed to Apc deficient 

organoids when compared to WT organoids only after 72 h (Figure 5.7A). The 50 

most differentially expressed genes are visualised in Figure 5.8. The top ten most up- 

and downregulated genes are listed in Table 5.4A and B, respectively. Interestingly, 

Lamb1 (1.74-fold, p = 0.03) was significantly upregulated as part of the ECM 

receptor interaction pathway. Lamb1 interacts with integrins to form a cell adhesion 

network in the intestinal epithelium (McCole 2014). Induction of Lamb1 could 

suggest changes in the basal lamina thereby potentially altering the structure of such 

cell adhesion network. 

Moreover, GSEA identified various genes contributing to the enrichment of 

MMR, some of which included Pold2, Pold3, Pold4 and Pole, as well as Mhl1 and 

Msh6. Pold3 (t-test with Welch’s correction: p = 0.012) and Pold4 (p = 0.03) were 
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significantly induced, indicating these genes might contribute to the upregulation of 

the MMR pathway (Figure 5.7B).  

Bax and Casp6, among other genes identified by GSEA, might contribute to 

the reduction seen in the apoptosis pathway. However, verification via qPCR did not 

confirm this result (Figure 5.7B). Bcl2l15 (-1.27fold, p = 0.049) and Osgin1 (-

1.04fold, p = 0.005), both regulators of apoptosis (Sinicrope et al. 2008, Yao et al. 

2008), were also downregulated. This is consistent with the findings from GSEA, as 

apoptosis was significantly reduced. When downregulated, the oxidative stress 

induced growth inhibitor 1 (Osgin1) does not respond to oxidative stress and cells 

will continue to grow (Liu et al. 2014). Osgin1 has been shown to be induced by 

DNA damage (Yao et al. 2008), which is in line with the induced MMR pathway. 

Taken together, this indicates that exposure of WT organoids to Apc1322/+ 

organoids for 72 h was sufficient to cause significant alteration in gene expression 

compared to WT organoids only. This further suggests that these alterations in 

pathways are early events in the transformation. Collectively, these findings suggest 

that exposure of Apc1322/+ organoids to WT organoids for 72 h enforced 

transcriptional changes that alter critical cellular processes associated with tumour 

initiation.  
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Table 5.3: Altered pathways in WT organoids exposed to Apc1322/+ for 72 h.  
GSEA identified multiple enriched pathways based on the KEGG gene set. A) shows the ten most 
upregulated pathways and B) the ten most downregulated pathways after 72 h, respectively. Cut-off 
FDR-value = 0.05. NES, normalised enrichment score; FDR, false discovery rate. 
 
 
 

 
Figure 5.6: GSEA expression profiles for WTxWT.1322 after 72 h.  
Representative enrichment plots resulting from the comparison between WT organoids exposed to 
Apc1322/+ and WT organoids only using the established gene set KEGG. WT organoids exposed to 
Apc1322/+ were positively enriched for ribosome (A), while negatively enriched for genes in the 
splicosome pathway (B) after 72 h. Vertical lines indicate the positions of the gene along the 
comparison for each gene set. FDR, false discovery rate. 
 
  



 194 

 
Figure 5.7: Gene expression changes of WT organoids exposed to mutants after 72 h. 
A) Over- and underexpressed genes in WT organoids exposed to Apc1322/+ organoids compared to WT 
organoids only. MA plots indicating the differential expression of genes between WT and WT 
organoids grown in presence of Apc1322/+ organoids after 48 hours. Grey dots indicate genes that show 
no statistically significant difference in abundance between WTxWT.1322 organoids, whilst red dots 
indicate significantly differentially expressed genes (FDR < 0.05). The blue line indicates the log2 fold 
change cut-off of 1. B) Genes related to the upregulated MMR pathway and downregulated apoptosis 
pathway. Pold3 and Pold4 genes were significantly upregulated (p < 0.05) as part of the MMR 
pathway in WT organoids exposed to Apc1322/+ organoids after 72 h. Error bar represents standard error 
or mean (SEM). Significance: p < 0.05 (*). Pold2, Pold3, Pold4, DNA polymerase delta subunit 2, 3, 
4, respectively; Pole, DNA polymerase epsilon; Mhl1, MutL homolog 1; Msh6, MutS homolog 6; Bax, 
Bcl-2-associated X; Casp6, Caspase 6. 
 
 

 
Table 5.4: Gene expression changes of WT organoids exposed to Apc1322/+ after 72 h. 
A) Shows the ten most upregulated and B) the ten most downregulated genes (log2 fold change) for 
WTxWT.1322 after 72 h. Statistical significance: p ≤ 0.05. 
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Figure 5.8: Differential gene expression profiles between WT and WT.1322 after 72 h. 
Heatmap shows the 25 most significantly upregulated and the 25 most downregulated genes between 
WT organoids (green) and WT organoids exposed to mutants (pink). Columns for WT organoids and 
WT organoids exposed to mutants refer to biological replicates WT-1 – WT-3 and WT.1322-1 – 
WT.1322-3, respectively.  
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5.3 Discussion 

Our understanding of the earliest events associated with neoplastic transformation 

remains limited. To gain insight into the earliest stages of colon cancer development, 

interactions between Apc1322/+ and WT organoids were investigated in a co-culture set 

up. This experimental design allowed us to investigate how Apc deficient organoids 

influence WT organoids when grown adjacent to each other for 48 h and 72 h. 

Understanding the nature of these interactions might uncover specific intercellular 

signalling pathways that could be monitored and targeted for cancer prevention.  

The main focus here was to study gene expression patterns in WT organoids 

grown in presence of Apc deficient organoids compared to WT organoids only. An 

important observation in the current study is that a heterozygous mutation (Apc1322/+) 

in organoids grown adjacent to WT organoids can activate distinct transcriptional 

changes within the WT epithelium after only 48 h and 72 h. Indeed, transcriptionally 

distinct gene signatures were identified in WT organoids exposed to Apc1322/+ 

organoids, as they clustered slightly independently from WT organoids only, 

indicating that Apc1322/+ organoids have an effect on WT organoids. 

DNA replication was identified as the main upregulated pathway in WT 

organoids exposed to Apc deficient organoids for 48 h. Incidents during DNA 

replication can cause replicative stress, which is a main feature in the early stages of 

tumourigenesis (Herlihy et al. 2017). DNA replication is tightly controlled in normal 

cells and genome duplication in dividing cells makes DNA replication an important 

factor in limiting cancer risk. For instance, disruptions in the catalytic activity of the 

DNA polymerase subunit δ (POLD) increase genomic instability (Pillaire et al. 

2010). POLD proteins are thought to replicate the lagging strand and are involved in 

DNA repair, chromosomal replication and participate in DNA MMR and base 

excision repair, key processes shown to be defective in CRC (Miquel et al. 2007). 

Upregulation of Pold3 and Pold4 in this study could hint towards increased 

replication or lack of DNA repair.  

The MCM protein family is essential for the initiation of genome replication, 

and specifically Mcm6 is involved in the initiation of genome replication and 

elongation, and ensures that chromosomal replication occurs once per cell cycle 

(Maiorano et al. 2006). Here, Mcm6 was significantly induced, which could indicate 
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its potential role in these processes. Moreover, homologous recombination was also 

significantly upregulated. Perturbations in homologous recombination can alter 

genome stability and initiate LOH (Pires et al. 2017). Enrichment of homologous 

recombination hints towards increased cell proliferation (Bishop et al. 2002), which 

in the future could be confirmed with an organoid formation and proliferation assay.  

The main downregulated pathways after 48 h were categorised as metabolic 

pathways, with oxidative phosphorylation being a key player. Metabolic activities in 

normal cells rely on oxidative phosphorylation to generate ATP for energy. It is a 

known fact that in cancer cells, oxidative phosphorylation is reduced while anaerobic 

glycolysis is increased, a phenomenon known as the Warburg effect (Zheng 2012). 

In this study, downregulation of oxidative phosphorylation in exposed WT organoids 

indicated reduced aerobic energy production, which could be analysed by monitoring 

changes in level of Acetyl-CoA and Lactate. Glycolysis was upregulated, however 

not yet significantly (NES = 1.458, FDR = 0.33).  

Other downregulated metabolic pathways included the fatty acid metabolism 

and glutathione metabolism pathways, suggesting that pathways involved in 

nutritional storage were significantly downregulated. The role of fatty acid 

metabolism in cancer is complex and controversial, as on the one hand, fatty acid 

metabolism is involved in cancer development and cell growth (Deberardinis et al. 

2008), but on the other hand, fatty acid metabolism plays a role in the energy supply 

for cancer cells through beta oxidation and glucose metabolism (Samudio et al. 

2010). Reduced fatty acid metabolism indicates that cells no longer store neutral 

lipids and divert the oxidation of fatty acids from energy production to support 

tumour proliferation (Xu et al. 2017). This could be verified with oil red O staining. 

Glutathione is an antioxidant protecting cells from damage (Wu et al. 2004). Thus, 

glutathione deficiency could lead to increased susceptibility to oxidative stress, 

which in turn can lead to increased levels of ROS. Excess of ROS formation 

generates cell damage that can lead to a mutagenic environment in the long term, and 

thus to the progression to cancer (Traverso et al. 2013).  

Taken together, this firstly indicates that Apc1322/+ organoids had a strong 

effect on WT organoids after only 48 h and secondly, pathways such as DNA 

replication and metabolic pathways were affected early on in the progression to 

tumour development. These results showed a conclusive change in cell status, as 

proliferation is potentially increased whilst metabolism decreased. 
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Ribosome biogenesis was significantly upregulated in exposed WT organoids 

after both time points, which could indicate tumour initiation (Derenzini et al. 2017). 

Since DNA replication was significantly upregulated, it is unsurprising to find 

ribosome biogenesis upregulated, as it regulates cell cycle progression in 

proliferating cells (Thomas 2000). Upregulation of the ribosome pathway has been 

identified in tumours of CRC patients compared to matching normal mucosa (Guo et 

al. 2017). However, our results demonstrate that this change is an early step in 

tumourigenesis and represents a functional change in field cancerization. 

The DNA MMR pathway was significantly upregulated in WT organoids 

exposed to mutants after 72 h. Alterations in the DNA MMR system have been 

linked to CRC (Li et al. 2016). Impaired MMR gene function leads to the onset of 

MSI tumours (Kheirelseid et al. 2013). Germline mutations in the MMR genes 

MSH2, MSH6, or MLH1 predispose to CRC (Jiricny et al. 2003, Truninger et al. 

2005). GSEA identified a certain number of genes contributing to this induction, 

which included Pold2, Pold3, Pold4 and Pole, as well as Mhl1 and Msh6. These 

genes play an important role in mediating correct DNA MMR and DNA replication 

(Jiricny et al. 2003, Pal et al. 2008). Briefly, MMR starts with the heterodimer 

MSH6 recognising the mismatched base pairs and followed by the recruitment of 

MHL1-PMS2 heterodimer complex. PCNA is then loaded and interacts with MHL1-

PMS2 to enable PMS2 to exert its endonuclease activity. The exonuclease 1 then 

mediates excision of the mismatched DNA. Finally, DNA polymerase δ synthesises 

new DNA to fill the excised bases (Li et al. 2016). Upregulation of MMR might 

indicate a greater degree of mismatched DNA. Overexpression of Msh6 could 

suggest difficulties in mismatched base pair recognition. Indeed, Pold3 and Pold4 

were found to be significantly upregulated in exposed WT organoids, demonstrating 

that at this step in the pathway significant alterations occur and that new DNA base 

pairs are potentially not accurately synthesised to fill the excided bases. However, 

the network of these genes caused the significant upregulation of the MMR pathway 

rather than individual genes. Nevertheless, changes in DNA MMR expression of WT 

organoids exposed to Apc1322/+ organoids seem to be an early step in carcinogenesis. 

Furthermore, the ECM receptor interaction pathway was significantly 

upregulated after 72 h. The ECM is composed of the basement membrane, 

containing the specific macromolecules type IV collagens, laminins and 

proteoglycans, and the interstitial matrix, containing collagens and fibronectins. 
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Laminins are the most abundant glycoproteins in the basal lamina and are involved 

in cell differentiation, migration and adhesion (Teller et al. 2001). ECM 

composition, stiffness and condition regulate normal cell behaviour and tissue 

development, and are important during major developmental processes. Its 

components are in constant interaction with the epithelia, thereby instigating 

intracellular activities that are related to a variety of biological functions, such as 

tissue development and homeostasis (Bonnans et al. 2014). These interactions are 

mediated by specific cell surface receptors called integrins, which are the largest 

family of receptors mediating cell adhesion to fibronectins, and laminins to collagens 

(Heino et al. 2009). Gene expression of relevant ECM genes was shown to be 

significantly different between CRC tumour and matched normal samples (Xu et al. 

2017). ECM remodelling, especially via the degradation of extracellular proteins and 

the collagen matrix is necessary for tumour expansion, metastasis and epithelial to 

mesenchymal transition (Kessenbrock et al. 2010, Lu et al. 2011). The gene 

expression pattern observed in ECM indicates substantial dysregulation and 

remodelling of ECM during tumourigenesis (Hayes et al. 2016). ECM interactions 

influence cell shape, function, proliferation, migration and apoptosis. Upregulation 

of the ECM interaction pathway could therefore indicate alterations of those 

characteristics occurring very early on in the transformation.  

Here, the largest dysregulation was observed in laminin subunit beta-1 

(Lamb1). It was significantly upregulated in WT organoids exposed to Apc1322/+ 

organoids. However, this upregulation was mostly driven by one sample, as 

represented in a heatmap, which visualised the gene expression changes in each of 

the samples (Figure 5.8). Nevertheless, in the remaining biological replicates Lamb1 

was still upregulated. It is worth noting that alterations in Lamb1 expression have 

been observed in colon cancer. Specifically, Lamb1 has been reported in malignant 

epithelial to mesenchymal transition (Petz et al. 2012). Immunohistochemistry for 

Lamb1 could be performed in murine intestines of WT and Apc1322/+ mice to further 

verify the induction at the protein level. 

As seen after 48 h, oxidative phosphorylation was still significantly 

downregulated after 72 h. Reduction in oxidative phosphorylation indicates that cells 

oxidise less nutrients and less energy in form of ATP is produced. Oxidative 

phosphorylation consists of five complexes in the mitochondria and components of 

these complexes are encoded by either mtDNA or nuclear DNA. Thus, alterations in 
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either mtDNA or nuclear DNA could potentially cause oxidative phosphorylation-

deficiency. Furthermore, oxidative phosphorylation deficiency has been associated 

with an increase in ROS (Yadav et al. 2015). Excessive ROS production can lead to 

oxidative damage, which in turn can lead to DNA damage, replication errors and 

even to genetic abnormalities (Selim et al. 2017). This could explain the upregulation 

seen in the MMR and DNA replication pathway.   

Oxidative phosphorylation deficiency has been associated with attenuation of 

apoptosis (Chandra et al. 2011). Thus, one could speculate that downregulation of 

oxidative phosphorylation influences expression of genes involved in the apoptosis 

pathway, as this pathway was significantly reduced in WT organoids exposed to 

Apc1322/+ organoids. Especially, Osgin1, an oxidative stress response protein 

regulating apoptosis, was found significantly reduced. Osgin1 has been shown to 

induce apoptosis through the induction of cytochrome c oxidase release and by its 

localisation to mitochondria (Yao et al. 2008). Thus, reduced expression of this gene 

could lead to increased cell proliferation, which could eventually result in tumour 

initiation and progression, as cells no longer respond to oxidative stress.  

 In summary, these results indicate that WT organoids were significantly 

affected by mutant Apc1322/+ organoids after 72 h, and that exposed WT organoids 

underwent specific transcriptional changes very early on. DNA replication was 

induced after 48 h, while DNA MMR was induced after 72 h. This indicates that 

from its earliest stages, tumour development is associated with DNA replication 

stress leading to DNA DSBs, which eventually will lead to genomic instability and 

selective pressure for further mutations. 

The initial hypothesis was that clonal interactions drive expansion. Features of 

such expansion are proliferation, replication, crypt fission and mutations. Gene sets 

in pathways contributing to proliferation and replication were activated, whilst 

metabolic pathways were downregulated in WT organoids grown adjacent to 

Apc1322/+ organoids. These results provide insights into the dynamic and complex 

interplay occurring early in WT organoids after being exposed to Apc1322/+ organoids.  
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6 Chapter VI: Influence of tumour-exposed 

fibroblasts on WT organoids  

6.1 Introduction 

In the previous chapter, the effect of mutated epithelium on normal epithelium in 

close proximity was investigated using murine intestinal organoids to better 

understand initial events in tumourigenesis. However, the transformation of normal 

to mutated epithelium is likely to be dependent on the interactions with the 

surrounding stroma (Parrinello et al. 2005). Therefore, this chapter focussed on the 

influence of tumour-exposed fibroblasts (TEFs) on WT organoids. 

The stroma in healthy tissue acts as a barrier against tumourigenesis, but in the 

presence of tumour cells, crucial changes are initiated that convert the environment 

into one that supports tumourigenesis (Junttila et al. 2013). The stroma constitutes a 

large fraction of solid tumours and in some carcinomas it makes up more than 80% 

of the tumour mass. Stromal cells constitute a heterogeneous population of different 

cell types: the tumour stroma is composed of neoplastic cells, but also non-malignant 

cells, such as normal stromal cells, infiltrating immune cells, cytokines and 

chemokines, and specialised fibroblasts, termed cancer-associated fibroblasts 

(CAFs), all embedded in a network of extracellular matrix proteins (Belov et al. 

2010, Rupp et al. 2015). The stroma is in direct contact with the adenoma and once it 

becomes activated, an altered phenotype is displayed that produces growth-

promoting factors, as well as enhances tumour cell proliferation and migration, thus 

speeding up tumourigenesis and depicting important drivers of tumourigenesis (Mo 

et al. 2016). 

A major contributor to the tumour microenvironment is inflammation 

(Kortlever et al. 2017). Inflammatory reactions within tumours have been associated 

with better prognosis for CRC patients, although different infiltrating immune cells 

affect tumour progression differently (Fridman et al. 2012). Specifically CD8+ cells 

have been linked to better clinical outcome, as opposed to immune regulatory T cell 

populations that promote tumour escape from immune surveillance (Quigley et al. 
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2015). Immune infiltrates are also heterogeneous between tumour types, and are very 

diverse from patient to patient. Variable numbers of infiltrating immune cells are 

found in different tumours of the same type, and in different locations within and 

around a tumour (Fridman et al. 2012). Nevertheless, immune cell components are 

found at higher densities in tumours compared to normal tissues (see Chapter 3). 

Fibroblasts, a major cell type in the colonic stroma, are responsible for tissue 

remodelling and homeostasis by providing scaffolding and regulatory growth factors 

(Chen et al. 2014). Myofibroblasts, found surrounding the colonic crypt, are mainly 

involved in the synthesis of various collagens and extracellular matrix proteins to 

provide scaffold (Kalluri 2016). In tumour tissues, activated fibroblasts expressing 

high levels of α-SMA are referred to CAFs. CAFs are suspected to promote tumour 

development and progression, since they nourish cancer cells with a vast number of 

growth factors. Thus, cancer cells are capable of reprogramming normal fibroblasts 

into CAFs with pro-tumourigenic activity and enhanced cell proliferation, a process 

that is mediated by cancer cell-derived factors (Mukaida et al. 2016). Studies using 

patient-derived organoids have shown that CAFs increase the frequency of tumour-

initiating cells (Calon et al. 2015). 

As shown in Chapter 3, the stroma that was in direct contact with adenomatous 

crypts became activated: a greater concentration of immune cells and fibroblasts 

were found surrounding the adenomatous mucosa. It has previously been shown that 

altered mucosal phenotypes that exhibit similar cellular makeup also produce 

growth-promoting factors, therefore promoting tumour progression (De Wever et al. 

2003, Rasanen et al. 2010). Thus, there are various different pathways by which 

oncogenes can impact on the immune environment, and understanding this interplay 

will be important to improving immune eradication of tumours. 

However, little is known regarding epithelial-stromal interactions in the very 

early stages of tumourigenesis and the accompanying critical steps leading to tumour 

progression. Here, we exposed WT murine organoids to Apc1322/+ organoids and 

examined the changes in mRNA expression. Furthermore, Apc1322/+ organoids were 

co-cultured with murine fibroblasts to generate tumour-exposed fibroblasts (TEFs). 

These TEFs were then exposed to WT organoids in order to investigate the 

reciprocal interactions between tumour-associated stroma and normal epithelium. 

Understanding these epithelial-stromal interactions may help to develop a better 

understanding of tumour initiation and progression.  
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In the first part of this chapter, the mRNA expression profiles of co-cultured 

epithelial organoids and fibroblasts are shown. In the second and third part, mRNA 

expression changes in WT organoids exposed to Apc1322/+ organoids, and WT 

organoids co-cultured with TEFs were investigated, respectively, both co-cultured in 

a transwell setting (as opposed to adjacent to each other as shown in Chapter 5).  

 

 

 

6.2 Distinct expression profiles between WT organoids and WT 

organoids exposed to either Apc1322/+ organoids or tumour-

exposed fibroblasts (TEFs) 

In order to study the impact of tumour-exposed fibroblasts (TEFs) on WT organoids, 

gene expression changes were assessed on WT organoids co-cultured with Apc1322/+ 

organoids, and on WT organoids co-cultured with TEFs, generated by co-culture 

with Apc1322/+ organoids for 72 h in a transwell set up. These TEFs were then co-

cultured with WT organoids for another 72 h (see section 2.8, 2.9; Figure 2.8). The 

72 h time point here was chosen based on findings in Chapter 5 that showed maximal 

gene expression changes at 72 h rather than 48 h. Thus, the sample set was 

comprised of WT organoids, WT organoids exposed to Apc1322/+ organoids, and WT 

organoids exposed to TEFs. RNA was extracted from all organoid groups in 

triplicate, and quality and quantity measured (see section 2.10.1, 2.10.2). Samples 

with a RIN value > 8 were chosen for mRNA sequencing (see section 2.10.3). RNA 

of Apc1322/+ organoids, Apc1322/+ organoids exposed to WT organoids and Apc1322/+ 

organoids exposed to WT fibroblasts was also subjected to mRNA sequencing. After 

completing the transcriptome analysis, principal component analysis (PCA) was used 

to evaluate the broad transcriptional differences across all samples (Figure 6.1).  

In general, WT and Apc1322/+ organoids clustered separately from each other. 

Unsurprisingly, Apc1322/+ organoids and Apc1322/+ organoids exposed to WT organoids 

clustered together, however Apc1322/+ organoids exposed to normal fibroblasts 

clustered separately. More importantly, a clear separation was visible between WT 

organoids and WT organoids exposed to Apc1322/+ organoids (WT.1322). Strikingly, 
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WT organoids co-cultured with TEFs (WT.F.1322) clustered independently from 

both, WT organoids and those exposed to Apc1322/+ organoids. 

 These results demonstrate that WT organoids are transcriptionally different 

from WT organoids exposed to Apc1322/+ organoids, but more importantly that by 

adding a stromal component – tumour-exposed fibroblasts – transcription profiles 

change drastically: both WT organoids and WT organoids exposed to Apc deficient 

organoids were transcriptionally distinct from WT organoids exposed to TEFs, 

further highlighting the role of the stroma in early transformation.  

This was further supported when comparing gene expression patterns 

between WT, WT.1322 and WT.F.1322 (Figure 6.2). Differential expression analysis 

identified the 50 most variable genes between these three conditions highlighting 

some of the genes driving the observed clustering pattern. Gene expression changes 

between WT and WT.1322 were similar, however distinct patterns were observed in 

WT.F.1322. Gene expression changes will be discussed in more detail between WT 

and WT.1322 organoids in section 6.3.2, and between WT and WT.F.1322 organoids 

in section 6.4.1. 
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Figure 6.1: Effect of Apc1322/+ organoids and TEFs on WT organoids. 
PCA shows the variation in the RNA sequencing data. Apc1322/+ organoids (1322; outlines in blue) are 
separately clustered from WT organoids (outlines in red). WT organoids (brown) cluster separately 
from mutant (green) organoids. WT and WT.1322 organoids cluster closer together than WT 
organoids exposed to TEFs (grey). Apc1322/+ organoids (1322, yellow) and Apc1322/+ organoids exposed 
to WT (1322.WT, purple) cluster together, but Apc1322/+organoids exposed to normal fibroblasts 
(1322.F, pink), cluster separately.  
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Figure 6.2: Comparison of WT, WT.1322 and WT.F.1322 gene expression patterns. 
Heatmap shows the 50 most variable genes between WT (blue), WT.1322 (green) and WT.F.1322 
(pink) explaining the separation of the PCA. The largest variation comes from WT organoids exposed 
to tumour-exposed fibroblasts (WT.F.1322). Each condition was sequenced in biological replicates.  
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6.3 Co-culture of WT and Apc1322/+ organoids in a transwell setting 

 

6.3.1 Exposure of WT organoids to Apc1322/+ organoids activates pathways 

involved in DNA double strand break repair while metabolic pathways 
are reduced in WT organoids 

Expression profiles were analysed using GSEA to detect altered pathways and results 

were cross-referenced with genes in the KEGG database (see section 2.10.5) to 

determine the signalling pathways responsible for the differential clustering observed 

in PCA. Overall, GSEA identified 6 significantly upregulated pathways (FDR < 

0.05) in WT organoids exposed to Apc1322/+ organoids compared to WT organoids 

alone only after 72 h, of which were 67% categorised into genetic information 

processing, 17% into diseases, and 16% into cellular processes (Figure 6.3A). In 

contrast, GSEA identified 14 downregulated pathways, of which were 50% 

categorised into metabolic pathways, 15% into cellular processes, 14% into 

organismal systems, 14% into diseases, and the remaining 7% fall into the category 

of environmental information processing (Figure 6.3B).  

 The most upregulated pathway, as part of the genetic information processing 

category, was the ribosome pathway (NES = 7.18, FDR < 0.001), indicating that this 

pathway is increased in WT organoids exposed to Apc1322/+ organoids. Ribosomes are 

responsible for translating mRNA into proteins and upregulation of the ribosome 

pathway indicates an altered mRNA translation mechanism that has been shown to 

be a risk factor for cancer initiation (Nieminen et al. 2014).  

Furthermore, as part of the cellular processes category, the cell cycle pathway 

was significantly upregulated (NES = 2.93, FDR < 0.001) (Figure 6.4A), indicating 

increased cell proliferation. 

In general, WT organoids exposed to Apc1322/+ organoids demonstrated 

upregulation of pathways involved in the repair of DNA DSBs, DNA replication 

(NES = 2.856, FDR < 0.001) (Figure 6.4B), splicosome (NES = 2.83, FDR < 0.001), 

and the DNA MMR pathway (NES = 2.506, FDR = 0.002) (Table 6.1A).  
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Figure 6.3: Categorisation of enriched pathways for WTxWT.1322. 
Pie charts show the percentage of all upregulated (A) and downregulated (B) pathways of WT 
organoids co-cultured with WT organoids exposed to mutants (WTxWT.1322) for 72 h. Expression 
profiles were analysed using GSEA based on the KEGG pathway database. 
 
 
 
 

 
Table 6.1: Enriched pathways for WT organoids exposed to Apc1322/+ organoids for 72 h. 
GSEA identified multiple enriched pathways based on the KEGG gene set. A) The ten most 
upregulated and B) downregulated pathways after 72 h. Cut-off FDR-value < 0.05. 
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The two most downregulated pathways, peroxisome (NES = -3.212, FDR < 

0.001) (Figure 6.4C) and endocytosis (NES = -2.961, FDR = 0.001), were part of the 

cellular processes category, as identified by GSEA (Table 6.1B). Peroxisomes are 

involved in metabolic pathways, where they catalyse oxidation reaction, including 

fatty acid oxidation, the reduction of ROS, as well as enzymes that protect cells from 

oxidative damage. Thus, peroxisomes are essential for maintaining basic metabolic 

functions. Reduction of peroxisome activity can lead to disruptions in peroxisome 

homeostasis, thus initiating pathologies related to CRC (Kim et al. 2015, Tripathi et 

al. 2016).  It is therefore not surprising that the majority of pathways that were 

downregulated after 72 h were categorised as metabolic pathways. Of those, the most 

downregulated one was the phosphatidylinositol signalling system (NES = -2.778, 

FDR = 0.001). Moreover, fatty acid metabolism (NES = -2.382, FDR = 0.007), 

glycerophospholipid metabolism (NES = -2.38, FDR = 0.006), citrate cycle (NES = -

2.28, FDR = 0.01), oxidative phosphorylation (NES = -2.239, FDR = 0.012), 

glycerolipid metabolism (NES = -2.238, FDR = 0.011), and the drug metabolism 

cytochrome P450 pathway (NES = -2.011, FDR = 0.034) were significantly 

downregulated, indicating that pathways involved in nutritional storage were 

significantly reduced. It is also not surprising that fatty acid metabolism was 

downregulated, since peroxisomes are known to breakdown fatty acids (Delille et al. 

2006).  

Categorised as organismal systems, the PPAR signalling pathway (NES = -

2.44, FDR = 0.006) (Figure 6.4D) and the insulin signalling pathway (NES = -2.051, 

FDR = 0.03) were significantly downregulated in WT organoids exposed to Apc1322/+ 

organoids. Peroxisome proliferator-activated receptor (PPAR) signalling plays a role 

in cell differentiation and has anti-tumourigenic effects (Feige et al. 2006). When 

activated, PPAR induces apoptosis and controls tumour development by preventing 

proliferation, angiogenesis and reducing tumour microenvironment inflammation 

(Dai et al. 2010). Deficiency in PPAR has been associated with increased 

tumourigenicity in mouse intestine and colon (McAlpine et al. 2006). Thus, its 

downregulation might indicate loss of its protective functions and potentially induce 

tumour development. PPAR is also involved in glucose metabolism through 

improving insulin sensitivity (Dai et al. 2010). This could explain the reduction seen 

for the insulin signalling pathway. 
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Figure 6.4: GSEA expression profiles for WTxWT.1322 after 72 h. 
Representative enrichment plots resulting from the comparison between WT organoids exposed to 
Apc1322/+ and WT organoids only using the established gene set KEGG. WT organoids exposed to 
mutants were positively enriched for cell cycle (A) and DNA replication (B), while the peroxisome 
pathway (C) and PPAR signalling pathway (D) were downregulated. Vertical lines indicate the 
positions of the gene along the comparison for each gene set. Cut-off FDR-value < 0.05. 
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Further analysis using ingenuity pathway analysis (IPA) (see section 2.10.6) 

supported the observation that PPAR was significantly reduced (Figure 6.5). The 

PPAR subfamily consists of three isoforms, PPAR-α, PPAR-β/δ and PPAR-γ, of 

which only PPAR-α was significantly reduced (-1.08-fold, p = 0.002). Additionally, 

it was shown that its downregulation led to the reduction in fatty acid oxidation, 

metabolism and transport, which was consistent with the results provided by GSEA, 

as the fatty acid metabolism pathway was significantly downregulated (Table 6.1B).  

Moreover, IPA identified upregulation of the transmembrane receptor TLR4, 

as well as the cytokine TNF-α, which could potentially induce a proinflammatory 

response and an adaptive immune response. However, this could not be verified with 

qRT-PCR (Figure 6.6). 

Furthermore, the ATP-binding cassette (ABC) transporter pathway was 

downregulated as part of the environmental information processing category. ABC 

transporters play an important role in the active transport of substances across the 

membrane (Mercado-Lubo et al. 2010). Reduction of the ABC transporter pathway 

could indicate the impairment of such transport. 

Taken together, these results demonstrate that upon exposure of WT 

organoids to Apc1322/+ organoids, pathways involved in proliferation and DNA repair 

are activated, while metabolic pathways are downregulated. Both processes have 

been shown to occur in the early stages of transformation.  
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Figure 6.5: PPAR signalling reduced fatty acid metabolism. 
Adaptation of the LPS/IL-1 mediated inhibition of the RXR function pathway from IPA. PPAR was 
reduced, as well as the enzymes and transporters it regulates, leading to reduced expression of fatty 
acid oxidation, metabolism and transport. Altered genes: PPAR, peroxisome proliferator-activated 
receptor; CYP4A22, cytochrome P450 family 4 subfamily A member 22; ACOX, Acyl-CoA Oxidase 
1; CPT, Carnitine Palmitoyltransferase; HMGCS, 3-Hydroxy-3-Methylglutaryl-CoA Synthase; FABP, 
fatty acid binding protein; FATP, fatty acid transport protein; ACS, Acyl-CoA Synthetase. Pathway 
was adapted from IPA. 
 
 
 
 
 

 
Figure 6.6: Validation of gene expression changes of WTxWT.1322 using qPCR. 
Gene expression changes were compared between WT organoids and Apc1322/+ organoids after 72 h of 
exposure. Three genes were not significantly altered in transcription. Error bar represents standard 
error or mean (SEM). Col9a1, Collagen type IX alpha 1 chain; TLR4, Toll Like Receptor 4; Tnf-α, 
tumour necrosis factor alpha.  
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6.3.2 Transcription patterns in WT organoids exposed to Apc1322/+ 

After having established which pathways were significantly altered, the next step 

was to investigate expression changes at the gene level. Transcriptional profiles were 

analysed in WT organoids exposed to Apc1322/+ organoids. 83 upregulated and 204 

downregulated genes were detected in exposed WT organoids when compared to 

WT organoids only (log2 fold change ≥ 1, p < 0.05) (Figure 6.7). The top twenty 

most altered genes are listed in Table 6.2.  

One of the significantly upregulated genes was Col9a1 (1.81-fold, p = 0.048).  

However, one has to notice that Col9a1 was strongly upregulated in one of the three 

biological replicates, thus driving the observed fold change, as depicted in Figure 

6.8. Nevertheless, the remaining two samples showed upregulation in Col9a1. 

Col9a1 is a component of the basement membrane, which is part of the ECM 

providing structural support to epithelial cells. Upregulation of Col9a1 suggests 

changes in the architecture of the basement membrane. This was consistent with the 

finding of the upregulated ECM receptor interaction pathway (see Table 6.1). 

Upregulation of Col9a1 was further tested with qPCR, however the observed 

expression change could not be validated (Figure 6.6).  

Another significantly upregulated gene was Lgr5 (1.55-fold, p < 0.001). Lgr5 

is a member for the Wnt signalling pathway. Thus, upregulation of Lgr5 might hint 

towards perturbations in the Wnt signalling pathway, however the Wnt signalling 

pathway was not significantly enriched at this stage (FDR = 0.573).  

Cyp2d34, a member of the cytochrome P450 oxidative system, was 

significantly downregulated in WT organoids exposed to Apc1322/+ organoids (-2.2-

fold, p < 0.001) (Table 6.2). This indicates a significant role of Cyp2d34, as the drug 

metabolism cytochrome P450 pathway (NES = -2.011, p = 0.034) was also 

significantly reduced in this dataset. Moreover, Cyp4a22 (-2.14-fold, p < 0.001) was 

downregulated by PPAR leading to fatty acid oxidation, as identified by IPA (Figure 

6.5).  
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Figure 6.7: Gene expression changes of WT organoids exposed to Apc1322/+ for 72 h. 
MA plots indicating the differential expression of genes between WT and WT organoids grown in 
presence of Apc1322/+ organoids after 72 h (WTxWT.1322). Grey dots indicate genes that show no 
statistically significant difference in abundance between WTxWT.1322 organoids, whilst red dots 
indicate significantly differentially expressed genes (p < 0.05). The blue line indicates the log2 fold 
change cut-off of 1. 83 genes were upregulated, while 204 genes were downregulated. 
 
 

 
Table 6.2: Gene expression changes. 
A) The twenty most upregulated and B) downregulated genes (log2 fold change ≥ 1) are listed for 
WTxWT.1322 after 72 h. Cut-off p-value ≤ 0.05. 
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Figure 6.8: Comparison of WT and WT.1322 gene expression patterns. 
Heatmap shows the 25 most significantly upregulated and the 25 most downregulated genes between 
WT organoids (green) and WT organoids exposed to Apc1322/+ (pink). Columns for WT organoids and 
WT organoids exposed to Apc1322/+ organoids refer to biological replicates WT-1 – WT-3 and 
WT.1322-1 – WT.1322-3, respectively.  
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6.4 Effect of tumour-exposed fibroblasts on WT organoids 

 

6.4.1 Exposure of WT organoids to tumour-exposed fibroblasts leads to the 

induction of MAPK and Wnt signalling and to the reduction of metabolic 
pathways in WT organoids 

The effect of tumour-exposed fibroblasts (TEFs) on gene expression in murine WT 

organoids was investigated. PCA has revealed a great variation between WT 

organoids and those that were exposed to TEFs (see Figure 6.1). These two groups 

clustered separately, indicating that WT organoids were transcriptionally different 

from WT organoids exposed to TEFs. To investigate the underlying pathways 

responsible for this differential clustering, expression profiles were analysed using 

GSEA and results were again cross-referenced to the KEGG database.  

Overall, GSEA identified 76 significantly upregulated and 48 downregulated 

pathways (FDR < 0.05) in WT organoids exposed to TEFs compared to WT 

organoids only after 72 h (Figure 6.9). Of the upregulated pathways 30% were 

categorised into organismal systems and 30% into diseases (including pathways in 

cancer). 17% were assigned to environmental information progressing and 12% into 

cellular processes (Figure 6.9A). Interestingly, only 2% of the upregulated pathways 

were categorised as genetic information processing, while 16% were downregulated. 

Moreover, only 9% of metabolic pathways were upregulated, whereas 72% were 

downregulated. Furthermore, 6% of downregulated pathways were categorised as 

diseases, 4% as organismal systems, and the remaining 2% fall into the category of 

cellular processes (Figure 6.9B). The twenty most altered pathways identified by 

GSEA are listed in Table 6.3, excluding disease pathways that are not relevant to this 

study. 
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Figure 6.9: Categorisation of enriched pathways for WTxWT.F.1322. 
Pie charts show the percentage of all upregulated (A) and downregulated (B) pathways of WT 
organoids co-cultured with tumour-exposed fibroblasts (WTxWT.F.1322) for 72 h. Expression 
profiles were analysed using GSEA based on the KEGG pathway database. 
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The most upregulated pathway was identified as the focal adhesion pathway 

(NES = 6.082, FDR < 0.001), followed by the regulation of the actin cytoskeleton 

pathway (NES = 5.552, FDR < 0.001) (Table 6.3A), both were categorised as 

cellular processes. Focal adhesions are subcellular structures mediating regulatory 

signals that are transmitted between the ECM and the interacting cell, vital for the 

maintenance of tissue integrity (Wu 2007). Additionally, categorised as 

environmental information processing, the ECM receptor interaction pathway (NES 

= 5.532, FDR < 0.001) (Figure 6.10A), as well as the cell adhesion molecules 

pathway (NES = 3.354, FDR < 0.001) were significantly upregulated. 

Other environmental information processing pathways significantly induced 

included MAPK signalling (NES = 4.745, FDR < 0.001) (Figure 6.10B), cytokine-

cytokine receptor interaction (NES = 4.622, FDR < 0.001), and Wnt signalling (NES 

= 2.95, FDR < 0.001). Mitogen activated protein kinase (MAPK) signalling is 

essentially a protein chain in the cell that communicates a signal from the receptor on 

the membrane surface to the DNA in the nucleus (Selim et al. 2017). Alterations of 

MAPK signalling could induce proliferation and differentiation changes (Martinelli 

et al. 2017). Cytokine interactions are crucial to ensure accurate binding to a specific 

receptor on the surface of target cells. Thus, upregulation of this pathway could 

indicate abnormal cell growth. 

Wnt signalling is important for maintaining homeostasis in the intestinal 

epithelium. Dysfunctions of the canonical Wnt signalling pathway could lead to 

abnormal accumulation of β-catenin, which has been associated with tumour 

progression. In contrast, one of the noncanonical Wnt pathways interacts with 

calcium to regulate calcium release in order to control calcium levels (De 2011). 

Interestingly, the calcium signalling pathway was also significantly upregulated 

(NES = 2.779, FDR < 0.001). Alterations in calcium levels could influence cell 

adhesion and migration. The gene sets leading to the enrichments of MAPK and Wnt 

signalling, as well as genes contributing to the enrichment seen in the cytokine-

cytokine interaction pathway will be discussed in subsequent sections. 

In summary, the analysis suggests that activation of MAPK and Wnt 

signalling pathways seems to be an early event in colonic transformation.  
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Table 6.3: Enriched pathways for WT organoids exposed to TEFs for 72 h. 
GSEA identified multiple enriched pathways based on the KEGG gene set. A) shows the twenty most 
upregulated and B) downregulated pathways after 72 h. Cut-off FDR-value < 0.05. 
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Figure 6.10: GSEA expression profiles for WT organoids exposed to TEFs for 72 h.  
Representative enrichment plots resulting from the comparison between WT organoids exposed to 
TEFs and WT organoids only using the established gene set KEGG. WT organoids exposed to TEFs 
were positively enriched for ECM receptor interaction signalling (A) and MAPK signalling (B), while 
the ribosome pathway (C) and oxidative phosphorylation (D) were significantly reduced. Vertical 
lines indicate the positions of the gene along the comparison for each gene set. Cut-off FDR-value = 
0.05. 
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The majority of pathways downregulated in WT organoids exposed to TEFs 

were metabolic pathways, with oxidative phosphorylation a key player (NES = -

6.177, FDR < 0.001) (Figure 6.10D). Other reduced metabolic pathways included 

fatty acid metabolism (NES = -3.824, FDR < 0.001), pyruvate metabolism (NES = -

3.401, FDR < 0.001), and glycolysis (NES = -3.126, FDR < 0.001). 

Surprisingly, the ribosome pathway (NES = -7.315, FDR < 0.001) (Figure 

6.10C) was significantly reduced in WT organoids exposed to TEFs, indicating 

reduced protein synthesis. 

Moreover, the PPAR signalling pathway (NES = -2.618, FDR < 0.001) was 

significantly reduced. PPARs are metabolic regulators. Activated PPAR ligands form 

heterodimers with retinoid X receptor (RXR), which then bind to PPAR response 

elements, regulating the transcription of target genes involved in proliferation, 

differentiation and inflammation response. Especially PPAR-α has been shown to 

regulate peroxisome proliferation and fatty acid oxidation (Park et al. 2012). 

Independent analysis using IPA has confirmed downregulation of the PPAR 

signalling pathway (Figure 6.11). Ppar-α (-4.1-fold, p < 0.001), in particular, 

reduced peroxisome proliferation, which in turn was also identified with GSEA 

(NES = -4.67, FDR < 0.001). Furthermore, IPA has revealed that reduced PPAR-α 

caused a decrease in fatty acid oxidation and led to degradation of fatty acids. 

Moreover, PPAR-α caused downregulation of CD36, which impeded fatty acid 

uptake. CD36 is known to import fatty acids inside cells and altered expression of 

CD36 can lead to metabolic dysfunctions (Pepino et al. 2014). In addition, through 

downregulation of Cyp4a22 (-3.25-fold, p < 0.001), PPAR led to reduced fatty acid 

oxidation. Several other Cyp genes were significantly downregulated as well 

(Cyp2c29: -8.38fold, p < 0.001; Cyp3a11: -8.35, p < 0.001; Cyp3a25: -7.76, p < 

0.001) (Table 6.4). Through downregulation of fatty acid-binding proteins (FABPs), 

fatty acid transport proteins (FATPs), as well as acyl-CoA synthetases (ACS), fatty 

acid transport was reduced, resulting in an overall reduced fatty acid metabolism, 

which was also identified with GSEA (NES = -3.824, FDR < 0.001). Genes involved 

in the downregulation of fatty acid metabolism included alcohol dehydrogenase 4 

(Adh4) (-9.01, p < 0.001) (Table 6.4), Adh1 (-6.69, p < 0.001), and Adh7 (-5.21, p < 

0.001), indicating these are key genes for the fatty acid metabolism pathway. 

Reduction in fatty acid metabolism suggests that fatty acids are no longer 

synthesised, therefore the energy that is produced is immediately used up.   
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Figure 6.11: PPAR signalling pathway adapted from IPA. 
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6.4.2 Comparison of altered pathways between WT organoids exposed to 

Apc1322/+ and those exposed to TEFs after 72 h 

GSEA identified altered pathways for both WT organoids exposed to Apc1322/+ 

organoids (WTxWT.1322) and WT organoids exposed to TEFs (WTxWT.F.1322). 

As stated above, 76 significantly upregulated pathways were identified in WT 

organoids exposed to TEFs, and 6 in WT organoids exposed to Apc1322/+. However, 

none of these upregulated pathways overlapped (Figure 6.12A). In contrast, 48 

pathways were significantly downregulated in WT organoids to TEFs, and 14 in WT 

organoids exposed to Apc1322/+. 9 reduced pathways overlapped between these two 

groups (Figure 6.12B), which are listed in Figure 6.12C. It is notable that these 

pathways were more negatively enriched in WT organoids exposed to TEFs 

compared to WT organoids exposed to Apc1322/+. For instance, oxidative 

phosphorylation and the peroxisome pathway were much reduced in greater extent. 

In order to identify the changes in WT organoids caused due to the exposure 

to TEFs, enriched pathways were compared between these two groups and 

represented in a heatmap (Figure 6.13), which includes all pathways significantly 

altered in either WTxWT.1322 or WTxWT.F.1322. 

In general, most pathways were enriched to a greater extent in WT organoids 

exposed to TEFs compared to WT organoids exposed to Apc1322/+, which is not only 

true for downregulated pathways. The focal adhesion and ECM receptor interaction 

pathways were much stronger induced after 72 h (Figure 6.13).  

However, some pathways were only significantly downregulated in WT 

organoids exposed to Apc1322/+ organoids, but not significantly reduced in WT 

organoids exposed to TEFs. Examples included the ABC transporter pathway and the 

glycerophospholipid metabolism. It is important to note that the number of 

significantly reduced metabolic pathways have increased in WT organoids exposed 

to TEFs, indicating that the presence of TEFs altered the metabolic behaviour in WT 

organoids. 

Interestingly, some pathways switched from being downregulated in 

WTxWT.1322 to being upregulated in WTxWT.F.1322. The most significant 

contrast was observed for the ribosome pathway, which was significantly reduced in 

WT organoids exposed to Apc1322/+ organoids, while significantly induced in WT 

organoids exposed to TEFs. Endocytosis, Wnt signalling, as well as JAK/STAT 
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signalling were positively enriched in WT organoids exposed to TEFs, but showed 

reduction when exposed to Apc1322/+ organoids, indicating that this switch is due to 

the exposure of TEFs. MMR and DNA replication were significantly downregulated 

in WT organoids exposed to TEFs, which is in contrast to WT organoids exposed to 

Apc1322/+ organoids, as they showed a significant induction of these pathways, 

indicating the effect of the stroma on WT organoids. 

To conclude, TEFs had a much stronger effect on WT organoids, given the 

number of altered pathways increased substantially in the same amount of time as 

compared to exposure of Apc deficient organoids to WT organoids.  

 

 

 

 
Figure 6.12: Overlap of significantly altered pathways. 
Venn diagram showing the overlap of significantly altered pathways between WT organoids exposed 
to both Apc1322/+ organoids (yellow circle) and TEFs (red circle). A) 76 pathways were significantly 
upregulated in WT organoids exposed to TEFs, and 6 in WT organoids exposed to Apc1322/+ organoids. 
No pathways overlapped. B) 9 pathways were significantly downregulated in both conditions. C) 
Pathways that overlapped are listed in table C). NES, normalised enrichment score, FDR, false 
discovery rate. 
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Figure 6.13: Comparison of altered pathways between WT.1322 and WT.F.1322. 
Hierarchical clustering of differentially, significantly expressed pathways in WTs exposed to Apc1322/+ 

organoids (WTxWT.1322) and WT exposed to TEFs (WTxWT.F.1322) for 72 h based on the 
normalised enrichment score (NES). Heatmap key: red equals upregulation, blue equals 
downregulation relative to the mean expression of only WT organoids across all samples.   
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6.4.3 Overexpression of Tnf-α and Tgf-β in WT organoids exposed to tumour 

exposed fibroblasts (TEFs) 

Transcriptional profiles were analysed and 2291 upregulated and 1322 

downregulated genes were detected in WT organoids exposed to TEFs after 72 h 

(log2 fold change ≥ 1, p < 0.05) (Figure 6.14). The top twenty most altered genes are 

listed in Table 6.4. Figure 6.15 shows the gene expression changes in each of the 

samples sequenced for this comparison. 

WT organoids exposed to TEFs demonstrated induction of the cytokine-

cytokine receptor interaction pathway (NES = 4.622, FDR < 0.001). Cytokines are 

released in response to an activating stimulus upon which they induce responses 

through binding to a specific receptor on the surface of target cells (Landskron et al. 

2014). Cytokines can be grouped by structure into different families. Here, genes 

within the TNF and TGF-β family were activated. In particular, Tnf-α (4.04-fold, p < 

0.001) and its receptor Tnfrsf1b (2.37-fold, p < 0.001) were significantly upregulated, 

which was further confirmed by IPA (Figure 6.11, Figure 6.17). In addition, Tnf-α 

induction was verified using qRT-PCR in WT organoids exposed to TEFs (4.86-fold, 

p = 0.031) (Figure 6.16). TNF-α is a proinflammatory cytokine secreted by 

inflammatory cells, such as macrophages, in response to inflammation, and during 

sustained inflammation the TNF-α level is elevated within colonic mucosa (Coskun 

et al. 2014). Thus, upregulation of Tnf-α could hint towards elevated levels of 

inflammation in WT organoids exposed to TEFs and might indicate increased cell 

proliferation.  

Within the TGF-β family, Tgf-β (3.22-fold, p < 0.001) and its receptors 

Tgfbr1 (1.09-fold, p < 0.001) and Tgfbr2 (1.08-fold, p < 0.001) were significantly 

induced. Downstream of TGF-β, Smad3 (1.4-fold, p < 0.001) was also significantly 

upregulated. This was further confirmed using IPA (Figure 6.17). Taken together, 

activation of TGF-β signalling could indicate altered cell growth and survival.  
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Figure 6.14: Gene expression changes of WT organoids exposed to TEFs for 72 h. 
MA plots indicating the differential expression of genes between WT and WT organoids grown in 
presence tumour-exposed fibroblasts for 72 h (WTxWT.F.1322). Grey dots indicate genes that show 
no statistically significant difference in abundance between WTxWT.F.1322 organoids, whilst red 
dots indicate significantly differentially expressed genes (FDR < 0.05). The blue line indicates the 
log2 fold change cut-off of 1. 2291 upregulated and 1322 downregulated genes were identified.  
 
 

 
Table 6.4: Gene expression changes. 
A) Shows the twenty most upregulated and B) downregulated genes (log2 fold change) for 
WTxWT.F.1322 after 72 h. Cut-off p-value < 0.05. 
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Figure 6.15: Comparison of WT and WT.F.1322 gene expression patterns. 
Heatmap shows the 25 most significantly upregulated and the 25 most downregulated genes between 
WT organoids (green) and WT organoids exposed to TEFs (blue). Columns for WT organoids and 
WT organoids exposed to TEFs refer to biological replicates WT-1 – WT-3 and WT.F.1322-1 – 
WT.F.1322-3, respectively. 
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6.4.4 Exposure of tumour-exposed fibroblasts led to induction of MAPK and 

Wnt signalling 

MAPK signalling was significantly upregulated (NES = 4.745, FDR < 0.001), as 

identified by GSEA. MAPK is a three-kinase signalling module system consisting of 

MAPK, MAP2K, and MAP3K. MAPKs can be further subdivided into the growth 

factor-regulated extracellular signal-related kinases (ERKs) and the stress-activated 

MAPKs, which can be categorised into c-JUN NH2-terminal kinases (JNKs) (Selim 

et al. 2017). JNK is activated by MKK4, which is in turn activated by MEKK1. Once 

activated, MAPKs phosphorylate their substrates (Fang et al. 2005). Both, MKK4 

(0.55-fold, p < 0.001) and MEKK1 (0.41-fold, p = 0.003) were induced in WT 

organoids exposed to TEFs. ERK is activated by MEK1/2 (Xu et al. 1997) and here 

MEK1 (also known as MAP2K1) was upregulated (0.62-fold, p < 0.001). Once ERK 

is phosphorylated, it can activate its transcription factors, of which c-JUN (2.7-fold, 

p < 0.001) and c-FOS (2.88-fold, p < 0.001), as well as AP-1 (2.35-fold, p < 0.001) 

were significantly upregulated. c-JUN is also a transcription factor of JNK. Induction 

of c-FOS (3.66-fold, p = 0.003) and c-JUN (2.957-fold, p = 0.033) was verified with 

qRT-PCR (Figure 6.16). In addition, IPA confirmed upregulation of c-JUN and c-

FOS and demonstrated it could lead to increased cell proliferation (Figure 6.17). To 

conclude, alterations in MAPK activation could result in abnormal proliferation and 

uncontrolled apoptosis (Selim et al. 2017, Shaul et al. 2007). 

Wnt signalling (NES = 2.95, FDR < 0.001) was significantly upregulated in 

WT organoids exposed to TEFs after 72 h. The canonical pathway is activated when 

Wnt binds to Frizzled (FZD) and interacts with LRP. Here, several Wnt genes were 

upregulated, including Wnt4 (2.71-fold, p = 0.001), Wnt7a (4.53-fold, p < 0.001), 

and Wnt9a (2.21-fold, p = 0.002). In addition, Lrp5 was significantly induced (1.06-

fold, p < 0.001). Activation of canonical Wnt signalling causes the accumulation of 

β-catenin. Here, Ctnnb1 (β-catenin) was significantly upregulated (1.58-fold, p < 

0.001). In addition, the transcription factor Tfc4 was induced (1.73-fold, p < 0.001), 

indicating upregulation in Lgr5. Indeed, Lgr5 was significantly upregulated (1.23-

fold, p < 0.001). In addition, Wnt signalling can also be activated by R-spondins, and 

here R-spondin1 (3.83-fold, p < 0.001) was significantly upregulated. 

Analysis with IPA has confirmed the observed Wnt signalling induction. Wnt 

activated FZD, which led to an increased accumulation of nuclear β-catenin, 
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indicating increased cell proliferation and cell survival (Figure 6.17). Furthermore, 

Wnt signalling induced upregulation in cyclo-oxygenase 2 (COX2) (7.6-fold, p < 

0.001) through Tcf/Lcf signal transduction  (Figure 6.17). Lack of COX2 expression 

is characteristic for normal tissue, but has been shown to be elevated in inflamed 

tissue and might lead to tumour development due to its anti-apoptotic and 

proliferating properties (Eisinger et al. 2007). 

 

 

6.4.5 Exposure to TEFs caused overexpression of MMP9 and collagen genes in 

WT organoids  

The ECM receptor interaction pathway was significantly upregulated (NES = 5.532, 

FDR < 0.001) in WT organoids exposed to TEFs. The specialised structure of ECM 

is composed of collagens, laminins and proteoglycans. These components are critical 

in maintaining the structure of the ECM. MMP activity is responsible for the 

degradation of the ECM as well as basal membranes, and MMPs are known to 

control invasion (Akter et al. 2015, Kessenbrock et al. 2015). MMP9 has been 

shown to be of particular importance, since it hydrolyses type IV collagen in the 

basal membrane (Stamenkovic 2003). Here, the matrix metalloproteinases MMP9 

(10.01-fold, p < 0.001) and MMP7 (2.35-fold, p < 0.001) were significantly 

upregulated, indicating that exposure to TEFs induces structural changes in the 

ECM. Furthermore, collagens, such as Col4a1 (7.04-fold, p < 0.001) and Col6a2 

(7.28-fold, p < 0.001), were significantly induced, indicating alterations in the 

structural network of the ECM. Upregulation of MMP9 (106.97-fold, p < 0.0001), 

Col4a1 (114.57-fold, p < 0.0001), and Col6a2 (6.8-fold, p = 0.031) was confirmed 

by qRT-PCR (Figure 6.16). 

Other genes contributing to this enrichment observed in the ECM pathway 

included laminins, such as Lama2 (3.1-fold, p < 0.001), Lama3 (6.75-fold, p < 

0.001), and Lama5 (2.58-fold, p < 0.001), as well as Lamb1 (4.72-fold, p < 0.001), 

Lamb2 (2.64-fold, p < 0.001), and Lamb3 (2.67-fold, p < 0.001).  

Taken together, TEF-induced upregulation of tumour-derived MMPs as well 

as collagens and laminins seem to be an early process in colonic transformation.  
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Figure 6.16: Expression validation of WTxWT.F.1322. 
Transcriptional validation using qRT-PCR. Genes related to the upregulated MMR pathway and 
downregulated apoptosis pathway. Error bar represents standard error or mean (SEM). Significance: p 
< 0.05 (*), p < 0.01 (**), p < 0.001 (***). Tnf-α, Tumour necrosis factor alpha; MMP9, matrix 
metalloproteinase 9; Col4a1, Collagen type IV alpha 1 chain; Col6a2, Collagen type VI alpha 2 
chain; c-FOS, FBJ Murine Osteosarcoma Viral Oncogene Homolog; c-JUN, V-Jun Avian Sarcoma 
Virus 17 Oncogene Homolog. 
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Figure 6.17: Schematic CRC metastasis signalling pathway adapted from IPA. 
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6.4.6 Exposure of WT organoids to Apc1322/+ or TEFs does not alter cell 

proliferation in WT organoids after 72 h 

Next, it was hypothesised that WT organoids may show a proliferative response 

when exposed to either Apc1322/+ or TEFs. Therefore, WT ROSAmT/mG organoids were 

grown together with Apc1322/+ organoids in a mixed set up for 72 h (see section 2.12). 

Furthermore, WT organoids were exposed to normal murine fibroblasts, as well as 

TEFs in a transwell set up for 72 h. Organoids were then collected and subjected to 

cytospinning onto glass slides (see section 2.12), which maintains the 3D structure of 

organoids. Immunofluorescence staining for Ki67, a cell proliferation marker, was 

then performed on the organoids for each group (see section 2.12.1), and sections 

analysed using confocal microscopy (see section 2.12.2). By using WT ROSAmT/mG 

derived organoids, we ensure that all WT organoids will be labelled fluorescent red 

whereas the Apc1322/+ deficient organoids do not have an intrinsic fluorescent marker.  

Therefore, the direct influence of Apc1322/+ organoids on WT organoids could be 

studied. 

The percentage of Ki67 expression per area was assessed in Image J (1.48v; 

https://imagej.nih.gov/ij/) and no significant difference in cell proliferation was 

detected between the groups (Figure 6.18A). Figure 6.18B illustrates DAPI, td 

Tomato, and Ki67 staining in WT organoids, WT organoids exposed to Apc1322/+, to 

normal fibroblasts, and to TEFs.  
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Figure 6.18: Assessing cell proliferation in exposed WT organoids. 
A) Shows the percentage of Ki67 staining per area. No significant difference was detected. (B) 
Illustration of a WT organoid (wild type), a WT organoid exposed to Apc1322/+ (WT.1322), exposed to 
normal fibroblasts (WT.F), and exposed to TEFs (WT.F.1322). Left column shows DAPI stain, 
second left column shows td Tomato expression, second right column shows Ki67 expression, and 
right column shows merged expression. Scale bar = 100μm. 
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6.4.7 Greater Lgr5 expression in WT organoids exposed to Apc1322/+ and 

tumour exposed fibroblasts (TEFs) 

As part of the activated Wnt signalling pathway, Lgr5 was significantly upregulated 

(1.23-fold, p < 0.001). In order to investigate Lgr5 expression in WT organoids 

exposed to Apc1322/+ organoids in more detail, WT organoids were grown together 

with Apc1322/+ organoids (WT.1322). Moreover, the effect of normal fibroblasts  

(WT.F), as well as of TEFs (WT.F.1322) on Lgr5 expression in WT organoids was 

also investigated in a transwell set up. After 72 h, organoids from each group were 

collected, embedded and in situ hybridisation (ISH) was performed for Lgr5 

expression (see section 2.11). The number of Lgr5+ probes per cell from each group 

was manually counted and the percentage of positively stained cells calculated. 

Figure 6.19 illustrates Lgr5 mRNA expression for each group. 

Overall, the number of positive and negative stained probes in each organoid 

for each group was assessed and the percentage calculated. There was a significantly 

greater percentage of cells expressing no Lgr5 in WT organoids compared to cells 

that are Lgr5 positive (t-test with Welch correction: p < 0.0001). However, in WT 

organoids exposed to Apc deficient organoids, a significantly greater number of 

positive stained Lgr5 probes was observed (p < 0.001). This was also observed for 

WT organoids exposed to murine WT fibroblasts (p < 0.01), as well as for WT 

organoids exposed to TEFs (p < 0.0001) (Figure 6.20A). 

Therefore, a more detailed analysis of the number of Lgr5 probes per cell was 

performed. Cells were categorised as expressing either 0 Lgr5+ probes, 1 Lgr5+ 

probe, 2 Lgr5+ probes, or 3+ Lgr5+ probes per cell. Overall, the expression was 

significantly different among all four groups (χ2-test: p < 0.0001) (Figure 6.20B). 

Specifically, the percentage of WT organoids expressing no Lgr5 probes was 

significantly higher compared to WT organoids exposed to Apc1322/+(p < 0.0001), to 

fibroblasts (p < 0.001), and to TEFs (p < 0.0001) (Figure 6.20C). There was no 

significant difference detected between all groups expressing 1 Lgr5+ probe per cell 

(Figure 6.20D). The percentage of cells expressing 2 Lgr5+ probes was significantly 

lower in WT organoids compared to Apc1322/+(p < 0.0001), to fibroblasts (p < 0.05), 

and to TEFs (p < 0.001) (Figure 6.20E). Interestingly, the percentage of cells 

expressing 3+ Lgr5 probes was significantly lower in WT organoids compared to 

Apc1322/+(p < 0.01) and to TEFs (p < 0.001), however no difference was observed 
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between WT organoids and those exposed to fibroblasts. In addition, WT organoids 

exposed to Apc1322/+ were significantly lower compared to WT organoids exposed to 

TEFs (p < 0.05) (Figure 6.20F). 

Taken together, this indicates that Lgr5 expression is significantly increased 

in WT organoids exposed to either Apc deficient organoids or TEFs. 

 

 

 
Figure 6.19: Illustration of Lgr5 expression. 
A) In situ hybridisation of Lgr5 expression in WT, B) in WT organoids exposed to Apc1322/+, C) in WT 
organoids exposed to normal fibroblasts and D) in WT organoids exposed to tumour-exposed 
fibroblasts for 72 h. Scale bar = 50μm. 
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Figure 6.20: Exposure to Apc1322/+ and TEFs increased the number of Lgr5 probes in WT 
organoids after 72 h. 
A) Percentage of cells expressing Lgr5 (+ve) and cells that do not express Lgr5 (-ve) in WT 
organoids, WT organoids exposed to Apc1322/+ (WT.1322), exposed to normal fibroblasts (WT.F), and 
exposed to TEFs (WT.F.1322). B) Number of Lgr5 probes per cells was measured ranging from 0 
probes to 3 or more probes counted per cell. Percentage was then calculated and distribution 
represented in a stacked bar plot (χ2: p < 0.0001). C) Shows the percentage of 0 Lgr5 probes, D) of 1 
Lgr5 probe, E) of 2 Lgr5 probes, and F) of 3+ Lgr5 probes for each group. Pairwise comparisons 
using a t-test with Welch correction was performed. Significance: p < 0.05 (*), p < 0.01 (**), p < 
0.001 (***), p < 0.0001 (****).  
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6.5 Discussion 

Progression of mutated colonic epithelial cells to cancer appears to be dependant 

upon interactions between the initiated epithelium and the surrounding stroma. 

However, how the stroma of already initiated epithelium influences normal 

epithelium, and the nature of these interactions are poorly understood. Thus, to gain 

insight into the earliest stages of colon cancer development, interactions between WT 

organoids and Apc1322/+ organoids were investigated in a transwell set up; in addition, 

the impact of tumour-exposed fibroblasts (TEFs) on WT organoids was also 

assessed.  

As previously shown in Chapter 5, a single Apc mutation can activate distinct 

transcriptional changes within epithelial cells in exposed WT organoids when grown 

adjacent to each other, as they clustered slightly independently from non-exposed 

WT organoids, indicating that Apc1322/+ organoids have an effect on WT organoids 

already after 72 h. A similar result was obtained here in WT organoids exposed to 

Apc1322/+ in a co-culture using transwells. In WT organoids exposed to Apc1322/+, gene 

sets for DNA replication, DNA MMR and the ribosome pathway were significantly 

upregulated, while other pathways, such as oxidative phosphorylation, were 

significantly downregulated. This was consistent with the findings in Chapter 5, thus 

showing that the results were reproducible using orthogonal methodology.  

Strikingly, WT organoids exposed to TEFs clustered independently from both 

WT organoids and WT organoids exposed to Apc1322/+ organoids, indicating an 

important role of TEFs very early on in neoplastic transformation (Figure 6.1). 

Interactions between transformed epithelial cells and their associated stroma 

is an important determinant of early tumour growth. The stromal microenvironment 

is composed of ECM components, secreted factors, as well as stromal cells, which 

include fibroblasts and immune cells (Fridman et al. 2012). Previous studies in the 

colon have shown how a pro-inflammatory stromal environment contributes to pre-

malignant changes (Klampfer 2011). Characteristics of such changes included 

increased cytokine signalling and immune cell infiltration. However, the role of 

fibroblasts within the stroma is less well defined in the early stages of neoplastic 

transformation. Understanding interactions between epithelial cells and fibroblasts 

may ultimately uncover signalling pathways that contribute to early colonic 
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transformation. Therefore, fibroblasts exposed to Apc deficient organoids were 

generated (TEFs) to mimic the effect of CAFs when grown in close proximity to 

colonic epithelium.  

In order to distinguish whether the identified altered pathways and 

accompanying gene expression changes were triggered by Apc1322/+ organoids or by 

TEFs, expression profiles from GSEA were compared. In general, pathways altered 

for epithelial to epithelial interactions were enhanced in WT organoids when 

exposed to TEFs (Figure 6.15). For instance, the tendency for positive enrichment of 

the cytokine-cytokine receptor interaction pathway was present in WT organoids 

exposed to Apc1322/+, but was significantly induced in WT organoids exposed to 

TEFs, indicating that TEFs could potentially accelerate this process.  

However, it is unclear whether fibroblasts released cytokines or ligands that 

caused the observed upregulation, or whether it is an intrinsic effect and cytokine 

release was stimulated by fibroblasts in these exposed organoids. To establish 

whether intrinsic or extrinsic effects are responsible for the induction, ELISAs for 

cytokines of the organoid media from WT organoids, WT organoids exposed to 

TEFs, and also from WT organoids exposed to Apc1322/+, and from Apc1322/+ organoids 

exposed to fibroblasts could be performed in future. 

In general, the majority of pathways downregulated in WT organoids 

exposed to TEFs were metabolic pathways. Altered metabolism is a key factor in 

neoplastic transformation (Hanahan et al. 2011). Alterations in metabolic pathways 

have been shown to occur at the adenoma stage of carcinogenesis, and a recent study 

suggested induced MYC expression is responsible for the metabolic reprogramming 

of CRC (Satoh et al. 2017). Findings in this current study would suggest that these 

metabolic alterations occur even earlier, in fact already in the progression from 

normal epithelium to adenomas, and that exposure for 72 h of either Apc1322/+ or TEFs 

is sufficient to cause metabolic changes in WT organoids.  

In WT organoids exposed to Apc1322/+ organoids or TEFs, oxidative 

phosphorylation was significantly downregulated, indicating that this is not solely 

driven by TEFs, however, TEFs seem to boost this process. This is further 

strengthened by the fact that oxidative phosphorylation was significantly 

downregulated in WT organoids grown adjacent to Apc1322/+, as shown in Chapter 5, 

indicating this is an early event in neoplastic transformation.  
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Moreover, PPAR signalling, fatty acid metabolism, and cytochrome P450 

metabolism were significantly downregulated in WT organoids exposed to both, 

Apc1322/+ or TEFs, and again TEFs seem to have accelerated this process. 

PPARs are transcription factors mediating metabolic pathways (Souza-Mello 

2015). The PPAR subfamily consists of three members, PPAR-α, PPAR-δ and 

PPAR-γ. PPAR-α is involved in peroxisome proliferation, activation of fatty acid 

metabolism, and lipid metabolism (Dai et al. 2010). It was significantly reduced in 

WT organoids exposed to both, Apc1322/+ and TEFs. This is in line with what has 

previously been demonstrated. PPAR-α expression was significantly reduced in CRC 

compared to matched-normal tissue (Grau et al. 2006, Jackson et al. 2003). Thus, 

one could speculate that reduction in PPAR-α could potentially be an indicator of 

early signs of neoplastic transformation and growth.  

However, it is unclear whether reduced PPAR-α gene expression is reflected 

at the protein level. IHC or Western blot for PPAR-α could be performed to assess 

protein expression in WT organoids exposed to Apc1322/+ organoids or TEFs. 

It is known that PPAR-α regulates energy metabolism, including fatty acid 

oxidation, and one of its major functions is to promote fatty acid utilisation (Varga et 

al. 2011). PPAR-α regulates genes involved in fatty acid uptake, fatty acid activation 

and transport into the mitochondria (Wang 2010). Indeed, results obtained from IPA 

analysis would suggest that PPAR-α caused a reduction in fatty acid oxidation and 

transport that led to further reduction in fatty acid metabolism in WT organoids when 

exposed to both, Apc1322/+ or TEFs (Figure 6.11). In addition, reduction of fatty acids 

in tumour samples compared to matching normal samples has previously been 

observed (Guo et al. 2017), indicating its downregulation occurs early in 

carcinogenesis.  

More specifically, PPAR is negatively regulated by pro-inflammatory 

cytokines, specifically IFN-γ and TNF-α, indicating that the expression of PPARs is 

decreased when IFN-γ and TNF-α are present (Varga et al. 2011). FABP1 is an 

important part of PPAR signalling: FABP1 is responsible for the transportation of 

long chain fatty acids (Wang et al. 2015) and plays a role in inflammation through its 

interaction with PPAR (Gajda et al. 2015). In previous studies, FABP1 expression 

was significantly reduced in colorectal tumours compared to matching normal 

mucosa (Friedman et al. 2016, Lawrie et al. 2004) and this decreased expression of 
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fatty acid storage and PPARs was associated with loss of FABP1 (Wolfrum et al. 

2001).  

FABP1 can activate PPARs resulting in expression of downstream 

transcription targets, including anti-proliferation and anti-inflammatory genes. 

Disruption of this interaction via increased TNF-α may lead to inactive PPAR and 

decreased FABP1 (Wood et al. 2017, Xu et al. 2017). Thus, the decreased expression 

of FABP1 could potentially be explained by the observed increase in Tnf-α 

expression in WT organoids exposed to TEFs, which may inhibit PPAR leading to 

the here observed downregulation of FABP1. This could be verified using 

immunohistochemistry in future studies.  

It has previously been shown that the immune environment of MSI cancers 

disrupts the PPAR/FABP1 interaction leading to decreased FABP1 expression 

(Wood et al. 2017). Based on FABP1’s characteristics including cellular 

differentiation and anti-proliferation, its loss in CRC would be expected to result in 

de-differentiated tumours with worse prognosis (Pei et al. 2007, Yamazaki et al. 

1999). Thus, downregulation of PPAR-α could explain the reduction observed for 

fatty acid metabolism-related gene expression. However, a direct link between 

PPAR-α and fatty acid metabolism in WT organoids exposed to both, Apc1322/+ or 

TEFs would need to be established. 

Through oxidation with glucose metabolism and hypoxia, fatty acid 

metabolism has been shown to play a role in the energy supply for tumour cells 

(Samudio et al. 2010). These metabolic changes can be inhibited by tumour 

suppressor genes, which are known to be involved in proliferative and survival 

signalling (Fritz et al. 2010), also potentially explaining the reduction seen in the 

fatty acid metabolism. 

Downregulation found in fatty acid beta oxidisation for ATP production and 

epithelial cell differentiation suggests that within an inflammatory 

microenvironment, de-differentiated and rapidly dividing tumour cells divert the 

oxidation of fatty acids from energy production to support tumour proliferation (Xu 

et al. 2017). Cancer cells then potentially switch from the aerobic mitochondrial 

oxidative phosphorylation to glycolysis (Warburg Effect) as their primary energy 

source (Van der Heiden et al. 2009). Glycolysis further supplies cancer cells with 

metabolites, which are essential for cellular proliferation (Gatenby et al. 2004). 
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To conclude, downregulated fatty acid metabolism together with a non-

significantly unregulated glycolysis pathway could indicate the first steps towards 

the Warburg effect in WT organoids when exposed to mutant organoids and/or 

TEFs. 

Looking closer at genes significantly involved in the observed 

downregulation of fatty acid metabolism revealed three genes that potentially 

contributed to the differential expression of the fatty acid metabolism pathway: 

Adh1, Adh4, and Adh7 in WT organoids exposed to TEFs, whereby only Adh4 was 

significantly reduced in WT organoids exposed to Apc1322/+. These genes can 

therefore be considered to play a key role in the activity of this pathway. Alcohol 

dehydrogenases (Adhs) are involved in the oxidation of alcohol. Thus, the exact role 

of the reduced Adhs is not immediately obvious from this data. However, it has been 

shown that ADH1 was reduced in the progression from adenoma to carcinoma 

(Carvalho et al. 2012). To our knowledge, this is the first study to show that the fatty 

acid metabolism pathway is already altered in WT organoids solely due to the 

exposure to either Apc1322/+ or TEFs.  

 The cytochrome P450 metabolism was significantly downregulated in WT 

organoids exposed to Apc1322/+ or TEFs. KEGG pathway analysis of CRC compared 

to normal tissue has demonstrated downregulation of this pathway (Liang et al. 

2016), indicating that such reduction occurs even earlier in neoplastic transformation. 

Several Cyp genes within the cytochrome P450 metabolism pathway were 

significantly downregulated. Cyp2d34 was significantly reduced in WT organoids 

exposed to Apc1322/+, whereas Cyp2c29, Cyp3a11, and Cyp3a25 were significantly 

reduced in WT organoids exposed to TEFs. Further analysis using IPA revealed that 

Cyp4a22, a fatty acid ω-hydroxylase (Hardwick et al. 2009), was significantly 

downregulated in WT organoids exposed to Apc1322/+ or TEFs. Its downregulation 

was likely caused by PPAR-α, leading to reduced fatty acid oxidation. It has 

previously been shown that PPAR interacts with Cyp genes (Hardwick et al. 2009). 

Alterations in members of the CYP4 family can lead to defects in fatty acid 

metabolism; however, the function of Cyp4a22 is yet to be determined (Nebert et al. 

2013). 

Unexpectedly, the ribosome pathway was significantly reduced in WT 

organoids exposed to TEFs, whilst significantly induced in WT organoids exposed to 

Apc1322/+. Ribosomes are essential for protein synthesis, thus protein synthesis could 
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have been impaired in WT organoids when being exposed to TEFs. Enriched genes 

of the ribosome pathway have been previously found in adenomas compared to 

normal colonic mucosa (Lu et al. 2006), which is in line with the upregulation found 

in WT organoids exposed to Apc1322/+. Upregulated ribosome biogenesis poses an 

increased CRC risk onset, which is based on the close interconnection between 

ribosome biogenesis and cell proliferation (Derenzini et al. 2017). These results 

demonstrate that this change is an early step in tumourigenesis and represents a 

functional change in field cancerization. 

 

Significant induction of the cytokine-cytokine receptor interaction pathway 

was identified in WT organoids exposed to TEFs, whereas no significant change was 

detected in WT organoids exposed to Apc1322/+, suggesting TEFs were driving this 

upregulation. Tnf-α was significantly upregulated as part of this pathway. TNF-α is a 

proinflammatory cytokine secreted from macrophages as an acute inflammatory 

response (Cox et al. 1992), and during sustained inflammation the TNF-α level is 

elevated within colonic mucosa (Landskron et al. 2014). More importantly, TNF-α 

has been shown to promote Wnt/β-catenin activity in tumourigenesis (Coskun et al. 

2014). In the current study, the Wnt signalling pathway was significantly induced in 

WT organoids exposed to TEFs, but not in WT organoids exposed to Apc1322/+, 

indicating that this upregulation is due to the presence of TEFs.  

The canonical Wnt pathway is one of the major signalling pathways involved 

in the establishment of intestinal homeostasis (Clevers 2006). Wnt signalling is 

fundamental in order to maintain the proliferative compartment of the intestinal 

crypt. Dysregulation of components in the Wnt signalling pathway, including 

misexpression of Wnt ligands and secreted inhibitors of this pathway, have been 

associated with the initiation of colorectal tumourigenesis. The core of this pathway 

is the protein β-catenin, encoded by Ctnnb1 (White et al. 2012). Although the nature 

of mutations in the Wnt pathways can be distinct, they all lead to stabilisation of β-

catenin in the nucleus. Wnt activating mutations have been shown to be essential for 

tumour initiation in the colon (Dow et al. 2015). 

Here, increased induction of the Wnt signalling pathway in WT organoids 

exposed to TEFs could be explained by the fact that several Wnt ligands (Wnt4, 

Wnt7a, and Wnt9a) were overexpressed. Wnt ligands are important in maintaining 

stem-like properties (de Sousa e Melo et al. 2016). This suggests the binding of FZD 
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receptors and LRP families, thereby inhibiting the phosphorylation of β-catenin. 

Frizzled receptors, such as FZD1 and FZD2, as well as the receptor LRP5 were 

significantly upregulated in exposed WT organoids. Further inhibition of the 

destruction complex, composed of the core proteins AXIN, APC, and GSK3β, could 

allow β-catenin to escape degradation, resulting in accumulation in the cytosol and 

the translocation to the nucleus, which could explain the upregulation found for 

Ctnnb1 in WT organoids exposed to TEFs. In the nucleus, it can be assumed that β-

catenin stimulates the transcription factor TCF4, which was significantly induced, to 

regulate expression of target genes.  

In addition, it is also likely that the Wnt signalling pathway was activated by 

members of the R-spondin protein family. It has been shown that Lgr5, which is both 

a Wnt signalling component as well as a Wnt target gene, functions as an R-spondin 

receptor, associates with the FZD/LRP receptor complex, and potentiates Wnt/β-

catenin signalling by enhancing Wnt-induced LRP phosphorylation (Carmon et al. 

2011, de Lau et al. 2011). Thus, given the upregulation detected in Lgr5, one could 

assume activation of Wnt signalling was driven in a R-spondin dependent manner 

(Figure 6.21). R-spondin1 was significantly induced in WT organoids exposed to 

TEFs compared to WT organoids only. Overexpression of R-spondin1 has been 

shown to increase cell proliferation in the small intestine and colon (Kim et al. 

2005). Moreover, R-spondin1 has to be supplied to organoid cultures for crypt 

growth and survival (Sato et al. 2011), thereby indicating its fundamental role in the 

maintenance of LGR5 stem cells. Thus, one could speculate that R-spondin1 binds to 

LGR5 receptors, thereby inhibiting the destruction complex and blocking β-catenin 

phosphorylation, leading to the observed upregulation of Ctnnb1, which in turn could 

indicate accumulation of β-catenin. In the nucleus, β-catenin potentially bound to the 

transcription factor TCF4, as increased gene expression of Ctnnb1 and Tcf4 was 

identified in WT organoids exposed to TEFs. Activation of the transcription factor 

TCF4 has been associated with adenoma formation (Shin et al. 2014). However, 

TCF4 is only activated upon phosphorylation, and phosphorylated TCF4 could 

increase the transcription of Lgr5.  
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Figure 6.21: Potential mechanism by which Wnt signalling is dysregulated in WT organoids 
exposed to TEFs. 
Overexpression of FZD receptors and WNT ligands can lead to increased activation of the pathway. 
Upregulated Wnt ligands initiate signalling through R-spondin, Lgr5 receptors and Lrp5 co-receptor, 
thereby disrupting the destruction complex. Accumulation of β-catenin in the cytoplasm results its 
translocation into the nucleus, where it binds TCF4, and activates target gene expression of Lgr5. 
Apc, Adenomatous polyposis coli; Dvl, Disheveled; Gsk3β, glycogen synthase kinase 3; LEF, 
lymphoid enhancer factor; Lgr5, leucine-rich repeat-containing G-protein coupled receptor 5; Lrp5, 
lipoprotein receptor-related protein; R-spo, R-spondin; TCF4, T-cell factor 4. Red arrows represent 
genes that were found significantly upregulated in WT organoids exposed to TEFs. 
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Future experiments need to establish whether TCF4 is phosphorylated in WT 

organoids exposed to TEFs and whether Lgr5 was indeed transcribed. Therefore, 

IHC or Western blots could be performed for LGR5 to establish protein levels, but 

also with an anti-phosphorylation antibody to investigate whether TCF4 was 

activated, as TCF4 can only transcribe Lgr5 when phosphorylated. 

TCF/LEF are two typical binding domains of the LGR5 promoter. However, 

a recent study has shown that LGR5 expression in normal and neoplastic gastric 

tissue was regulated by the transcription factor SP-1 (Wilhelm et al. 2017). This 

could present an alternative mechanism explaining the upregulation found for Lgr5, 

as SP-1 was also significantly induced. 

Increased levels of Lgr5 mRNA expression in WT organoids exposed to 

TEFs compared to WT organoids alone were also shown using in situ hybridisation 

(see Figure 6.20). Upregulation of Lgr5 in these cells might indicate that these cells 

have acquired stem-like properties, indicating a change in the stem cell compartment 

allowing for altered growth and differentiation behaviour. Increased levels of LGR5 

expression were detected in CRCs and tumour cells with the highest levels of LGR5 

to behave as functional stem cells (Junttila et al. 2015, Kemper et al. 2012). LGR5 

and R-spondins augment Wnt ligand mediated Wnt signalling, which is likely 

promoting stem cell properties. LGR5 has been shown to reflect on both, the high 

Wnt activity and the functionality of LGR5 in promoting stem cell functions (Yang 

et al. 2015). There has been evidence that high Wnt expression identifies cells with 

stem-like properties, and that high Wnt activity defines the cancer stem cell fraction 

(Prasetyanti et al. 2013). In fact, human CRC stem cells can be defined on the basis 

of high Wnt signalling activity and that these cells are located in the myofibroblast 

niche (Vermeulen et al. 2010). 

Further functional experiments need to be done to confirm the properties of 

these Lgr5+ cells. In order to determine whether the Lgr5 was indeed transcribed, one 

could check for protein levels using IHC or Western blots for LGR5. However, 

LGR5 antibodies for both mouse and humans remain of questionable reliability. 

Rather, a single cell seeding experiment can be performed: cells positive for Lgr5 

expression from WT organoids exposed to TEFs and WT organoids only are sorted 

and then seeded into Matrigel. A higher number of fully developed organoids would 

be expected from Lgr5+ cells previously exposed to TEFs compared to Lgr5+cells 

from WT organoids. 
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Increased expression of Wnt and β-catenin indicates a positive feedback loop. 

The more Wnt is expressed, more cells acquiring stem-like behaviour, which could 

potentially lead to a higher rate of cell proliferation. It was investigated whether WT 

organoids exposed to TEFs exhibit greater cell proliferation than WT organoids only 

or WT organoids exposed to normal murine fibroblasts. Organoids in each condition 

were stained with anti-Ki67. However, no significant change in cell proliferation was 

shown (Figure 6.18). Instead, great intra-variability within each of the conditions was 

detected. It has recently been shown that variability of Ki67 expression levels is due 

to the cell cycle regulation of mRNA and protein in proliferating tissues in human 

and also in mice (Sobecki et al. 2017). Cells that have just exited the cell cycle 

express lower levels of Ki67. Additionally, Ki67 protein is degraded from mitosis to 

G1. This must be taking into account when interpreting Ki67 staining in 

histopathology and its use as a prognostic marker (Sobecki et al. 2017). It further 

explains the observed intra-organoid variability in WT organoids of all conditions 

tested, since the stage in the cell cycle of the organoids that were assessed for anti-

Ki67 staining was unknown. Some organoids could have been in the cell cycle, while 

others have just left the cell cycle, thus expressing lower levels of Ki67.  

To conclude, future work should take into account only organoids that are in 

the same phase of the cell cycle in order to be able to compare Ki67 expression 

levels to assess whether cell proliferation is increased in WT organoids exposed to 

TEFs compared to WT organoids only. Alternatively to Ki67, proliferation could 

also be measured using EdU/BrdU counts. Therefore, organoids would need to be 

dissociated and FACS sorted for DAPI and EdU/BrdU. A higher number of 

proliferating cells would be expected in WT organoids exposed to Apc1322/+ and TEFs 

compared to WT organoids. 

In addition to Wnt ligands, CAFs and immune cells produce cytokines and 

signalling molecules, which have been shown to have a direct effect on Wnt 

signalling. Hepatocyte Growth Factor (HGF), Osteopontin (OPN) and stromal-

derived factor 1α (SDF1α) for instance are all secreted by myofibroblasts and are 

known factors to enhance activity of Wnt signalling in CRC (Vermeulen et al. 2010). 

Therefore, one could assume that TEFs secreted Wnt ligands, and other factors that 

led to the here observed upregulation of Wnt signalling in WT organoids exposed to 

TEFs. In order to investigate which Wnt ligands were secreted by TEFs, a Western 

blot on the organoid media of WT organoids and TEFs as compared to media from 
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WT organoids only could be performed. A higher expression level of Wnt ligands 

would be expected in the media of WT organoids exposed to TEFs compared to WT 

organoids only. Increased Wnt activity through cytokine secretion has been shown to 

result in increased proliferation and tumourigenicity in stem cells (de Sousa e Melo 

et al. 2016). 

In addition to LGR5, cyclo-oxygenase-2 (COX2), a key enzyme of 

prostaglandin synthesis, is also a known target gene of Wnt signalling (Luo et al. 

2009) and has been associated with Wnt pathway activation (Bitarte et al. 2011). In 

this study, Cox2 was significantly upregulated in WT organoids exposed to TEFs. 

Accumulation of β-catenin has been shown to upregulate Cox2 (Araki et al. 2003). 

Thus, it can be assumed that, given the upregulation detected in Ctnnb1 and Tcf4, β-

catenin was stabilised and activated TCF4, resulting in upregulation of Cox2. Whilst 

most normal tissues lack COX2 expression, its levels increase under mitogens and 

cytokines resulting in the accumulation of prostanoids in inflamed tissue (Eisinger et 

al. 2007), which is in line with the increased expression of Tnf-α. Elevated COX2 

levels may have anti-apoptotic effects and may lead to tumour development and 

expansion (Galamb et al. 2010). COX2 has been described to be involved in early 

stages of colorectal carcinogenesis. Overexpression was observed in 50% of benign 

polyps compared to normal tissue (Eberhart et al. 1994), but also in the mucosa of 

active ulcerative colitis patients (Hokari et al. 2011). Furthermore, COX2 is 

negatively regulated by APC and loss of APC function and subsequent dysregulation 

of COX2 expression promotes tumourigenesis (Eisinger et al. 2007), indicating that 

WT organoids exposed to TEFs already had an effect on Cox2 expression.  

Collectively, this data represents a complex and diverse mechanism by which 

the Wnt signalling pathway and colonic stem cells can be regulated: increased Lgr5 

expression could be explained by R-spondin–mediated enhancement of Wnt/β-

catenin signalling. 

Upregulation of two MMPs, Mmp7 and Mmp9, has been identified as part of 

the ECM receptor interaction pathway. In general, MMPs pave the way for tumour 

growth, invasion and metastasis through the degradation of the ECM (Herszenyi et 

al. 2012, Kessenbrock et al. 2015). In addition, MMPs have modulating functions in 

immunity and inflammation during tumourigenesis through the activation of growth 

factors, cytokines and other membrane proteins (Bauvois 2012, Nissinen et al. 2014). 
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MMP7 plays an important role in degrading ECM proteins, such as type IV 

collagen and laminins (Overall et al. 2002). Interestingly, MMP7 has previously 

been shown to be regulated by Wnt signalling through the binding of β-catenin and 

the transcription factors TCF/LEF (Gustavson et al. 2004). Furthermore, binding of 

TCF/LEF to the activator protein-1 (AP-1) sites has been shown to activate 

transcription of MMP7 in CRC (Crawford et al. 2001). Therefore, the observed 

induction of Wnt signalling in WT organoids exposed to TEFs could potentially 

explain the upregulation detected in Mmp7. Increased expression of MMP7 has been 

shown to promote tumour progression (Bai et al. 2015) and has been linked to poor 

survival in CRC patients (Klupp et al. 2016). 

MMP9 is mainly responsible for the degradation of the ECM and plays a 

critical role in tumour progression and inflammation (Lee et al. 2008). Upregulation 

of MMP9 has been observed in CRC patient samples compared with healthy mucosa 

(Chu et al. 2012, Kostova et al. 2014), but has also been observed in precursor 

lesions, suggesting upregulation of MMP9 is an early event in tumourigenesis and 

can be used as a biomarker for early diagnosis of CRC (Herszenyi et al. 2008, 

Lorenc et al. 2017). 

MMPs also play an important role in shaping the stem cell niche during 

development, but this process can be altered during tumourigenesis (Kessenbrock et 

al. 2015, Melzer et al. 2017). The stem cell niche consists of a microenvironment of 

adjacent cells and the ECM (Scadden 2006). Due to their ability to cleave, degrade 

and rearrange ECM molecules, MMPs can regulate the stem cell niche. For example, 

in human epidermal stem cells, MMP2 and MMP14 are inhibited to maintain long-

term survival (Muffler et al. 2008). Thus, upregulation of MMP9 in WT organoids 

exposed to TEFs can alter signalling pathways and might lead to the destruction of 

niche related structures, promoting stem cell expansion resulting in tumour initiation. 

Increased levels of MMP9 in WT organoids exposed to TEFs could suggest 

structural and functional changes of the ECM. MMP9 expression is regulated at the 

transcriptional level (Fanjul-Fernández et al. 2010), and thus upregulation of MMP9 

could be the result of increased transcription. Once different transcription factors are 

phosphorylated, they can bind the promoters of MMP9 genes. Activation of 

transcription factors can be mediated by MAPK and SMAD proteins, which in turn 

can be activated by TNF-α and TGF-β, respectively (Fanjul-Fernández et al. 2010). 

One of the key transcription factors in the regulation of MMP9 is AP-1 (Overall et 
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al. 2002). In fact, it has been shown for MMP1 that cytokines enhance its activation 

through MAPK signalling by increasing the levels of the different AP-1 proteins: c-

JUN and c-FOS (Wang et al. 2005). This leads to the assumption that the observed 

upregulation of Tnf-α could activate MAPK signalling, which in turn activates AP-1, 

c-JUN, and c-FOS through phosphorylation, leading to increased MMP9 

transcription, as these three transcription factors were also significantly upregulated 

in WT organoids exposed to TEFs (Figure 6.22).  

A study on bladder cancer cell lines has shown TNF-α regulated MMP9 

expression through AP-1 and SP-1 and that ERK1/2 mediated TNF-α induced 

MMP9 expression by coordinating the regulation of the binding activity of the 

transcription factors (Lee et al. 2008). In fact, SP-1, a known transcription factor 

known to regulate MMP9 expression (Murthy et al. 2012), was significantly induced 

in WT organoids exposed to TEFs, indicating that increased induction of SP-1 could 

enhance MMP9 transcription in WT organoids exposed to TEFs.  

Furthermore, upregulation of MMP9 could be mediated by TNF-α through 

JNK signalling, the non-classical MAPK pathway. It has been shown that the JNK 

pathway is involved in the regulation of TNF-α-induced gene expression by 

phosphorylation of transcription factors, mainly c-JUN and ATF-2 (Cohen et al. 

2006). As significant upregulation of Tnf-α and its receptor TNFR was identified, it 

is likely that increased Tnf-α expression could result in upregulation of MMP9 

through JNK signalling (Figure 6.22).  

Thus, Tnf-α could accelerate this event through activation of MAPKs, 

explaining the observed MMP9 upregulation that could lead to collagen breakdown 

and thus to structural changes in the ECM, eventually resulting in tumour initiation 

and progression. It further indicates that activation of MAPK appears to be an early 

event in neoplastic transformation in WT organoids exposed to TEFs. MAPK plays 

an important role in regulation of proliferation and transcription and its upregulation 

has previously been shown in adenomatous colonic crypts when compared to normal 

tissue, further suggesting its role in the early stages of colonic transformation 

(Lechner et al. 2003). 
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Figure 6.22: Potential mechanism explaining MMP9 activity.  
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As mentioned above, MMP9 is also regulated by SMADs, which can enhance 

TGF-β mediated gene expression (Kuo et al. 2009). TGF-β plays a role in 

proliferation, differentiation and migration (Pickup et al. 2013). Furthermore, TGF-β 

signalling can induce expression of ECM proteins, and has been linked to 

transcription of collagen genes (Di Sabatino et al. 2009, Verrecchia et al. 2002). 

Here, Col4a1 and Col6a2 were significantly induced as part of the ECM receptor 

interaction pathway. Collagen type IV is the major component of the ECM and 

involved in cell adhesion, migration, differentiation, and growth (Ikeda et al. 2006). 

It has previously been shown that TGF-β signalling has a stimulating effect on type 

IV collagen gene transcription and protein synthesis (Zdunek et al. 2001). 

Collagen type VI is mainly involved in the regulation of epithelial cell 

behaviour (Groulx et al. 2011). Upregulation of collagen genes could also indicate 

changes in the composition of the ECM and additionally, that such structural changes 

occur early on in neoplastic transformation.  

Thus, another potential mechanism explaining upregulation of MMP9, as 

well as the collagen genes, mainly Col4a1 and Col6a2, could be mediated by TGF-β 

signalling through a SMAD-dependent manner, since TGF-β signalling was also 

found significantly induced. Induced TGF-β could bind to its TGF-β receptor. 

Differential phosphorylation of SMAD2 and SMAD3 by TGF-β receptor activation 

together with SMAD4 could promote their translation into the nucleus leading to a 

complex that activates SMAD-dependent transcription to induce gene expression, 

potentially in Col4a1, Col6a2, and MMP9 (Figure 6.22). 

It has been shown that MMP13 gene expression was induced by TGF-β 

through the activation of SMAD3 together with MAPK signalling (Leivonen et al. 

2002). This indicates that MMP9 might not be regulated by only one pathway, but 

rather multiple pathways can control MMP9 transcriptional regulation. 

However, future work needs to be done in order to determine whether the 

elevated MMP9 mRNA was indeed transcribed, as so far, only an upregulation at 

mRNA level has been observed. To check for protein levels, IHC or Western blots 

for MMP9 can be performed. Assuming MMP9 was transcribed, the question 

remains which transcription factor was responsible for MMP9 transcription. Again, 

IHC or Western blots could be performed with anti-phosphorylation antibodies to 

investigate which transcription factor was activated, as only phosphorylated 

transcription factors could potentially transcribe MMP9. Depending on which 
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transcription factor is activated, it indicates whether MMP9 is transcribed through 

the classical MAPK-ERK signalling pathway, or through the JNK pathway. siRNA 

knockdown of activated transcription factors would show whether MMP9 is still 

transcribed, thus indicating that this could be the pathway responsible for the 

observed upregulation of MMP9 in WT organoids exposed to TEFs. To check for 

MMP9 activity, immunofluorescence staining for COL4 and cleaved collagen could 

be performed. The detection of cleaved collagen indicates degradation and thus 

MMP9 activity. 

Furthermore, several collagen genes, including Col4a1 and Col6a2, were 

found significantly upregulated. As with MMP9, at this stage these collagen genes 

were upregulated, but further work needs to be done to determine whether these 

genes were transcribed. Again, this could be performed using IHC or Western blots 

to establish protein levels. Assuming the upregulation of these genes is mediated 

through TGF-β signalling, immunohistochemistry for all SMAD transcription factors 

using anti-phosphorylation antibodies could be performed to check for activity. 

Assuming further that SMAD transcription factors were indeed activated, 

knockdown of each individual SMAD should be performed to see if collagen genes 

as well as MMP9 are still transcribed. This would indicate whether TGF-β signalling 

is the responsible pathway. 

Since upregulation of MMP9 and collagen genes indicate compositional 

changes in the ECM, proteomic techniques could be performed to investigate the 

composition of ECM proteins in WT organoids when exposed to TEFs (Byron et al. 

2013). Moreover, mass spectrometry could be employed to gain information about 

absolute abundance of ECM proteins (Goddard et al. 2016).  

This chapter has highlighted the expression profiles of WT organoids when 

being exposed to Apc1322/+ organoids or TEFs. To ideally distinguish whether the 

observed changes in WT organoids were due to the TEFs or only due to the presence 

of fibroblasts, future experiments should include the control of WT organoids being 

exposed to normal fibroblasts. 

To conclude, these experiments have shown that exposure to TEFs have led to 

significant changes in WT organoids after only 72 h representing early signs of 

tumour initiation. 
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7 Chapter VII: Conclusion 

It is generally accepted that tumours are monoclonal-in-origin, but recent studies 

have shown that tumours can have a polyclonal origin; they are derived from 

multiple independently transformed cells (Merritt et al. 1997, Novelli et al. 2003, 

Novelli et al. 1996, Thirlwell et al. 2010, Thliveris et al. 2005). However, the 

mechanism that generates polyclonal tumours is unknown, as is the importance of 

polyclonality in driving tumour progression. Prior to this project, short-range 

interactions between multiple initiated clones have been suggested to lead to the 

formation of polyclonal tumours in the colon. This thesis aimed at better describing 

these clonal interactions between colorectal adenomas and their surrounding non-

dysplastic crypts, to determine the role of the stroma in this process and to provide an 

insight into the gene expression changes that occur in normal epithelium in close 

proximity to adenomas. 

Consequently, there were three main aims of the project: firstly to 

demonstrate that clonal interactions between dysplastic and non-dysplastic colonic 

epithelium drive clonal expansion, secondly to investigate the stem cell dynamics 

between dysplastic and non-dysplastic colonic epithelium, and thirdly to investigate 

the underlying mechanisms responsible for the formation of polyclonal tumours. 

This chapter will summarise the findings of this project with respect to these aims. 

 

To address the first aim (Chapter 3), IHC was used to illustrate cellular 

behaviour in the FAP colon and in patients with sporadic adenomas. Adenomatous 

and surrounding non-adenomatous crypts were analysed using markers for cell 

proliferation (Ki67), DNA damage (γH2AX) and Wnt signalling status (nuclear β-

catenin). Tumour-stroma interactions were also investigated by assessing the 

percentage of helper T-cells (CD4), cytotoxic T-cells (CD8), macrophages (CD68) 

and α-SMA in the stroma of adenomas and their neighbouring non-dysplastic 

stroma, examining how signals emanating from the adenoma are affecting the stroma 

of nearby non-adenomatous crypts. Furthermore, the mutation burden of mtDNA 

mutations in adenomatous and neighbouring non-dysplastic crypts was investigated 

using CCO-deficiency as a marker for mutagenesis. The effect of distance from the 
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adenoma on these markers was analysed.  

Results have shown increased cell proliferation (Ki67), DNA damage 

(γH2AX) and Wnt signalling (nuclear β-catenin) in non-dysplastic crypts close to an 

adenoma, and these effects decreased over distance for both FAP and sporadic 

adenoma patient samples. This demonstrates that increased expression for these 

markers is associated with the field effect emanating from the dysplastic zone. These 

observations further indicate that these markers play an important role in the early 

transformation and progression of CRC. 

This field effect was further associated with an increase in T cell, 

macrophage and fibroblast infiltrate in the non-dysplastic stroma surrounding an 

adenoma for both FAP and sporadic adenoma patients. This supports previous work 

suggesting that a phenotypic change occurs early in the adenoma-carcinoma 

sequence with expression of inflammatory chemokines and cytokines dysregulated in 

the transition from normal mucosa to adenomas (Mo et al. 2016). Immune cells 

might exert a pro-inflammatory response in the dysplastic region, thus promoting 

clonal interactions through the stroma. Adenomatous polyps were found to be rich in 

pro-inflammatory T helper and cytotoxic cells, as well as macrophages, and this 

exerts a significant influence on their surrounding microenvironment. As 

inflammation is a known driver of crypt fission and therefore clonal expansion (Salk 

et al. 2009), a potential explanation for the development of polyclonal adenomas 

could be that increased inflammation surrounding dysplastic tissue increases the 

likelihood that dysplasia can arise in the normal surroundings. These results further 

highlight the complexity of the cross-talk between epithelia and stroma occurring 

during the earliest stages in the progression to CRC, supporting an active role of the 

stroma. 

Furthermore, using mtDNA mutations as a proxy for mutation pressure on 

crypts, it was shown that crypts neighbouring an adenoma contained a higher 

mutation burden. Therefore, evidence was found that dysplastic crypts increase the 

mutagenic pressure in their surrounding non-dysplastic crypts, thus interacting with 

their surrounding neighbouring non-dysplastic crypts to generate a field effect. 

Investigation of stem cell dynamics between dysplastic and non-dysplastic 

colonic epithelium revealed that the proximity of a crypt to an adenoma also affects 

stem cell dynamics: using somatic mtDNA mutations to trace clonal lineages, it was 

found that human intestinal stem cell evolution in adenomas and surrounding normal 
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crypts followed neutral drift dynamics and that the stem cell loss/replacement rate is 

accelerated in adenomas (Chapter 4). 

Having established that clones interact and adenomas create a field effect in 

surrounding non-dysplastic crypts, proper description and characterisation of these 

interactions in the early stages of tumourigenesis is required. Therefore, to address 

the third aim, gene expression effects of an adenoma on normal colonic epithelium 

were investigated using an organoid culture system to get a better understanding of 

how these interactions occur in the very early stages of colorectal tumourigenesis and 

how their initiation might be regulated (Chapter 5 & 6).  

In order to investigate the effects of an adenoma on normal murine intestinal 

epithelium, WT and Apc1322/+ organoids were co-cultured in organoid media for 48 h 

and 72 h and controlled with WT and Apc1322/+ organoids only (Chapter 5). Analysis 

was performed using gene set enrichment analysis (GSEA) (Subramanian et al. 

2005). The main focus here was to study gene expression patterns in WT organoids 

grown in presence of Apc deficient organoids compared to WT organoids only. 

Results obtained showed distinct expression profiles for WT organoids and WT 

organoids exposed to Apc1322/+ organoids for both time points. Gene expression 

analysis revealed that exposure to Apc1322/+ organoids for only 48 h caused significant 

induction of the DNA replication pathway in WT organoids, as well as many other 

pathways, including those involved in the repair of DNA DSBs, spliceosome, 

homologous recombination. Perturbations in these pathways have been shown to 

alter genome stability (Pillaire et al. 2010) and could hint towards increased 

replication and cell proliferation (Bishop et al. 2002, Miquel et al. 2007), although 

this needs to be confirmed with further experiments. 

Many metabolic pathways were downregulated in WT organoids exposed to 

Apc1322/+ organoids after 48 h and 72 h, indicating that pathways involved in 

nutritional storage are significantly suppressed. Oxidative phosphorylation was 

identified as one of the most reduced pathways in WT organoids exposed to Apc 

deficient organoids. Normal cells rely on oxidative phosphorylation to generate ATP 

for energy, however, in cancer cells oxidative phosphorylation is reduced, while 

anaerobic glycolysis is increased, a phenomenon known as the Warburg effect 

(Zheng 2012). At the time points measured in this study, glycolysis was upregulated, 

however not significantly. Downregulation of oxidative phosphorylation can also 

suggest that more ROS are being accumulated, which is known to initiate mutations 
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in CRC (Yadav et al. 2015). Excess of ROS production has been shown to lead to 

oxidative damage, which in turn can activate DNA damage, replication errors and 

even lead to genetic abnormalities (Selim et al. 2017). This could explain the 

upregulation seen in the MMR and DNA replication pathway.   

Exposure of Apc1322/+ organoids for 72 h led to the activation of the ECM 

receptor interaction pathways in WT organoids. The ECM is important for 

maintaining cell tissue and structure, and function (Hayes et al. 2016). ECM 

expression changes have great impact on tumour development, as ECM structurally 

supports tumour cells and their cellular functions (Stankevicius et al. 2016). 

Therefore, upregulation of this pathway seems to promote an environment 

permissive to tumourigenesis. 

Whilst exposure to Apc1322/+ organoids was not long enough to detect 

significantly altered genes in WT organoids after 48 h, exposure for 72 h revealed 

that Lamb1 was significantly upregulated, which forms a cell adhesion network in 

the intestinal epithelium together with integrins (McCole 2014) and changes in 

Lamb1 expression have previously been observed in CRC (Petz et al. 2012). Thus, 

upregulation of Lamb1 could hint towards changes in the basal lamina thereby 

potentially altering the structure of the cell adhesion network.   

In addition, genes contributing to the observed enrichment of the MMR 

pathway were identified, among which Pold2, Pold3, Pold4 and Pole, as well as 

Mhl1 and Msh6 were significantly induced. These genes play an important role in 

mediating correct DNA MMR and DNA replication (Jiricny et al. 2003, Pal et al. 

2008).  Perturbations in the DNA MMR pathway have been linked to CRC (Li et al. 

2016) and impaired MMR gene function can lead to MSI (Kheirelseid et al. 2013). 

These alterations in WT organoids exposed to Apc deficient organoids may represent 

the very early events in the progression towards CRC. 

Taken together, gene sets in pathways contributing to proliferation and 

replication were activated, whilst metabolic pathways were downregulated in WT 

organoids grown adjacent to Apc1322/+ organoids. This indicates that clones interact 

and drive expansion, as features of such clonal expansion include proliferation and 

replication. Furthermore, exposure of Apc deficient organoids caused significant 

changes in WT organoids after only 72h, indicating that mutated epithelium has a 

rapid effect on normal epithelium in close proximity. 

However, the transformation from normal to mutated epithelium is likely 
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dependent on interactions with the surrounding stroma as well. The stroma in normal 

tissue maintains homeostasis and acts as a barrier against tumourigenesis, but in the 

presence of tumour cells it can turn into a tumour-promoting environment 

(Valkenburg et al. 2018). This has also been shown in Chapter 3: the stroma 

surrounding adenomatous and non-adenomatous crypts showed a greater 

concentration of immune cells and fibroblasts. 

Therefore, the effect of tumour-exposed fibroblasts (TEFs) on WT organoids 

was investigated (Chapter 6). More specifically, Apc1322/+ organoids were co-cultured 

with murine fibroblasts to generate tumour-exposed fibroblasts (TEFs). These TEFs 

were then exposed to WT organoids aiming to investigate the reciprocal interactions 

between mutated epithelium and its associated stroma on normal epithelium. Here, 

mRNA expression changes in WT organoids exposed to Apc1322/+ organoids, and WT 

organoids co-cultured with TEFs were investigated in a transwell setting for only 72 

h, as opposed to adjacent to each other as shown in Chapter 5. 

Interestingly, a distinct expression profile between WT organoids and WT 

organoids exposed to TEFs was found. They clustered independently from both, WT 

organoids and those exposed to Apc1322/+ organoids, indicating that by adding a 

stromal component to the system, WT organoids and WT organoids exposed to Apc 

deficient organoids were transcriptionally distinct from WT organoids exposed to 

TEFs, highlighting the role of the stroma in early transformation. Similar results 

were obtained in WT organoids exposed to Apc1322/+ organoids in a co-culture using 

transwells, which was consistent with the findings in Chapter 5, thus demonstrating 

that with a different method the results were reproducible. 

In order to distinguish whether the identified altered pathways and 

accompanying gene expression changes were triggered by Apc1322/+ organoids or by 

TEFs, the expression profiles from GSEA were compared. In general, TEFs had a 

much stronger effect on WT organoids compared to WT organoids exposed to 

Apc1322/+ organoids. The number of significantly altered pathways changed drastically 

in WT organoids exposed to TEFs given both conditions had the same exposure 

time. More specifically, it has been shown that WT organoids exposed to Apc1322/+ 

organoids or TEFs exhibited a reduced expression of metabolic pathways, however 

TEFs seem to have accelerated this process. Especially, PPAR-α was significantly 

reduced, which led to a reduction of fatty acid metabolism, indicating to be an early 

step in neoplastic transformation. Previously, reduction in these pathways has been 
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described in CRC compared to matched normal tissue samples (Grau et al. 2006, 

Guo et al. 2017, Jackson et al. 2003).  

Moreover, PPAR is negatively regulated by pro-inflammatory cytokines, 

such as TNF-α, indicating that the expression of PPARs is decreased when TNF-α is 

present (Varga et al. 2011). FABP1, responsible for the transportation of long chain 

fatty acids (Wang et al. 2015), can activate PPARs resulting in expression of 

downstream transcription targets, including anti-proliferation and anti-inflammatory 

genes. Disruption of this interaction via increased TNF-α may lead to inactive PPAR 

and decreased FABP1 (Wood et al. 2017, Xu et al. 2017). Thus, the observed 

decreased expression of FABP1 could potentially be explained by the increase in 

Tnf-α expression in WT organoids exposed to TEFs, which may inhibit PPAR 

leading to the observed downregulation of FABP1. Further studies are needed to 

confirm this relationship. 

The cytokine-cytokine receptor interaction pathway was significantly 

upregulated, with Tnf-α being a major player. Upregulation of Tnf-α can promote 

Wnt signalling (Coskun et al. 2014) and indeed this pathway was significantly 

induced in WT organoids exposed to TEFs, but not in WT organoids exposed to 

Apc1322/+, indicating that this upregulation is due to the presence of TEFs.  

Two scenarios could explain the upregulation observed for the Wnt signalling 

pathway: (1) Wnt signalling was driven by overexpressed Wnt ligands, and (2) Wnt 

signalling was driven in a R-spondin dependent manner binding Lgr5. Lgr5 is both a 

Wnt signalling component as well as a Wnt target gene, and functions as an R-

spondin receptor, associating with the Frizzled/LRP receptor complex and 

potentiating Wnt/β- catenin signalling by enhancing Wnt-induced LRP 

phosphorylation (Carmon et al. 2011, de Lau et al. 2011). Thus, given the 

upregulation detected in Lgr5, one could assume activation of Wnt signalling was 

driven in a R-spondin dependent manner, as R-spondin1 was significantly induced in 

WT organoids exposed to TEFs compared to WT organoids only.  

Both scenarios would explain the upregulation seen for Ctnnb1, indicating 

accumulation of β-catenin. In addition, upregulation of Lgr5 might indicate that 

these cells have acquired stem-like properties, but further experiments are needed to 

investigate the exact role of these Lgr5+ cells.  

Increased Tnf-α expression could have also activated MAPK and/or JNK 

signalling, which led to an increased expression of MMP9. This could potentially 
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result in collagen breakdown and structural changes in the ECM, leading to tumour 

initiation and progression, and is likely to be an early event in neoplastic progression. 

Moreover, the upregulation detected in MMP9 and collagen genes (Col4a1 and 

Col6a2) could have also been mediated by TGF-β signalling in a SMAD-dependent 

manner.  

These studies have shed light on epithelial-stromal interactions in the very 

early stages of colorectal tumourigenesis and the accompanying critical steps leading 

to tumour progression. Analysis of these epithelial-stromal interactions may help to 

develop a better understanding of the mechanisms governing tumour initiation and 

progression. 

To summarise, this project has demonstrated clonal interactions between 

dysplastic and non-dysplastic epithelium driving clonal expansion: adenomas create 

a field effect, dysplastic crypts exert mutagenic pressure, and crypt-to-crypt crosstalk 

between adenomatous and stromal cells takes place leading to a pro-tumourigenic 

environment. Furthermore, the effect of mutated epithelium on normal epithelium in 

close proximity was investigated using murine intestinal organoids to better 

understand initial events in colorectal tumourigenesis.  

This work has made a significant contribution to the way in which we 

understand the initial events in tumourigenesis within the human colon. 
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9 Appendix 

 
Table 9.1: Primer sequences for mtDNA PCR for frozen samples. 
 

 

 

 
Table 9.2: Number of crypts laser capture microdissected in each zone.   
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Table 9.3: Primer sequences for qRT-PCR.  
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Figure 9.1: Mean cell number and mean circumference per crypt. 
Average number of cells per crypt circumference was counted for FAP (A) and AFAP (C) patients, as 
well as the crypt circumference for FAP (B) and AFAP (D) patients measured manually in H&E 
sections of adenomatous colonic crypts, non-dysplastic crypts in zone 1 – 3, distant non-dysplastic 
crypts, and non-dysplastic colonic crypts in normal tissue sections. Each point on the graph represents 
the average number of cells (A, C) and the average crypt circumference (B, D) in one patient, which 
was obtained by analysing at least 20 representative crypts. The line within each count represents the 
mean. A) Kruskal-Wallis: p = 0.008. B) Kruskal-Wallis: p = 0.034, C) Kruskal-Wallis: p = 0.019, D) 
Kruskal-Wallis: p = 0.03. E) shows the correlations between the number of cells and the mean 
circumference per crypt.  

  

 

 


