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Algorithmic differentiation tools can automate the adjoint transformation of parallel message
passing codes [23] using the AMPI library. Nevertheless, a non-trivial and manual step after
the differentiation is the initialisation of the seed and retrieval of the output values from the
differentiated code. MPK: Ambiguities in seeding occurs in programs where the user is
unable to expose the complete program flow to the AD tool (a single entry and single exit
point). :KPM In this work, we present the problems and ambiguities associated with seed
initialisation and output retrieval for adjoint transformation of halo and zero-halo partitioned
MPI programs. JDM: point out relevance: - no pb with single master paradigms, when
using brute-force AD - problem when using more advanced SPMD/all-worker models, and/or
partial hand-assembly. :MDJ Shared-node reduction is an important parallel primitive in
the zero-halo context. We introduce a general framework to eliminate ambiguities in seeding
and retrieval for shared-node reduction over +, and ∗ operators using a conceptual master-
worker model. Corollaries from the model show the need for new MPI calls for retrieval
and eliminate MPI calls for seed initialisation. Different possible implementations for seed-
ing manually assembled adjoints were inferred from the model, namely, (i) partial and (ii)
unique seeding. We successfully demonstrate the seeding of the manually assembled adjoint
fixed-point iteration in a 3d zero-halo partitioned unstructured compressible flow solver. The
different implementations, their merits and demerits are highlighted. Tapenade AD tool was
used throughout this work.

Keywords: Algorithmic differentiation; adjoint source transformation; parallel reverse
mode; Gradient-based optimisation; Fixed-point iteration; Computational fluid dynamics
(CFD); message passing

1. Introduction

Gradient-based optimisation methods are essential for solving optimisation problems with
many control variables. The efficient computation of the required gradients is essential
for application of numerical optimisation to large-scale and industrial cases, such as aero-
dynamic design which is the focus of our work. Algorithmic differentiation (AD) tools
differentiate computer codes by applying symbolic differentiation to individual program
statements and combining the sequence of statements using the chain rule of calculus.
Moreover, in the typical case of a small number of output variables, their derivatives with
respect to a large number of input variables can be efficiently obtained using the ‘reverse’
mode of AD, which accumulates the derivative by stepping through the code statements
in reverse order. There are two major approaches to AD, namely (i) operator overloading
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and (ii) source transformation, in the present work we restrict to source transformation
AD, although the problems and solutions presented are equally applicable to (i).

Differentiating sequential computer models with AD in reverse mode to obtain ad-
joint codes is reasonably mature and a range of AD tools have been developed, see
www.autodiff.org for various offerings. However, application to parallel codes in reverse
mode remains a challenge. A major step forward has been made with the development
of the AMPI library [21] which, under certain restrictions, allows to automatically derive
the required MPI communications for the reverse-differentiated code. AMPI focuses on
the correct differentiation of an individual piece of code, but does not automate the in-
tegration of the differentiated elements into a driver code. In particular, the user has to
provide appropriate seeding for the relevant inputs in order to obtain correct gradients. As
we show in the following, this is far from trivial in practical application to typical solvers
for PDES. We propose a framework that conceptually transforms the parallel algorithm
into a simpler structure, which then allows to consistently define seeding for the typical
range of reduction operations at parallel interfaces. In this paper, we focus on the more
versatile message-passing parallelism and restrict our analysis to blocking communication.

2. Background

The solution of large-scale optimal design problems in the turn-around times required
by industrial application is feasible today using adjoint models and parallel computing.
Application of AD to obtain differentiated code of parallel computer codes based on both
shared and distributed memory has been investigated in the literature. The parallel AD
forward mode was first investigated by Hovland [10, 11]. The first major effort in applying
AD to obtain adjoint MPI code has been on the MITgcm code using TAMC [9]. The
authors report that a substantial intervention into the original code was necessary to
enable correct adjoint code generation. The AD book of Griewank and Walther [7] also
has a section dedicated to AD of parallel programs. A comprehensive theory of MPI
within AD for both forward and reverse mode was presented by Utke et al. [23]. This
has been implemented into the AMPI library [21] and later into the Adjoinable MPI
library [23]. The libraries require rewriting the MPI calls into AMPI wrapper calls, and
the AD tools generate the forward/reverse MPI calls automatically. This substantially
reduces the burden of generating the AD MPI code for both source-transformation (S-T)
and operator-overloading (O-O) AD tools. The Adjoinable MPI with the AD tool ADOL-
C was used to differentiate the Ice Sheet System Model [22]. The authors had wrapped the
MPI calls in the original code to generate correct MPI adjoint code. Recently, a discrete
adjoint version of the open-source CFD solvers SU2 [1] has been carried out using the
CoDiPack AD tool [18] and the Adjoinable MPI library.

Differentiation using AMPI in combination with an AD tool demands certain restric-
tions. Firstly, the library currently supports a subset of MPI v2.0 specification. Any unsup-
ported MPI operations (by AMPI) in the user code must be replaced with an equivalent
supported MPI call. But we hope that such restrictions would not exist in a future or next
releases of the library. In fact, Schanen et al. [19, 20] have covered the adjoining of MPI
v2.2 one-sided calls in a recent work. Secondly, the MPI function calls must be wrapped
into equivalent AMPI ones. Lastly, the source for differentiation is isolated into a routine,
referred to as the head. A driver routine generates the input seed and recovers the output
values from the differentiated head. The driver routine generation is a manual process and
non-trivial. Hovland [10] briefly mentions seed initialisation and associated problems in
forward mode AD of MPI codes. The author states, “ . . . user of an AD tool should be
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Figure 1.: The (i) Zero-halo and (ii) one-layer halo based partitioning methods illustrated
for a sample mesh split into two parts (grey and black); halo/shared nodes denoted by
hollow circles and internal nodes denoted by filled circles

careful to take advantage of situations where the structure of a computation allows deriva-
tives to be computed much more efficiently”. To the knowledge of the authors there are no
existing works which investigate seeding for reverse-differentiated MPI code.

Generally, distributed parallel scientific codes divide a given problem domain (data) into
multiple partitions, which are independently run in hardware computing units. Some level
of synchronisation is necessary to ensure that the partitioned solution remains consistent
across the whole domain. There are two major approaches to partitioning for parallel
computation, namely, the (i) halo and (ii) zero-halo methods (or a combination thereof);
illustrated in Fig. 1. OpenFOAM [12], AVBP [5], and STAMPS [15] (our in-house CFD
solver) represent examples of parallel scientific codes which employ a zero-halo partitioning
scheme. MPK: SU2 [4], parallel frameworks like OP2 [16] library employ halo parti-
tioning to distribute data across MPI ranks. :KPM Zero-halo partitions contain shared
nodes between partition boundaries (Fig. 1(i)), which are synchronised across partitions
MPK: but halo partitions have unique ownership of data and use halo data (overlap with

neighbouring MPI rank) to access off-processor data. :KPM We use a halo and zero-halo
example here to demonstrate the difficulty in obtaining correct seeding values for reverse-
differentiated complex parallel algorithms. JDM: Since we also show halo examples,
give codes that use it. SU2? Or Mike Giles’ Op2 library? :MDJ

The paper is organised as follows. In sec. 3 the seeding problem is described for the halo
and zero-halo partitioning using a simple example. A conceptual master-worker (CMW)
model is proposed in sec. 4 to guide the seeding process. We then demonstrate the use of
CMW to seed the parallel adjoint FPI of an unstructured CFD solver in sec. 5. Concluding
remarks are discussed in sec. 6.
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3. Seeding the differentiated code

AD tools differentiate program code and can provide derivative values which are exact
up to machine precision. Typically, the program code of a numerical application can be
considered as a multivariate vector function F of an independent variable x as defined in
Eq. (1), where F maps an input vector MPK: x ≡ (xi), i = 1, . . . ,n ∈ Rn onto an
output vector y ≡ (yi), i = 1, . . . ,m ∈ Rm. :KPM JDM: What is this duble subscript
notation? You mean (xi), i = 1,n? :MDJ

y = F (x) (1)

The entries of the Jacobian ∇F (x) ∈ Rm×n exist if F is continuously differentiable in the
neighbourhood of all arguments. In order to compute this Jacobian using AD, we have
the tangent-linear model and the adjoint (reverse-differentiated) model at our disposal.
The computational complexity of the Jacobian accumulation based on the tangent-linear
model depends on the dimension of the input n. In contrast, the complexity of the adjoint
model depends on the output dimension m. In typical aerodynamic shape optimisation,
the input dimension is much larger than the output size. Hence we focus on the adjoint
model in this paper. The adjoint model of F is

x̄ = x̄ +∇F (x)T · ȳ . (2)

MPK: Seeding is best described as the process of retrieval of the directional derivative in
eq. (2) by initialising appropriate values for x̄ and ȳ. For example, :KPM the Jacobian
matrix can be constructed row-by-row in x̄ by initialising or seeding MPK: x̄ ≡
(x̄i), i = 1, . . . ,n = 0 followed by seeding ȳ = (ei), i = 1, . . . ,m :KPM over the range
of Cartesian unit basis vectors ei ∈ Rm. Note that m evaluations are necessary to assemble
the complete Jacobian matrix. Moreover, when m = 1 only one evaluation is necessary to
assemble all the entries of the gradient in contrast to n evaluations in the tangent-linear
mode.

JDM: You spent some introducing tan-lin and adj modes, but we don’t yet know what
seeding does. :MDJ While the correct choice of seeding is straightforward for a serial
code, it is not so intuitive for a parallel code. In the AMPI approach, the program to
be differentiated has a top level routine head which does the numerical computation and
communication. A driver routine calls this function in the main code. The driver routine
would have to be manually adjusted to initiate the derivative computation, retrieve, and
use the derivative values. Since the input and output data are distributed, so are the input
seeds and output adjoint values. Therefore it is necessary to ensure correct distribution
of the input seeds and retrieval of output values. In this work we use as an example the
seeding of parallel programs based on the zero-halo data partition. To illustrate the parallel
seeding issues for halo and zero-halo partitioning method, a simple summation problem is
described next.

3.1 Code example

Let us consider a simple summation function shown in Eq. (3). The reverse differentiated
form for this simple function is shown in Eq. (4).

y = F (x) = x2
1 + x2

2 + x2
3 (3)
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x̄1 = x̄1 + 2ȳx1 (4)
x̄2 = x̄2 + 2ȳx2

x̄3 = x̄3 + 2ȳx3

Let us perform the computation in parallel on two MPI ranks, ranks 0 and 1. There are
multiple ways one can partition this computations between the two ranks. We present two
approaches (i) Halo and (ii) Zero-halo partitioning in the next section.

3.2 Halo Approach

In this approach {x1} is distributed to rank 0 and and {x2, x3} are distributed to rank
1. Note that there is no sharing of data between the partitions. The primal and adjoint
parallel code for ranks 0 and 1 are shown in Listings 1-4. The adjoint is simple to construct
using MPI idioms [23]. The read function reads the value for the variable provided in the
function argument. The shorthand notations send and recv stand for the MPI Send and
MPI Recv functions. In Table 1 the comparison of the output from serial and parallel AD
code is shown for seed values ȳ = x̄1 = x̄2 = x̄3 = 1. Note that the same serial seed value
was used in the parallel adjoint code. We clearly find that the seed ȳ is counted twice,
which leads to a erroneous result. While it can be argued that the operation y = y+ t is a
reduction and only one of the rank should take ownership of this operation, it is far from
obvious for a practical user of AD. In fact, one might argue that exposing the complete
program to the AD tool (including the data decomposition) will eliminate this issue. But
this is impractical and impossible in many situations because source code availability
cannot be assumed (commercial libraries). The AD tool might not support a given mix of
programming languages or supports only a restricted subset. Therefore, in such situations
one differentiates pieces of the overall program and assembles the differentiated subroutines
manually.

Conceptually the AD process is clear and given a single entry and single exit for the
MPI program one can quite reliable carry out the seeding and adjoining. The PGAS
representation [20] of the program can be used to verify its correctness. In Listing 5-8 we
provide the correct implementation using the idea of a single entry and single exit. In fact
this problem has been acknowledged in the AD literature. For example Hovland [10] states
that replicated operations on individual ranks are indeed a source of problem for seeding
in the context of forward AD MPI codes.

Listing 1: Halo parallel code (rank 0)

1 read(x1)
2

3 y = x2
1

4 send(y, to=1)
5 recv(t, from =1)
6 y = y + t

Listing 2: Halo parallel code (rank 1)

1 read(x2)
2 read(x3)
3 y = x2

2 + x2
3

4 recv(t, from =0)
5 send(y, to=0)
6 y = y + t
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Listing 3: Halo partitioning adjoint of
y = x2

1 + x2
2 + x2

3 (rank 0)

1 t̄ = ȳ
2 send(t̄, to=1)
3 recv(t0, from =1)
4 ȳ = ȳ + t0
5 x̄1 = x̄1 + 2ȳx1
6

7 ȳ = 0

Listing 4: Halo partitioning adjoint of
y = x2

1 + x2
2 + x2

3 (rank 1)

1 t̄ = ȳ
2 recv(t1, from =0)
3 ȳ = ȳ + t1
4 send(t̄, to=0)
5 x̄2 = x̄2 + 2ȳx2
6 x̄3 = x̄3 + 2ȳx3
7 ȳ = 0

Table 1.: Serial seed with value 1, resulting gradients for sequential code and on each
partition (halo approach).

Variable Seed Serial Rank 0 Rank 1
ȳ 1 0 0 0
x̄1 1 1 + 2x1 1 + 4x1 1 + 4x1
x̄2 1 1 + 2x2 1 + 4x2 1 + 4x2
x̄3 1 1 + 2x3 1 + 4x3 1 + 4x3

Listing 5: Corrected version of halo
parallel code (rank 0)

1 read(x1)
2

3 y = x2
1

4 recv(t, from =1)
5 y = y + t
6 send(y, to=1)

Listing 6: Corrected version of halo
parallel code (rank 1)

1 read(x2)
2 read(x3)
3 y = x2

2 + x2
3

4 send(y, to=0)
5 recv(t, from =0)
6 y = t

Listing 7: Corrected version of halo
adjoint of y = x2

1 + x2
2 + x2

3 (rank 0)

1 recv(ȳ, from =1)
2 t̄ = ȳ
3 send(t̄, to=1)
4 x̄1 = x̄1 + 2ȳx1
5

6 ȳ = 0

Listing 8: Corrected version of halo
adjoint y = x2

1 + x2
2 + x2

3 (rank 1)

1 t̄ = ȳ
2 send(t̄, to=0)
3 recv(ȳ, from =0)
4 x̄2 = x̄2 + 2ȳx2
5 x̄3 = x̄3 + 2ȳx3
6 ȳ = 0
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3.3 Zero-halo Approach

In this section we consider a zero-halo partitioning, where x1 and x3 are uniquely dis-
tributed to ranks 0 and 1, respectively, but x2 is shared between the two ranks. In zero-halo
terminology, x2 is called a shared node variable at the zero-halo partition boundary.

In Listing 9 and 10 we have shown the pseudo code for the parallel implementation. A
peculiar aspect of this zero-halo splitting is the partial computation on x2 (halving of the
value) on each rank and the final accumulation on y. The reverse-differentiated code in
each rank is shown in Listings 11 and 12.

Listing 9: Zero-halo parallel code
(rank 0)

1 read(x1)
2 read(x2)
3 y = x2

1 + 1
2x

2
2

4 send(y, to=1)
5 recv(t, from =1)
6 y = y + t

Listing 10: Zero-halo parallel code
(rank 1)

1 read(x2)
2 read(x3)
3 y = 1

2x
2
2 + x2

3
4 recv(t, from =0)
5 send(y, to=0)
6 y = y + t

Listing 11: Zero-halo adjoint of y =
x2

1 + x2
2 + x2

3 (rank 0)

1 t̄ = ȳ
2 send(t̄, to=1)
3 recv(t0, from =1)
4 ȳ = ȳ + t0
5 x̄1 = x̄1 + 2ȳx1
6 x̄2 = x̄2 + ȳx2
7 ȳ = 0

Listing 12: Zero-halo adjoint of y =
x2

1 + x2
2 + x2

3 (rank 1)

1 t̄ = ȳ
2 recv(t1, from =0)
3 ȳ = ȳ + t1
4 send(t̄, to=0)
5 x̄2 = x̄2 + ȳx2
6 x̄3 = x̄3 + 2ȳx3
7 ȳ = 0

Table 2 compares the values of x̄1, x̄2 and x̄3 between the serial and parallel adjoint code.
In Tab. 2 naively the same seeding approach as for the serial code was used. This results
in incorrect derivatives, since the message exchange doubles the seed ȳ, but there is a
missing accumulate in x̄2, cancelling out the error for x̄2. Although the doubling of ȳ is
obvious from the previous halo example one would still gets erroneous results using the
proposed fix due to the shared node accumulation. As described previously the problem
arises because the complete program flow is unavailable to the AD tool. The presence of
shared variables x2 and y in both MPI ranks is the source of the problem. The information
that these variables should belong to a single rank and that the reduction should happen
in a single rank is hidden from the AD tool. This motivates our conceptual master-worker
(CMW) model, described in the next section.

4. Conceptual Master-Worker model for shared-node reduction

To derive correct choices of seed values, we consider transforming a parallel MPI program
into a Conceptual Master-Worker (CMW) model. An abstract CMW model for the shared-
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node reduction operation is shown in Eq. (5), where the operator ⊗ represents a reduction
operation at a shared node. Functions {F0,F1, . . . ,FN−1} are the rank-local operations on
the shared node value x, and Srank is the set of ranks shared by the node.

y = F0(x)⊗ F1(x)⊗ . . . Fi(x), i ∈ Srank (5)

In abstracting the shared node reduction using CMW we assume that a master process,
(1) controls ownership of the shared node variables x and y
(2) broadcasts the shared node variable x to worker ranks Srank
(3) delegates computation of {F0, . . . ,Fi} to worker ranks Srank
(4) upon completion, performs a global reduction over ⊗ and writes to y.
Thus the model essentially serialises the reads/writes to the shared nodes, and the workers
merely perform computations using their local data. By defining input and output ends
controlled by the single master process, this model eliminates the ambiguities in seeding
these shared nodes. For the non-transformed original code, the broadcasts to or reductions
from the workers then inform about the correct handling of seed values.

In the cases where technical limitations forbid to expose the complete program flow to
the AD tool, the CMW model can be presented as an alternative way to provide the AD
tool with a code that has a single entry point and a single exit point namely, the entry and
the exit points of the master process. The CMW applied to the shared-node reduction is
shown in the next subsection.

4.1 CMW adjoint seeding algorithm for shared-node reduction

The CMW adjoint model can be derived using Eq. (2) for the shared node reduction
in the master process as shown in Eq. (6). Using the chain rule of calculus and grouping
terms, one obtains Eqs. (7) and (8), which are specialised adjoints for two classes of binary
operators, namely (i) additive (⊗ ≡ +) and (ii) multiplicative (⊗ ≡ ∗).

x̄ = x̄+
[
d

dx
(F0(x)⊗ F1(x)⊗ . . . Fi(x))

]T
ȳ (6)

Case (i): Additive CMW adjoint model

x̄ = x̄+
∑

i∈Srank

(
dFi(x)
dx

)T
ȳ (7)

Table 2.: Serial seed with value 1, resulting gradients for sequential code and on each
partition (zero-halo approach).

Variable Seed Serial Rank 0 Rank 1
ȳ 1 0 0 0
x̄1 1 1 + 2x1 1 + 4x1 1 + 4x1
x̄2 1 1 + 2x2 1 + 2x2 1 + 2x2
x̄3 1 1 + 2x3 1 + 4x3 1 + 4x3
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Case (ii): Multiplicative CMW adjoint model

x̄ = x̄+
∑

i∈Srank

dFi(x)
dx

Srank∏
j 6=i

Fj(x)

T

ȳ (8)

The following corollaries can be inferred from the adjoint models of Eqs. (7) and (8),
a) whatever be the type of binary operator for the shared node reduction, the adjoint

model is always additive
b) individual terms under the summation are rank local operations (head routine)
c) the seed ȳ is the common multiplying factor for all additive terms (in head)
d) the seed x̄ is accumulated in only one process (master)
The doubling of ȳ in the adjoint of the summation example is explained by (c), and
corollary (a) explains the missing accumulate in x̄. The corollaries (b) and (d) motivate
the following rearrangement of Eq. (7).

x̄ =
∑

i∈Srank

[
αix̄+

(
dFi(x)
dx

)T
ȳ

]
, where

∑
i∈Srank

αi = 1 (9)

Note that a similar rearrangement of Eq. (8) is possible. This rearrangement paves way
for many possible implementation for seeding x̄, which are discussed in the next section
on seeding strategies.

The CMW abstraction for the summation problem (zero-halo partitioned) described in
the previous section involves substituting, ⊗ ≡ +, N = 2, Srank = {0, 1}, {F0,F1} ≡
{1

2x2, 1
2x2} in Eq. (5). The summation problem and its adjoint using the CMW adjoint

model on two MPI ranks is illustrated in Fig. 2. The pseudo-code for the CMW primal
and adjoint is shown in Listings 13 and 14, which show the fix for the doubling of ȳ and
the missing accumulate in x̄2 as identified previously in (a-d). The master broadcasts the
same seed ȳmaster to both MPI ranks. The results t0,1 from both ranks are accumulated
in the master rank (x̄2 = x̄2master + t0 + t1).

9
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Listing 13: CMW primal of summa-
tion problem (zero-halo)

1 !------- master --------
2 read(x1, x2, x3)
3 send ([x1,x2], to=0)
4 send ([x2,x3], to=1)
5 !------- worker 0 -------
6 recv ([x1,x2], from=master)
7 y = x2

1 + 1
2x

2
2

8 send(y, to=master)
9 !------- worker 1 -------

10 recv ([x2,x3], from=master)
11 y = x2

3 + 1
2x

2
2

12 send(y, to=master)
13 !------- master --------
14 recv(t0, from =0)
15 recv(t1, from =1)
16 y = t0 + t1
17 ...
18 ...

Listing 14: CMW adjoint of summa-
tion problem (zero-halo)

1 !------- master --------
2 ȳ = ȳmaster
3 send(ȳ, to=0)
4 send(ȳ, to=1)
5 !------- worker 1 -------
6 recv(ȳ, from=master)
7 x̄2 = ȳx2; x̄1 = 2ȳx1
8 send ([x̄1,x̄2], to=master)
9 !------- worker 0 -------

10 recv(ȳ, from=master)
11 x̄2 = ȳx2; x̄3 = 2ȳx3
12 send ([x̄2,x̄3], to=master)
13 !------- master --------
14 recv ([x̄1,t0], from =0)
15 recv ([t1,x̄3], from =1)
16 x̄1 = x̄1master + x̄1
17 x̄2 = x̄2master + t0 + t1
18 x̄3 = x̄3master + x̄3

Figure 2.: CMW model of parallel summation problem (left) and its adjoint (right) on two
MPI ranks (red and blue boxes) and a master (white box)

4.2 Seeding strategies

Listings 15 and 16 show two possible strategies, unique seeding (US) and partial (PS)
seeding for the summation problem using the CMW model. Note that both codes yield
identical results and they are consistent with the CMW model. In both approaches the
seed ȳ is assigned the same serial value, which we denote as ȳmaster.

10
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The final value of x̄2 is accumulated in both US and PS. The difference stems from the
seeding of x̄b. In US only one rank amongst the shared ranks assigns the serial seed value
x̄2master, while others have a zero seed value. In PS a partial seed value is assigned to x̄2 in
each rank. For this example we have chosen to use the value of x̄2master divided by the total
number of shared ranks. In fact, using Eq. (9) one can show that any linear combination
of the seed whose shared node sum is equal to the x̄2master will produce correct adjoint
values as shown in Eq. (10).

x̄local2 = αlocalx̄2master,
Srank∑

αlocal = 1 (10)

Zero-halo partitioning performs partial computations at a shared node. Therefore by using
the PS approach no change is needed to the output value produced by reverse AD for the
partition.

In the next section, we demonstrate this seeding approach applied to a parallel CFD
code. We show that choosing the PS seeding strategy one can also simplify the code and
reduce the number of MPI calls.

Listing 15: Unique seeding approach
(US)

1 !------ rank 0 ---------
2 ȳ = ȳmaster
3 x̄2 = x̄2master
4 x̄1 = x̄1 + 2ȳx2
5 x̄2 = x̄2 + ȳx2
6 recv(t, from =1)
7 x̄2 = x̄2 + t
8 send(x̄2, to=1)
9 ȳ = 0

10 !------ rank 1 ---------
11 ȳ = ȳmaster
12 x̄2 = 0
13 x̄2 = x̄2 + ȳx2
14 x̄3 = x̄3 + 2ȳx̄3
15 send(x̄2, to=0)
16 recv(t, from =0)
17 x̄2 = x̄2 + t
18 ȳb = 0

Listing 16: Partial seeding approach
(PS)

1 !------ rank 0 ---------
2 ȳ = ȳmaster
3 x̄2 = 1

2 x̄2master
4 x̄1 = x̄1 + 2ȳx1
5 x̄2 = x̄2 + ȳx2
6 recv(t, from =1)
7 x̄2 = x̄2 + t
8 send(x̄2, to=1)
9 ȳ = 0

10 !------ rank 1 ---------
11 ȳ = ȳmaster
12 x̄2 = 1

2 x̄2master
13 x̄2 = x̄2 + ȳx2
14 x̄3 = x̄3 + 2ȳbx3
15 send(x̄2, to=0)
16 recv(t, from =0)
17 x̄2 = x̄2 + t
18 ȳ = 0

5. Case study

Let us consider an aerodynamic shape optimisation problem as formulated in
Eqs. (11),(12).

min
α
J(U ,α), (11)

s.t. R(U ,α) = 0, (12)

11
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where J is a scalar cost-function such as drag, lift, etc., which is minimised subject to
the PDE constraint R. In this work, the constraint R are the discrete Reynolds Averaged
Navier-Stokes equations (RANS) solved numerically using the edge-based finite-volume
solver STAMPS [15]. The field U is the fluid-state and α is the vector of shape design vari-
ables. Gradient-based optimisation methods require the derivatives of the cost or objective
function (output) with respect to the design variables (input), dJdα . The computational cost
of computing sensitivities with the reverse or adjoint mode is proportional to the dimension
of the output J and independent of the dimension of the input α. In this case there is a
single scalar cost-function but many design variables, it is hence computationally efficient
to obtain

(
dJ
dα

)T
using the adjoint method as shown in Eq. (13). Algorithmic differentia-

tion (AD) in the reverse or adjoint mode is used to obtain the transposed values. The AD
tool Tapenade[8] is used in this work to obtain the terms of the adjoint Eq. (14), which
solves the adjoint equation for Ū ,

(
dJ

dα

)T
=
(
∂J

∂α

)T
+
(
∂R

dα

)T
Ū , (13)(

∂R

∂U

)T
Ū −

(
∂J

∂U

)T
= 0. (14)

The steady-state primal in Eq. (12) and the adjoint in Eq. (14) are solved using a pseudo-
time marching (pseudo-time τ) formulation as shown in Eqs. (15),(16). The discretisation
of STAMPS is based on primitive variables Q, hence the code differentiated by the S-T
AD tool Tapenade is also with respect to Q. However the constraint PDEs (12) are based
on the the conservative variables U , therefore, it is necessary to apply a transformation
using the matrix T−1 = ∂Q

∂U .

∂U

∂τ
= −R(U) (15)

∂Ū

∂τ
= −

[(
∂R

∂U

)T
Ū −

(
∂J

∂U

)T]
= −T−T

[(
∂R

∂Q

)T
Ū −

(
∂J

∂Q

)T]
(16)

The distributed parallelisation of STAMPS [14, 15] has been implemented using the Mes-
sage Passing Interface (MPI) [3]. The computational mesh is partitioned using METIS [13],
shared node information using the zero-halo approach is set up in a pre-processing step. A
schematic of the flux computation at a shared-node is shown in Fig. 3. The flux F (QL,QR)
across an edge is obtained using an approximate Riemann solver based on the left (QL)
and right (QR) reconstructed states either side of the interface associated with each edge.
The residual R(Q) is defined as the flux summation of all edges connected to a node. Note
that in the zero-halo approach there is no need to compute any flux for an interface on the
partition boundary because both matching faces either side mutually cancel each other.
At the shared nodes in each rank the zero-halo approach computes only a partial flux
residual. Therefore, the residuals need to be accumulated to obtain the full shared-node
residual. Using the CMW model introduced in Sec. 4 and the following definitions for the
shared-node residual operation, ⊗ ≡ +, {F0, ...,Fi} ≡ {R0, ...,Ri}, and x ≡ u we obtain

R(Q) = R0(Q) + . . .+Ri(Q), i ∈ Srank (17)

12
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Figure 3.: Exploded view of zero-halo partitioning (three partitions); • : shared nodes, ◦
: internal nodes, × : dual nodes, − : partition boundary, − : dual element, −− : primal
element.

The operator in Eq. (17) is implemented using MPI send and MPI recv communication of
shared node values in STAMPS. Since this operator occurs quite frequently in the analysis,
it is convenient to abstract this as an operator called accumulate which accumulates the
shared node values within a rank using an off-processor shared node MPI schedule.

5.1 MPI Fixed point loop

The steady-state solution to Eq. (12) is obtained by solving the pseudo-time fixed-point
iteration (FPI) in Eq. (18) using the multi-grid accelerated, pre-conditioned Runge-Kutta
time stepping scheme, JT-KIRK [25]. The Runge-Kutta time stepping is preconditioned
using an ILU(0) preconditioned inexact Newton-Krylov solver. For simplicity, we represent
the complete time-stepping scheme as the preconditioning matrix M in Eq. (18). The FPI
loop of the primal is re-used to solve the adjoint system by transposing the pre-conditioner,
but retaining the primal multi-grid operators.

Uk+1 = Uk −M−1R(Uk,α) (18)

Ūk+1 = Ūk −M−TT−T
[(

∂R

∂Q

)T
Ūk −

(
∂J

∂Q

)T]
(19)

The right hand side term in Eq. (19) containing the partial derivative is obtained
by reverse differentiation of the flux residual and the cost-function subroutines using
Tapenade. Eqs. (21) and (20) show the mathematical equivalent of the reverse dif-
ferentiated code for the cost-function and flux residual subroutines. Firstly, we obtain
Q̄ = (∂J/∂Q)T from Eq. (20) using the seed values J̄ = 1 and Q̄ = 0. Then we obtain
Q̄ = (∂R/∂Q)T Ūk− (∂J/∂Q)T from Eq. (21) using the seed values Q̄ = − (∂J/∂Q)T and

13
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R̄ = Ū .

AD : J(Q)→ Q̄ = Q̄+
(
∂J

∂Q

)T
J̄ (20)

AD : R(Q)→ Q̄ = Q̄+
(
∂R

∂Q

)T
R̄ (21)

5.2 Parallel FPI seeding

The pseudo-code for the parallel functions residual and costFun are shown in
Listings 17 and 18. The program flow for the CMW model is illustrated along-
side the listings in Figs. 4 and 5. The accumulate operator is the shared-node
accumulation operator described previously. The allreduce is the reduction op-
eration MPI Allreduce on the scalar cost-function value J using summation (+).

Figure 4.: Residual CMW model

1 residual (u, R):
2 ! Local residual
3 residualLocal(u, R)
4 accumulate(R)
5 end

Listing 17: Residual function

Figure 5.: Cost-function CMW model

1 costFun (u, J):
2 ! Local cost -function
3 costFunLocal(u, J)
4 allreduce(J, +)
5 end

Listing 18: Cost-function scalar

The US and PS adjoint seeding for the flux residual function are shown in Figs. 6
and 7. In the US approach, the seed values at shared nodes are non-zero only for a
uniquely chosen worker rank, say Worker 1. The shared nodes for other worker ranks are
assigned a zero seed value, denoted by hollow circles (Worker 0). In the PS approach,
partial seed values are assigned to shared nodes, denoted by triangles. The cost-function
adjoint is agnostic to the type of seeding approach because Q̄ = 0. as shown in Fig. 8.
Note that the cost-function adjoint produces only partial values of Q̄ at the shared nodes,
which is later accumulated by the master. The two adjoints can now be combined to yield
the RHS term of Eq. (19).

When seeding the assembled FPI we also can use either the US or the PS approach,
as illustrated in Figs. 9 and 10. The corresponding pseudo code is shown in Listings 19
and 20. The PS approach avoids two extra operations present in the the US approach, (i)
accumulation of Q̄ after the end of the adjoint cost-function and (ii) unique seeding for
the adjoint residual. Thus, the PS approach simplifies the adjoint code. Note that in the
PS approach the MPI call elimination occurs outside the fixed-point loop. Therefore, the
general scalability remains the same for both methods. If the cost-function is not expensive

14
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Figure 6.: CMW adjoint residual using US approach; the hollow ‘◦’ shows the zeroing of
seed in non-master ranks and ‘+’ is the reduction at shared-nodes on the master rank

Figure 7.: CMW adjoint residual using PS approach; the ‘N/H’ shows the partial seed
values distributed to the shared nodes and ‘+’ is the reduction at shared-nodes on the
master rank

Figure 8.: CMW adjoint of cost-function; the ‘N/H’ shows the partial seed value computed
at MPK: shared nodes in each partition :KPM JDM: you mean ’shared’ node?
What is a partition share node? :MDJ and ‘+’ is the reduction at shared-nodes on the
master rank

to evaluate then one can recalculate the cost-function and avoid the extra storage for
dJ/dQ.

The low storage adjoint version where the cost-function is re-computed each iteration
is shown in Listing 21. Note that in STAMPS only the PS algorithm of Listing 20 has
been implemented for the adjoint FPI. We make use of the proof of Christianson [2], who
showed that for a non-linear primal FPI the adjoint gradients can be computed without
storing intermediate stages of the primal loop. The adjoint pseudo-code in Listings 19-21
follows closely the work of Giering [6].
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Figure 9.: CMW adjoint combining US residual and cost-function; the ‘N/H’ shows the
partial seed value computed at MPK: share nodes in each partition :KPM , JDM:
same comment as above :MDJ the hollow ‘◦’ shows the zeroing of seed in non-master
ranks, and ‘+’ is the reduction at shared-nodes on the master rank

Figure 10.: CMW adjoint combining PS residual and cost-function; the ‘N/H’ shows the
partial seed value computed at each partition share node and ‘+’ is the reduction at
shared-nodes on the master rank

Listing 19: Adjoint FPI (US approach)

1 J̄ = 1
2 Q̄ = 0
3 costFunLocal(Q, Q̄, J , J̄)
4 accumulate(Q̄) !Extra MPI
5 dJdQ = Q̄
6 do iter = 1, nIter
7 R̄ = v
8 Q̄ = 0
9 residualLocal(Q, Q̄, R, R̄)

10 accumulate(Q̄)
11 Q̄ = Q̄ - dJdQ
12 update(v, Q̄)
13 end do

Listing 20: Adjoint FPI (PS approach)

J̄ = 1
Q̄ = dJdQ
costFunLocal(Q, Q̄, J , J̄)

dJdQ = Q̄
do iter = 1, nIter
R̄ = v
Q̄ = 0
residualLocal(Q, Q̄, R, R̄)
accumulate(Q̄)

update(v, Q̄)
end do

16
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Listing 21: Adjoint FPI (re-computation)

do iter = 1, nIter
J̄ = 1
Q̄ = 0
costFunLocal(Q, Q̄, J , J̄)
R̄ = v
residualLocal(Q, Q̄, R, R̄)
accumulate(Q̄)
update(v, Q̄)

end do

To demonstrate the MPI zero-halo adjoint in STAMPS, we have simulated external
flow over a truncated RAE2822 airfoil. The simulation was carried out for a compressible
viscous fluid in laminar flow at a Mach number of 0.2 and zero angle of attack. The
domain was discretised using 23458 mesh nodes. The spatial discretisation uses Roe’d flux
difference splitting [17] and 2nd-order MUSCL extrapolation [24] without slope limiter.
Time integration is performed with explicit local time stepping using 4-stage Runge-Kutta
integration. The parallel simulations were carried out using four partitions of the airfoil
mesh. The cost-function used for the adjoint solver was the aerodynamic drag. The solution
for the adjoint continuity is shown in Fig. 11 with the partition boundaries drawn in
solid lines. Table 3 shows the L∞ difference between the converged solutions of the serial
and parallel adjoint codes. We see that the solutions match to machine round-off which
validates the manually-derived MPI-parallel adjoint solver against the serial adjoint solver.

The primal and adjoint solver scaling on a dual socket 16 Core Intel Xeon compute node
is shown in for the RAE2822 test case in fig. 11(a), and for a larger DLRF6 wing body case
with 3.5 M hexahedral cells in fig. 11(b). In both test cases the adjoint cost-function was
the aerodynamic drag. The MPI communication cost between the adjoint and primal FPI
is the same, but the adjoint performs more computation than the primal. Hence we find
that the explicit adjoint solver has better strong scaling than the primal. It is to be noted
that blocking MPI calls were used for communication, which reduces overall scalability.

(a) Serial run (b) Parallel run (on 4 partitions)

Figure 11.: Drag adjoint continuity solution contour for subsonic flow over rae2822 airfoil
(M∞ = 0.2,αAOA = 0o); partition boundary shown by solid black lines
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(a) RAE2822 airfoil test case (b) DLRF6 test case

Figure 12.: Adjoint and primal solver scalability for the indicated test cases (PS adjoint)

Table 3.: L∞ error between the serial and parallel converged adjoint solution

Quantity L∞ error
Adjoint continuity 1.3435e-13
Adjoint X-momentum 2.9346e-13
Adjoint Y-momentum 9.52978e-14
Adjoint energy 7.3585e-14

6. Summary and Future Work

Automatic differentiation (AD) tools can apply reverse-differentiation to produce adjoints
for codes with message passing parallelisation. To obtain correct gradients, context infor-
mation about the communication pattern is necessary. When applying AD, the numerical
computation that is to be differentiated, including its parallel communication, is isolated
into a top-level routine called head. A manually generated driver which initialises the seed
values, calls the differentiated head and retrieves its output. Both seeding and retrieval are
manually coded non-trivial operations. MPK: Except for a brief note in the thesis of
Hovland [10] on seeding forward mode MPI codes, to the authors knowledge there are no
known references on this topic. :KPM JDM: You cited Hovland for tan-lin, Schanen?
:MDJ

Correctness of parallel seed initialisation has been analysed for the reverse-differentiated
summation reduction using the two major communication paradigms, namely halo and
zero-halo partitioning. It was shown that the näıve approach of using the serial seed values
and distributing them using reversed communication fails to produce the correct adjoint
output. MPK: The incorrectness is caused by not exposing the complete program flow
to the AD tool due to practical limitations. :KPM JDM: And in the case of one-halo?
:MDJ

The paper introduced the Conceptual Master-Worker (CMW) abstraction for the shared-
node reduction operation, which conceptually serialises the parallel program into a single
master process. Applying either of two proposed seeding strategies between the master
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and her workers then removes the seeding ambiguity and defines consistent seed values
which result in correct gradients. As a direct consequence of this transformation, the CMW
adjoint model allows to rigorously construct the correct seed values. The abstraction has
been generalised to a class of commonly used binary operators, the corollaries inferred
from the CMW adjoint serve as a users’ manual to seed initialisation. CMW provides an
abstract framework to resolve ambiguities in seeding by conceptual serialisation and hence
extends beyond the shared-node reduction discussed in this work.

The relevance of the analysis has been demonstrated on the problem of seed initialisation
as arising from the manual assembly of fixed-point iterations (FPI) for parallel adjoint AD
transformations. During this assembly, ambiguities in seeding occur because the output
of one transformation becomes the input seed of another, linked through the manually
produced driver code. The proposed abstraction was used to derive correct seeding and
demonstrated with the manual assembly of the adjoint FPI in the in-house CFD solver
STAMPS. The CMW abstraction motivated different possibilities to seeding, namely, par-
tial and unique seeding. Partial seeding was found to be more efficient since it avoided
MPI communication during seed initialisation. The correctness and performance of adjoint
FPI using message passing parallelism. was demonstrated on the flow over an aerofoil with
drag as an objective. Excellent agreement was obtained between the gradients computed
with serial and parallel adjoint algorithms.

CMW modelling is a general technique to derive and guide parallel seed initialisation
for adjoint transformed message passing programs. CMW simplifies reasoning for correct-
ness because of its serial nature. Its application to two ambiguous seeding scenarios was
demonstrated successfully. MPK: We plan to extend the application of this method to
problems involving n-halo partitions and partitions with periodic boundaries. :KPM
JDM: I thought we included halo partitioning here already? :MDJ .
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(2011), pp. 104–124. 3

[6] R. Giering and T. Kaminski, Recipes for Adjoint Code Construction, ACM Transactions on Math-
ematical Software 24 (1998), pp. 437–474. 15

[7] A. Griewank and A. Walther, Evaluating Derivatives, Society for Industrial and Applied Mathemat-
ics, 2008 Jan. 2
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