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Abstract

In this thesis we study models of inflation with a curved field-space metric. We
concern ourselves with the calculation of the statistics of curvature perturbations
which is essential for connecting models to observations.

To begin, we review the standard model of cosmology. We then reflect on cos-
mological perturbation theory and quantization procedures for inflationary fields in
a flat field-space. With these tools we inspect how curvature perturbations, seeded
from inflation, generate observables.

We then extend this framework so that we can calculate observables from models
with a curved field-space metric. To do this we extend the transport method for
numerically evaluating the statistics in multifield inflation. This allows us to cal-
culate the power spectrum and bispectrum in multifield inflation in the case of a
curved field-space metric. This method naturally accounts for all sub- and super-
horizon tree level effects, including those induced by the curvature of the field-space.
We present an open source implementation of our equations in an extension of the
publicly available PyTransport code.

Next we apply our numerical methods to models of inflation with field-space met-
rics that produce interesting observables. We investigate the attractor behaviour of
multi-field models of inflation where the fields are coupled non-minimally to gravity
for two theories of gravity, metric and Palatini gravity. It is conjectured that the
two formalisms will have different attractor behaviour. We present the results, il-
lustrating this attractor behaviour, using our numerical approach and Monte Carlo
methods.

Finally we analyze a class of models that undergo what is called the geometric
destabilization of inflation. We study the observable consequences of these models
after this instability occurs. In particular we calculate the bispectrum with our
numerical approach, finding large non-Gaussianities of equilateral and orthogonal
shapes.
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1. Introduction

Our collective understanding of the universe has advanced with the developments in

fundamental theories of physics. The development of the hot Big Bang model began

with observations that the expansion of the universe can be traced back in time to

a point where it was smaller, denser and hotter. In this early universe, where the

conditions are extreme, models constructed from theories of high energy particle

physics and theories of gravity aim to illuminate us on our path to understanding

the universe’s evolution. Processes which have occurred at this time have been

verified by observation. Modern observations have also shown that the universe is

not only expanding but that the expansion itself is accelerating. Dark energy is

the widely accepted hypothesis to explain this acceleration. Moreover, the existence

of a form of matter invisible to electromagnetic interactions has been conjectured

by measurements of the rotations of galaxies and gravitational lensing. This dark

matter has been measured to be 5 times more abundant than the matter we observe

today [1]. Together with baryonic matter and radiation, the parameterization of

all these phenomena and observations into a consistent theory is called the standard

model of Big Bang cosmology (sometimes referred to as ΛCDM, where Λ is the

cosmological constant and CDM is cold dark matter) [2].

The ΛCDM model together with the theory of general relativity seems to fit all

the data we have collected so far from measurements of the large scale structure

(LSS), supernovae luminosities, galaxy clustering, CMB constraints and primordial

nucleosynthesis [3].

Despite the great success of the hot big bang model, it remains incomplete. Prob-

lems exist such as the flatness, horizon and monopole problem as well as the un-

explained origin of structure formation. This motivated the idea that another era

of the universe evolution occurred before the hot big bang. The best idea so far

is inflation, where the universe expands at an exponential rate. Inflation provides

an answer for the flatness of space, the horizon and monopole problem. But more

importantly in the inflation model, structure is seeded by the quantum fluctuations

of the inflation field driving the expansion [4].

8



1.1: Summary 9

1.1. Summary

This thesis is concerned with making quantitative predictions for complicated mod-

els of inflation that can then be compared against constraints from observational

data. We structure the thesis as follows. In Ch. (2) we introduce the hot big bang

model and ΛCDM outlining the need for inflation. We then review cosmological

perturbation theory, a toolkit necessary for us to relate predictions from our models

to observations. We also show the quantization procedure that is used to calculate

the statistics of inflationary perturbations. The chapter concludes by highlighting

the landscape of inflationary scenarios.

In Ch. (3) we review and extend cosmological perturbation theory results for

scalar field models, which include a curved field-space metric. We introduce the

ADM (Arnowitt, Deser and Misner) metric and perturb it, and define the covariant

perturbations of the scalar fields. Together we obtain the equations of motion and

constraint equation to second order in perturbation theory. Finally, relating back to

results from Ch (2), we obtain the second order curvature perturbations in curved

field-space.

In Ch. (4), using the interaction picture approach to calculating expectation val-

ues of field perturbations, we derive the statistics of inflationary perturbations for

inflationary models with curved field-space metric deep inside the cosmic horizon.

Both two- and three-point initial conditions are determined. These are later used as

the initial conditions for our approach to calculating these statistics at late times,

the transport approach.

In Ch. (5) we review analytical methods to calculate the statistics from models of

inflation. We then review numerical methods for calculating those same statistics,

highlighting the transport method we employ. The method is then extended to

included non-canonical models of inflation.

This method is then built into the PyTransport code in Ch. (6). We test the code

on models of inflation to illustrate the extent of its use and efficiency.

In Ch. (7) we examine multifield models with non-minimal couplings to gravity.

Using PyTransport we compare the results for two different models of gravity and

find that their predictions exhibit attractor like behaviour.

In Ch. (8) we explore the observable consequences of negative field-space curvature

on the power-spectrum and bispectrum. We review the phenomena of geometric

destabilization and study what occurs after this effect for a wide range of potentials

and two field-space metric.

Finally in Ch. (9) we present our conclusions.
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1.2. Notation

In this thesis we use three conventions for indices. Greek indices (α, β, etc.) run

over the four space-time coordinates {0, 1, 2, 3}, with a space-time metric signature

of (−1, 1, 1, 1). Lowercase Roman indices (i, j, etc.) run over spatial coordinates

{1, 2, 3} and uppercase Roman indices (I, J, etc.) run over field-space coordinates

{1, 2, · · · , N}. When considering Fourier space quantities we use bold font indices,

I,J, . . . to indicate that the usual summation over fields is accompanied by an

integration over Fourier space. For example,

AIBI =

∫
d3kI
(2π)3

AI(kI)BI(kI) , (1.1)

where the subscript I on kI indicates that this is the wavenumber associated with

objects that carry the I index. For a vector labeled with space-time (Aα) or field-

space (AI) indices the partial ∂βA
α and covariant derivatives, ∇βA

α, with respect

to space-time or field-space coordinates may be respectively denoted by a comma

and semi-colon respectively, such that for vector components Aα

Aα;β = Aα,β + ΓαβγA
γ , (1.2)

where Γαβγ is the Christoffel symbol compatible with the Levi-Civita connection

(implying that the bottom indices are symmetric Γαβγ = Γαγβ) corresponding to the

space-time metric gαβ,

Γαβγ =
1

2
gαδ (gβδ,γ + gγδ,β − gβγ,δ) . (1.3)

The Riemann curvature tensor is defined constructed from Christoffel symbols,

Rα
βγδ = Γαβγ,δ − Γαβδ,γ + ΓαδεΓ

ε
βγ − ΓαγεΓ

ε
βδ . (1.4)

There is also the Ricci tensor, which is symmetric and defined as,

Rµν = Rα
µαν , (1.5)

and it’s trace defines a scalar, the Ricci scalar (or scalar curvature),

R = gµνRµν . (1.6)

The above definitions also hold for quantities in field-space (indicated by uppercase

Roman indices and field-space metric denotedGIJ) as well as space-time coordinates.

We also define the three-dimensional Laplacian ∆ = δij∂i∂j with δij as the Kronecker

delta.
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We also define symmetrization of indices using rounded parenthesis, for a example,

Rα
β(γδ) = Rα

βγδ +Rα
βδγ . (1.7)

A bar | denotes a break in the indices that are symmeterized, i.e. ,

Rα
(β|γ|δ) = Rα

βγδ +Rα
δγβ . (1.8)

The anti-symmetrization of indices is denoted by square brackets,

Rα
β[γδ] = Rα

βγδ −Rα
βδγ . (1.9)

We define derivatives of quantities (for example scalars φ) with respect to coordinate

time t as φ̇ and conformal time τ as φ′ with,

τ =

∫
dt

a
, (1.10)

where a is the scale factor which will be discussed in later sections. We can also define

the covariant parallel transport in field-space, in particular the intinsic derivatives

of the scalar fields φI with respect to coordinate time, conformal time and e-folds

as,

Dt =
dφI

dt
∇I , Dτ =

dφI

dτ
∇I , DN =

dφI

dN
∇I , (1.11)

where the corrseponding covariant equation satisfies,

∇IX
J =

∂

∂φI
XJ + ΓJIKX

K , (1.12)

for some vector XJ and,

∇IX
JK =

∂

∂φI
XJK + ΓJILX

LK + ΓKILX
JL (1.13)

for some tensor XJK . We use natural units with c = ~ = 1 such that we can define

the reduced planck mass as Mpl = (8πG)−1/2 = 2.4× 1018 GeV.



2. Standard Cosmology

We begin with an overview of the cosmological principle and the history of

the window into the early universe, the cosmic microwave background. In

Sec. (2.1) we review the ΛCDM model of cosmology and discuss how the

theoretical framework is highly motivated by observations. We outline the

fundamental principles of inflationary cosmology in Sec. (2.3). We then have

a brief interlude as we review cosmological perturbation theory in Sec. (2.4)

In Sec (2.5) we review gauge invariant cosmological variables by discussing

the choices of gauge, the evolution of these variables and their relation to

one another. After that we outline the quantization procedure necessary to

obtain the statistics of inflation in Sec. (2.6)–(2.7) After briefly catagorising

inflationary models we discuss the end of inflation in Sec. (2.9). Finally in

Sec. (2.10) both the observational evidence for inflation and constraints on

models of inflation is reviewed.

2.1. The Λcdm Model

The measurement of astrophysical quantities (e.g. luminosity, redshift1 etc.) re-

quires us to agree on a model of the universe, a concordance model. The current

accepted model, the ΛCDM model, makes a number of assumptions necessary to

explain current observations. ΛCDM is defined by a flat, homogeneous and isotropic

universe with constraints on the quantities of Λ, cold dark matter (CDM), radiation

and baryonic matter as well as the amplitude and scale dependence of the initial

spectrum of fluctuations from inflation. It is a model of the whole universe from

nucleosynthesis onwards

The first assumption is that on large scales the universe appears isotropic and

homogeneous, meaning that the universe exhibits rotational and translational in-

variance in space. Observational evidence for the isotropic universe can be found

directly in the temperature mapping of the CMB.

A method to gauge the level of isotropy (and/or anisotropy) is by a spherical

harmonic decomposition of the angular temperature data ∆T (θ) of the CMB. The

1Redshift is the displacement of spectral lines towards longer wavelengths, as in the Doppler
effect, and denoted z. Due to the expansion of the universe greater redshift is observed from
sources of increasing distances from Earth.

12



2.1: The Λcdm Model 13

Figure 2.1.: The Mollweide projection of the CMB anisotropies measured by the
Planck telescope after foregrounds and the monopole have been removed. The red
to blue colour scale correspond to a linear temperature variations from +200µK to
−200µK about the average temperature of 2.728K [5].

CMB, obtained after subtracting away the motion of the Earth, Sun and Galaxy,

illustrates a high degree of isotropy with |∆T (θ)/T | . 10−5. Fig. (2.1) shows the

CMB temperature anisotropy map with a temperature of 2.728± 0.004K. Isotropy

is also seen at closer distances via galaxy surveys like the Two-degree-Field Galaxy

Redshift Survey [6, 7] and the Sloan Digital Sky Survey [8]. Fig. (2.2) shows a 2-

dimensional slice through the local universe illustrating the filaments of galaxies on

small scales. However, on scales larger than 100 Mpc2 no structures are seen, this

is sometimes referred to as the homogeneity scale.

Temperature inhomogeneities at the time of recombination (the period during

which the CMB forms) would result in significant temperature anisotropies. The

high level of observed temperature isotropy in the CMB and isotropy observed in

galaxy distributions on LSS surveys supports our belief in homogeneity of the uni-

verse on the largest scales [4]. Direct evidence of homogeneity is more difficult to

obtain as measures of large spatial scales probe different time scales and a complete

understanding of the evolution of the universe is needed. The validity of homogene-

ity is still debated [9].

Secondly, we assume there exists a geometric theory of gravitation that describes

our universe. Although there are other alternatives (see [10]), the ΛCDM model

takes Einstein’s theory of general relativity to be the correct description of gravity.

General Relativity has been tested extensively and remains the leading theory of

gravity [11]

The last assumption is that the matter content of the universe is composed of the

standard model particles, a form of Cold Dark Matter (CDM) and a cosmological

2The standard astronomical unit of length is Mpc= 3.09× 1022m.
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Figure 2.2.: The SDSS’s 2-dimensional map of the universe. At the center is Earth
and each dot represents a galaxy. The colouring represents the green-red colouring
of the galaxy (an indicator for the age of the galaxy as red stars are older). Image
courtesy of the SDSS collaboration and M. Blanton
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Figure 2.3.: Planck 2018 CMB angular power spectra of temperature-temperature
(TT) correlations [3], compared with the base-ΛCDM best fit to the Planck
TT,TE,EE+lowE+lensing data (blue curves). Beneath are the residuals of this fit.

constant Λ. Standard model particles includes; baryonic matter which is a form of

matter directly observable from the emission lines of luminous objects (stars) and

non-directly by the absorption lines of non-luminous objects (gas) and relativistic

particles such as photons and neutrinos.

From observations of galaxy rotation curves, galaxy cluster dynamics and gravi-

tational lensing combined with our assumption of general relativity we require there

to be much more non-luminous ‘dark’ matter than is visible. The nature of this

matter is uncertain and the hunt for understanding its composition is a large topic

in particle and astroparticle physics today. Cosmological effects of this dark matter

require it to be pressureless and non-relativistic, hence the dark matter is referred

to as ‘cold’.

The cosmological constant, Λ, is the value of the vacuum energy density of space

that accounts for the accelerated expansion of the late universe. Observations of

type Ia supernova (SNIa) have shown that the universe is not just expanding but

that the rate of this expansion is increasing [12, 13]. These assumptions here have

also been used to correctly predict the peaks in the angular power spectrum of the

CMB anisotropies [3] (with the TT -correlation spectrum seen in Fig. (2.3)). This

also illustrates the need for Λ without the need for supernova data.
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2.2. Cosmic Dynamics

In this section, we will discuss the mathematical framework for ΛCDM and its matter

content. After we have formulated this convariantly, we will obtain the evolution

equations of the background cosmology.

2.2.1. The FLRW Model

As we have discussed, it is usual to assume ΛCDM describes the universe, at least

from the time of nucleosynthesis to today. If general relativity works well for ΛCDM

it is reasonable to assume it works well for earlier phases. The field equations of

Einstein’s general relativity can be obtained from variation of the Einstein-Hilbert

action,

SEH =
1

2
M2

pl

∫
d4x
√−g (R− 2Λ) , (2.1)

where Mpl is the reduced planck mass defined in Sec. (1.2). The space-time metric

is denoted as gµν where the determinant is labeled g. The Ricci scalar, R, is the

scalar curvature of the space-time metric, gµν . Varying the above action, Eqn. (2.1),

with respect to the metric gives

Rµν − 1

2
gµνR− gµνΛ = 0 , (2.2)

which is the gravitational field equation in the absence of matter and where Rµν is

the Ricci tensor of the metric gµν . The Einstein tensor is defined as Eqn. (2.2) in

the absence of Λ,

Gµν = Rµν − 1

2
gµνR . (2.3)

This is a conserved tensor under a covariant derivative,

Gµν
;ν = 0 , (2.4)

as can be shown by use of the Bianchi identities,

3Rαµ(νσ;β) = 0 . (2.5)

Using the symmetries of the ΛCDM model we can prescribe the space-time metric

gµν that describes the geometry of the universe at large scales to be the Friedmann-

Lemâıtre-Robertson-Walker (FLRW) metric [14] with line element,

ds2 = −dt2 +a2(t)

[
dr2

1− κr2
+ r2dθ2 + r2 sin2 θdφ2

]
= −dt2 +a2(t)γijdx

idxj , (2.6)

in spherical comoving coordinates (r, θ, φ) where a(t) is the scale factor (a dimension-

less parameter of the relative expansion of the universe at a coordinate time t) and
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κ is a parameter that represents the global geometry of space. For positive spatial

curvature κ > 0, for negative spatial curvature κ < 0 and for flat spatial curvature

κ = 0. Here we have also introduced the time-independent three dimensional spatial

metric γij for convenience later on. By virtue of a growing scale factor the FLRW

models are very effective at explaining cosmological features of expansion and evo-

lution of the universe. Now that we have our space-time metric corresponding to

Eqn. (2.6), let us now take a look at the stress-energy tensor T µν .

2.2.2. Matter Content

The matter content in ΛCDM can be simply described by many perfect fluids which

are characterised by only their energy density ρ and pressure p. In a similar fashion

to Eqn. (2.1) we can write the action for the matter sector,

SM =
1

2

∫
d4x
√−gL , (2.7)

where L is the matter Lagrangian. The energy-momentum tensor can be obtained

from varying the action with respect to the metric,

Tµν = gµνL − 2
δL
δgµν

. (2.8)

Using this result and Eqn. (2.2) we can write the general form of the gravitational

field equations for a universe containing matter,

Rµν − 1

2
gµνR− gµνΛ = M−2

pl T
µν . (2.9)

The most general form of the energy-momentum tensor for a fluid is given as,

T̄µν = (ρ+ p)uµuν + pgµν + 2q(µuν) + πµν , (2.10)

where uµ is the relative 4-velocity between the fluid and the observer which satisfies

uµuµ = −13. The energy density measured by an observer at rest is ρ = Tµνu
µuν , the

pressure is p = Tµν(g
µν+uµuν)/3, the energy flux relative to uµ is qµ = −Tλκuλ(gκµ+

uκuµ) and the anisotropic pressure tensor is defined as πµν and satisfies πµνu
µ = πµµ =

0.

In cosmology it is common to model the background matter content as a perfect

fluid (one characterized only by its energy density and pressure). For perfect fluids

we may set qµ = 0 and πµν = 0, such that Eqn. (2.10) becomes

T̄µν = (ρ+ P )uµuν + Pgµν (2.11)

3We have set c = 1 and will continue to work in these units.
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The different components of the stress-energy tensor may be broken up into the

energy density T 00, the momentum density T 0i and the stress T ij. For a perfect

isotropic fluid the energy density is equivalent to T 00 = ρ and pressure T ij = pδij.

The momentum density is defined as T 0i = (ρ+ p)ui.

The properties of our matter can be defined by the equation of state,

ω =
p

ρ
. (2.12)

In the ΛCDM model the fluids we are interested in have different equations of state.

Non-relativistic matter (such as baryons and CDM) will have ω = 0, relativistic

matter (such as photons and neutrinos) will have ω = 1/3 and dark energy will have

an equation of state of ω = −1.

2.2.3. The Evolution and Expansion Equations

During the evolution of the energy density and pressure we require that the total

energy and momentum be conserved. The covariant conservation equation (or conti-

nuity equation) is found from imposing the covariant derivative on Eqn. (2.9) where

Eqn. (2.4) and gµν;α = 0 implies,

T µν;ν = 0 . (2.13)

Solving this conservation equation we write the evolution of the energy density (the

continuity equation of the fluid with energy density ρ and pressure p),

ρ̇ = −3H(ρ+ p) , (2.14)

where we have defined the Hubble parameter as H = ȧ/a. By integrating the above

equation we can derive how the energy density changes with respect to time in an

expanding universe. For fluids with an equation of state ω, defined in Eqn. (2.12),

the energy density is approximately,

ρ ∼ a−3(1+ω) . (2.15)

For CDM and baryonic matter ρm ∼ a−3 and for radiation ρr ∼ a−4 meaning that

the energy of these particles will redshift as the universe expands. However, for dark

energy the energy density remains a constant.

From the metric of Eqn. (2.6) we can calculate the components of the Ricci tensor

as,

R00 = −3
ä

a
,

Rij = γij
(
2ȧ2 + aä+ 2κ

)
.

(2.16)
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This in combination with the gravitational field equation in Eqn. (2.9) gives us

a set of two evolution equations for the expansion of the universe. For the 00-

components we have the Friedmann equation,

H2 =
ρ

3M2
pl

+
Λ

3
− κ

a2
. (2.17)

The second is the Raychaudhuri equation, derived from the trace components,

ä

a
= − 1

6M2
pl

(ρ+ 3p) +
Λ

3
. (2.18)

The Friedmann equation governs the time evolution of the FLRW universe. It illus-

trates that a positive Λ > (ρ+3p)/2M2
pl the expansion of the universe is accelerating.

From Eqn. (2.17) there is a critical energy density, necessary to balance out the

left and right hand side of the equation in the absence of curvature, defined as

ρcrit = 3M2
plH

2. It is often used to normalize the density parameter Ωi = ρi/ρcrit

for the fluids. In the case of dark energy ΩΛ = Λ/3H2 and the spatial curvature

parameter Ωκ = −κ/(H2a2). The total matter density parameter is then,

Ωm =
∑
i

Ωi = 1− Ωκ , (2.19)

and can be used to rewrite the Freidmann equation, giving,

H2 = H2
0

(∑
i

Ωi

(
a

a0

)−3(1+ωi 0)

+ Ωk 0

(
a

a0

)−2
)
, (2.20)

where all quantities with a subscript ‘0’ are evaluated today. If the curvature of

the universe is observationally small then Ωm ≈ 1, this is a result that is backed up

observationally [3].

2.2.4. Problems of the Big Bang Model

The hot big bang model is exceptionally good at explaining many aspects of our

universe, however, there are certain aspects of the cosmos left unexplained. In par-

ticular, either the universe as we see it today requires finely-tuned initial conditions

which is highly unlikely or there was an earlier phase that gives rise to the observed

universe today. There are three main problems that exist in the Big Bang model

which imply fine tuned initial conditions. Below we will discuss each of these.

The first is the flatness problem referring to the problem of why the parameter κ

is observed to be so close to zero [3]. For the universe to be so flat today the early

universe must have been significantly flatter. The definition of the density parameter

Ωκ in Eqn. (2.19), implies that when Ωκ = 0 is an unstable point in the parameter

space, since aH decreases with time during matter or radiation dominance such that
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Ωm diverges away from 1. For example, this would require a density parameter of

Ωk ∼ 10−16 at the time of nucleosynthesis. This would require fine tuning of the

initial conditions.

The second is the Horizon problem. The comoving (or particle) horizon is the

maximum distance between two points that have been in causal contact at some

point in the past. At the time of last scattering the CMB consisted of roughly 106

causally disconnection regions [15]. The observed temperature of the CMB is highly

uniform and exhibits high levels of isotropy and homogeneity. It is impossible then

to reconcile the fact that with so many causally disconnected regions which did not

have time to communicate with one another, we are still left with an extremely

uniform CMB. This would require each patch to have the same fine-tuned initial

conditions.

The third problem is the Monopole problem (or more generally, the relic den-

sity problem). This problem is related to the absence of hypothetical particles

that formed in the very early universe when energies were of order of the GUTs

scale. Such particles include cosmic strings [16], domain walls [17] and magnetic

monopoles [18] and are often the result of some symmetery breaking of a field at

high energies. The most notorious of these are the magnetic monopoles which are

believed to be heavy and stable enough to still exist in the universe today. However,

there are no observational evidence of such particles existing and the conventional

hot big bang model provides no known mechanism to dilute the number density of

these relics to below observational limits.

Lastly the hot big bang model does not provide us with an explanation for the

initial conditions of the structure we observe in the universe. Today we live in

a universe containing clusters of galaxies with large scale structure. The growth

of this structure required initial fluctuations of just the right amplitude and scale

dependence to explain observations.

2.3. Cosmic Inflation

Cosmic inflation is the acceleration of the scale factor in the early universe [19, 20].

Inflation is usually driven by a scalar field (or ensemble of fields). As we will see

this rapid growth both solves the flatness and horizon problem, and the quantum

fluctuations of this field, responsible for ripples in the energy density of the early

universe, providing the initial conditions that seed the growth of structure in the

universe.

In the standard big bang cosmology the comoving Hubble radius H−1 = (aH)−1

is strictly increasing, which then gives rise to the above mentioned problems. Under

a period of exponential expansion, these problems can be made to go away because
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Figure 2.4.: Evolution of the comoving Hubble radius (aH)−1 in the early universe.
During inflation the comoving Hubble radius is decreasing, after inflation ends it
begins to grow. Quantum flucuations that grow on sub-horizon scales become con-
stant at horizon exit and remain constant until they re-enter the horizon at a later
time [21]

the Hubble radius is decreasing,

d

dt
(aH)−1 < 0 . (2.21)

In Fig. (2.4) the evolution of the comoving Hubble radius is illustrated over a

period from the beginning of inflation to today. In this period it is necessary for the

scale factor ä(t) > 0, and to quantify the length of inflation we define the number

of e-folds as,

N = ln

(
af
ai

)
, (2.22)

where ai is the scale factor at the beginning of inflation and af is the scale factor at

the end.

Inflation solves the problems of the hot big bang in the following ways: By exam-

ination of Eqn. (2.20) it is clear that for a non-flat universe undergoing accelerated

expansion, the RHS will decrease and be attracted to a solution of Ωm = 1. To

quantify the amount of observable inflation needed, consider,∣∣∣∣Ωκ(tf )

Ωκ(ti)

∣∣∣∣ =

(
af
ai

)−2

= e−2N , (2.23)

where ‘i’ is the beginning of inflation and ‘f ’ is the end of inflation. For example one

would require more than 70 e-folds of inflation to have occurred to have |Ωκ(tf )| .
10−60 from an initial Ωκ(ti) ∼ O(1).
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The horizon problem is also solved by the fact that the comoving Hubble radius is

decreasing during inflation. A small causally connected patch can then be expanded

to a size greater than the current observable universe, freezing in the physical prop-

erties of that patch. So the 106 seemingly disconnected regions were in fact not

disconnected in the past [15]. To determine how much inflation is needed to solve

the horizon problem we find the relation between the particle horizon now dH(t0)

and at the end of inflation dH(tf ),

eN ∼ T0

Tf

dH(t0)

dH(tf )
, (2.24)

where T0 is the temperature today and Tf is the temperature at the end of inflation.

Finally, as monopoles at the beginning of inflation are separated by a length scale

defined by the speed of propagation (∼ c) times the scale over which the symmetry

is broken we would expect one monopole per Hubble volume. They are therefore

rapidly diluted away by the enormous expansion during inflation.

In order to solve these problems there must be approximately N > 50−70 e-folds

of inflation depending on the energy scale of inflation and the reheating temperature.

Scales of the size of the CMB today therefore represent modes produced by the

fluctuations 50−70 e-folds before the end of inflation. This is illustrated in Fig.(2.4)

where the earliest scales to exit the horizon are the last to re-enter it. The amount

of inflation observable to us corresponds to that which has already re-entered our

horizon as everything outside of our horizon is unobservable. The CMB anisotropies,

however, only probe over 4 e-folds of inflation. However, there are no upper limits

on the total amount of inflation, this is referred to as Eternal Inflation [22, 23].

2.3.1. Single-Field Slow-Roll Inflation

To obtain accelerated expansion in General Relativity, one requires a source of neg-

ative pressure. Here we demonstrate how this can be achieved through scalar fields.

For simplicity we start with the simplest inflationary model where one light scalar

field drives inflation, is called the inflaton. As we have seen in the previous sec-

tions the evolution of the universe can be determined by its matter content. As in

Eqn. (2.7) we construct the action for a single canonical scalar field φ evolving in a

potential V (φ),

S = −
∫
d4x
√−g

[
1

2
∂µφ∂

µφ+ V (φ)

]
, (2.25)

and its energy-momentum tensor takes the form,

Tµν = ∂µφ∂νφ−
(

1

2
∂αφ∂

αφ+ V (φ)

)
gµν . (2.26)

This can then be compared directly with Eqn. (2.10), so that the scalar fields in
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a homogeneous and isotropic space-time can be represented as fluids with energy

density,

ρ =
φ̇2

2
+ V (φ) , (2.27)

and pressure,

p =
φ̇2

2
− V (φ) . (2.28)

We can redefine the Raychaudhuri equation in terms of the scalar field,

ä

a
= − 1

3Mpl

(
φ̇2 − V

)
, (2.29)

where we have neglected Λ and assumed κ = 0. When the potential energy is

greater than the kinetic (i.e. φ̇2 < V ) we enter a period of accelerated expansion

and when it’s much larger φ̇2 � V the expansion is close to exponential. This

condition for exponential expansion is called the slow-roll assumption. In addition

to the Raychaudhuri equation we also have the Friedmann equation,

H2 =
1

3M2
pl

(
1

2
φ̇2 + V

)
, (2.30)

and using Ḣ = ä/a−H2 and the above relation we can rewrite the Eqn. (2.29) as,

Ḣ = − φ̇2

2M2
pl

. (2.31)

The Klein-Gordon equation is also obtained by applying the continuity equation

from Eqn. (2.13) to Eqn. (2.26),

φ̈+ 3Hφ̇+ V,φ = 0 , (2.32)

where V,φ is the derivative of the potential with respect to the scalar field. Some

predictions of inflation can be computed without specifying the exact form of the

inflaton’s potential, via the slow-roll parameters which we define below. The term

‘slow-roll’ comes from the fact that the potential energy is dominant and near con-

stant for the majority of the inflationary epoch and in effect the field “slowly rolls”

down the potential and speeds up as it reaches the minimum of the potential. As

well as requiring that φ̇2 � V we also need inflation to last sufficiently long and

that condition is met when φ̈� 3Hφ̇2. Then, the evolution equations become,

H2 ' 1

3M2
pl

V ,

3Hφ̇ ' −V,φ ,
(2.33)

so in the slow-roll regime the Hubble parameter is approximately constant corre-
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sponding to the space-time being approximately de-Sitter, a(t) ∼ eHt.

In order to quantify the flatness of the potential and the duration of inflation we

now introduce the slow-roll parameters as follows:

εH = − Ḣ

H2
, εV =

M2
pl

2

(
V,φ
V

)2

, (2.34)

where εH is the Hubble slow-roll parameter and εV is the potential slow-roll pa-

rameter and are related by εH ≈ εV when εH < 1 which corresponds to slow-roll

expansion. This condition comes from the requirement that φ̇2 � V and the second

equation in Eqn. (2.33). For brevity we will define ε = εV = εH .

The second slow-roll parameter, η comes from the condition that accelerated ex-

pansion will only be sustained for a sufficiently long period of time for a small enough

second time derivative of φ,

ηH = ε− ε̇

2Hε
, ηV = M2

pl

(
V,φφ
V

)
, (2.35)

where |ηH | < 1 corresponds to a small fractional change of ε per e-fold. In the

slow-roll limit ηH and ηV may be related by ηH ≈ ηV − εV . To successfully inflate

the universe (i.e. the slow-roll conditions) one needs εH , |ηH | < 1 or εV , |ηV | � 1.

When the slow-roll conditions are violated, inflation ends, corresponding to εH = 1

or εV ≈ 1.

The number of e-folds between two arbitrary points in time is calculated as,

NH(ti, tf ) =

∫ tf

ti

Hdt , (2.36)

and can be reformulated into the number of e-folds between two field values before

inflation ends, given by,

NH(φi, φf ) =

∫ φf

φi

H

φ̇
dφ ≈

∫ φf

φi

1√
2εH

dφ , (2.37)

which is defined on the RHS in terms of the Hubble slow-roll parameter. We may

also calculate this as a function of the potential,

NV (φi, φf ) =

∫ φf

φi

V

V,φ
dφ ≈

∫ φf

φi

1√
2εV

dφ . (2.38)

2.4. The Perturbed Cosmology

The universe today has a large scale structure comprising of clusters of galaxies. The

evolution towards this structure may be understood through the cosmological per-

turbation theory. As our background cosmology forbids such structures we assume
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the inhomogeneities are seeded from perturbations in the primordial density caused

by fluctuations of the scalar field during a period of inflation. To illustrate such a

perturbation we consider a scalar field4 φ and split the field into its homogeneous

background and inhomogeneous perturbation [24],

φ(τ, xi) = φ0(τ) + δφ(τ, xi) , (2.39)

where we have switched to conformal time t→ τ .

Our universe’s geometry can be approximately described by a flat FLRW back-

ground with a perturbed space-time. We then assume that more generally the

metric in cosmology can be decomposed into background quantities with inhomo-

geneous perturbations on top. Using the background cosmology we decompose our

4–dimensional space-time into spatial hypersurfaces with 3 dimensions and one tem-

poral dimension. However, let us first define the perturbations to a tensor more gen-

erally. A tensor can be split into the background and inhomogeneous perturbations,

T fullµν (τ, xi) = T (0)
µν (τ) + εT (1)

µν (τ, xi) +
1

2
ε2T (2)

µν (τ, xi) + · · · , (2.40)

where background quantities are dependent only on time. Here the expansion has

been made to second order T (2) but these shall be omitted from henceforth and

only first order T (1) (linear perturbation) will be discussed. Likewise vectors can

be decomposed into spatial and temporal parts. If we consider a four vector Uµ we

may express it in the form,

Uµ =


U0

U i

 , (2.41)

where U0 is the temporal part and U i is the spatial part. If we were working in

Minkowski space-time the space decomposes as R(4) → R(3,1). In this instance we

may decompose the spatial components again using Helmholtz’s theorem into its

gradient and curl part,

U i = δijU,j + U ivec, (2.42)

where ∂U ivec/∂xi = 0. For our FLRW cosmology we assume an isotropic background

and this entails that all spatial vectors vanish. This however is not the case for

perturbations on top of our background as we shall see.

We first consider the perturbations to the metric by separating out the scalar,

vector and tensor part. The perturbations δgµν to the metric of the line element in

4Scalar fields are a common component of models of inflation. The classical example of inflation
is driven by a single scalar field and motivated by the presumed existence of scalar fields in
high energy physics. It is therefore important to examine the perturbations to the scalar field.
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Eqn. (2.6) is defined as,

δgµν = a2


−2φ1 Bi

Bi 2Cij

 . (2.43)

Clearly we have associated the perturbation to the temporal part of the metric to

an arbitrary scalar φ1 (referred to as the lapse function), the 0 − i components to

a vector Bi and the i − j components to the tensor quantity Cij. We can further

decompose the vector and tensor components into scalar, vector and tensor parts (

SVT decomposition [1]) so that,

Bi = B,i −Bvec
i , (2.44)

Cij = −ψ1δij + E,ij + F(i,j) + 1
2
hij , (2.45)

where we have picked up three additional scalars B, ψ1 and E (each exhibiting a

single degree of freedom), two additional vectors Bvec
i and Fi (which are divergent

free and each have two degrees of freedom) and one additional tensor hij (which is

traceless and transverse and has two degrees of freedom), the metric perturbation.

The metric perturbation, ψ1, will later be identified directly with the intrinsic scalar

curvature of spatial hypersurfaces [25]. In total there are 10 degrees of freedom [24,

25]. Under this decomposition of the metric the governing equations decouple for

the inhomogeneous cosmology at linear order. The corresponding components of

the metric are,

g00 = −a2(1 + 2φ1) , (2.46)

g0i = a2Bi , (2.47)

gij = a2[δij + Cij]. (2.48)

2.4.1. Perturbing Matter

We consider a small perturbation away from the background energy–momentum

tensor given in Eqn. (2.10) and setting qµ = 0 to define T̄µν to form the perturbed

stress–energy tensor Tµν ,

Tµν = T̄µν + δTµν . (2.49)

Likewise we define the perturbed energy–density and the pressure to linear order as,

ρ = ρ0 + δρ, P = P0 + δP . (2.50)

The perturbation of fluid energy–momentum tensor is δTµν ,

δTµν = (δρ+ δP )ūµūν + δP ḡµν + 2(ρ0 + P0)ū(µδūν) + P0δgµν + a2P0πµν . (2.51)
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The fluid four velocity has been decomposed in the background quantities and inho-

mogeneous perturbations, uµ = ūµ + δuµ which satisfies uµu
µ = −1. The solutions

at background level are ūµ = a−1δµ0 and ūµ = −aδ0
µ , where δ0

µ is the Kronecker

delta. Since the norm of ūµ + δuµ should be equal to −1 we infer,

ūµδuµ + δgµν ū
µūν = 0. (2.52)

Solving Eqn. (2.52) we extract the perturbations to the velocity as δu0 = −aφ1

and δui = vi/a. The temporal and spatial components of perturbations to the fluid

velocity are,

δuµ = a−1(−φ1, v
i), δuµ = a(−φ1, vi +Bi). (2.53)

The fully perturbed fluid velocity at linear order is,

u0 =− a [1 + φ1] ,

ui =a [vi +Bi] ,
(2.54)

u0 =a−1 [1− φ1] ,

ui =a
[
vi
]
.

(2.55)

and v is decomposed into a scalar and a vector part according to vi = δijv,j + v̄ivec.

The anisotropic stress tensor then only consists of a spatial part that decouples

under decomposition to scalars π̄, vectors π̄i and tensors π̄ij. It is symmetric and

orthogonal to uµ so that uµπµν = 0. Implying that we can set π00 = πi0 = 0, the

remaining component to the anisotropic stress is,

πij = a2

[
π̄,ij −

1

3
∇2π̄δij + π̄(j,i) + π̄ij

]
. (2.56)

Perturbations in the four velocity induce non-vanishing energy flux components T 0
j

and momentum density T i0. The components of the perturbations to the energy–

momentum tensor of rank (1, 1) (for rank (0, 2) see Appendix. (A.3)) are then,

δT 0
0 = −δρ , (2.57)

δT 0
i = (ρ0 + P0)(v,i + v̄veci +B,i + B̄vec

i ) , (2.58)

δT ij = δPδij + P0a
−2πij. (2.59)

The mixed upper and lower indices form of the perturbed energy–momentum tensor

is often more efficient for calculations during inflation, as we will see when calculating

the energy-momentum tensor for a scalar field. We can then apply the conservation

equation, Eqn. (2.13), and the following constraints are obtained,

δρ′ + 3H(δρ+ δP )− 3(ρ0 + P0)ψ′ + (ρ0 + P0)∇2(V + σ) = 0 (2.60)
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and

V ′ +
(

1− 3
P ′0
ρ′0

)
HV + ψ +

1

ρ0 + P0

(
δP +

2

3
∇2π

)
= 0, (2.61)

where V = v +B is the total covariant velocity perturbation and σ = E ′ −B is the

shear scalar. The perturbation to the scalar energy–momentum tensor in Eqn. (2.26)

is,

δTµν =2∂(νφ0∂µ)δφ0 ,−
(

1

2
gαβφ0,αφ0,β + V )

)
δgµν ,

− gµν
(

1

2
δgαβφ0,αφ0,β +

1

2
gαβδφ,αφ0,β + V ′δφ

)
.

(2.62)

Separating the components of the scalar energy–momentum tensor of rank (1, 1) (for

rank (0, 2) see Appendix. (A.3)) [26] we get,

δT 0
0 = a−2φ′0 (φ1φ

′
0 − δφ′)− V,φδφ (2.63)

δT 0
i = −a−2φ′0δφ,i (2.64)

δT ij = −
[
a−2φ′0 (δφ′ − φ′0φ1)− V,φδφ

]
. (2.65)

We may then perform a covariant derivative, again by Eqn. (2.13), and we can obtain

the perturbed Klein-Gordon equation,

δφ′′ + 2Hδφ′ + 2a2V,φφ1 − 3φ′0ψ
′ − φ′0φ1

′ + a2V,φφδφ = 0. (2.66)

Having constructed the components of the stress–energy tensor for both the perfect

fluid and scalar field we can find the relations between the energy density, pressure

and the scalar field for a linearly perturbed cosmology. The two quantities we obtain

are,

δρ =
1

a2
φ′(δφ′ − φ′φ1) + V,φδφ (2.67)

δP =
1

a2
φ′(δφ′ − φ′φ1)− V,φδφ (2.68)

The components of the energy momentum tensor for a scalar can be perturbed to

second order in perturbation theory, see Refs. [27–29].

2.4.2. Perturbing the Einstein Equations

The perturbations to the Einstein equations are

δGµν = 8πGδTµν . (2.69)
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In Appendix (A.2) we derive the full set of pertrubations to the metric components

of the Einstein equations. The perturbed curvature of the spatial sections is,

δ3R = − 4

a2
∇2ψ , (2.70)

where δ3 refers to the three dimensional curvature scalar obtain from the trace of

the Ricci tensor without including the temporal part. Considering only the scalar

perturbations we write the perturbations to the Einstein equation using the equation

δGµν = 8πGδTµν . The 0− 0 component is,

3H(Hφ1 + ψ′)−∇2(ψ +Hσ) = −4πGa2δρ. (2.71)

The 0− i component of the Einstein equation is,

Hφ1 + ψ′ = −4πGa2(ρ0 + P0)(v +B). (2.72)

The off-trace components of the Einstein equation i − j for i 6= j represents the

evolution equation of the scalar shear,

σ′ + 2Hσ + ψ − φ1 = 8πGa2Π, (2.73)

while the trace i− i of the Einstein equation is,

ψ′′ + 2Hψ′ +Hφ′1 +

(
2
a′′

a
− a′2

a2

)
φ1 = 4πGa2

(
δP +

2

3
∇2Π

)
. (2.74)

In essence these are the perturbed Friedmann equations.

2.5. The Gauge Invariant Cosmology

From the decomposition of the perturbed cosmology into a unique background and

perturbed quantities about this background comes the issue of gauge dependence.

General relativity is covariant, that under a change of coordinates xµ → x̃µ, it re-

mains unchanged. However, perturbations are coordinate dependent and change

under coordinate transformations. Transformation laws can then be found by al-

lowing the perturbations to change.

One way of seeing this is by embedding the four dimensional manifold Mε into

a higher dimensional domain N that also allows for the perturbation parameters

to vary, the ‘ε’ is there to represent the perturbed cosmology [30, 31]. This higher

dimensional domain is foliated by an infinite number of manifolds M mapped to

one another such that N = M×R. The perturbations and the background live

on the manifold Mε. We may define just the background quantities alone as the

manifold in which ε = 0 denoted M0 on which a coordinate system xµ lives. We
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map from the background where there is one coordinate system into the perturbed

cosmology where there are many coordinate systems that are close together. This

splitting between the manifolds on N is our cause for concern and the dependence

on the gauge mapping is called the gauge problem.

The solution comes from knowing how these quantities transform, which gives

us the gauge transformations. The gauge transformation moves from one coordi-

nate system xµ to another x̃µ on Mε while preserving the coordinate system on

M0. There are two approaches to gauge transformations: the active and passive

approach [30, 31]. In the active approach, perturbed quantities change under a

mapping which induces the transformation at the coordinate point. In the passive

approach the relation between the choice of coordinates are specified at the same

physical point.

The active approach [32] requires us to specify the gauge generator, ξµ, so that

we may then define the transformation as an exponential mapping at the coordinate

point for a tensor,

T̃ = e£ξT, (2.75)

where £ξ is the Lie derivative with respect to ξλ. By expanding the exponential

map to linear order, we may then define the transformation as,

T̃ = T̃0 + εδT̃1 = T0 + εδT1 + ε£ξT0. (2.76)

The Lie derivatives of a scalar, vector and tensor are [30, 32],

£ξϕ = ξλϕ,λ , (2.77)

£ξVµ = Vµ,αξ
α + Vαξ

α
,µ , (2.78)

£ξTµν = Tµν,λξ
λ + Tµλξ

λ
,ν + Tλνξ

λ
,µ. (2.79)

We can decompose the vector field ξµ in a temporal α and spatial β scalar part and

a divergence-free spatial vector γi,

ξ0 = α, ξi = ∂iβ + γi. (2.80)

For the gauge transformation of a four-scalar such as the energy–density in Eqn. (2.50),

ρ0 remains unchanged under the change of coordinates x̃µ to xµ. Applying equation

(2.77) we obtain,

ρ̃(x̃µ) = ρ0(x0) + ε
(
−ρ′0(x0)ξ0(xµ) + δ̃ρ(xµ)

)
, (2.81)

where we find the transformation law,

δ̃ρ = δρ+ ρ′0ξ
0 = δρ+ ρ′0α. (2.82)
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Now consider the gauge transformation of a vector. We will take the example of the

four-vector uµ as in Eqn. (2.42) and applying the Eqn. (2.78) the transformation

law of the perturbation is,

˜δUµ = δUµ + U ′(0)µα + u(0)λξ
λ
,µ (2.83)

We now focus on the metric at first order and how it changes under a gauge

transformation. To determine the transformation rules of each perturbation variable

we look back at the metric components and find their Lie derivatives,

£ξg00 = −2a2(τ)(α′ +Hα), (2.84)

£ξg0i = a2(τ)(−α,i + (β,i + γi)
′), (2.85)

£ξgij = a2(τ)((β,i + γi),j + (β,i + γi),i +Hαδij). (2.86)

We only need Eqn. (2.76) and (2.77) to determine the change of δg00. The transfor-

mation of the metric components δg0i contains both vector and scalar perturbations

so we must also use Eqn. (2.78) here. We break up Bi into a vector and scalar

component, the vector component is,

B̃(vec)i = B(vec)i + ξ′i − α,i , (2.87)

and the scalar part is found by taking the divergence and removing the Laplacian,

B̃ = B + β′ − α . (2.88)

Using Eqn. (2.79) we form the transformation law for the spatial part of the metric

δgij,

2C̃ij = 2Cij + 2Hαδij + ξ(i,j), (2.89)

and then apply the decomposition of the tensor Cij as defined in Eqn. (2.44). In order

to solve for the transformation of each variable we need to find three conservation

equations using Eqn. (2.13). The first is the trace of Eqn. (2.89), and yields equations

formed of the scalar perturbations,

− 3ψ̃ +∇2Ẽ = −3ψ +∇2E + 3Hα +∇2β , (2.90)

and by applying ∂i∂j to Eqn. (2.89) we get the second equation,

−∇2ψ̃ +∇2∇2Ẽ = −∇2ψ +∇2∇2E +H∇2α +∇2∇2β . (2.91)

These two equations allow us to find the transformation of the scalars ψ̃ and Ẽ. The
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third is obtained by taking the divergence of Eqn. (2.89), yeilding,

2∂jC̃ij = 2∂jCij + 2Hα,i +∇2ξ,i +∇2β,i . (2.92)

By substitution of the scalars ψ̃ and Ẽ into the above equation, we find,

∇2F̃i = ∇2Fi +∇2γi (2.93)

In this manner we determine the transformation of all the metric perturbations

at linear order. They are,

Scalar Vector Tensor

φ̃1 = φ1 + α′ +Hα B̃i = Bi − γi′ h̃ij = h̄ij

B̃ = B − α + β′ F̃ i = F i + γi

ψ̃ = ψ −Hα

Ẽ = E + β

(2.94)

To first order the tensor hij is gauge–independent (not dependent on the quantities

α, β or γ). We may now define the transformation of a fluid four velocity using

Eqn. (2.83),

ṽi + B̃I = vi +Bi − α,i . (2.95)

Using the transformation of the metric perturbations Bi and decomposing the vector

into a scalar and divergent free vector part we obtain,

ṽ = v − β′ , (2.96)

for the scalar part and the vector part is,

ṽ(vec)i = v(vec)i − γi . (2.97)

Combinations of the metric perturbations may be made that are gauge-invariant so

as to remain unchanged under a change of coordinates.

2.5.1. Different Gauges

We can make use of Eqns. (2.94) to remove the gauge dependencies α and β. By

doing so create gauge-invariant quantities. One gauge–dependent quantity we wish
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to fix to a gauge are the scalar curvature perturbations and we do this by a suitable

choice of α, β and γi. We will briefly overview a few choices of gauges from the

review Ref. [30]:

• Longitudinal Gauge. It was argued that only variables explicitly invariant under

gauge transformations should be considered [33], in that work the gauge

invariant variables were defined. These are the Bardeen variables in what is

known as the longitudinal gauge (as we will see in the next section),

Ψ = ψ −H(B − E ′), (2.98)

Φ = φ1 + (B − E ′) + (B − E ′)′, (2.99)

Φi = F ′i −Bi. (2.100)

Here we initially had 10 degrees of freedom (d.o.f.) (φ1, B, ψ,E,B
i, F i, hij)

and 4 gauge degrees of freedom (α, β, γi) that are absorbed now into the gauge

invariant quantities (Φ,Ψ,Φi, h̃ij) of 10 − 4 = 6 degrees of freedom. It is a

choice of gauge in which,

Ẽ = 0, B̃ = 0 . (2.101)

this choice results in a vanishing of what is called the shear,

σ = B − E ′ . (2.102)

The shear transforms as,

σ̃ = σ + α = 0 (2.103)

as it is a scalar. The gauge generators are then,

α = −σ and β = −E . (2.104)

From this we obtain the first two equations in Eqns. (2.98). This is referred

to as the Longitudinal gauge [25] and coincides with the orthogonal zero-

shear gauge [33, 34] and the conformal Newton gauge [35, 36] as it resembles

Newtonian equation on small scales.

There is an extension to this gauge, called the Poisson gauge [35, 37]. In

the Poisson gauge there is an addition condition that a vector perturbation

should vanish. There are two choices, in addition to (2.101); one, by taking

the divergence of the g0i components of the metric such that Bi
(vec) = 0 or by

taking the divergence of the spatial part of the metric gij such that Fi = 0.

• Flat Gauge. By choice of the gauge transformations the diagonal elements of

the metric can be set to zero so that the scalar curvature perturbations are

zero or rather that the curvature is uniform [24]. The requirement is that the
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following metric scalar perturbation transformations are ψ̃ = Ẽ = 0 as well as

the vector perturbation F̃vec = 0. This choice is referred to as the flat gauge

and the gauge generators are

α =
ψ

H , β = −E, γi = −F i
vec. (2.105)

Now that we have an expression for the temporal part of the gauge generator

α, we can relate the lapse function to the curvature scalar,

φ̃1f = φ1 + ψ +

(
ψ

H

)′
. (2.106)

Furthermore, matter scalar quantities can be rewritten. The density pertur-

bations transform as
˜δρf = δρ+ ρ′0

ψ

H , (2.107)

and the scalar field perturbations transform as

˜δφf = δφ+ φ′0
ψ

H (2.108)

• Uniform Density Gauge. In this gauge the metric components are not restricted,

instead the density perturbations are zero and space is foliated into hypersur-

faces where the density is uniform [38]. In this form the gauge transformation

of α is,

α = −δρ
ρ′0
. (2.109)

To illustrate that the perturbations to the density are gauge-invariant we have,

ρ̃u = δρ+ ρ′0

(
−δρ
ρ′0

)
= 0. (2.110)

The transformations of the scalar curvature [39] are,

φ̃1u = φ1 −
Hδρ
ρ′0
−
(
δρ

ρ′0

)′
. (2.111)

and

ψ̃u = ψ +
Hδρ
ρ′0

= −ζ. (2.112)

We relabel the curvature perturbation ψ as ζ in order to distinguish it from

the other gauges. In the absence of gravitational waves the spatial metric

may be written as hij = a2e2ζδij. The perturbation to the scalar field in the

uniform-density gauge is,

δ̃φ = δφ− φ′0
δρ1

ρ′0
. (2.113)
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• Comoving Gauge. The comoving gauge tracks the motion of matter and re-

quires that both the fluid velocity and the momentum vanish such that there

is no net flux of energy (δT 0
i = 0) at the hypersurface [24]. The vanishing of

matter fluid 3-velocity ṽi = 0 on constant time hypersurface also requires that

ṽi + B̃i = 0, the vanishing of momentum. The gauge transforming quantity α

is,

α = v +B . (2.114)

The transformation of the lapse function of the metric are,

φ̃c1 = φ1 +H(v +B) + (v′ +B′) , (2.115)

ψ̃c = ψ −H(v +B). (2.116)

The scalar quantity associated to the density perturbations transforms as,

˜δρc = δρ+ ρ′0(v +B). (2.117)

In the case of single field inflation, by relating the perturbations to the stress

energy tensor in Eqn. (2.58) and Eqn. (2.64),

(ρ0 + P0)(v +B) = − 1

a2
φ′δφ,i , (2.118)

and then substituting in the expressions for the energy-density and pressure,

ρ0 =
1

2a2
φ′20 − V (0), P0 =

1

2a2
φ′20 + V (0), (2.119)

allows us to switch between the momentum of the fluid and the evolution of

the scalar field

φ′2(v +B) =− φ′δφ, (2.120)

(v +B) =− δφ

φ′0
. (2.121)

The redefinition of the momentum provides us with a gauge invariant scalar

field perturbation,

δ̃φ1c = δφ1 + φ′0(v +B) (2.122)

= δφ1 − φ′0
(
δφ1
φ′0

)
= 0. (2.123)

Reformulating the transformation of the density perturbations gives us,

δ̃ρ = δρ− ρ′0δφ

φ′
. (2.124)
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The curvature perturbation in the comoving gauge is conventionally labeled

R and is,

ψ̃c = R = ψ +Hδφ
φ′0
. (2.125)

2.5.2. Relating the Gauges

The quantities in one guage can be related to the quantities in another gauge. As

we simplified our expressions for the transformation of cosmological quantities such

as the curvature perturbation by setting certain metric or matter perturbations to

zero, the information of the dynamics within the system is not lost but instead is

contained in the gauge invariant quantities themselves. Relating this information

between the different gauges can be done by careful algebraic substitution. We can

relate the gauge invariant density perturbations in the flat gauge, Eqn. (2.107), to

the uniform density curvature perturbations, Eqn. (2.112), and obtain,

− ζ =
H
ρ′0
δ̃ρf . (2.126)

The curvature perturbations in the comoving gauge and the uniform density gauge

can be related. We first take the definition of the comoving curvature perturba-

tions from Eqn. (2.116) and substitute (v + B) for ( ˜δρc + δρ)/ρ′0 from the density

perturbation of Eqn. (2.117) to form,

R = ψ − H
ρ′

(δρc − δρ) . (2.127)

This may then be substituted for ψ in the equation for the curvature perturbation

of the uniform density gauge in Eqn. (2.112) and only the gauge invariant density

perturbation within the comoving gauge remains. The relation is

ζ = −R− H
ρ′0
δρc . (2.128)

2.5.3. Adiabaticity of Fluctuations

As well as an overall density perturbation that contributes to the curvature pertur-

bations of the universe there may be many components of the fluid that exchange

relative density perturbations between themselves. The relative density perturba-

tion will contribute to the isocurvature (entropy) perturbations. To identify this

entropic contribution we define the pressure as a function of the energy density and

entropy S as P = p(ρ, S). The pressure perturbations can be then found by a linear

expansion about these parameters of our system,

δP =
δP

δS
|ρδS +

δP

δρ
|Sδρ , (2.129)
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this is our equation of state where the adiabatic sound speed is identified as,

c2
a =

δP

δρ

∣∣∣∣
S

. (2.130)

The first term on the right hand side of Eqn. (2.129) can be identified as the non-

adiabatic pressure. The non-adiabatic pressure is defined as [40],

δPnad = δP − δρP
′
0

ρ′0
6= 0 , (2.131)

For an adiabatic system there is a single degree of freedom so this Eqn. (2.131)

would be zero, additional degrees of freedom may result in non-adiabatic pressure

perturbations. In this sense a multifluid system can split the non-adiabatic pressure

perturbations into an intrinsic part that occurs within each fluid (as we outlined

above) and the relative pressure perturbations that are due to the energy transfer

between fluids. The gauge invariant form of the relative perturbations between fluids

can be defined as

SIJ = 3H
(
δρJ
ρ′J
− δρI

ρ′I

)
= 3H (ζI − ζJ) . (2.132)

The relative non-adiabatic pressure [41, 42] is then,

δPrel = − 1

6Hρ′
∑
I,J

ρ′Iρ
′
J

(
c2
I − c2

J

)
SIJ . (2.133)

An adiabatic fluid defines the equation of state,

δP = c2
sδρ , (2.134)

where cs is the adiabatic sound speed. This inherently means we have a single

degree of freedom proportional to the energy density [43, 44]. The local variance

of each density fluctuation follows a time translation to a surface of uniform energy

density which corresponds to adiabatic curvature perturbations. For multiple fluids

with no transfer of energy between them adiabatic fluctuations occur when there is

a common time-shift in the background density or pressure. In general the matter

content of the universe need not be so restricted to one degree of freedom.

2.5.4. Evolution of Gauge–Invariant Quantities

In order to see how the curvature perturbations evolve with time we take the con-

formal time derivative of the curvature perturbations. The evolution is important

particularly during the epoch of cosmic inflation. The slow-roll regime has become

the standard model of inflation where the curvature perturbations freeze out on the
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super-horizon scales. There is also a coincidence of the curvature perturbations in

the different gauges on these scales. On super-horizon scales the perturbation in

density in the comoving gauge may be ignored. The justification for this is that on

large scales the spatial gradient is negligible. If we examine Eqn. (2.128) and set

δρc = 0, the curvature perturbation in the comoving and uniform density gauges

coincide. Thus their evolution should be the same. There are numerous cases in

which this may not be true, for example in multifield inflation [38, 41, 45]. In gen-

eral we should not limit ourselves to a specific super-horizon scale: we take the time

derivative of Eqn. (2.112) and expand it so that we get,

ζ ′ =−
(
ψ +Hδρ

ρ′0

)′
= −ψ′ −H′ δρ

ρ′0
−Hδρ

′

ρ′0
+Hδρ1ρ

′′
0

ρ′20
.

(2.135)

Substituting Eqn. (2.60), Eqn. (2.14) (in conformal time) and its second derivative,

ρ′′ = −3H′(ρ+ P )− 3H(ρ′ + P ′), (2.136)

we get,

ζ ′ = −H δP

ρ+ P
+HP

′

ρ′
δρ

(ρ+ P )
− 1

3
∇2(V + σ), (2.137)

where V = v + B is the total covariant velocity perturbation. From our definition

of the non-adiabatic pressure in Eqn. (2.131) this reduces to the form,

ζ ′ = −H δPnad
ρ+ P

− ΣV , (2.138)

where we have abbreviated the spatial gradient to ΣV ,

ΣV =
1

3
∇2(V + σ) . (2.139)

The perturbation ζ is constant if there are no sources of non-adiabatic pressure and

spatial gradients are neglected. This is true in single-field slow-roll inflation evalu-

ated on large scales where gradients can be ignored. The evolution of the comoving

curvature perturbation is constructed from the perturbed Einstein equations and

energy momentum equations.

2.6. Statistics of Curvature Perturbations

Having defined ζ and studied its evolution, in this section we will illustrate how

quantities such as the ζ, calculated from the theory, can be related to observables.

Observations of the CMB are used to calculate the statistics of temperature fluctua-
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tions that are related to the statistics of ζ, likewise for observations of LSS. Current

observations have a good measure on the statistics of two- and three-point correla-

tions for temperature anisotropies in the CMB and in this section we will show the

equivalent constraints on the statistics of ζ.

2.6.1. Two-Point Statistics

In general, we are only interested in the statistics of the curvature perturbations

once ζ becomes constant, which as we have shown in Eqn. (2.138) occurs when the

entropy perturbation dies out. In single-field slow-roll models of inflation this will

occur a few e-folds after the modes of interest have crossed the horizon, in multi-field

models of inflation it may be necessary to track the statistics over a long period of

time (and often until inflation has ended) as ζ may continue to evolve.

While the perturbations of ζ average to be zero, the variance is non-zero. In fourier

space we can parameterise the variance of the perturbations of ζ for a wavenumber k

using the power spectrum. This tells us the amplitude of the variance at a particular

value of k. The variance of the curvature perturbation ζ(x at some point x can be

written as,

〈[ζ(x]2〉 = 〈
∫

d3k1

(2π)3/2

d3k2

(2π)3/2
ζ(k1)ζ(k2)ei(k1+k2)·x〉 . (2.140)

Assuming statistical homogeneity the variance should be independent of x, therefore

〈ζ(k1)ζ(k2)〉 ∝ δ(k1 +k2). Assuming isotropy the proportionality constant can only

be a function of k = |k|. We may then define the power spectrum P (k) as the Fourier

equivalent of the two-point function of ζ,

〈ζ(k1)ζ(k2)〉 = (2π)3δ(k1 + k2)P (k) . (2.141)

As implied by the delta function of wavevectors k1 and k2, the power spectrum

has a single degree of freedom, namely the scale dependence. It is often useful to

then define the dimensionless power spectrum,

P(k) =
k3

2π2
P (k) , (2.142)

which is nearly independent of k for inflationary perturbations on super-horizon

scales 5 and as a result it is often customary to normalize models with a non-

adiabatic evolution to this. Conventionally we choose a pivot scale k? usually set by

observational constraints, i.e. , for the Planck temperature mapping a pivot scale of

0.05Mpc−1 [5] and later 0.002Mpc−1 [46] as parameters decorrelate at these pivot

5We will discuss this later when considering just field-correlations in Eqn. (4.20): at horizon
crossing for a canonical light field GIJ = δIJ , the dimension-full power spectrum is P (k) =
H2/2k3.
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scales. The measured amplitude at the pivot scale of k? = 0.05Mpc−1 is,

P(k?) = (2.196± 0.060)× 10−9 . (2.143)

From the perspective of inflationary dynamics such modes exit the horizon between

50 and 60 e-folds before inflation ends. The amplitude of the power spectrum will

have some scale-dependence which is measured by the parameter ns, the spectral

index,

ns − 1 =
d lnP(k)

d ln k
. (2.144)

When there is more power on the small wavelengths (UV-spectrum with ns > 1) we

say the spectrum is blue-tilted. When there is more power on the long wavelengths

(IR-spectrum with ns < 1) we say the spectrum is red-tilted.

It is also possible that the spectral index will exhibit a running, such that it is

wavelength dependent. We define this running as,

αs =
d lnns
d ln k

. (2.145)

2.6.2. Three-Point Statistics

Similar to the construction of the power spectrum for the two-point function in

Eqns. (2.140) and (2.141), we can construct the bispectrum B(k1, k2, k3) for the

statistics of the three-point function as

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δ(k1 + k2 + k3)B(k1, k2, k3) , (2.146)

where the delta function, coming from out assumption of statistical homogeneity,

implies that the wavevectors form a triangle in Fourier space. Additionally, statis-

tical isotropy entails that the orientation of this triangle is irrelevant, so that only

its shape and overall scale matter, hence the dependence on the three wavenumbers

ki = |ki|. The bispectrum shape can be classified into three limiting sets of configu-

rations, as seen in Fig. (2.5): the squeezed (local) limit (k1 � k2 = k3) is the large

scale limit, the equilateral limit (k1 = k2 = k3) and the orthogonal (folded) limit.

We will soon discuss the physical significance of each of these configurations.

A quantity for quantifying the amplitude of the bispectrum is by defining the

reduced bispectrum as

fnl(k1, k2, k3) =
5

6

B(k1, k2, k3)

P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)
, (2.147)

where, by putting a constraint on the overall scale, ks = k1 + k2 + k3, we can

parameterize any shape by the α and β quantities6 such that,

6We note that α and β in this context is different from the gauge terms we used in Sec. (2.5).
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Figure 2.5.: The bispectrum configurations are often classified in terms of three
different limits: the equilateral limit (a), the orthogonal (folded) limit (b) and the
squeezed (local) limit (c).

k1 =
ks
4

(1 + α + β) ,

k2 =
ks
4

(1− α + β) ,

k3 =
ks
2

(1− β) ,

(2.148)

with the allowed values of (α, β) falling inside the triangle in the α, β plane with

vertices (−1, 0), (1, 0) and (0, 1). The reduced bispectrum measures the relative

non-linearity between the two- and three-point functions. Equivalently to the power

spectrum we form the dimensionless bispectrum,

B = (k1k2k3)2B(k1, k2, k3) , (2.149)

which is often related to the ‘shape function’ denoted S(k1, k2, k3) [47] by some

normalisation,

B(k1, k2, k3) = (2π)4P(k?)
2S(k1, k2, k3) , (2.150)

where P(k?) comes from Eqn. (2.143).

Note that in the approximation of an exactly scale-invariant power spectrum, fnl

and S are related by

fnl(k1, k2, k3) =
10

3

S(k1, k2, k3)

k2
1/(k2k3) + 2 perms.

, (2.151)

where perms indicates permutations over the k’s. A bispectrum that is equilateral-

like in shape will peak in amplitude for equilateral configurations at about (α, β) =

(0, 1/3) as seen in Fig. (2.6). These non-Gaussian shapes are generated by derivative

interactions and are often a feature of inflationary models with non-canonical kinetic
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terms [48]. We define the equilateral shape template [49] as

Seq =
9

10
f eqnl

[
−
(
k2

1

k2k3

+ 2 perms.

)
+

(
k1

k2

+ 5 perms.

)
− 2

]
, (2.152)

where f eqnl is a constant representing the amplitude for this shape.

A bispectrum that is orthogonal-like in shape will peak in amplitude for folded

configurations at about (α, β) = (0, 0), (−1/2, 1/2) and (1/2, 1/2) in Fig. (2.6).

Signatures in this configuration can be generated in models with non Bunch-Davies

vacuum [50]. Large amplifications of these signatures have been generated in multi-

field DBI Galileon inflation [47, 51] and, as we will examine in Ch. (8), models

boasting large negative field-space curvature such as Sidetracked inflation [52]. The

shape template for orthogonal non-Gaussianity [53] is

Sorth =
27

10
f orthnl

[
−
(
k2

1

k2k3

+ 2 perms.

)
+

(
k1

k2

+ 5 perms.

)
− 8

3

]
, (2.153)

where f orthnl is a constant representing the amplitude for this shape.

The super-horizon growth of perturbations in multi-field models of inflation am-

plify the local non-Gaussian shape. This arises from interactions between growing

modes outside of the horizon, as opposed to the modes which quickly freeze out and

become constant a few e-folds after horizon crossing. The interacting modes appear

in local combinations of the terms (k3
1k

3
2)−1. There are called ‘local’ as the evolution

is local in space and quantities local in positional space translate to non-localities

in momentum space. In the squeezed limit when (k1 � k2 = k3) the behaviour of

the amplitude of fnl is (k1/k2)−1 [48]. The template for the local shape is

Slocal =
3

10
f localnl

(
k2

1

k2k3

+ 2 perms.

)
, (2.154)

where f localnl is a constant representing the amplitude for this shape. In Fig. (2.6) the

shape peaks in the squeezed configurations located in the corners of the triangles in

Eqn. (2.148).

For multiple light fields with canonical kinetic terms in a potential where trajec-

tories exhibit minimal bending it has been shown [54, 55] that the contributions to

non-Gaussiansity are dominated by f localnl .

2.7. Quantization of the Fields

To begin our discussion of quantum fluctuations we must first describe the back-

ground geometry that they live on. Inflation as a theory of accelerated expansion

describes our universe as a de Sitter like universe. During this phase of our uni-
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Figure 2.6.: Using the coordinate system in Eqn. (2.148) we can visualize the
shape templates: on the left is the equilateral template (Eqn. (2.152)), in the mid-
dle is the orthogonal template (Eqn. (2.153)) and on the right is the local template
(Eqn. (2.154)).

verse the space-time can be represented as a four-dimensional timelike hyperboloid

embedded in a five-dimensional Minkowski space-time [56, 57]. Generally this is

true for any D-dimensional timelike hyperboloid embedded in a D + 1-dimensional

Minkowski space-time. To illustrate we construct the line element where we have

embedded the hyperboloid in the five-dimensional space. This metric is of the form

ds2 = −dX2
o + dX2

1 + dX2
3 + dX2

4 , (2.155)

where
√
XµXµ = H−2 is the de Sitter radius.

By choice of coordinates Eqn. (2.155) can take the form of an FLRW line element

for an open, closed or flat universe. Various coordinate systems can be chosen for

flat space. For example under a particular choice of coordinates we obtain the de

Sitter induced line element for flat slicing,

dS2
flat = −dt2 + e2Htδijdx

idxj . (2.156)

In conformal time this space-time takes the form,

dS2
flat =

1

(Hτ)2

(
−dτ 2 + δijdx

idxj
)
. (2.157)

2.7.1. Quantizing Scalar Perturbations

We will now outline the quantization procedure for a single field; a more detailed

description can be found in [21]. This calculation will be preformed in the flat gauge

defined in Sec. (2.5.1). We first promote the scalar field to the status of a quantum

operator δ̂φ(x, t), defined as,

δ̂φ(x, t) =

∫
d3k

(2π)3/2

[
δφk(t)e

ik·xâk + δφ?k(t)e
−ik·xâ†k

]
, (2.158)
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where δφk(t) is the mode function and the annihilation operator âk and creation

operators â†k′ satisfy the relation,[
âk, â

†
k′

]
= 2πδ3(k− k′) and [âk, âk′ ] =

[
â†k, â

†
k′

]
= 0 . (2.159)

The mode function is a solution to the massless Klein-Gordon equation and satisfies,

δ̈φk + 3H ˙δφk +
k2

a2
δφk = 0 , (2.160)

where we make the assumption that they are free fields and are massless. This

assumption holds for modes which are deep within the horizon. By converting to

conformal time and rescaling our mode function as ν = aδφ we find that the Klein-

Gordon equation becomes,

ν ′′k +

(
k2 − a′′

a

)
νk = 0 , (2.161)

with an effective time-dependent mass term m2 = −a′′/a. In de Sitter space the

scale factor can be read off from Eqn. (2.157), a(τ) = −1/Hτ and we get,

ν ′′k +

(
k2 − 2

τ 2

)
νk = 0 . (2.162)

The general solution of this is

νk(τ) =
[
A(k)H

(1)
3/2(−kτ) +B(k)H

(2)
3/2(−kτ)

]
, (2.163)

with A(k) and B(k) as arbitrary functions to be determined later after canonical

quantization, H
(1,2)
3/2 are the Hankel functions of the first and second kind. The

Hankel function is a linear combination of the Bessel functions of the first and

second kind, expanding it out to linear order (for small arguments) and substituting

it back in to Eqn. (2.163) we obtain the general form of the solution,

νk(τ) = A(k)e−ikτ
(

1 +
1

ikτ

)
+B(k)eikτ

(
1− 1

ikτ

)
. (2.164)

Now we may impose the canonical quantization rules on the operators ν̂ and its

conjugate momentum π̂(x),

[ν̂k,τ , π̂k′,τ ] = 2πδ3(k− k′) and [ν̂k,τ , ν̂k,τ ] = [π̂k,τ , π̂k,τ ] = 0 . (2.165)

From the commutation rules of the annihilation and creation operators, this implies

that

νkν
?′
k − ν?kν ′k = i , (2.166)
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which upon solving we find a solution to the functions A(k) and B(k),

A(k)2 −B(k)2 =
1

2k
. (2.167)

Here we can make a choice of only the positive frequency modes. With this choice,

as kτ → −∞, νk → e−ikτ/
√

2k, we can set B(k) = 0. This is referred to as the

Bunch-Davies vacuum [58]. We may now define the correlation function of ν as,

〈0 |ν̂(x, τ)ν̂(x′, τ)| 0〉 =

∫
d3k

(2π)3
|νk|2 eik·(x¯−x′) , (2.168)

which corresponds to the dimension full power spectra,

Pν(k) = |νk|2 . (2.169)

We now have our solution satisfying this initial condition,

δφk =
Hτ√

2k

(
1 +

1

ikτ

)
e−ikτ (2.170)

where we have converted back to our mode function δφk. We may now deduce the

power spectra by determining the variance of the field fluctuations,

Pδφ(k) = |δφk|2 =
|νk|2
a2

. (2.171)

Taking the limit of Eqn. (2.168) on super-horizon scales, where kτ � 1, the scale

invariant dimensionless power spectrum is,

Pδφ(k) =

(
H?

2π

)2

, (2.172)

where H? is evaluated at horizon crossing.

We can relate δφ to the curvature perturbation in the comoving gauge R and

repeat this procedure. Using the curvature perturbation from Eqn. (2.125) and

substituting |R| = |νk/z| where,

z =
aφ′

H , (2.173)

we get the governing equation in the comoving gauge,

R′′ − z′2

z
R′ + k2R = 0 , (2.174)

where an effective mass can be defined as m2
eff = −z′/z. In the limit outside the

horizon where ȧ = a and H = const., the solution grows like,

νk ∝ z; k2 � z′′/z , (2.175)
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and the comoving curvature perturbation on super-horizon scales no longer evolves

and R′ ∝ 0. From Eqn .(2.128) we know that the comoving curvature perturbations

can be related to the uniform density perturbations meaning |ζ| = |νk/z|. This

implies that the power spectrum is given by,

PR = Pζ =
k3

2π2

∣∣∣νk
z

∣∣∣2 . (2.176)

These calculations can be extended to the three-point function. We defer this

discussion until Ch. (4) where the in–in formalism is used.

2.7.2. Quantizing Tensor Perturbations

Tensor modes during inflation are easier to compute in comparison. Tensor modes

are responsible for the initial amplitude of gravitational waves, whose oscillations

begin at horizon entry [4]. The amplitude of these gravitational waves, if large

enough, are detectable. Here we will only consider the tensor perturbation hij in

Eqn. (2.43) such that the form our line element is,

ds2 = a2(τ)
[
−dτ 2 + (δij + hij) dx

idxj
]
. (2.177)

Expanding the Einstein-Hilbert action (2.1) to second order with the line element

above [21] we get,

S(2) = −
M2

pl

8

∫
d3xdτa2hij

[
h′′ij + 2

a′

a
h′ij − ∂2hij

]
. (2.178)

We can decompose the tensor perturbations into an orthogonal basis of polarizations

s ∈ (+,×). The Fourier expansion of the perturbation mode is,

hij =

∫
d3k

(2π)3

∑
s

esij(k)hsk(τ)eik·x + c.c. , (2.179)

where k is the comoving wavenumber and ‘+c.c.’ denotes the addition of the complex

conjugate. The tensors eij obey the relations eii = kjeij=0 and esij(k)es
′
ij(k) = 2δss′ .

The action in Fourier space is then,

S(2) = M2
pl

∑
s

∫
dτdk

a4

4

[
hs
′

kh
s′

k − k2hskh
s
k

]
(2.180)

Each polarization of the tensor modes behaves like a canonically-normalized free

scalar field. Due to the stochastic nature of the tensor perturbations they are gener-

ally considered to be invariant under parity transformations. This means that cross
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correlations between polarizations vanish and we have,

4〈hs(k1)hs(k2)〉 = (2π)3 2π2

k3
Ph(k)δ3(k− k′) , (2.181)

where Ph is the dimensionless power spectrum of tensor perturbations. We can write

the Sasaki-Mukhanov equation7,

vs′′k + wk(τ)2vsk = 0 , (2.182)

where vsk = aMplh
s
k/2 is a redefinition of the tensor mode to a canonically normalized

field. The frequency component wk(τ) takes the form of [59]

w2
k(τ) ≈ k2 − 2

τ 2
de Sitter . (2.183)

The calculation for the power spectrum follows from that given in Sec. (2.7.1). We

can then define the dimensionaless power spectrum for each polarization evaluated

at horizon crossing when k ≈ aH is,

Ph(k) =
4

M2
pl

(
H?

2π

)2

, (2.184)

where H? is evaluated at horizon crossing. The total tensor power spectrum is then

obtained by summing over all polarizations,

PT (k) =
8

M2
pl

(
H?

2π

)2

. (2.185)

In slow-roll models of inflation the amplitude of tensor perturbations will be much

smaller than the amplitude of curvature perturbations and it is standard to define

the ratio of tensor to scalar perturbations as,

r =
P2
T

P2
ζ

. (2.186)

This is one of the key observables that is used to test our models of inflation.

2.8. Models of Inflation

Single-field models

In single-field inflation, models are generally classified into two categories, small-

field and large-field inflation. In large-field inflation the field evolution spans super-

Planckian values ∆φ > Mpl and the inflaton field starts at large field values and

then rolls down to the minimum V (φ = 0) = 0. The archetypal large-field model is

7We will see that this comes from the action in Eqn. (2.177).
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chaotic inflation [60], which has a potential of the form,

V (φ) = λnφ
n , (2.187)

where λn is a coupling constant. Examples of other large-field inflation models

include models with exponential potentials [61] and natural inflation [62] where

the potential is sinusoidal (often justified in models containing axionic particles

predicted from string theory [63]). In terms of the slow-roll parameters these models

obey −ε < η 6 ε (from Eqns. (2.34) and (2.35)). The second derivative of the

potential also satisfies V,φφ > 0 meaning that the slow-roll parameter is ηV > 0.

An interesting feature of large-field inflation is that they can produce a large tensor

to scalar ratio r that may be possible to detect [64]. This can be seen using the

approximate relation, the Lyth bound

∆φ

Mpl

= O(1)×
( r

0.01

)1/2

. (2.188)

For approximately Planckian values of the field variations ∆φ (over a number of

e-folds observable in the CMB) one could expect a value of r ∼ 0.01.

In contrast, in small-field inflation the field spans a small (sub-Planckian) distance,

∆φ < Mpl. These models invoke very flat potentials when the field is far from the

minimum. Here the first slow-roll parameter satisfies η < −ε. Likewise, the second

derivative of the potential is negative V,φφ < 0 in the region of the potential where

inflation occurs meaning the second slow-roll parameter is negative ηV < 0 (hence

ε > 0). Since the energy scales are smaller, the amplitude of gravitational waves

produced will be too small to be detected. The type of potentials in this class have

minimums displaced from φ = 0, an example of such a potential is,

V (φ) = Λ4

[
1−

(
φ

µ

)n]
, (2.189)

where Λ sets the overall scale of the potential and µ is a dimensionless coupling

constant. This model belongs to a category of hilltop inflation models [65].

In the above examples we have limited ourselves to a classification of models that

admit slow-roll behavior, but this need not be the case. It can also be interesting to

consider models with features in the potential that temporarily violate the slow-roll

conditions as they often produce large observable signatures. An example of such a

feature is a step in the potential [66, 67],

V (φ) = V0

[
1 + cF

(
φf − φ
d

)]
, (2.190)

where V0 is a potential that supports slow-roll inflation in the limit where c → 0,

φf is the field value about where the step occurs, d is the width of the step and F
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is a function that transition between +1 and −1 often defined as − tanh(x). Such

features can produce highly scale dependent power-spectra and observable bispectra.

Departing from the single-field slow-roll inflation paradigm, we have a plethora of

inflationary models with different theoretical motivations and different observational

predictions. Below we outline a few of these categories.

Canonical multi-field inflation

In general, from the perspective of high-energy physics it is more realistic to

have more than one dynamically relevant scalar field during inflation [68, 69]. The

addition of more fields expands the possibilities for the inflationary dynamics leading

to a loss in the predictive power of the theory. In assisted inflation [70, 71] a collection

of fields each with a value of φi �Mpl can approximate the single large field models

by a rotation of the field basis into one direction with φ � Mpl with predictions

that converge in the large number N > 100 of field limit [72]. However in the

case of N sinusoidal fields the individual expansion of each φi can remain relevant

as in the case of N-flation [73]. With an increase in the number of fields comes a

larger parameter space and a hierarchy of masses giving rise to different inflationary

dynamics. A generic action for such a model is given as,

S =
1

2

∫
d4x
√−g

[
M2

plR− δIJgµν∂µφI∂νφJ − 2V (φI , φJ)
]
. (2.191)

As an example of an anayltically tractable proxy for N-flation [74] we can can con-

sider the potential for two fields φ and χ,

V (φ, χ) =
1

4
gφ4 + Λ2

(
1− cos

2πχ

f

)
. (2.192)

This is refered to as the Axion-Quartic model and aims to encapsulate the physics

of N-flation where one of the fields initially lies near a hilltop of the axionic potential

[75, 76]. This region has a large and negative slow-roll parameter η, while ε remains

small. This then generates large local non-gaussianity, f localnl = O(10).

Another popular example is the curvaton scenario [77] where we have an infla-

tionary field φ and a light spectator field χ. Here the field φ drives inflation while

the primordial density pertrubations are generated by the curvaton field χ. In this

scenario V (χ) is almost flat and its mass is much less than the Hubble parameter.

During inflation the curvatons conribution to the density is negligible and is essen-

tial frozen. After inflation the Hubble parameter decreases and when H ∼ m(χ)

the curvaton unfreezes and oscillates about its minimum. The coherent curvaton

oscillations correspond to pressureless matter which dominates the energy density

of the Universe imposing its own curvature perturbation. A more detailed review

of multifield inflation with the kind of action in Eqn. (2.191) can be found in Ref. [78].
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Non-canonical multi-field inflation

In non-canonical models of inflation the action contains a modified kinetic term [79].

Compared to Eqn. (2.191), the action is of a modified form,

S =
1

2

∫
d4x
√−g

[
M2

plR− P (φI , X)− 2V (φI , φJ)
]
. (2.193)

where P (φI , X) is some function of the kinetic term X = GIJg
µν∂µφ

I∂νφ
J and some

fields φI . P (φI , X) is the most general form and can contain couplings between

derivatives of the fields P (φI , X) [80]. The simplest form of this action contains

just P (φI , X) = X. In this case, it corresponds having a field-space metric GIJ in-

stead of the delta function in Eqn. (2.191) which may be Euclidean and hence have

flat scalar curvature in field-space or be non-Euclidean and have some curvature in

field-space. A non-trivial field-space metric can be just as important as the fields’

potential energy in determining the fields’ dynamics, and hence the observational

predictions of inflationary models. While this is not exclusively limited to multi-field

scenarios (i.e. DBI inflation [81, 82]) it can be motivated by Supersymmetry models

of inflation with Kahlër manifolds, D-brane inflation [83], etc. It is one of the main

objectives of this thesis to explore these models in more detail, which we will do in

later chapters.

Non-minimal coupling to gravity and modified gravity

In these models one or many fields, such as the inflaton, may be coupled to the

Ricci Scalar [59]. One such coupling may appear as f(φI)gµνRµν(Γ) where Γ is

the connection. We need not specify whether the connection is of the Levi-Civita

form, Γ = Γ(gµν), as it may be determined independently (i.e. in the Palatini

theory of gravity [84, 85]). In general, any departure away from the Einstein-Hilbert

theory of gravity, due to perhaps some high-energy modifications to gravity, can be

reformalized as a non-minimally coupled system of scalar fields and potential [86].

The action is of the form,

S =
1

2

∫
d4x
√−g

[
M2

plF (R, φI)− δIJgµν∂µφI∂νφJ − 2V (φI , φJ)
]
. (2.194)

In this form we would need to rederive the Friedmann equation for this model,

however as gravity is invariant under conformal transformation it can be turned into

something of the form of Eqn. (2.193) making it possible to calculate the observables

from inflation in a simpler way. We will discuss this class of model in Ch. (7).

For both Non-canonical and Non-minimal coupling models of inflation calculation

of the observables can not be done analytically. This is also the case for certain

canonical models of inflation and non-slow-roll models. In these instances numerical

methods are often the only way to acquire results.
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2.9. End of Inflation

At the end of inflation, when ε = 1, the field oscillates around the minimum of the

potential and the energy density of the universe is locked up in the homogeneous

scalar fields. In order for the universe to transition from this ‘cold’ state to a ‘hot’

one, as in the hot big bang model, we require that the universe establishes equilib-

rium through the reheating process [87]. The process of the inflaton decaying into

a collection of matter and radiation particles can be complex as we have additional

decay parameters. These effects may be possible to calculated perturbatively, or,

non-perturbative effects such as parametric resonances and tachyonic instabilities

can be as significant. The latter leads to a exponential growth in the number den-

sity of the decay particles and this process is called preheating. In this section we

will give an brief overview of these processes that occur after inflation has ended.

2.9.1. Reheating

During inflation the fields are slowly rolling and the potential energy of the fields

dominates. When inflation ends the fields begin to oscillate about the minimum

of the potential and the energy can be released into other forms of matter and

radiation [88]. Initially the coherent oscillations may be considered as isolated scalar

particles coupled to lighter fields. This interaction means that the field φ decays

perturbatively into species A and at a decay rate ΓIA. This additional term appears

in the Klein-Gordon equation (from Eqn. (2.195)),

φ̈I +

(
3H +

1

2
ΓIA

)
φ̇I + V,I = 0 , (2.195)

equivalent to the 3Hφ̇ term the decay term acts as an additional dampening to the

harmonic oscillator evolution of φ [89]. The interactions in the above equation only

become relevant when the Hubble parameter decreases to the point where H ∼ ΓTot,

where ΓTot is the sum of the decay rates. So this equation is only valid at the end

of inflation when the fields are oscillating rapidly about their minimum. In addition

to this the continuity equation for the decay products can be formed,

ρ̇A + 3H(ρA + pA) =
1

2

N∑
I

ΓIAφ̇
2
I , (2.196)

where the decay fluids will have an equation of state of pγ = ργ/3 for radiation

and pm = 0 for matter [90]. For perturbative reheating to work we require that

the couplings are small. In addition this method cannot take into account the Bose

condensation effects [88]. This occurs if the phase space of decay products is densely

populated and leads to an exponential increase in the decay efficiency.
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2.9.2. Preheating

The above perturbative analysis may only be valid at the late stages of reheating

when most of the energy density of the inflationary fields have decayed to rela-

tivistic species. In the early period of oscillations another effect may be dominant,

preheating. During the preheating stage particles are produced by a mechanism of

parametric resonance. By this we mean the resonance effect exhibited by an oscil-

lator with a time-dependent frequency. Preheating can also occur even when there

are no oscillations, such as in situations like kination [91]. As well as the standard

form of reheating, which is model dependent and converts initially homogeneous

oscillating fields into particles of different species there can be tachyonic preheating

which converts particles into the same species [92]. Another variation of preheating

is known as instant preheating. This mechanism ends after the first passage of the

field through φ = 0, hence the name ‘instant’.

2.10. Observational Constraints on Inflation

In recent years the quantity and quality of observational data has increased vastly.

The mapping of the CMB has been the most important source of evidence for

inflation. Much of this advancement has been made through satellite missions and

ground based telescopes. Balloon based telescopes have also been used such as

CBI[93], VSA [94], ACBAR [95], BOOMERANG [96] and Spider [97]. From 1989

to 1993 the COBE satellite [98] collected evidence in support of the hot big bang

model by observing the near perfect black-body spectrum of the CMB and some

faint clues of anisotropies in the temperature power spectrum. This spacecraft

was then succeeded by WMAP [99] which operated from 2001 to 2010. Thanks

to its vastly improved resolution the first detailed map of the anisotropies could

be obtained. WMAP collected cosmological data for a wide range of parameters,

from the age of the universe to the precise fraction of dark matter, baryonic matter

and dark energy. From this data the strong evidence for inflation was found, such

as the flatness of the early universe and the tilt of the spectrum. In 2009 the

Planck telescope was launched [100–102] with improved equipment for measuring

the temperature anisotropies. While the Planck mission was completed in 2013,

the data from that mission is still being analysed to this day. Three sets of result

releases have been made since the mission has ended [5, 46, 103] with the latest

giving the most refined constraints on inflation to date. These results in combination

with results from ground based experiments BICEP1, BICEP2, Keck Array, and

BICEP3 have lead not only to the validation of slow-roll inflationary predictions

but also to the exclusion of many of the simplest models of inflation. The results

of the combination of these surveys are as follows: The spectral index has been
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Figure 2.7.: Constraints on the observed spectral index ns and the tensor to scalar
ratio r by Planck alone and in combination with BK14 or BK14 plus BAO (Bary-
onic acoustic oscillations) data, compared to the theoretical predictions of selected
inflationary models [103]

measured [103] to be,

ns = 0.9649± 0.0042 . (2.197)

The limits on the tensor to scalar ratio [103] is,

r < 0.1 . (2.198)

In Fig. (2.7) we see how these constraints have restricted the parameter space of

models. In addition to these results we also have constraints on non-Gaussianities

produced during inflation [46],

f eqnl = −4± 43 ,

f ortnl = −26±−21 ,

f localnl = 0.5± 5.0 .

(2.199)



3. Cosmological Perturbation

Theory in Curved Field-Space

In this chapter, using the tools of cosmological perturbation theory, we

derive the perturbed action and density perturbations at second order for

models of inflation with a curved field-space metric. In Sec. (3.1) we present

the ADM approach to cosmological perturbations. We then calculate the

perturbed equations of motion for a generic non-canonical multifield model

of inflation using a covaraint setup over the field-space indices in Sec. (3.2).

Finally, in Sec. (3.3) we introduce the novel calculation of the curvature

pertrubations for this model in the unifrom density gauge.

We begin by deriving the action to cubic order, and the Hamiltonian equations

of motion, for covariant field-space perturbations defined on flat hypersurfaces. As

we will now discuss, the calculations mirror those presented in Ref. [78, 104] but

generalized to the case of a non-trivial field-space metric.

We begin with the action for N scalar fields minimally coupled to gravity,

S =
1

2

∫
d4x
√−g

[
M2

pR−GIJg
µν∂µφ

I∂νφ
J − 2V

]
, (3.1)

where R is the Ricci scalar associated with the space-time metric gµν , GIJ is the N
dimensional field-space metric, and where upper case Roman indices run from 1 to

N , which are raised and lowered by GIJ . This is a subset of models described by the

action in Eqn. (2.193) where P (φI , φJ) = GIJ is a function of the fields GIJ(φI , φJ).

For a flat Friedmann-Robertson-Walker (FRW) cosmology in Eqn. (2.6) with κ =

0 this action leads to the background equations of motion,

3M2
pH

2 =
1

2
GIJ φ̇

I φ̇J + V ,

Dtφ̇I + 3Hφ̇I =− VI ,
(3.2)

where the covariant time derivative of a field-space vector, U I , is defined as

DtU
I = U̇ I + φ̇MΓIMNU

N , (3.3)

and t indicates cosmic time, with a over-dot indicating differentiation with respect

54
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to cosmic time. This is the multifield covariant form of Eqns. (2.29) and (2.30).

The connection ΓIMN is the Levi-Civita connection compatible with the field-space

metric GIJ .

3.1. Metric Perturbations of the ADM Metric

As we have discussed in the Sec. (2.5) 4D space-time can be foliated into spatial

hypersurfaces. Each hypersurface (which we will call Σt) is a 3D Riemannian sur-

face of constant time t. This space is globally hyperbolic and the foliation can be

performed in various ways. This slicing (or threading) is a guage choice and the

gauge dependencies can be addressed by fixing the gauge. An approach to looking

at metric perturbations is to begin with the Arnowitt-Deser-Misner (ADM) metric

[105]. It proves convenient to follow Refs. [54, 104, 106, 107], employing the (3+1)

ADM decomposition of space-time, such that

g00 = −(N2 −NiN
i), g0i = Ni, gij = γij , (3.4)

where γij is the metric of 3-dimenstional spatial hypersurface, N is the lapse function

and N i is the shift vector. The projection normal to Σt has components nα =

(1,−N i)/N and contracted with the metric gαβ is nα = N(−1, 0, 0, 0); a unit normal

timelike vector satisfying the condition nαn
α = −1. Likewise we define a vector tα

which satisfies tα∇αt = 1 such that tα = Nnα + Nα where we can construct the

lapse function and shift vector as,

N = −tαnα , Nα = (gαβ + nαnβ)tβ. (3.5)

A geometrical interpretation of N is the lapse of proper time along the normal

vector and Nα as being the shift of spatial coordinates with respect to the normal

vector. As time increases, we iterate from one hypersurface to the next whereby 4D

space-time is seen as the time evolution of the 3D Riemannian space [108].

In order to obtain Einstein’s field equations it is necessary to use the variational

principle with the Einstein-Hilbert action in Eqn. (2.1) (setting Λ = 0) where R, the

scalar space-time curvature, may be split into intrinsic and extrinsic components.

This result combined with the action in Eqn. (3.1) is written as

S =
1

2

∫
d4x
√
h

(
M2

p

[
NR(3) +

1

N
(EijE

ij − E2)

]
+

1

N
πIπI −NGIJ∂iφ

I∂iφJ − 2NV

)
,

(3.6)

where R(3) is the Ricci scalar of the 3-metric hij. The quantity Eij is proportional

to the extrinsic curvature on slices of constant t, with

Eij =
1

2
(γ̇ij −Ni;j −Nj;i), (3.7)
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where a bar denotes covariant derivatives with respect to the three metric. The

quantity πI is defined as

πI = φ̇I −N jφI;j. (3.8)

3.1.1. Metric Perturbations

Working in the spatially flat gauge, and considering only scalar perturbations1, one

has R(3) = 0 and hij = a2δij, and the only perturbations to the space-time metric

are given by

N = 1 + Φ1 + Φ2 + · · ·
Ni = θ1 ,i + θ2 ,i + · · · ,

(3.9)

where Φ1 and Φ2 are the first and second order perturbations in the lapse, and θ1

and θ2 are the first and second order perturbations in the shift. This involves similar

techniques to those reviewed in Sec. (2.5) but now up to second order.

3.1.2. Field Perturbations

Next, we consider the perturbations to the matter sector and hence to the scalar

fields present. In the previous chapter we had fluid or radiation perturbations,

where now we only scalar fields. The field perturbations, δφI(x, t), are defined by

the expression φI = φI0(t) + δφI(x, t). These field perturbations are not, however,

covariant under relabeling of field-space, and it proves convenient to work with a

different set of perturbations that are covariant, which we label QI . These were

first introduced by Gong & Tanaka [109]. The idea is to consider the geodesic that

links together the position in field-space labeled by φI0 and that labelled by φI ,

and an affine parameter parameterizing this trajectory denoted λ. The coordinate

displacement δφI can then be expressed by the series expansion about the point

λ = 0 as

δφI =
dφI

dλ

∣∣∣∣
λ=0

+
1

2!

d2φI

dλ2

∣∣∣∣
λ=0

+ · · · . (3.10)

We can then form the geodesic equation

D2
λφ

I =
d2φI

dλ2
+ ΓIJK

dφJ

dλ

dφK

dλ
= 0 , (3.11)

and define QI = dφI/dλ|λ=0 and Dλ = QI∇I (where ∇I is the covariant derivative

defined in Eqn. (1.12)). Using this geodesic equation, the expansion (3.10) can be

rewritten as

δφI = QI − 1

2!
ΓIJKQ

JQK , (3.12)

1Although beyond linear order vector and tensor perturbations do couple to the scalar perturba-
tions, they do not affect the calculation of the scalar three point function which follows from
the third-order action involving only scalar perturbations.
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which relates field perturbations to the covariant perturbations. The time derivative

of field fluctuations, δφ̇I , can also be written in terms of covariant quantities as

δφ̇I = DtQ
I−φ̇MΓIMNQ

N−1

2
ΓIJK,M φ̇

MQJQK−ΓI(JK)DtQ
JQK+ΓI(JK)Γ

J
MNQ

K φ̇MQN ,

(3.13)

as can a perturbation to the field-space metric, and using (3.12) and (1.13) we find

δGIJ = 2Γ(IJ)KQ
K − Γ(IJ)KΓKMNQ

MQN + Γ(IM)LΓMJKQ
KQL + Γ(JM)LΓMIKQ

KQL

+
1

2
(GIMΓMJK,L +GJMΓMIK,L)QKQL . (3.14)

Here we have adopted the notation of using (IJ) parenthesis to illustrate sym-

metrization over the indices I and J . A bar | is used to exclude certain indices from

the symmetrization procedure, for example, (I|J |K) symmetrizes I and K but not

J .

3.2. The Perturbed Action

The next step is to insert our perturbed expressions for N , Ni and φI into (3.6)

to calculate the perturbed action. Expanding order by order, the first order action

simply leads back to the background equations, while the action at second and higher

order lead to the dynamics of the perturbations. After some integration by parts

and discarding total derivatives, one finds the action at second and third order can

be written in the form given by Elliston et al. [104]

S(2) =
1

2

∫
d4xa3

(
Φ1

[
−6M2

pH
2Φ1 +GIJ φ̇

I φ̇JΦ1

−2GIJ φ̇
IDtQ

J − 2V;IQ
I
]
− 2

a2
∂2θ1

[
2M2

pHΦ1 −GIJ φ̇
IQJ

]
+RKIJLφ̇

K φ̇LQIQJ +GIJDtQ
IDtQ

J −GIJ∂
iQI∂jQ

J − V;IJQ
IQJ

)
, (3.15)

and

S(3) =
1

2

∫
d4xa3

(
6M2

pH
2Φ3

1 + 4M2
p

H

a2
Φ2

1∂
2θ1 −

M2
pΦ1

a4
(∂i∂jθ1∂i∂jθ1 − ∂2θ1∂

2θ1)

−GIJ φ̇
I φ̇JΦ3

1 + 2Φ2
1φ̇

IDtQ
J +

2

a2
Φ1GIJ φ̇

I∂iθ1∂iQ
J − Φ1RL(IJ)M φ̇

Lφ̇MQIQJ

−Φ1

(
GIJQ

IQJ +
1

a2
GIJ∂

iQI∂jQ
J

)
− 2

a2
∂iθ1GIJDtQ

I∂iQ
J +

4

3
RI(JK)Lφ̇

LDtQ
IQJQK

+
1

3
R(I|LM |J ;K)φ̇

Lφ̇MQIQJQK − 1

3
V;(IJK)Q

IQJQK − V;(IJ)Φ1Q
IQJ

)
, (3.16)

where RIJKL is the Riemann tensor compatible with the field-space metric GIJ , and

RIJKL;M its covariant derivative.
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Constraint equations

Varying the action with respect to the lapse and shift leads to two constraint equa-

tions that can be used to get expressions for the perturbations in the lapse and shift

in terms of the covariant QI perturbations[110]. These can be substituted back into

the action to express the perturbed action only in terms of QI . To do so we only

need the constraint equations at linear order (as explained in [106]), but later we

will also need them at second order too, so we provide the full expressions here.

Considering first, the variation with respect to the shift, at linear order one finds

Φ1 =
1

2M2
pH

GIJ φ̇
IQJ , (3.17)

while at second order

Φ2 =
Φ2

1

2
+

∂−2

2M2
pH

[
−M

2
p

a2
∂i∂jΦ1∂i∂jθ1 +

M2
p

a2
∂2Φ1∂

2θ1

+GIJ(∂iDtQ
I)∂iQ

J +GIJDtQ
I∂2QJ

]
.

(3.18)

On large scales where spatial gradients decay, one then finds that

Φ2 =
Φ2

1

2
+

∂−2

2M2
pH

[
GIJ(∂iDtQ

I)∂iQ
J +GIJDtQ

I∂2QJ
]
. (3.19)

Next, varying the action with respect to the lapse, at linear order we have

∂2θ1 = −3a2HΦ1 +
a2

2M2
pH

GIJΦ1φ̇
I φ̇J − a2

2M2
pH

GIJ φ̇
IDtQ

J − a2

2M2
pH

V;IQ
I , (3.20)

and at second order

∂2θ2 =2Φ1∂
2θ1 −

1

4a2H

(
∂i∂jθ1∂i∂jθ1 − ∂2θ1∂

2θ1

)
+

a2

2M2
pH

GIJΦ1φ̇
IDtQ

J

+
1

2M2
pH

GIJ φ̇
I∂iθ1∂iQ

J − a2

4M2
p

GIJDtQ
IDtQ

J − 1

4M2
pH

GIJ∂iQ
I∂iQ

J

− a2

4M2
p

V;(IJ)Q
IQJ +

a2H

2
(2Φ2 − 3Φ2

1)(ε− 3)− a2

4M2
p

RL(IJ)M φ̇
Lφ̇MQIQJ ,

(3.21)

where ε = −Ḣ/H2 is the slow-roll parameter from Eqn. (2.34). Using these lat-

ter expressions and again taking the large scale super-horizon limit one finds the

additional relation

6HΦ1 =
1

M2
pH

GIJΦ1φ̇
I φ̇J − 1

M2
pH

GIJ φ̇
IDtQ

J − 1

M2
pH

V;IQ
I , (3.22)



3.2: The Perturbed Action 59

at first order, and

1

2
GMNDtQ

MDtQ
N =2Φ1GIN φ̇

IDtQ
N − 1

2
V;(MN)Q

MQN

−M2
pH

2(3Φ2
1 − 2Φ2)(ε− 3)− 1

2
RI(MN)J φ̇

I φ̇JQMQN ,

(3.23)

at second order.

The Fourier space action

Finally, using the equations for Φ (3.17) and θ (3.20) in terms of QI one can write

the quadratic and cubic parts of the action (3.15) and (3.16) solely in terms of

QI . It is convenient at this stage to move from real space to Fourier space. After

doing so, to keep our expressions to a manageable size, we follow the extended

summation convention introduced in Ref. [78] and in the notation section, Sec. (1.2),

in Eqn. (1.1). When considering Fourier space quantities we use bold font indices,

I,J, . . . to indicate that the usual summation over fields is accompanied by an

integration over Fourier space as defined in Eqn. (1.1). Using this notation the

action reads

S(2) =
1

2

∫
dta3

(
GIJ(kI ,kJ)(DtQ

I(kI)DtQ
J(kJ) +MIJ(kI ,kJ)QI(kI)Q

J(kJ)
)
,

(3.24)

at second order and

S(3) =
1

2

∫
dta3

(
AIJK(kI ,kJ ,kK)QI(kI)Q

J(kJ)QK(kK)

+BIJK(kI ,kJ ,kK)DtQ
I(kI)Q

J(kJ)QK(kK)

+CIJK(kI ,kJ ,kK)DtQ
I(kI)DtQ

J(kJ)QK(kK)
)
,

(3.25)

at third order, where we have defined

GIJ(kI ,kJ) = (2π)3δ(kI + kJ)GIJ (3.26)

MIJ(kI ,kJ) = (2π)3δ(kI + kJ)

(
k2
I

a2
GIJ −mIJ

)
(3.27)

AIJK(kI ,kJ ,kK) = (2π)3δ(kI + kJ + kK)aIJK (3.28)

BIJK(kI ,kJ ,kK) = (2π)3δ(kI + kJ + kK)bIJK (3.29)

CIJK(kI ,kJ ,kK) = (2π)3δ(kI + kJ + kK)cIJK . (3.30)

with

mIJ = V;IJ −RIKLJ φ̇
K φ̇L − 3 + ε

M2
p

φ̇iφ̇J −
(φ̇IDtφ̇J + φ̇JDtφ̇I)

HM2
p

, (3.31)
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and

aIJK =− 1

3
V;IJK −

φ̇IV;JK

2HM2
p

+
φ̇I φ̇JξK
8H2M4

p

+
φ̇IξJξK

32H3M4
p

(
1− (kJ · kK)2

k2
Jk

2
K

)
+
φ̇I φ̇J φ̇K
8HM4

p

(
6
GMN φ̇

M φ̇N

H2M2
p

)
+
φ̇IGJK

2HM2
p

kJ · kK
a2

− 1

2

GNK φ̇
Lφ̇M φ̇NKRL(IJ)M

M2
pH

+
1

3
φ̇Lφ̇MR(I|LM |J ;K) ,

(3.32)

bIJK =
φ̇I φ̇J φ̇K
4H2M4

p

− φ̇IξJ φ̇K
8H3M4

p

(
1− (kJ · kK)2

k2
Jk

2
K

)
− ξIGJK

2HM2
p

kI · kJ
k2
I

+
4

3
φ̇LRI(JK)L ,

(3.33)

cIJK = −GIJ φ̇K
2HM2

p

+
φ̇I φ̇J φ̇K
8H3M4

p

(
1− (kI · kJ)2

k2
Ik

2
J

)
+
GIJ φ̇K
HM2

p

kI · kK
k2
I

, (3.34)

where

ξI = 2Dtφ̇I +
φ̇I
H

GNM φ̇
N φ̇M

M2
p

. (3.35)

Here aIJK is to be symmetrised over all three indices, bIJK over J & K and cIJK over

I & J . Each index permutation will have a corresponding exchange of wavenumber

associated with the indices.

3.3. The Curvature Perturbation

As we have seen quantities in one gauge can be related to quantities in another

guage. Here we have worked with the quantities QI defined on flat hypersurfaces

but need to relate it the to ζ to make consistent with observational constraints.

This is what we proceed to do now. Here we extend the calculation to the case of a

non-trivial field-space metric.

A first step in the calculation of ζ in terms of field-space fluctuations on a flat

hypersurface is to relate ζ to the total density perturbation on the flat hypersurface

ψ = 0. This calculation was performed in Ref. [111], and is unchanged in our new

setting. Utilizing the perturbation theory framework in Sec. (2.5.1) but including

terms up to second order we can find an equation like Eqn. (2.112) but to second

order we obtain,

ζ = −Hδρ

ρ̇
+H

δ̇ρδρ

ρ̇2
− H

2

ρ̈δρ2

ρ̇3
+
Ḣ

2

δρ2

ρ̇2
. (3.36)
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3.3.1. The Density Perturbation

The new element for the non-trivial field-space case is therefore to calculate δρ in

this setting. In general, one finds that ρ = −T 00/g00 [24], where Tµν is the energy

momentum tensor. The perturbation in the density up to second order is therefore

δρ = δT 00 + ρδg00 +
(
δT 00 + ρδg00

)
δg00 . (3.37)

The energy–momentum tensor Eqn. (2.26) can be rewritten for an arbitrary number

of scalar fields with non-trivial field-space metric given by,

Tµν = GIJ∂µφ
I∂νφ

J − 1

2
GIJgµν∂

λφI∂λφ
J − gµνV. (3.38)

This leads to the background energy density ρ = 1
2
GIJ φ̇

I φ̇J + V as expected. Per-

turbing Eqn. (3.38) and using Eqn. (3.37) and recalling that

g00 + δg00 = −1 + 2Φ1 + 2Φ2 − 3Φ2
1

g0i + δg0i = ∂iθ1 + ∂iθ2 − 2Φ1∂
iθ1

gij + δgij = hij − ∂iθ1∂
jθ1 ,

(3.39)

one finds that

δρ =
1

2
GIJ(φ̇I ˙δφ

J
+ φ̇J ˙δφ

I
)− Φ1GIJ(φ̇I ˙δφ

J
+ φ̇J ˙δφ

I
) +

1

2
δGIJ(φ̇I ˙δφ

J
+ φ̇J ˙δφ

I
)

+
1

2
GIJ

˙δφ
I ˙δφ

J − Φ1GIJ φ̇
I φ̇J +

1

2
(3Φ1 − 2Φ2)GIJ φ̇

I φ̇J +
1

2
δGIJ φ̇

I φ̇J

− Φ1δGIJ φ̇
I φ̇J + V;Iδφ

I +
1

2
V;(IJ)δφ

IδφJ .

(3.40)

Finally, we need to rewrite this expression in terms of the covariant perturbations,

QI instead of the raw field perturbations δφI . Collecting some terms together and

applying the relations (3.12), (3.13) and (3.14) we obtain a neat expression which

at linear order gives

δρ1 = −Φ1GIJ φ̇
I φ̇J +G(IJ)φ̇

IDtQ
J + V;IQ

I , (3.41)

which is a covariant form of Eqn. (2.67) and at second order

δρ2 =
1

2
RL(IJ)M φ̇

Lφ̇MQIQJ +
1

2
V;(IJ)Q

IQJ − 2Φ1G(IJ)φ̇
IDtQ

J

+
1

2
GIJ φ̇

I φ̇J(3Φ2
1 − 2Φ2) +

1

2
GIJDtQ

IDtQ
J .

(3.42)

Moreover, one can use Eqs. (3.17) and (3.18) to substitute for Φ1 and Φ2 and write

δρ entirely in terms of the covariant perturbations QI . There are in fact a number
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of equivalent ways to write δρ as a function of the field-space perturbations using

Eqn. (3.22) and (3.23), which on substitution into Eqn. (3.36) lead to equivalent

ways to write ζ in terms of QI . Different possibilities were discussed at length in

Ref. [111] for the canonical case. For the numerical implementations of Ref. [78] the

simplest of these was used, which follows from the use of Eqn. (3.17) and (3.18),

and in the non-trivial field-space case leads to

δρ1 = −3HGIJ φ̇
IQJ , (3.43)

and

δρ2 = 3M2
pH

2(3Φ2
1 − 2Φ2)

=
3

2M2
p

φ̇I φ̇JQ
IQJ − 3H∂−2

(
GIJ(∂iDtQ

I)∂iQJ +GIJDtQ
I∂2QJ

)
.

(3.44)

Substituting Eqns. (3.43) and (3.44) into Eqn. (3.36) one finds

ζ(1) = − 1

2M2
pHε

GIJ φ̇
IQJ , (3.45)

and

ζ(2) =
1

6M2
pH

2ε

[(
1

M2
p

φ̇I φ̇J

[
−3

2
+

9

2ε
+

3

4ε2M2
pH

3
V;K φ̇

K

])
QIQJ

+

(
3

M2
pHε

φ̇I φ̇J

)
QIDtQ

J − 3H∂−2
(
GIJ(∂iDtQ

I)∂iQJ +GIJ(DtQ
I)∂2QJ

)]
.

(3.46)

To calculate the statistics of ζ we introduce new notation to know how it is related

to the set of perturbations δXa = {QI , PJ}. Where the canonical momentum P I is

defined as,

PI =
δS

δ(DtQI)
, (3.47)

and by utilizing Eqns. (3.24) and (3.25) we obtain,

PI = a3

(
DtQI +

1

2
BJKIQ

JQK + CIJKP
JQK

)
, (3.48)

where bold indices are defined using Eqn. (1.1). We require only the form of this

relation on super-horizon scales, and we write it in the form

ζ(k) = NaδX
a +

1

2
NabδX

aδXb , (3.49)
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where

Na(k) =(2π)3δ(k− ka)Na

Nab(k,ka,kb) =(2π)3δ(k− ka − kb)Nab(ka,kb) .
(3.50)

For the case of multifield inflation with canonical kinetic terms, Na and Nab were

calculated in Ref. [111] (also see Refs. [112, 113]). On moving to Fourier space we

can identify expressions for the N tensors defined above, and we find that

Na = − 1

2M2
pHε

φ̇I


1

0

 (3.51)

Nab = − 1

3M2
pH

2ε


1
M2

p
φ̇I φ̇J

[
−3

2
+ 9

2ε
+ 3

4ε2M2
pH

3V;K φ̇
K
]

3
Hε

φ̇I φ̇J
M2

p
−GIJ

3H
k2

(ka · kb + k2
a)

3
Hε

φ̇I φ̇J
M2

p
−GIJ

3H
k2

(ka · kb + k2
b ) 0

 .

(3.52)

These equations will be used in Ch. (5) in our implementation of the transport

method to calculate the power spectrum and bispectrum for inflationary pertur-

bations. We emphasize that we do not assume slow-roll, thus our implementation

covers the full basis of perturbations (Q,P ), unlike other methods as discussed in

Sec. (5.1).



4. Quantization and the Quantum

Sub-Horizon in Curved

Field-Space

One of the sucesses of inflation is the captivating realization that quantum

fluctuations of light (m < H) scalar field(s) can be related to the large

scale structure of the universe. In Sec. (4.1) we introduce the framework

for describing quantum fields in cosmology in the interaction picture. Using

this formalism we go on to calculate the two-point statistic in Sec. (4.2) and

the three-point statistics in Sec. (4.3). Finally we calculate the two-point

statistics for the tensor modes in Sec. (2.7.2).

In this chapter we will review the in–in formalism and calculate the correlation

functions deep inside the horizon for models of inflation with a curved field-space

metric. The in–in formalism can be used to calculate the correlation function at

horizon crossing or as initial conditions for super-horizon techniques. However, as

we will discuss in Sec. (5.1) there are disadvantages to this for certain models.

Instead, our approach is to utilize the in–in formalism deep inside the horizon, and

evolve outwards using the transport method, as we will see in Ch. (5).

4.1. The Interaction Picture

We begin to construct our formalism of evaluating correlation functions using the

Heisenberg picture of quantum mechanics in which operators O incorporate time

dependence and states are time independent. The Hamiltonian is constructed from

Eqns. (3.24) and (3.25) such that Hint = −
∫
L(3)d

3x and is a function of the field

perturbation QI and canonical momenta PJ , which are covariant under transforma-

tions in field-space. It can then be shown that PI along with QI satisfy the canonical

commutation algebra,

[
QI(kI , t), PJ(kJ , t

′)
]

= i(2π)3δIJ(kI + kJ)δ(t− t′) . (4.1)

At this stage it is helpful to rescale PI such that PI → a3PI , where for convenience

we employ the same symbol for the rescaled momentum, and use it solely from here
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on. In terms of the rescaled momentum,

DtQI = PI −
1

2
BJKIQ

JQK − CIJKP
JQK + · · · . (4.2)

The Hamiltonian is then given by,

Ht =

∫
dt
a3

2

GIJP
IP J −MIJQ

IQJ︸ ︷︷ ︸
H0

−AIJKQ
IQJQK −BIJKQ

IQJPK − CIJKP
IP JQK︸ ︷︷ ︸

Hint

 ,

(4.3)

where we have labelled the ‘free’ part of the Hamiltonian as H0(QI(t), PJ(t); t), and

the ‘interaction’ part as Hint(Q
I(t), PJ(t); t). In terms of the perturbation theory

outlined in Ch. (3) the ‘free’ part will describe the evolution of two-point correlation

function at leading order. Components of the ‘interaction’ part will contribute to

the evolution of the three-point correlation functions at leading order.

Finally Hamilton’s equations provide us with the evolution equations for QI and

P I , which are,

DtQ
I = −i[QI , Ht] (4.4)

DtP
I = −i[P I , Ht]− 3HP I , (4.5)

where the evolution of P I takes a slightly non-canonical form due to the rescaling

of the canonical momenta. The solution to these evolution equations then follow,

QI(t) = U−1(t, t0)QI(t0)U(t, t0) ,

PJ(t) = U−1(t, t0)QJ(t0)U(t, t0) ,
(4.6)

where U is a unitary transformation satisfying,

d

dt
U(t, t0) = −iHt(Q

I(t0), P J(t0); t)U(t, t0) , (4.7)

and the initial condition U(t0, t0) = 1, where t0 ≈ −∞ is an early enough time

where modes are deep within the horizon.

The interaction picture is an intermediate representation between the Schrödinger

picture (where the states are time dependent and operators are time independent)

and the Heisenberg picture. The operators follow the evolution of the free Hamilto-

nian and the states evolve according to the interaction Hamiltonian. As the name

suggests this picture is advantageous in many-body systems of interacting quantum

particles [48]. We review the calculation for the expectation value 〈O(QI , PJ ; t)〉,
where O is our operator evaluated in the ground state, following Refs. [114, 115].

Here we define new operators qI and pJ , that are called the interaction picture fields ,
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that satisfy Eqns. (4.4) and (4.5) for the free part of the Hamiltonian. The solutions

are defined as,

qI(t) = U0(t, t0)−1QI(t0)U0(t, t0)

pJ(t) = U0(t, t0)−1PJ(t0)U0(t, t0) ,
(4.8)

where U0 satisfies,

d

dt
U0(t, t0) = −iH0(QI(t0), P J(t0); t)U0(t, t0) , (4.9)

with U0(t0, t0) = 1. If the operator is polynomial in QI and PJ the correlation

function 〈O〉 can be written as,

〈O(QI , P J ; t)〉 = 〈F (t, t0)−1O(qI , pJ ; t)F (t, t0)〉 , (4.10)

where F is given as,

F (t, t0) = U−1
0 (t, t0)U(t, t0) , (4.11)

and satisfy,

dF (t, t0)

dt
= −iU−1

0 (t, t0)Hint(Q
I(t0), P J(t0); t)U0(t, t0)F (t, t0)

= −iHint(Q
I(t), P J(t); t)F (t, t0) ,

(4.12)

with F (t0, t0) = 1. This has the solution,

F (t, t0) = T exp
(
−i
∫ t

−∞+

HI(q
I , pJ ; t)dt

)
, (4.13)

where T is the time-ordering operator such that products in the expansion of the

exponential are written from left to right in decreasing order of time arguments.

We can also define the anti-time-ordering operator, T̄ , which writes products in the

expansion of the exponential from left to right in increasing order of time arguments.

The lower limit −∞+ denotes that the contour of integration should be deformed

above the real axis into the positive imaginary half-plane at early times, with the

fields appearing in the integrand defined by analytic continuation. The expectation

value is then,

〈O(P I , QJ ; t)〉 =

〈T̄ exp
(
i

∫ t

−∞+

HI(q
I , pJ ; t)dt

)
O(qI , pJ ; t)T exp

(
−i
∫ t

−∞+

HI(q
I , pJ ; t)dt

)
〉 .

(4.14)

where all the field perturbations are now in the interaction picture. We integrate

form −∞ to some arbitrary point t. This is the in–in formalism. In the standard
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calculations this is the time of horizon crossing, in our formalism it will be at a time

within the horizon.

4.2. Two-Point Correlation Function

Following the approach of Ref. [78] (which is closely related to that of Ref. [116]),

these are fixed at some early time at which all the wavenumbers of a given corre-

lation are far inside the horizon during inflation, and where mIJ is subdominant to

(k/a)2GIJ in Eq. (3.27). In this limit it is reasonable to assume that the solution for

the two-point correlation function of QI is well approximated by the de-Sitter space

solution and we can use this solution to provide initial conditions for our numerical

evolution. We note that it is only required that this solution be valid at some point

long before all scales of interest cross the horizon, and moreover, that the numerical

evolution is then free to evolve away from this solution, accounting for the complex

dynamics that can subsequently occur in general inflationary models.

As introduced in Sec. (2.7.1), we can quantize our scalar pertrubations. By rescal-

ing our mode function as νI(τ, k) = aQI(τ, k) it may by quantized by writing it in

terms of the creation and annihilation,

νIk(τ)→ ν(τ)âIk + ν?â†J−k, (4.15)

and satisfies Eqn. (2.166). Unlike Eqn. (2.159), the creation and annihilation satisfy[
âIk, â

†J
k′

]
= 2πδ(k− k′)ΠIJ , (4.16)

where ΠIJ solves the equation DτΠ
IJ = 0 [104] with a solution

ΠIJ(τ1, τ2) = P exp

(
−
∫ τ2

τ1

dτΓIKL
[
φM(τ)

] dφK
dτ

)
GLJ(τ1) , (4.17)

which transforms as a bitensor with the first index I transforming in the tangent

space at point φM(τ2) and the second index J in the tangent space at point φM(τ1)

and the exponential is path ordered which is indicated by P . It defines a parallel

transport along the direction of the phase space flow instead of the geodesic GIJ .

The two-point function in de Sitter space is typically written in conformal time τ

and takes the form [117, 118],

〈QI(k1, τ1)QJ(k2, τ2)〉 = (2π)3δ(k1 + k2)ΠIJ H
2

2k3
(1 + ikτ1)(1− ikτ2)eik(τ2−τ1) . (4.18)

The two-point functions 〈QI(τ1)P J(τ2)〉, and 〈P I(τ1)P J(τ2)〉 can then be calculated

by differentiating Eq. (4.18), using the definition of P I and accounting for the use

of conformal time. For our purposes we only need to consider the limit τ2 → τ1 with
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−τ � 1, which corresponds to equal time correlations on sub-horizon scales. In this

limit ΠIJ → GIJ , and one finds initial conditions for the two point function for the

various combinations of covariant field perturbation and momenta correlations. The

calculation is similar to that presented in Ref. [118], though in that work the time

variable used for the transport system was e-folds N , while in this paper we use

cosmic time, t. For convenience we can write the two-point function as the tensor

Σab,

〈δXa(ka)δX
b(kb)〉 = (2π)3δ(ka + kb)Σ

ab(ka) . (4.19)

We now list the two-point correlation function that are valid deep in the horizon

and may also be evaluated at horizon crossing.

• Field-Field correlation

Beginning with the expression for the two point function of QI (4.18) we consider

the −τ � 1 limit for the field-field correlations. We find

〈QI(k1, τ)QJ(k2, τ)〉 = (2π)3δ(k1 + k2)
GIJ

2k3
H2(τ)(1− ikτ)(1 + ikτ)

≈ (2π)3δ(k1 + k2)
GIJ

2k3
H2(τ)|kτ |2

≈ (2π)3δ(k1 + k2)
GIJ

2a2k
.

(4.20)

The initial condition for ΣIJ
∗ is then

ΣIJ
∗Re =

GIJ

2a2k

∣∣∣∣
∗
, ΣIJ

∗Im = 0 , (4.21)

where a subscript ‘?’ denotes evaluation at the initial time.

• Field-Momentum correlation

Next recalling that at linear order P I = DtQ
I and that the covariant derivative of

the parallel propagator is zero, we consider the leading term in the expression for

the field-momentum correlation of unequal time correlations, and subsequently take

equal time limit for the case −τ � 1. Recalling that dτ = dt/a(t) we find

〈QI(k1, τ1)P J(k2, τ2)〉 = (2π)3δ(k1 + k2)
ΠIJ

2k3
H(τ1)H(τ2)(1 + ikτ1)

(
k2τ2

a

)
eik(τ2−τ1)

= (2π)3δ(k1 + k2)
GIJ

2k3
H2(τ)

(
k2τ

a

)
(1− ikτ)

= (2π)3δ(k1 + k2)

(
−G

IJH

2ka2
+ i

GIJ

2a3

)
.

(4.22)
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The real and imaginary parts of the initial conditions for this case are then

ΣIJ
∗Re = −G

IJH

2ka2

∣∣∣∣
∗
, ΣIJ

∗Im =
GIJ

2a3

∣∣∣∣
∗
. (4.23)

• Momentum-Momentum correlation

We follow a similar procedure to consider the momentum-momentum correlation

〈P I(k1, τ1)P J(k2, τ2)〉 = (2π)3δ(k1 + k2)
ΠIJ

2k3
H(τ1)H(τ2)

(
k2τ1

a

)(
k2τ2

a

)
eik(τ2−τ1)

= (2π)3δ(k1 + k2)
GIJ

2k3
H2(τ)

(
k4τ 2

a2

)
= (2π)3δ(k1 + k2)

GIJk

2a4
.

(4.24)

The initial conditions for Σab
Re where also given by Dias, Frazer and Seery [118].

4.3. Three-Point Correlation Function

We now move on to calculating the three-point function using the in-in formalism

we outlined in Eqn. (4.14). After expanding the exponents to first order we find

that the non-vanishing terms that remain are given by,

〈δXaδXbδXc〉? = −i
∫ τinit

−∞
dτ〈
[
δXa

? δX
b
?δX

c
?,HefgδX

eδX fδXg
]
〉? , (4.25)

where Hefg is the interaction part of the Hamiltonian extracted from the cubic part

of the action in Eqn. (3.25).

The Hamiltonian contains the kernel tensors aIJK , bIJK and cIJK and is defined

as,

Habc =
1

3




−3aIJK −bIKJ

−bKJI −cIJK


−bIJK −cKJI

−cIKJ 0





, (4.26)

where the indices are organized so that a block of field labels are followed by a block

of momentum labels and are contracted over the internal legs only. The bold font
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on the indices indicates that the usual summation over phase space indices is ac-

companied by an integration over Fourier space. This order is sufficient as all higher

order terms are suppressed by factors of Q ≈ H/Mpl. We can rewrite Eqn. (4.25)

by including the integration over Fourier space and removing bold indices,

〈δXaδXbδXc〉? = −i
∫ τinit

−∞
dτHefg

∫
Πid

3ki
(2π)9

(2π)3δ(Σiki)〈δXa
? δX

b
?δX

c
?δX

eδXfδXg〉 .
(4.27)

By using Wick’s theorem the 6-point correlation function above can be broken into

six permutations of two-point correlation functions,

〈δXaδXbδXc〉? =− i
∫ τinit

−∞
dτHefg

∫
Πid

3ki
(2π)9

(2π)3δ(Σiki)〈δXa
? δX

e〉〈δXb
?δX

f〉〈δXc
?δX

g〉

+ cyclic.

(4.28)

Each permutation represents a different way of contracting a pair of internal and

external legs of the Feynman diagram. For convenience we can write the three-point

function as the tensor

〈δXaδXbδXc〉? = (2π)3δ(Σiki)B
abc
? (k1, k2, k3) . (4.29)

We can rewrite the three-point function Babc in terms of permutations of the two-

point function Σab,

Babc
? = −6i

∫ τinit

−∞
dτHefgΣae(τ?, τ)Σbf (τ?, τ)Σcg(τ?, τ) + c.c. (4.30)

If we then substitute Eqn. (4.26) into Eqn. (4.30) we get,

Babc
? =− 6i

∫ τ?

−∞
dτ
a4

2

[
AefgΣaeΣbfΣcg

− 1

3a

(
Bē(fg)Σ

aēΣbfΣcg +B ¯(e|f |g)Σ
aeΣbf̄Σcg +B(ef)ḡΣaeΣbfΣcḡ

)
− 1

3a2

(
C(ēf̄)gΣaēΣbf̄Σcg + C(ē|f |ḡ)Σ

aēΣbfΣcḡ + Ce(f̄ ḡ)Σ
aeΣbfΣcḡ

)]
,

(4.31)

where the tensors Σab have a dependence on two times (i.e. Σab(τ?, τ)), τ representing

the internal legs and τ? representing the external legs and the bars over the indices

label P I components. From our calculations of the two-point functions in Sec. (4.2)
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we have,

Σab(k) =
H2

2k3
(1− ikτ?)(1 + ikτ)Πabeik(τ−τ?)

Σab̄(k) =
H2

2k3
(1 + ikτ?)(k

2τa−1)Πab̄eik(τ−τ?)

Σāb̄(k) =
H2

2k3
(k2τ?a

−1)(k2τa−1)Πāb̄eik(τ−τ?) .

(4.32)

We can now begin to explicitly calculate the three-point function by substituting

Eqns. (4.32) into Eqn. (4.31). As we only need to integrate over the internal legs, the

external components of Eqn. (4.32) can be brought outside. The time dependence of

the bIJK and cIJK tensors which appear in the interaction Hamiltonian is slow-roll

suppressed and their time dependence can be neglected. On the other hand, the

aIJK tensor contains fast changing terms proportional to (k/a)2 ≈ (kτ)2 which grow

exponentially into the past and whose time dependence must be included. This

splitting of the aIJK into the fast and slow parts is best illustrated when we convert

Eqn. (3.32) to conformal time τ = −1/aH

aIJK =
φ̇IGJK

2H3M2
pl

(kJ · kK)

τ 2
+ aIJK(slow). (4.33)

It is also assumed that H and Γab which appear in the expression for Σ(τ1, τ2) are

also sufficiently slowly varying that their time dependence can be neglected. The

integral is dominated by its upper limit, and these assumptions mean that when

evaluating it one takes ΓIJ → GIJ(τ?) and H → H(τ?). The assumptions need

only be true for a short period around the time the initial conditions are fixed. In

the resulting expressions for the initial conditions for Babc, we keep both the terms

which grow fastest as τ → −∞ as well as the sub-leading terms.

To illustrate how this is evaluated in practice, let us consider this explicitly for

the case of a field-field-field correlation.

• a,b,c → Field-Field-Field

Substituting in the expression for the two-point function we obtain

Babc
∗ =− iH6

8Πik3
i

(1 + ik1τ?)(1 + ik2τ?)(1 + ik3τ?)e
−iksτ?×∫ τ?

−∞

dτ

H2τ 2

[
φ̇IGJK

4H
(k2 · k3)(1− ik1τ)(1− ik2τ)(1− ik3τ)eiksτ

+
aIJKs

2H2τ 2
(1− ik1τ)(1− ik2τ)(1− ik3τ)eiksτ

+
bIJK

2H2τ 2
(1− ik1τ)(1− ik2τ)k2

3τe
iksτ

+
cIJK

2
k2

1k
2
2τ

2(1− ik3τ)eiksτ + perms

]
+ c.c. ,

(4.34)
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where we assume that H and ΠIJ are sufficiently slowly varying to be taken as

constants and that we can take ΠIJ → GIJ .

In order to perform the integration we need to know the time dependence of the

tensors. As discussed earlier the aIJK tensor contains fast and slow varying parts.

The part containing terms quadratic in τ vary quickly and so are included in the

integral separately (the first term in Eq. (4.34)), the remaining parts we label aIJKs

and we assume can be considered constant in time. The next step is to perform the

integration, recalling that the result is dominated by the upper limit (because the

integral is highly oscillatory into the past). Keeping the leading and sub-leading

terms in τ , and writing in terms of a and H, the final result is

Babc
∗ =

1

4a4

1

k1 · k2 · k3 · ks
(
−
(
cIJK(k1, k2, k3) · (k1 · k2) + cyc.

)
+
(
a2aIJKs (k1, k2, k3) + cyc.

)
+

(
a2HbIJK(k1, k2, k3)

(
(k1 + k2) · k3

k1 · k2

− K2

k1 · k2

)
+ cyc.

)
+

(
φ̇I

4H
GJK(−k2

2 − k3
2 + k1

2) + cyc.

))∣∣∣∣∣
∗

,

(4.35)

where K2 ≡ k1k2 + k1k3 + k2k3 and ks = k1 + k2 + k3. Repeating for the other

correlations we find

• a,b,c → Momentum-Field-Field

Babc
∗ =− H

4a3K3

(
−k

2
1(k2 + k3)

ks
· k1 · k2 · k3

)(
−
(
cIJK(k1, k2, k3) · (k1 · k2) + cyc.

)
+
(
a2aIJKs (k1, k2, k3) + cyc.

)
+

(
GJK φ̇I

4H
(−k2

2 − k3
2 + k1

2) + cyc.

))

− H

4a3K3

(
−k

2
1 · (k2 · k3)

ks

)((
cIJK(k1, k2, k3)k1

2k2
2

(
1 +

k3

ks

)
+ cyc.

)
−
(
a2aIJKs (k1, k2, k3)

(
K2− k1 · k2 · k3

ks

)
+ cyc.

)
+

(
bIJK(k1, k2, k3)

k1 · k2 · k3
2

H
+ cyc.

)
−
(
GIJ φ̇K

4H
(−k1

2 − k2
2 + k3

2)

(
K2 +

k1 · k2 · k3

ks

)
+ cyc.

))∣∣∣∣∣
∗

,

(4.36)

where K3 = k3
1 + k3

2 + k3
3.

• a,b,c → Momentum-Momentum-Field
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Babc
∗ =− 1

4a4K3

(k1 · k2 · k3)2 · k1 · k2

ks

(
−
(
cIJK(k1, k2, k3) · (k1 · k2) + cyc.

)
+
(
a2aIJKs (k1, k2, k3) + cyc.

)
+

(
a2HbIJK(k1, k2, k3)

(
(k1 + k2) · k3

k1 · k2

+ (k1
2 · k2

2) · k1 · k2 · k3
2

)
+ cyc.

)
−
(
GJK φ̇I

4H
(−k2

2 − k3
2 + k1

2) + cyc.

))∣∣∣∣∣
∗

.

(4.37)

• a,b,c → Momentum-Momentum-Momentum

Babc
∗ =− H

4a3K3

k1
2k2

2k3
2

ks

((
cIJK(k1, k2, k3) · (k1 · k2)2

(
1 +

k3

ks

)
+ cyc.

)
−
(
a2aIJKs (k1, k2, k3)

(
K2− k1 · k2 · k3

ks

)
+ cyc.

)
+

(
bIJK(k1, k2, k3)

H
k1k2 · k3

2 + cyc.

)
−
(
GJK φ̇I

4H
(−k2

2 − k3
2 + k1

2)

(
K2 +

k1 · k2 · k3

ks

)
+ cyc

))∣∣∣∣∣
∗

.

(4.38)

We reiterate that the calculation for the three-point function in our set up may be

perform very early when the modes of interest are deep within the horizon. Using

the in–in formalism we have reviewed in this chapter we can calculate the result in

single-field inflation. We quote the result from Maldacena [106, 119] for the three-

point function of ζ (which similarly obtained by the gauge relations in Sec. (2.5)),

〈ζ(k1)ζ(k2)ζ(k3) ∼ (2π)3δ(Σiki)
1

M4
plk

3
1k

3
3

ρ̇4
t2

φ̇2
t2

ρ̇4
t3

φ̇2
t3

(
φ̈t2

ρ̇t2φ̇t2
+
φ̇2
t2

ρ̇2
t2

)
, (4.39)

in the squeezed limit (k1 = k2 � k3) which we defined in Sec. (2.6.2) where t2 is the

time when modes k1 and k2 cross the horizons and t3 is the time when the mode

k3. Using the definition of the reduced bispectrum in Eqn. (2.147) we arrive at the

famed consistency relation,

fNL =
5

12
(1− ns) , (4.40)

in the squeezed limit. This result is calculated when the mode of interest is integrated

over from deep inside the sub-horizon to the end of inflation, incorporating the sub-

and super-horizon evolution of the mode. In contray to this, the transport method

uses the in–in formalism only for its initial condition and incorporates the sub- and

super horizon evolution in the transport equations. With these sets of equations

as our initial conditions and the equation from Ch. (3) we have all the ingredients

necessary our transport approach in the next chapter.



5. Evaluating Statistics from

Inflation

In this chapter we examine the methods for calculating the statistics of

curvature perturbations and tensor perturbations. Approximations can be

made on super-horizon scales using methods such as δN [120]. We review

this method in the context of the separate universe approach in Sec. (5.1).

However, such methods are not accurate as they do not take into account the

evolution of perturbations on sub-horizon scales nor do they easily allow for

explicit scale dependence. We will then outline numerical methods, namely

the Transport approach [121–123] in Sec. (5.2), which tracks the evolution

of scale-dependent statistics from sub- to super-horizon scales. From this

we extract relevant quantities that are used to examine inflationary pre-

dictions against our observations of the universe. Finally in Sec. (5.3) we

calculate the statistics of tensor perturbations generated during inflation in

both analytical and numerical formalisms.

5.1. Methods for Calculating the Statistics of

Curvature Perturbations

The most commonly used method to study multiple fields in inflation is the δN

formalism, which we review below. Statistics are calculated at horizon crossing using

the in–in formalism from Sec. (4.1). They are evolved to the end of inflation using

the separate universe approach and are analytically tractable in some circumstance.

These methods are often convenient as they can be simple to compute and give us

a precise understanding of mechanisms generating two- and three- point function

growth. Analytically they are only applicable however when the models we are

interested evolve according to the slow-roll assumptions, are not sensitive to sub-

horizon effects, the fields are light and the potential is sum-seperable [124]. If

the potential is feature-full and we have rapidly oscillating integrals (4.14) then it

becomes difficult to solve and the solutions are not sufficiently accurate [78]. These

are the motivations for the transport approach.

74
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Figure 5.1.: A diagram illustrating the seperate universe approach [38]. Each patch
is on a different hypersurface foliated in 3-spatial dimensions and evolves intime. We
work in natural units c = 1.

5.1.1. The Separate Universe Picture

In Sec. (2.5.4) we assumed that the gradients on large scales can be ignored and

illustrated the general conservation of curvature perturbations on scales larger than

the comoving horizon size. In Eqn. (3.27) the perturbed equations of motion have

terms that contain k/aH, which arises from the gradient of the curvature pertur-

bations. These scale-dependent terms vanish on super-horizon scales as k → 0.

Thus, on super-horizon scales these terms may be ignored and one can employ the

separate universe approach where each super-horizon patch of the universe evolves

independently of one another. In practice we choose patches on scales larger than

the horizon where the gradient terms are truly subdominant. Each patch of size

λs > H−1 acts as its own FLRW universe with homogeneous energy density and

pressure, and we only need the initial conditions taken locally in each patch and

evolve it using only the background equations. After each patch is evolved from a

time t1 to t2 the curvature perturbations can then be calculated.

In Fig. (5.1) the evolution of two separate patches with the following hierarchy of

scales λ0 � λ� λs > H−1 is illustrated. The integrated expansion between the two

hypersurfaces along the world line of each patch is Ni = N+δNi where ‘i’ labels the

patch and N is the background e-fold N. On scales greater than λs the homogeneous

evolution equations are independent of the shorter wavelength perturbations. Each

patch follows a trajectory along its worldline displaced from one another in the

phase space of (φI , φ̇I) with a distribution of initial conditions obtained using the
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in–in formalism integrated from a time inside the horizon to horizon crossing (as in

Ch. (4)). The trajectories along the world-lines can then be thought of as trajectories

in field-space. Adiabatic perturbations are then defined as a translation in time

along the background solutions. Isocurvature perturbations are normal to the time

translations and distinguish between the different trajectories in phase-space. In this

definition, the uniform density perturbations ζ, are perturbations in the locally-

defined e-fold time (i.e. the time along each worldline) N [120]. The amount of

expansion of one patch from some initial hypersurface (at time ti) to the final slice

of uniform energy density (at time t) is defined as N(t, x) = ln [ā(t, x)/a(ti)] whereas

the unperturbed amount of expansion is defined as N0(t) = ln [a(t)/a(ti)]. We may

then define ζ as,

ζ(t, x) = δN = N(t, x)−N0 . (5.1)

N is a function of the fields initial values, and so δN can be expressed as a Taylor

expansion. Employing such an expansion we find an expression for ζ,

ζ(t, x) = δN =
∑
I

NIδXI +
1

2

∑
IJ

NIJδXIδXJ + · · · , (5.2)

where the functions NI = ∂N/∂XI and NIJ = ∂2N/∂XI∂XJ are functions of the

background quantities evaluated at horizon crossing and δXI are the field pertur-

bations1. Then, we can calculate the two-point function,

〈ζζ〉 = NINJ〈δXI(k1)δXJ(k2)〉 , (5.3)

where we note that slow-roll is a required assumption for a few e-folds after horizon

exit; this is also the requirement for calculating the quantum field correlator at

horizon crossing. Similarly, we can calculate the three-point function,

〈ζζζ〉 =NINJNK〈δXI(k1)δXJ(k2)δXk(k3)〉

+NIJNKNL

∫
d3q

(2π)3
〈δXI(k1 − q)δXK(k2)〉〈δXJ(q)δXL(k3)〉+ cyclic ,

(5.4)

where the first term on the right hand side contains the non-linear interactions and

the second term gives rise to the local non-gaussianity (as defined in Eqn. (2.154)

in Sec. (2.6.2)). Considering solely the field-field correlations from Eqn. (4.20) the

result for the power spectrum using Eqn. (2.142) and Eqn. (5.3) is,

P(k) = NINJG
IJ

(
H?

2π

)2

, (5.5)

1In the slow-roll regime these are δXI = QI .
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where ? implies that we evaluate at horizon crossing which is where the k-dependence

of the power spectrum arises from. By ignoring the non-Gaussian contributions to

the bispectrum we can arrive at a k-independent expression for the local fnl [120]

(as defined in Sec (2.6.2)),

fnl =
5

6

NINJN
IJ

[NKNK ]2
. (5.6)

Note this result is analytical if one can calculate analytically NI and NIJ .

5.2. Numerical Methods for Calculating the

Statistics of Curvature Perturbations

We could employ the δN , in–in or analytical methods for calculating statistics of

inflation but as we will now discuss this is hard. Separate universe methods are

successful at estimating statistics for simple models and a main motivation for using

them is to make progress in obtaining analytical results.

δN provides one approach where analytics may be possible but for more complex

models (models with large numbers of field) it’s no longer straightforward to imple-

ment and possibly more cumbersome than if numerics were implemented. In order

to calculate the two- and three- point statistics of ζ a model containing N -fields one

will need to computed 2N coefficients of the NI tensors, 2N(N + 1/2) coefficients

of the NIJ tensor from Eqn. (5.3). In addition this method is only valid for light

fields (less massive than the Hubble scale). These is a limiting factor in analytical

approaches of δN .

In the in–in formalism calculating the correlation function may be hard as they

may contain rapidly oscillating components [106, 116, 125] in the integrand of

Eqn. (4.14). If this is the harmonic oscillator in Eqn. (4.14) we may ignore it up to

horizon crossing but if there are oscillations in the potential then we cannot. In an

adiabatic evolution under certain analytical prescriptions this will decay and leave

insignificant contributions to the two- and three- point functions a few e-folds after

horizon crossing. If the super-horizon evolution is characterized by non-adiabatic

perturbations then components of the integrand will no longer be insignificant on

super-horizon scales. If this is the case the integrals will no longer be rapidly oscil-

lating but as long wavelength modes are large compared to the Hubble scale there

may be a sensitivity to the mass spectrum and decay channel of the model [78].

However, it has been shown that numerical methods [116] are often the only way to

calculate the correlation functions when these oscillations are significant; one such

situation is when non-Gaussiantity is generated well before horizon crossing due to a

rapid oscillation of the slow-roll parameters [126]. In addition analytical calculations

in the in–in formalism become even more complex when we allow for a hierarchy of

the external wavenumbers ki in the three point functions 〈δXaδXbδXc〉 (i.e. if we
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wish to examine configurations other than equilateral) and the methods which do

accommodate this involve lengthy factorizations which further increase the number

of terms in our calculation

In addition this problem, the in–in formalism calculation of the correlation func-

tions relies on the massless approximation whereby all fields are less massive than

the Hubble scale. When fields are light in comparison to the Hubble scale the esti-

mates of the correlation functions we obtain are universally applicable to any model

of inflation. If the mass spectrum extends above the Hubble scale then this approx-

imation breaks down and more specialized approaches must be made by keeping

a subset of terms that capture the possible effects. However, it can be difficult to

identify which terms are important as it is analytical not tractable. In both δN and

the in–in formalism it is difficult to incorporate heavy fields.

5.2.1. Calculating Statistic for Models with Heavy Fields

While inflation is driven by light scalar fields the effects of additional heavy fields on

the dynamics of inflation has recently been of interest [127]. There is a strong case

for considering such fields if models have a UV completion in fundamental particle

physics, such as Supergravity and String theory [83]. In Ch. (8) we examine a new

class of model which features the non-trivial effects of heavy scalar fields. We can

classify these models into three categories depending on both the influence of the

heavy and light modes as well as how these modes affect one another.

In a Minkowski background, massive fields with mi � H are suppressed by the

inverse of the mass [59, 128]. By virtue of the decoupling theorem, for scales below

the mass of the heavy particle the full theory may be approximated arbitrarily

closely by an effective theory of the light fields alone [129]. The heavy physics

becomes negligible and one can integrate out the massive field leaving an effective

single-field model whereby the light field tracks the minimum of the heavy field’s

potential. In a time dependent background, however more care needs to be taken,

as dynamical effects arising from choices of initial conditions in the parameter space

may compensate for how small 1/mi is. If there is a bending in the field-space, as in

Fig. (5.2), then there is an associated angular velocity θ̇ [131]. Bending terms like

the angular velocity appear as couplings between adiabatic and isocurvature modes

in the system, meaning care is required when integrating out the heavy mode as

O(θ̇/mi) could be unity or larger in the case where turning is rapid. In the case where

the turning effects are small enough that the heavy modes track the minimum of the

potential then only adiabatic excitations are relevant but due to the kinetic mixing

of the fields the potential will be modified. The ‘Gelaton’ models [132] features a

heavy field and non-canonical kinetic coupling, “the heavy field ‘gels’ to the light

one”, effectively getting dragged along by it and altering the light field dynamics.

This results in a sound speed of less than 1 in the effective single-field description,



5.2: Numerical Methods for Calculating the Statistics of Curvature Perturbations79

Figure 5.2.: A diagram of a bending of the trajectory in field space [130]. High-

lighted is the adiabatic projection ~T and the non-adiabatic (isocurvature) projection
~N along the evolution of the fields.

resulting in large equilateral non-Gaussianity. There is a range of validity for this

effective description to work, however, and in the simplest of scenarios predictions

can be calculated analytically. In general however it is necessary to track the full

evolution of both the heavy and light modes to account for not just the adiabatic

fluctuations.

In the second case where the time dependent background effects are varying

rapidly, such as a sharp turn where θ̇/mi � 1, the heavy field can undergo a

non-adiabatic evolution. With non-adiabatic evolution comes particle production

and the excitation of both the heavy and light modes. The effects of particle pro-

duction during inflation can largely impact the homogeneous background as well

as the inflationary trajectory and the Hubble parameter, thus significantly altering

the statistics of inflation. Such scenarios have been examined under special circum-

stances in the past [133, 134]. Three main contributions to the correlations of ζ

are the particle production in the light modes (examined in Ref. [133] as the dom-

inant contribution), the conversion of heavy modes into light modes (examined in

Refs. [133, 134] but by neglecting particle production) and the response of heavy

modes to light mode fluctuations. At the level of two-point statistics [127] it was

found that features of heavy physics results in dampened superimposed oscillations

onto the power spectrum. At the level of three-point statistics [135] the bispec-

trum was calculated under the effect of the periodic production of heavy degrees

of freedom. Only in cases which limit to ‘Gelaton’ like behaviour can be studied

analytically by use of effective field theories. In all non-adiabatic cases numeri-

cal methods are required when any of these effects are important, with effects like

particle production making any analytical progress hard.

The third and final situation, the ‘Quasi-single field inflation’ model [136, 137],

represents a mixture of the previous two. The heavy field has a mass of roughly
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the same size as H and the trajectory turning rate is small enough that the heavy

modes do not displace away from the minimum meaning there is negligible particle

production from coupling to the background field configuration. However as the

mass is small enough, particle production may still occur due to the metric couplings.

The massive field will also have a cubic self-coupling which will parameterize the

angular velocity θ̇ and the bispectrum can be generated through the conversion from

the isocurvature modes to the curvature mode, once the inflaton trajectory turns.

If V ′′′ > H then non-Gaussanities can be sizable [136]. We therefore wish to use an

approach to calculating the effects of heavy fields during inflation, such an approach

is the transport method.

5.2.2. The Transport Method

In this section we will review the framework for a method to numerically evolve the

inflationary statistics. The method, developed by D. J. Mulryne et. al. [78, 121–

123, 138], is called the Moment Transport method for inflationary statistics. This

method evolves the statistical quantities (the moments or correlation functions)

themselves rather than evolving a perturbed quantity ζ. The moments are evolved

through a system of coupled ordinary differential equations called the transport

equations. These equations were originally constructed for purely super-horizon

evolutions for N -canonical fields [121, 123, 139] (and for non-canonical fields [104])

and then were later adapted for sub-horizon evolution [78, 122].

There are some strong advantages to this numerical approach. The first is that the

treatment of Feynman integrals that rapidly oscillate one avoids in many other setups

[140] as we evolve the statistics rather than evaluate the integrals (in Eqn. (4.14))

themselves. When compared with analytical or approximate methods a second

advantage is that all effects up to tree-level are included so there is no need to make

assumptions by discarding terms that may be relevant. By tracking each correlation

function directly it is easier to pinpoint what are the terms that contribute any

non-Gaussianity. A third advantage, and perhaps the strongest selling point of this

method, is that we can track the evolution of these statistics from deep within the

horizon in the quantum regime through horizon crossing to super-horizon scales

where the correlation functions are classical statistical quantities and where we can

evaluate observable quantities of the gauge invariant curvature perturbations. This

makes the transport method a useful tool when calculating observables for different

inflationary models.

In addition to this, in our implementation of the transport method we have ex-

cellent control of the accuracy, even for a large numbers of fields. The Transport

method has been utilized in publicly available codes, for the non-canonical two-

point correlators in mTransport [118], for the canonical three-point correlators [78]

in PyTransport [141] and CppTransport [142], for non-canonical three-point cor-
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relators in PyTransport 2.0 [143] (as we will review in Ch. (6)) and more recently

CppTransport [144].

Here, an important result of in this thesis is to derive the full transport equations

that are valid during the quantum phase [122] and adapt them to the covariant

field perturbations. Here we write the evolution equation of the Fourier modes of

the covariant field and momentum fluctuations and for convenience we first label the

full phase space of Heisenberg operations with the symbol δXa(ka) = (QI(kI), P
I(kI)

where a runs from 1 to 2N for N fields.

The expectation values we are interested in are then the two- and three-point

functions of δXa defined in Eqns. (4.19) and (4.29). As described, the equations of

motion for these correlation functions follow directly from Eqns. (3.24) and (3.25)

together with Ehrenfest’s theorem, and can be presented in terms of equations of

motion for Σab and Babc. By using Ehrenfest’s theorem and from Eqn. (4.3) we may

define the evolution of the expectation value of quantum operators as,

Dt〈δQI〉 = 〈−i
[
δQI ,H

]
〉 ,

Dt〈δP I〉 = 〈−i
[
δP I ,H

]
〉 − 3H〈P I〉 .

(5.7)

Equivalently these two expressions are valid without the expectation brackets. In

general, we can reformulate the above equation into a product of a matrix and the

expectation value,

Dt〈δXa〉 = ua
b〈δXb〉+ uabc〈δXbδXc〉 · · · , (5.8)

where ua
b is a matrix to be computed from background quantities and the dots

indicate higher order terms. The ua
b and higher order ua

bc tensors satisfy the relations,

ua
b = (2π)3δ(ka − kb)u

a
b (ka,kb) ,

ua
bc = (2π)3δ(ka − kb − kc)u

a
bc(ka,kb,kc) .

(5.9)

The evolution equation of the two-point function is also derived by the same

theorem except now we apply the chain rule which takes the form,

Dt〈δXaδXb〉 = 〈(DtδX
a)δXb〉+ 〈δXa(DtδX

b)〉 . (5.10)

In our covariant setting these take the form

DtΣ
ab(k) = uac(k)Σcb(k) + ubc(k)Σac(k), (5.11)
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and

DtB
abc(ka, kb, kc) = uad(ka)B

dbc(ka, kb, kc) + ubd(kb)B
adc(ka, kb, kc) + ucd(kc)B

abd(ka, kb, kc)

+ uade(ka,−kb,−kc)Σ
db(kb)Σ

ec(kc)

+ ubde(kb,−ka,−kc)Σ
ad(ka)Σ

ec(kc)

+ ucde(kc,−ka,−kb)Σ
ad(ka)Σ

be(kc) ,

(5.12)

where the covariant time derivative acts on Σab in the following way

DtΣ
ab(k) = ∂tΣ

ab(k) + Γa
c(k)Σcb(k) + Γb

c(k)Σac(k) , (5.13)

and on Babc as

DtB
abc(ka, kb, kc) =∂tB

abc(ka, kb, kc) + Γa
d(k)Bdbc(ka, kb, kc)

+ Γb
d(k)Badc(ka, kb, kc) + Γc

d(k)Babd(ka, kb, kc) ,
(5.14)

with Γa
b is defined as

Γa
b =


ΓIJK φ̇

K 0

0 ΓIJK φ̇
K

 , (5.15)

The u-tensors take the form

uab =


0 δIJ

m̃I
J −3HδIJ

 , (5.16)

where

m̃IJ = −k
2

a2
GIJ −mIJ , (5.17)

and

uabc =




−bJKI −cIJK

3aIJK bIKJ




−cIKJ 0

bIJK cKJ
I





. (5.18)
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The two-point function will in general be complex, and can be divided into its

real and imaginary parts

Σad = Σad
Re + iΣad

Im , (5.19)

with the real part symmetric under interchange of its indices, and the imaginary part

anti-symmetric. Both parts independently satisfy Eqn. (5.11). On super-horizon

scales the imaginary part decays to zero, indicating that on large scales the statistics

of inflationary perturbations follow classical equations of motion.

Babc, is in general also complex, but is real when only tree-level effects are included.

In our numerical implementation of the transport system we evolve the real and

imaginary parts of Σab separately using Eqn. (5.11), and evolve Babc according to

the equation

DtB
abc(ka, kb, kc) =uad(ka)B

dbc(ka, kb, kc) + ubd(kb)B
adc(ka, kb, kc) + ucd(kc)B

abd(ka, kb, kc)

+ uade(ka,kb,kc)Σ
db
Re(kb)Σ

ec
Re(kc)− uade(ka,kb,kc)Σdb

Im(kb)Σ
ec
Im(kc)

+ ubde(kb,ka,kc)Σ
ad
Re(ka)Σ

ec
Re(kc)− ubde(kb,ka,kc)Σad

Im(ka)Σ
ec
Im(kc)

+ ucde(kc,ka,kb)Σ
ad
Re(ka)Σ

be
Re(kb)− ucde(kc,ka,kb)Σad

Im(ka)Σ
be
Im(kb),

(5.20)

which follows from Eqn. (5.12) once Σab is broken into real and imaginary parts,

and which makes it clear that Babc remains real if its initial conditions are real. In

Sec. (4.2) we calculated the initial conditions for the two-point correlation function

deep within the horizon. It is now possible to restructure these in tensorial form

Σab,

Σab
∗Re =

1

2a3k


aGIJ −aHGIJ

−aHGIJ (k2/a)GIJ

 (5.21)

Σab
∗Im =

1

2a3k


0 kGIJ

−kGIJ 0

 . (5.22)

Likewise the initial conditions for Babc can be obtained from Sec. (4.3).

We now calculate the statistics of ζ (as we defined in Eqn. (3.49)) in the notation

of Eqn. (3.50). In this notation the two and the three-point function of ζ are given
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by

〈ζ(k1)ζ(k2)〉 =(2π)3δ(k1 + k2)P (k)

〈ζ(k1)ζ(k2)ζ(k3)〉 =(2π)3δ(k1 + k2 + k3)B(k1, k2, k3) ,
(5.23)

with the power spectrum and bispectrum from Eqns. (5.3) and (5.4) defined as,

P (k) =NaNbΣ
ab
Re(k)

B(k1, k2, k3) =NaNbNcB
abc(k1, k2, k3) + (NaNbNcb(k1,k2)Σac

Re(k1)Σbd
Re(k2) + 2 cyc.).

(5.24)

5.3. Statistics of Tensor Perturbations

In Sec. (2.7.2) we detailed the calculation for two-point statistics of the tensor modes.

We may also calculate the tensor power spectrum using the transport method. Sim-

ilarly to the treatment of the field and field momentum fluctuations, we define a

tensor momentum as ps = dhs/dt and form the vector Y a
s = (hs, ps). We may then

write the two-point function as,

〈Y a
s (k1)Y b

s′(k2)〉 = (2π)3δss′δ(k + k′)Υab . (5.25)

Following from Eqn. (5.11) the transport equations for Υab can be written as,

dΥab

dt
= ωac (k)Υcb(k) + ωbc(k)Υac(k) . (5.26)

The matrices ωab are computed as the massless limit of Eqn. (5.16) and are defined

as ,

ωab (k) =


0 1

−k2/a2 −3H

 , (5.27)

and the initial conditions of the matrix of coefficients Υab can also be computed, as

in Sec. (2.7.2). They are equivalent to the massless limit of Eqn. (5.21) with some

differences in normalization,

Υab(tinit) =
1

a3kM2
pl


a −aH

−aH k2/a

 , (5.28)

with all quantities on the RHS evaluated at tinit.
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Having developed this covariant form of the transport equation. We are now in

a position to employ these equation, together with the initial condition we have

outlined in Ch. (4), in a numerical code.



6. Computing Statistics with

PyTransport

In this chapter the transport method we have outlined in the previous

chapter is put to use. We review the software available for computing

the observables from inflation in Sec. (6.1), and outline where our code,

PyTransport 2.0, fits and what advantages it has over the rest in Sec. (6.2).

We then showcase its utility with a number of examples in Sec. (6.3) and

then benchmark the codes performance in Sec. (6.4).

6.1. Software for Inflation

Computational simulations play a integral role in modern physics. Significant ad-

vancements in our understanding of the universe have been made thanks to the likes

of Monte Carlo simulations of high energy particles colliding at the LHC and large

N-body simulations of cosmic evolution in the Millennium simulation. Huge devel-

opments have been made in Monte Carlo techniques to calculate the tree-level ma-

trix elements for a large class of Lagrangian-based models for particle phenomenol-

ogy in the last 25 years. Codes like Hegwig [145], CompHEP/CalcHEP [146–148],

MadGraph/MadEvent [149–152], Sherpa [153, 154], Whizard [155] and FormCalc [156,

157] generate the tree-level matrix elements that describe the hard scattering pro-

cesses. These numerical tools have been used in combination with packages designed

to generate the Feynman diagrams like FeynRules [158, 159] and LanHEP [160,

161]. Architecturally they are not too dissimilar from open-source code used to

calculate the statistics from inflation but are, on a whole, far more developed.

For two-point statistics of canonical inflation there exists open-source codes like

FieldInf [162–164], ModeCode/MultiModeCode [72, 165–169] written in Fortran

and PyFlation [170–172] written in Python. For three-point statistics of single-

field canonical inflation there is Bingo [140, 173]. These implementations work on a

case-by-case basis often requiring that derivatives of the potential and other model

dependent terms be calculated separately and inputed manually. This is a major

limitation as terms can be cumbersome in more complex (and interesting) models.

For non-canonical models, terms like the Riemann tensor and its covariant derivative

86
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(seen in (3.32) (3.33) (3.34)) which are of rank 4 and 5 respectively can grow in size

dramatically with large numbers of fields making it impractical for manual entry of

these terms. In reality users often resort to make assumptions about which terms

are relevant and drop those that are not. It is therefore far better to automate this

process, in a similar fashion to code used for particle physics phenomenology. This

also means we can make fair comparisons between models without inconsistencies

by making assumptions.

As outlined in Sec. (5.2.2) the Transport method is a numerical method that has

a number of advantages over the alternatives which are used in the above imple-

mentations. Our implement of this method reduces the complexities of calculating

the statistics, along with an automated method for deriving the derivatives of the

potential the only complexities that arise are left to the initial conditions. This

problem can be trivial as far enough back in time (deep in the horizon) the ini-

tial conditions of the two- and three- point functions are approximated by massless

scalar fields. This leaves us with only the initial choice of field values and a choice

of models parameters.

The first implementation of the transport approach to automatically calculate

inflationary statistics was written in Mathematica in the code mTransport [118].

It computes the two-point correlation function of the curvature and tensor pertur-

bations with an arbitrary field-space metric and scalar potential. It retains all the

other benefits of the transport framework including accommodation of arbitrary

mass hierarchies. While the code is sufficient for simple models with a small num-

ber of fields, it is too slow for complex models with large numbers of fields and

can be inconvenient in some cases, such as Monte Carlo sampling. More recently

the Transport method was implemented into code for canonical three-point statis-

tics [78] inCppTransport [142] (written in C++ ) and in PyTransport [141] (written

in Python and C++ ). Another major advantage is the choice of language, compared

to mTransport (which is proprietary), both C++ and python are open-source and

freely available, moreover, they are far quicker at evaluating the statistics and scale

with the number of cores working on everything from a laptop to a parallelized

cluster with thousands of cores.

For symbolic programming the CppTransport package utilizes the GiNaC com-

puting algebra library. The translator component of the code converts the ‘model

description file’ to customized C++ output necessary to evolve the dynamics and

statistics. The model is then compiled. By utilizing the multi-process communi-

cation library MPI the calculations can be parallelized across multiple cores and

multiple nodes in clusters. This task along with the integration is handled by the

management system and then output data is saved into an SQLite database. Finally

there is a visualization and reporting suite which enables post-processing analysis

of the data easily read through an HTML interface. CppTransport was originally
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designed to calculate statistics for canonical multifield models of inflation, recently it

was updated to include more generic models, such a non-standard kinetic terms [144].

The package that we develop is PyTransport, which not only provides an inde-

pendent verification of the transport other Transport implementations but has some

advantages over the above packages that we will also outline in the next section.

6.2. PyTransport

PyTransport is a hybrid package of core C++ and Python interface. The symbolic

programing is handled by sympy and gravipy. By utilizing Python’s vast repositories

of packages, high level analysis is straight forward to implement. It has minimal

requirements, rapid deployment and with its Python interface means it is easily

scriptable. For visualization libraries like mathplotlib and mayavi are available and

jobs can be parallelized using Mpi4Py or similar packages. In this thesis we present

a new version of the PyTransport package PyTransport 2.0, which extends the

code to the case of a non-trivial field-space metric. Our new package allows users to

specify both the potential and the field-space metric for a given model in a Python

script. It automatically takes both these functions and generates a bespoke Python

module. This module contains a number of useful functions including those needed

to calculate the power spectrum and bispectrum of ζ. The package is available at

github.com/jronayne/PyTransport.

6.2.1. Code Overview

As an interpreted language, Python can be slow for some tasks. This is circumvented

in PyTransport by using C++ code, which is compiled into a Python module, to

perform numerically intensive tasks with the result that the speed of the package is

nearly indistinguishable from pure C++. The C++ code itself is kept as simple and

clean as possible and can therefore easily be edited if required. PyTransport has

been developed on OS X and Linux and is compatiable with Python 2.7 and 3. It

can also be adapted to Windows systems, but this functionality has not yet been

incorporated into the released package.1

The code is intended to be a reusable resource for inflationary cosmology. It en-

ables users to quickly create a complied Python module(s) for any given model(s) of

multifield inflation. The primary function of the complied module is to calculate the

power-spectrum and bispectrum of inflationary perturbations produced by multifield

inflation. To this end, the module contains a number functions that can be called

from Python and that perform tasks such as calculating the background evolution

of the cosmology, as well as the evolution of the two and three point functions. We

also provide a number of further functions written in Python that perform common

1We thank Sean Butchers for work related to installing PyTransport on a Windows machine.
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tasks such as calculating the power spectrum or bispectrum over a range of scales

by utilizing the compiled module. The true power of the approach, however, is that

users can rapidly write their own scripts, or adapt ours, to suit their own needs.

The transport approach to inflationary perturbation theory that the code em-

ploys can be seen as the differential version of the integral expressions of the In-In

formalism. It is helpful numerically because it provides a set of ordinary differential

equations for the correlation functions of inflationary perturbations. The code solves

these equations from deep inside the horizon until some desired time after horizon

crossing using a standard variable step size ordinary differential equation (ODE)

routine with error control. Such off the shelf routines are extremely well tested, and

provide an easy way to change the required accuracy. This is helpful in order to

check convergence of the numerical solutions, or to respond to needs of models with

very fine features.

The code is distributed in a folder called PyTransportDist/2, which also contains

a copy of the documentation in the PyTransportDist/docs/ folder. The base code

for PyTransport is written in C++ and has a simple object orientated structure.

This code can be found in the PyTransportDist/PyTransport/CppTrans folder and

we provide a few more details about its structure and functionality in appendix 1.

The C++ code is deliberately as simple as possible to ensure transparency and adapt-

ability. The idea of the PyTransport package as a whole is that after a potential

and a field space metric (if the metric is non-Euclidean) are provided by the user the

C++ code is automatically edited and complied into a Python module by supporting

Python functions (called from the PyTransportDist/PyTransport/PyTransSetup.py

file), meaning a lot of work is done for the user. The end result is a Python module

consisting of a set of Python functions for a specific inflationary model, called the

PyTrans*** module. The functions of this module provide key routines for infla-

tionary cosmology (including calculating the evolution of the two and three point

correlations). The asterisks, ***, indicate we can label the module with a tag telling

us what model it corresponds to, and we can therefore install multiple modules if we

want to work with many models simultaneously. The key functions available to these

modules are defined in the file PyTransportDist/PyTransport/PyTrans/PyTrans.cpp

(which is a C++ file defining the Python module). The scripts that edit the C++

code and compile the module are discussed further below in the setup section,

and by default they place the compiled module in the local folder PyTransport-

Dist/PyTransport/PyTrans/lib/python/ to avoid access issues if, for example, you

do not have root privileges. Other useful Python functions that perform common

tasks, such as producing a power spectrum by looping over calls to the compiled

module, can be found in PyTransportDist/PyTransport/PyTransScripts.py. Python

treats functions written in Python inside a file, such as PyTransScripts.py and Py-

2If downloaded from GitHub, it will instead come in folder named PyTransport and labeled with
the branch of the code.
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Figure 6.1.: A block diagram showing the relation between the different components
of PyTransport 2.0.

TransSetup.py, in the same way as a compiled module. So there are effectively three

modules within PyTransport, one to setup a compiled module for the potential

we want to study (PyTransSetup), the compiled module itself (PyTrans***) (or

multiple compiled modules labeled with different tags) and a module with various

functions automating common tasks that use the functions of the compiled mod-

ule (PyTransScripts). Also in the PyTransportDist/ folder is an example folder

PyTransportDist/Examples containing several example scripts for different models.

The structure of the code is illustrated in Fig. (6.1). There are no dependencies

external to the folders provided except for a working Python installation (with ap-

propriate packages downloaded), and a C++ compiler – this is deliberate to make

the code as easy as possible to use. An MPI installation such as openMPI is also

needed if the module is required to be used across multiple cores.

We note that all the C++ code is written by the transport team except for an

included Runge-Kutta-Fehlberg (rkf45) integrator routine written by John Burkardt

and distributed under a GNU LGPL license detailed here3. We choose this lightweight

integrator over other options, such as using integrators included with the BOOST

library, so that it could easily be included with the distribution with no external

dependencies being introduced.

3https://people.sc.fsu.edu/∼jburkardt/f src/rkf45/rkf45.html

https://people.sc.fsu.edu/~jburkardt/f_src/rkf45/rkf45.html


6.3: PyTransport 2.0: Examples 91

(a) (b)

Figure 6.2.: The time evolution of the polar coordinate fields θ and R with metric
(6.2) on the left, and the Cartesian coordinates, X and Y on the right.

(a) (b)

Figure 6.3.: The time evolution of correlation functions. On the left the time
evolution of the two-point function of the curvature perturbation, ζ, and on the right
the evolution of the three-point function for an equilateral configuration. Both were
taken for modes exiting the horizon 21 e-folds before the end of inflation.

6.3. PyTransport 2.0: Examples

6.3.1. Model with a Continuous Curved Trajectory

Ref. [78] attempted to construct a model in which the field-space trajectory was

curved in such a way as to exhibit Gelaton [132] or QSFI [136] behaviour. For reasons

presented there, this behaviour was difficult to achieve, but the model presented

there is still a useful example, and in the present context provides a useful check of

our code.

The model is defined by the action for two fields R and θ as

S = −1

2

∫
d4x
√−g

[
(∂R)2 +R2(∂θ)2 + 2V (R, θ)

]
, (6.1)

where the potential (defined below in Eqn. (6.3)) represents a circular valley at a
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(a) (b)

Figure 6.4.: The reduced bispectrum fnl(k1, k2, k3) for equilateral configurations.
On the left the evolution of fnl versus time for an equilateral configuration with
modes leaving the horizon 21 e-folds prior to the end of inflation. On the right the
bispectrum over a range of equilateral configurations as a function of exit time of the
scale ks/3.

fixed value of R – and hence is naturally written in terms of these ‘polar coordinate’

fields. However, as the codes developed for Ref. [78] only dealt with canonical kinetic

terms, in that work it was necessary to perform a field redefinition to Cartesian

coordinates X and Y . Here we evolve the statistics directly for the fields R and

θ and compare results, using this as a test case to benchmark our code against its

canonical precursor.

The field-space metric of the model can be read off from Eqn. (6.1), and is

GIJ =


1 0

0 R2

 . (6.2)

The potential is

V = V0

(
1 +

29π

120
θ +

1

2

ηR

M2
p

(R−R0)2 +
1

3!

gR

M3
p

(R−R0)3 +
1

4!

λR

M3
p

(R−R0)4

)
,

(6.3)

and we choose parameters V0 = 10−10M4
p , ηR = 1/

√
3, gR = M2

pV
−1/2

0 , ω = π/30,

λR = 0.5M3
pω
−1/2V

−3/4
0 and R0 =

30
√

10−10/3

π
√

10−9
. With these choices, the radial direc-

tion represents a heavy mode confining the inflationary trajectory to the valley, with

a light angular direction. We further choose initial conditions

Rini =
√
R2

0 + (10−2R0)2 and θini = arctan

(
10−2R0

R0

)
. (6.4)

Generating results using our new code for the field evolution and correlations in the
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(a) (b)

Figure 6.5.: The time evolution of the fields φ1, φ2 and φ3 on the left, and the time
evolution of the two-point function of ζ for a k-mode exiting the horizon 60 e-folds
before the end of inflation on the right. The turn in field-space occurs 13 e-folds into
inflation when the field φ2 experiences excitations from its coupling to the lighter
field φ1 via the field-space metric. After roughly 30-e-folds the φ1 field reaches the
minimum and the amplitude of the power spectrum increases at this time.

{R, θ} basis, and then subsequently using a coordinate transformation to translate

the results to the {X, Y } basis, we can compare our results to the output of the

canonical code. We find excellent agreement. The evolution of correlation functions

of the curvature perturbation, ζ, are coordinate invariant, and also match that

generated using the canonical code. In Fig. (6.2a) the background field evolution

in the non-canonical case is plotted. Under the coordinate transformation to the

canonical fields X and Y we get the evolution in Fig. (6.2b). In Fig. (6.3a) &

(6.3b) one can clearly see that after horizon crossing the curvature perturbation

freezes in, becoming constant on large scales as expected. The evolution of the

reduced Bispectrum (Eqn. (2.147)) fnl for one equilateral triangle is shown in Fig.

(6.4a). The reduced bispectrum in the equilateral configuration as a function of

horizon crossing time is given in Fig. (6.4b), and can be compared with Fig. 11 of

Ref. [78].

6.3.2. Quasi-Two-Field Inflation

Next we consider the quasi-two field model introduced in Ref. [118] where the

power spectrum was calculated. In this model there are two light scalar fields which

drive inflation and one heavy field which interacts with the light ones through a

coupling in the kinetic terms. This leads to a fast turn in the plane of the lighter

two fields resulting in the well known feature of oscillations in the power spectrum

and bispectrum (see for example [133–135, 174–178]). In this section we reproduce

the power spectrum presented in Ref. [118] as a test of our code and then calculate

the bispectrum for the first time. The three fields are labelled φ1, φ2 and φ3, and
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Figure 6.6.: The power-spectrum of the curvature perturbation for a range of modes
which exit the horizon over a window of 7 e-folds. The scale kpivot is taken to be
when the mode leaves the horizon at 58 e-folds prior to the end of inflation. Both
the scales and amplitudes are normalised to the spectrum at the pivot scale.

(a) (b)

Figure 6.7.: The evolution of the three-point function for one equilateral configura-
tion, and the reduced bispectrum, fnl, for equilateral configurations over a range ks.
The reduced bispectrum is plotted for modes leaving the horizon between 59 and 51
e-folds before the end of inflation. The highly oscillatory behaviour is a result of the
excitations to the heavy field around horizon crossing.

model has a metric which takes the form

GIJ =



1 Γ(φ1) 0

Γ(φ1) 1 0

0 0 1


. (6.5)
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Figure 6.8.: Amplitude over shape configurations of the reduced bispectrum fnl(α, β)
at a fixed kt 53 e-folds before the end of inflation, corresponding to log(k/kpivot) =
4.79.

The function Γ(φ1) has the following φ1 dependence [127],

Γ(φ1) =
Γ0

cosh2
(

2
(
φ1−φ1(0)

∆φ1

)) , (6.6)

with Γ0 = 0.9 the maximum value attained by Γ(φ1). φ1(0) = 7Mp is the value of φ1

at the apex of the turn in field-space and ∆φ1 = 0.12 is the range of φ1 over which

the turn occurs. The potential is defined as

V =
1

2
g1m

2φ1 +
1

2
g2m

2φ2 +
1

2
g3m

2φ3 , (6.7)

with parameters g1 = 30, g2 = 300, g3 = 30/81 and m = 10−6. The initial conditions

of the fields are

φ1 = 10.0Mp φ2 = 0.01Mp φ3 = 13.0Mp . (6.8)

In Fig. (6.5a) the background field evolution is plotted. At 13 e-folds into the

evolution the turn in the inflationary trajectory occurs, as can be seen by the increase

in the amplitude of the heaviest field. In Figs. (6.5b) & (6.7a) the evolution of both

the two and three-point correlation functions of curvature perturbations are plotted.

The power spectrum obtained in Fig. (6.6) matches that seen in Ref. [118] illustrating

that the code is in good agreement with this earlier implementation. We produce the

reduced bispectrum over equilateral configurations in Fig. (6.7b), the structure of

which is defined by a pulse of large and rapidly oscillating values of the three-point

function. Finally, for a fixed scale kt we plot the reduced bispectrum in Fig. (6.8)

as a function of the α and β parameters discussed in (2.6.2) for a fixed kt.
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(a) (b)

Figure 6.9.: The evolution of the fields θ and ψ on the left and the evolution two-
point function of the curvature perturbation on the right for a mode leaving the
horizon 50 e-folds prior to the end of inflation. From 30 e-folds into inflation until
the end there is no further evolution of the two-point function.

(a) (b)

Figure 6.10.: Evolution of the reduced bispectrum in an equilateral configuration on
the left and the reduced bispectrum for an equilateral configuration versus the radius
of the metric sphere on the right. From 30 e-folds into inflation until the end there
is no further evolution of fnl. The evolution of fnl was taken for a mode leaving the
horizon at 26 e-folds from the beginning of inflation. The bispectrum on the right
is taken for a range of modes in the window between 25 and 30 e-folds and for a
radius between 9 and 11.5. It illustrates a large amplitude correlation over scales for
a small radius (or rather large field-space curvature).
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6.3.3. Inflation on a 2-Sphere Metric

In the models considered above the field-space metrics were non-trival, but flat. As

a further test of our code, therefore, we now introduce a model with a constant

non-zero Ricci curvature.

We construct a toy model containing two fields θ and ψ, where the action is

defined as

S = −1

2

∫
d4x
√−g

[
r2

0(∂θ)2 + r2
0 sin2 θ(∂ψ)2 + 2V (θ, ψ)

]
, (6.9)

where r0 is the radius of the surface of the sphere which the field trajectory is

confined to. The curvature of the field-space, defined by the Ricci Scalar, is related

to the radius, R = 2
r20

. The field-space metric which describes the line element along

the surface of a sphere is therefore

GIJ =


r2

0 0

0 r2
0 sin2 θ

 . (6.10)

For the potential we use the same potential given for the axion-quartic model studied

in Ref. [78]. The potential is of the form,

V =
1

4
gθθ

4 + Λ2

(
1− cos

(
2πψ

f

))
, (6.11)

where the field ψ is our “2-sphere-axion” and our parameters are gθ = 10−10, Λ4 =

(25/2π)2gM4
p , ω = 30/π and f = Mp. The initial conditions of the fields are set to

θini = 2.0Mp and φini = f/2− 10−3Mp, (6.12)

which is sufficient for inflation for 64 e-folds. The background evolution of the fields

are plotted in Fig. (6.9a), with the corresponding evolution of correlations of the

curvature perturbations for two-point (Fig. (6.9b)) and three-point (Fig. (6.10a))

functions. We study the effects of curvature on quantities like the bispectrum by

varying the radius r0. Figure (6.10b) is a contour graph of the bispectrum as a

function of r0. We see that for a radius r0 > 11.0 the bispectrum is small, but for

r0 < 11.0 the bispectrum begins to increase. This indicates a correlation between

large curvature and a value of large fnl in this model.

6.3.4. Inflation on a Conifold Metric

Finally we consider a more realistic case inspired by models of D-brane inflation.

Such models have recently been the subject of considerable interest, with a number
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Figure 6.11.: The evolution of the 6 moduli fields during inflation. Rich dynamics
exist owing to the couplings in the conifold metric. Inflation ends when the branes
collide at a value of r = 0.

(a) (b)

Figure 6.12.: On the left, the power spectrum of curvature perturbation and on the
right the bispectrum of curvature perturbations over an equilateral configuration for
modes exiting the horizon after a large range of times between 12 and 64 e-folds.

of groups statistically probing their realisations [179–181]. In one such scenario two

D3-branes are attracted by a Coulomb force. Compactification induces a warping

of the 6-D manifold where the D3-brane sits, resulting in a non-trivial field-space

metric in the Lagrangian of the system. Both the geometry of the metric and

structure of the potential affect the inflationary dynamics. Initial work [179] looked

at the background dynamics of this system, while more recent studies looked into

the distribution of 2-point statistics [180, 181]. Here we illustrate how our new code

could be used to obtain information about the bispectrum, though we defer realistic

studies to future work.

We consider the Lagrangian of D3-brane inflation as

S = −1

2

∫
d4x
√−g

(
GIJdφ

IdφJ + 2V (φ1, . . . φ6)
)
, (6.13)

where a is the scale factor. The scalar fields represent the 6 brane coordinates, one
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radial r and five angular dimensions θ1, θ2, φ1, φ2 and ψ. The field-space metric GIJ

corresponds to the Klebanov-Witten conifold geometry [182]. The metric is of the

form,

GIJdφ
IdφJ = dr2 + r2dΩ2 , (6.14)

with the metric of the cone dΩ [183] is given by

dΩ2 =
1

6

2∑
i=1

(
dθ2

i + sin2 θidφ
2
i

)
+

1

9

(
dψ +

2∑
i=1

cos θidφi

)2

, (6.15)

which is a non-compact geometry built over the five-dimensional (SU(2)×SU(2))/U(1)

coset space T 1,1. As a toy example we do not generate a realistic potential (motivated

by any attractive forces between branes or contribution from either the homogeneous

or the inhomogeneous bulk), instead, for simplicity, we take a quadratic potential

for the 6 fields

V (φ) =
6∑
i=1

m2
iφ

2
i , (6.16)

where mi are the randomised masses of the fields. A randomised set of masses and

initial conditions are selected with the criteria that 64 e-folds of inflation occur.

With these parameters the evolution of the dynamics and statistics can be run

and the background trajectory for each of the six fields is plotted in Fig. (6.11).

The power spectrum is plotted in Fig. (6.12a) and the bispectrum in the equilateral

configuration is plotted in Fig. (6.12b). It would be interesting to run a more realistic

analysis including the full potential of the system but this is beyond the scope of

our work. We have, however, demonstrated that this is possible using the transport

method and its implementation in code via PyTransport.

6.4. Performance

In this section we will examine the performance of PyTransport 2.0 by conduct-

ing convergence test and comparing the computation time with its predecessor

PyTransport. To illustrate this we will use the model in Sec. (6.3.3) with a double

quadratic and 2-sphere metric. The double quadratic potential has been used exten-

sively as a proving ground for many numerical methods [78, 121, 123, 169, 172, 184–

187]. As the potential is sum-separable the analytical expressions can be calculated

using the slow-roll approximation [124], however, we wish to test our code with

the field-space metric implementation we make a departure from this standardized

testing and lose the analytical results that come with it.
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6.4.1. Convergence Tests

Number of massless sub-horizon e-folds

As we discussed in Ch. (4) the initial conditions, derived from the quantum cal-

culations, are valid when k2/a2 � m2 where m2 is the largest eigenvalue of the

mass matrix which is model and typically time dependent. Typically this is a few

e-folds before horizon crossing k2/a2 = H2 in the required massless regime where

we can start our evolution numerically for a particular wavelength. In the case of

the bispectrum we choose the earliest massless time which is associated to the set

of wavenumbers in the configuration (for example in the squeezed configuration this

corresponds to when the smallest mode satisfies the above condition). The number

of e-folds of massless evolution is a factor in the accuracy of our result, therefore

we wish to spend as long as possible in this regime. There is, however, a trade off

between amount of massless evolution and computation time as integrating is ex-

pensive in this phase. Therefore it is important to know when our result converges.

In PyTransport there are automated scripts that allow the user to set the initial

time for each configuration a number of e-folds prior to its massless time. The con-

vergence plot, in Fig. (6.13), shows the reduced bispectrum in both equilateral and

squeezed configurations as a function of the number of e-folds of massless evolution.

Integration tolerance

The evolution of the three point function can be a numerically intensive task, re-

quiring high numerical accuracy. The question arises how low (the lower the higher

the accuracy) do we need to set numerical tolerances. This question can’t be an-

swered absolutely, and must be dealt with on a model by model basis. Models with

finer features in the potential, or in which the excitation of the two and three point

function occurs on sub-horizon scales will require lower tolerances (high accuracy).

Models which produce a small signature may also need higher accuracy to resolve

the true answer from noise than models which produce a large bispectrum. As the

values are lowered, the code takes longer to run and eventually will fail. Therefore,

there is significant benefit for picking a required accuracy which is sufficient for the

task, but not one which is too stringent. Convergence is the key criterion in selecting

tolerances.

In PyTransport (as in most packages involving numerical integrators) there are

two tolerances to set; the relative and the absolute tolerance. In Fig. (6.14) we show

the value of the reduced bispectrum in both equilateral and squeezed configurations

as a function of the integration tolerances.

6.4.2. Comparative Performance

In PyTransport 2.0, one can opt to specify explicitly a field space metric. If this

option is not selected the code defaults to assuming that the metric is Euclidean and



6.4: Performance 101

Figure 6.13.: Top panel: Convergence of f eqnl with increasing number of massless (or
sub-horizon) e-folds (using relative and absolute tolerances of 10−8) for an equilateral
triangle of the bispectrum. Bottom panel: Convergence of f sqnl with increasing number
of massless (or sub-horizon) e-folds (using relative and absolute tolerances of 10−8)
for a squeezed triangle (α = 0, β = 0.99). The double quadratic model with a
2-sphere field-space metric from Sec. (6.3.3) was used for the purpose of this test.
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Figure 6.14.: Top panel: Convergence of f eqnl with decreasing relative and absolute
tolerances (using 5 e-folds of massless evolution) for an equilateral triangle of the
bispectrum. Bottom panel: Convergence of f sqnl with decreasing relative and absolute
tolerances (using 5 e-folds of massless evolution) for a squeezed triangle (α = 0,
β = 0.99). The double quadratic model with a 2-sphere field-space metric from
Sec. (6.3.3) was used for the purpose of this test.
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Figure 6.15.: Top panel: scaling of integration time with increasing number of
massless (or sub-horizon) e-folds (using relative and absolute tolerances of 10−8) for
an equilateral triangle of the bispectrum and a squeezed triangle (α = 0, β = 0.99).
Timings were performed using the canonical code and the new non-canonical code
setting a Euclidean metric explicitly. Bottom panel: scaling of integration time with
integration tolerance with 5 e-folds of massless evolution. The double quadratic model
used to analysis performance in Ref. [78] is timed using the canonical PyTransport
package and compared to the same model using PyTransport 2.0. The computer
used for timings contained an 3.1 GHz Intel i7-4810MQ processor.
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the code reverts back to the previous canonical code. The simplicity of a Euclidean

metric means that a number of internal loops do not need to be performed, and

hence the canonical code is expected to be faster than when a metric is specified

explicitly (even if the metric is the Euclidean one). To demonstrate this effect and

also to benchmark the speed of the new code in Fig. (6.15) we show how the speed

of the new code compares with that of the canonical one. We also show how the

speed of the code is sensitive to the number of e-folds before horizon crossing (of the

shortest scale in the triangle being evaluated) at which initial conditions are fixed,

and to different tolerances which fix the accuracy of the code. For this purpose we

use the double quadratic potential used to calculate performance data in Ref. [78].

As can be seen, the new code is roughly a factor of 2 slower for this two field model.

We find that introducing a simple field space metric, such as the 2-sphere metric used

in Sec. (6.3.3), leads to very similar timing data to the Euclidean metric (though

more complicated metrics will inevitably slow down the code as the terms in the

metric need to be evaluated at each time step). A more significant effect comes

from increasing the number of fields. The size of the arrays which store information

about the Riemann tensor and its derivative scale as N 4 and N 5 respectively (for

the canonical code the largest arrays scale as N 3), and therefore memory issues and

overheads resulting form accessing and looping over these arrays grow rapidly as

field number increases.

In this chapter we constructed a numerical code from the transport method. Now

we can use it examine more realistic situations where we may wish to extract some

interesting physics.



7. Attractor Behaviour in

Multifield Inflation

In this chapter we study multifield inflation in scenarios where the fields are

coupled non-minimally to gravity. We illustrate that gravity formulation

plays an important role: in the case of metric gravity the coupling means

that multifield models approach the single-field α-attractor limit, whereas

in the Palatini case the attractor behaviour is lost in the case of multi-

field inflation, as has previously been observed in the single-field case. In

Sec. (7.1) we present a summary of attractors in inflationary observables.

We then present the multifield models we are considering and perform the

conformal transformation to the Einstein frame where the non-minimal cou-

plings vanish in Sec. (7.2), and numerical set-up in Sec. (7.3). Finally we

present the results in Sec. (7.4), discussing observational ramifications and

demonstrating why the curved field-space metric in the Einstein frame has

no influence on the inflationary dynamics.

7.1. Attractor Models of Inflation

In 1980 Starobinsky proposed that quantum corrections to general relativity could

have some cosmological consequences in the early universe, particularly for infla-

tion [20]. Originally, these quantum corrections were formulated in the language

of ‘semi-classical’ gravity [59] (which relates the Einstein tensor to the expectation

value of the energy-momentum tensor under the assumption that the quantum ef-

fects are dominated by the more numerous matter fields). It was later formalized so

that the standard Ricci scalar in the Einstein-Hilbert Lagrangian is replaced by a

function of the Ricci Scalar. The action for Starobinsky inflation (sometimes refered

to as R2 inflation) is

S =
1

2

∫
d4x
√−g

(
R +

R2

6M2

)
, (7.1)

where M is some mass scale smaller than Mpl. This model propagates a spin-2

graviton and a scalar degree of freedom which manifests itself under a conformal

105
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transformation of the metric,

ḡµν =

(
1 +

φ

3M2

)
gµν . (7.2)

We then impose a field redefinition of φ,

φ̄ =

√
3

2
ln

(
1 +

φ

3M2

)
, (7.3)

so that our kinetic terms are canonical to obtain the action,

S =
1

2

∫
d4x
√−ḡ

[
R̄− ∂µφ̄∂µφ̄−

3

2
M2

(
1− e−

√
2
3
φ̄
)]

. (7.4)

In this frame the additional degree of freedom in the action of Eqn. (7.1) due to the

R2 term is now manifest as a scalar field minimally coupled to gravity. Moreover

the observational predictions from this model are (ns , r) = (1− 2/N , 12/N2) ( with

(ns , r) = (0.967 , 0.003) for N = 60). Coincidentally this result also fits neatly in

observational data [103].

Recently it has emerged that many, seemingly unrelated, inflationary models con-

verge on this same result (up to some uncertainty on the effect of reheating). This

has appeared in Higgs-type inflationary models with the non-minimal couplings to

gravity [188] ξφ2R with ξ < 0, in chaotic inflation with non-minimal coupling to

gravity [189, 190] with ξ > 0 and in the context of supersymmetric extensions in-

volving kähler potential [191–195] the study of which later evolved into the field

of generalised α-attractors. A typical feature of α-attractor models is a pole that

appears in the Laurent expansion of the kinetic term in the Einstein Frame. This

is a similar property in a related family of models, the ξ-attractor models. It is this

common pole which underlines the attractor properties of these models [194].

7.2. Non-Minimal Coupling to Gravity

In scalar-tensor theories the Jordan frame is referred to as the frame where the

Lagrangian contains a coupling between the scalar field and the scalar curvature.

The frame where the expressions for observations take the usual form is the Einstein

frame, where there is no coupling to gravity and where the weak energy condition

is not violated [196]. The action in the Jordan frame takes the form,

SJ =
1

2

∫
d4x
√−g

[
(M2

pl + f(φI))gµνR
µν − δIJ∂µφI∂µφJ − U(φI)

]
, (7.5)
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where the U(φ) is the potential in the Jordan frame and the non-minimal coupling

function, f(φI), will, in the following, take the form

f(φI) =
∑
I

ξ
(n)
I

(
φI

Mpl

)n
, (7.6)

with ξ
(n)
I , the dimensionless non-minimal coupling parameters. Any physical answer

should not depend on the frame you are working in (in the same way as coordinate

invariance) and the ones we choose to calculate in is more a matter of convenience.

At the end of inflation (when scalar field stops evolving) the ζ in the two frames

should be conserved and equivalent under a certain frame-covariant transforma-

tion [197, 198]. The transformation from the Jordan Frame to the Einstein frame is

by means of a conformal transformation. A conformal transformation is a rescaling

of the space-time metric gµν → ḡµν , and as we have seen above this is often accom-

panied by a rescaling of the scalar field φ→ φ̄. Under the conformal transformation,

gµν → Ω−1(φI)gµν , Ω(φI) = 1 + f(φI) , (7.7)

we obtain the action in the Einstein frame

SE =
1

2

∫
d4x
√−g

[
1

2
M2

plR−
1

2
GIJ(φI)∂µφ

I∂µφJ − U(φI)Ω−2(φI)

]
. (7.8)

In the case of more than one scalar field minimally attached to gravity it is not

possible to canonicalize the model, so we are inevitably left with a field-space metric.

In the case of a single-field one could redefine the scalar field so that the kinetic terms

become canonical and only the potential is modified. For multiple fields this is in

general not possible however using the transport method and code we can these

calculate directly with Eqn. (7.8).

If we take the single-field example, Eqn. (7.8) becomes,

SE =
1

2

∫
d4x
√−g

[
1

2
M2

plR−
1

2
∂µφ∂

µφ− U(φ)Ω−2(φ)

]
. (7.9)

In slow-roll, the inflationary dynamics are parameterized just by the potential, and

by transforming to the Einstein frame from the Jordan frame we recover this pa-

rameterization.

In addition, the larger the size of the coupling parameter ξ the flatter the potential

in the Einstein frame becomes and the closer the potential become to resembling

the potential in Eqn. (7.4). This is what is called attractor behaviour. Essentially

what we believed to be a large collection of different models in the Jordan frame

gets mapped into a smaller subset of models in the Einstein Frame with a narrow

range of dynamics.
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7.2.1. The Palatini Formalism

Recently, however, in Ref. [84] it was shown that α-attractors are in fact not univer-

sal but depend on the underlying theory of gravity in a subtle way. The non-minimal

couplings of the type ξI(φ
I)ngµνRµν contain freedom to choose the space-time con-

nection: one can either study the usual metric case where Rµν = Rµν(gµν), or choose

an alternative approach, the so-called Palatini formulation of gravity, where the con-

nection Γ and hence also Rµν = Rµν(Γ) are independent variables. In the metric

formulation of gravity, the connection Γ is determined uniquely as a function of the

metric tensor, i.e. it is Γ̄ = Γ̄(gµν) with

Γ̄λαβ =
1

2
gλρ(∂αgβρ + ∂βgρα − ∂ρgαβ) , (7.10)

the Levi-Civita connection. The application of the variational principle then gives

rise to an extra equation for the connection, in addition to the one for the metric.

For the Einstein-Hilbert action, the extra equation forces the connection to have

the usual Levi-Civita form, but in more general theories of gravity, such as f(R)

theories, or in the presence of non-minimal couplings, this is no longer true in the

Jordan frame. In the context of general theory of relativity, the metric formalism

coincides with the one of Palatini, as minimizing the Einstein-Hilbert action with

respect to the connection uniquely fixes it to be of the Levi-Civita form, Γ = Γ(gµν).

In more general models, however, especially in the ones involving matter fields that

are non-minimally coupled to gravity, these two formalisms lead to two inherently

different gravitational theories [10, 85, 199]. This means that inflationary models

with non-minimal couplings to gravity cannot be characterized just by the inflaton

field potential, but that the connection must also be specified. This was originally

studied in [200–202], and has recently gained increasing attention, see [52, 84, 203–

209]. A non-minimally coupled scalar field model in the Jordan frame with Palatini

gravity, when mapped to the Einstein frame, can be written as Einstein gravity

where the fields are uncoupled from the Ricci scalar. This means instead of studying

Einstein of Palatini with non-minimally coupled fields in the Jordan frame, we can

study uncoupled fields in the Einstein frame. The field-space metric in the action

in Eqn. (7.8) can be written for both theories as

GIJ = Ω−1δIJ +
3

2
νM2

plΩ
−2 dΩ

dφI
dΩ

dφJ
, (7.11)

with ν = 1 in the metric case and ν = 0 in the Palatini case. With this conformal

transformation, we have therefore transferred the dependence on the choice of grav-

itational theory (choice of gravitational degrees of freedom) from the connection to

the field-space metric.
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7.3. Multifield Attractors

In previous studies, [84], comparing the consequences of inflation in both the metric

and the Palatini case, it was shown that the attractor behaviour is not recovered

when the underlying theory of gravity is Palatini. At large values of ξI the results

for the metric case asymptote to those of Starobinsky inflation [20]

nM
s ' 1− 2

N
,

rM ' 12

N2
,

(7.12)

while those for Palatini do not. The Palatini case approaches vanishing r at strong

coupling and observable quantities asymptote to,

nP
s ' 1−

(
1 +

n

2

) 1

N
,

rP ' 0 .
(7.13)

We wish to generalize the analysis of non-minimally coupled models in both of the

above formulations of gravity to the case of multifield inflation, where there is more

than one field taking part in inflationary dynamics, and to study attractor behaviour

in this case.

In the following, we will analyse inflation in both cases, metric and Palatini. For

simplicity, we start by studying two-field models with the potential

U(φ, σ) = λ
(2n)
φ M4−2n

P φ2n + λ(2n)
σ M4−2n

P σ2n, (7.14)

where n > 0, λ
(2n)
φ and λ

(2n)
σ are dimensionless coupling constants, and M4−2n

P has

been introduced to have a scalar potential with a mass dimension equal to four.

Later on, in Sec. (7.4.2), we will also discuss the case where more than two fields

take part in inflationary dynamics. In metric gravity, the above models are cos-

mological attractors, i.e., their predictions for observables asymptote to those of

R2 or Starobinsky inflation in the limit of strong non-minimal coupling ξ, see Eqn.

(7.12). This is, however, known not to be true for the single-field case in the Palatini

scenario [84], and here we will test it also in a multifield case.

For the potential (7.14), the Einstein frame potential is

V (φ, σ) = Ω(φ, σ)−2U(φ, σ) =
λ

(2n)
φ M4−2n

P φ2n + λ
(2n)
σ M4−2n

P σ2n(
1 + ξ

(n)
φ

(
φ
MP

)n
+ ξ

(n)
σ

(
σ
MP

)n)2 . (7.15)

For this and all other models in this formulation, the potential V is the same

for both metric and Palatini gravity. The major difference between the two is

the Einstein frame field-space metric, GIJ , in Eqn. (7.11). We will therefore focus
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mostly on the parameters appearing in GIJ in our analysis, namely the non-minimal

couplings, ξ
(n)
I .

7.3.1. Numerical Set-up

For a given sets of model parameters, we explore the initial condition space by first

calculating an approximate position in field-space corresponding to 73 e-folds before

the end of inflation1. Before sampling, we transform our fields to polar form. Then

we sample an angle from a uniform distribution. Following that we incrementally

increase the radial distance from the minimum until a coordinate in field space

is found for which inflation lasts 73 e-folds. Sampling over the full distribution

of angles would reveal an approximate 73 e-folds surface in the field space. Next

we transform our fields back to their Cartesian form and numerically evolve the

background equations forward in time until the end of inflation. This provides

a set of evolutions of roughly 73 e-folds. For each set of model parameters the

process is repeated with a new random angle. Finally, we evaluate the observables

of interest – ns, r and fNL as defined in Eqs. (2.144)–(2.147) – at the scale which

left the horizon 60 e-folds before the end of inflation. We repeat this procedure for

a representative set of values of the model parameters focusing mostly on the effect

of the non-minimal couplings, ξI .

Already at the background level, the evolution is different between metric and

Palatini gravity. We can clearly see this in Fig. (7.1), which shows the initial con-

ditions corresponding to 73 e-folds of inflation for both metric and Palatini gravity,

with varying strengths of the non-minimal couplings. For Palatini gravity, the ini-

tial condition surface is independent of the value of the non-minimal coupling for

nearly all cases, while for metric gravity the distance from the origin decreases with

ξI regardless of the value of n.

One can understand this by using the slow-roll approximation where inflation is

sustained while the slow-roll parameter ε from Eqn. (2.34) and it’s time derivative

η from Eqn. (2.35) are small for a sufficiently long period. We also assume that

the background trajectories are approximately radial. Writing the fields in polar

coordinates as

φ = ρ cosψ , σ = ρ sinψ , (7.16)

the number of e-folds can be approximated by

N ≈
∫ ρi

ρe

V

V,ρ
Gρρdρ , (7.17)

in which we use the notation V,ρ for a derivative in the direction of the radial co-

ordinate ρ. All of the quantities in the integrand above can be calculated straight-

1The number N = 73 is chosen to start the evolution so that the modes which cross the horizon
60 e-folds before the end of inflation are accurately evolved in the sub-horizon stage.
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forwardly, given the field-space metric and the Einstein frame potential. To further

simplify the notation, we also write the non-minimal couplings in polar coordinates

as

ξφ = ξ cos θ , ξσ = ξ sin θ . (7.18)

For Palatini gravity where Gρ,ρ = Ω−1(ρ, ψ), due to a cancelation of ξ depdendent

terms in the denominator of Eqn. (7.17), the result is independent of ξ and given by

N ≈ ρ2
i − ρ2

e

4nM2
P

, (7.19)

in which ρi is the value of ρ when the mode of interest exists the horizon and ρe is

the value at the end of inflation. Interestingly, this is exactly the same result as for

ξ = 0, which is why the initial conditions for the Palatini case coincide with those

for the metric case at low ξ. For metric gravity and large values of ξ, the leading

order term in the expansion in ξ−1 is

N ≈ ξFn(ψ, θ)
ρni − ρne
Mn

P

, (7.20)

which shows that to keep the number of e-folds constant, one requires smaller ρi

for larger ξ, as indeed is the case in Fig. (7.1). The function Fn(ψ, θ) simplifies

to the single-field result when ψ = θ = 0 or ψ = θ = π/2, which, for n = 2, is

F2(0, 0) = 3/4, matching the result in Ref. [200].

We see that this approximation works generically very well, except when the pa-

rameter ratio is large in certain directions in the field-space. This is because the

approximation of radial trajectories fails in those cases, rendering the above approx-

imate result inapplicable. This emphasizes the importance of accurate numerical

analysis of multifield models, to which we now turn.

7.4. Monte Carlo Method Results

We study the cases for which n = (1/2, 1, 3/2, 2) in Eqs. (7.6) and (7.14). We show

the results for ns and r in Fig. (7.2) using PyTransport 2.0. We see here a clear

difference between the formulations of gravity at large values of ξI asymptoting to

the single-field case [84]. However, we find that in the Palatini case the results

converge to a non-zero value of fNL, is different from that of the metric case. The

results are shown in Figs. (7.3) and (7.4) along with lines corresponding to the

Maldacena’s consistency relation from Eqn. (4.40) [106] for the single-field case2.

2One expects Maldacena’s relation to hold for squeezed configurations of the reduced bispectrum,
while here we are plotting the reduced bispectrum in the equilateral limit. However, in canonical
single-field models in which ε� η, which is the case for the single-field limit here, the bispectrum
is very close to local and the reduced bispectrum is almost the same in all configurations. This
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We see that the values of fNL converge to the single-field result at strong coupling

for both Palatini and metric gravity, confirming the general trend that the multifield

results mimic those of the single-field case in the strong coupling limit.

We see that all multifield models considered reduce to an effective single-field

model at the limit of strong coupling. In the metric case this generalizes the earlier

findings in the literature3, whereas in the Palatini case the results are entirely new.

We elaborate on the reason for this behaviour in the next subsection. However, we

stress that the scenario was not constructed to obtain an α-attractor model but it

emerges naturally from the Jordan frame action (7.5), which is our starting point.

Also, note that if one considered a scenario in which the Jordan frame action

included non-canonical kinetic terms of a specific kind, one would get the same result

as in the present case where the kinetic terms are canonical in the Jordan frame but

where the conformal transformation and the resulting kinetic terms in the Einstein

frame depend upon the assumed gravitational degrees of freedom. For example, the

models that we consider in the Palatini formalism are equivalent to non-canonical

scalar-tensor theories in the metric formalism [211]. However, non-minimal couplings

to gravity should be seen not as an ad-hoc addition to inflationary models but as a

generic ingredient of coherent model frameworks, generated by quantum corrections

in a curved space-time. It is by this notion that one can say that the differences

observed between the cases which we call ‘metric’ and ‘Palatini’ are indeed in the

underlying theory of gravity, i.e., whether the space-time connection was determined

by the metric only, or both the metric and the inflaton field(s). Our study therefore

reveals an interesting subtlety in a broad class of models where the scalar potential

is multidimensional and the fields are non-minimally coupled to gravity.

Alternatively, one can view this work as a more detailed way to answer the ques-

tion ‘What are the predictions of a given model of inflation?’. As shown, they clearly

depend on the choice of the gravitational degrees of freedom, even though usually

such a choice is not considered to be part of models of inflation. It is therefore

important to investigate all possibilities concerning the physics at high energies, as

one cannot distinguish between the metric and Palatini formalisms at late times.

Detailed studies of non-minimally coupled models are therefore interesting not only

from the inflationary point of view, but also because they may provide for a way to

distinguish between different formulations of gravity.

7.4.1. Multifield Effects

Having discussed the general trends in the previous sections, we now discuss some

of the effects of having multiple fields. The first effect we study is the dependence

is why our plot for fNL against ns follows so closely the Maldacena relation.
3Outside the context of inflation, similar single-field behaviour has been found in other scenarios

with non-minimally coupled multifield models [210].
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on the hierarchy between the values for the non-minimal couplings. In order to do

that, we use the polar coordinates in parameter space introduced in Eqn. (7.18) and

test the evolution of the observables depending on θ.

We see in Fig. (7.5) that the results depend crucially on the ratio of the parameters

in the potential, λI . When the parameters for both fields are similar, the observables

quickly approach a single limiting value corresponding to the single-field case, while

for the larger λI ratio the predictions are substantially broadened throughout the

entire ξ range, with a clear dependence on the angular parameter θ. The trajectories

in (ns, r) space as a function of ξ are also broadened, as is also clear in Fig. (7.2).

The predictions are thus somewhat different from the single-field case for low and

intermediate values of ξ, but converge to the same limit for sufficiently large ξ.

Having now analysed the dependence on both ξ and θ, we confirm that the results

resemble the single-field case for both metric and Palatini gravity. The differences

between single-field and multifield that do arise are apparent in the spread in the

results for low values of ξ. This spread is due to a larger dependence on the initial

conditions of the fields and on the direction in ξI parameter space. At strong cou-

pling, all the results found asymptote to the single-field ones. This similarity may be

somewhat surprising, given that in the multifield case the field-space can be curved.

We now show the reasons why this additional multifield effect is not affecting the

results at strong coupling.

We first note that field-space curvature does not directly affect the evolution of

the field fluctuations in the inflationary direction. This is because the field-space

Riemann tensor appears in the effective mass matrix of the fluctuations, mI
L, in the

following term

mI
L ⊃ RI

JKLφ̇
J ˙φK . (7.21)

To obtain the term relevant for the fluctuations in the inflationary direction, one

must multiply mI
L with φ̇L, which always results in zero for the term shown above,

given the symmetries of the Riemann tensor.

We specify to the case of a two-dimensional field space, although the analysis

can in principle be generalized to arbitrarily many fields. As mentioned above,

we introduce the adiabatic and entropic fluctuations, respectively defined by Qσ ≡
eσIQ

I and Qs ≡ esIQ
I . On super-Hubble scales, one can deduce from extracting the

equation of motion for the linear fluctuations from Eqn. (3.24) (in Fourier space),

D2
tQ

I + 3HDtQ
I +

k2

a2
QI +mIJQ

J = 0 , (7.22)

(see section (8.4.2) for details) that Qs satisfies the following equation of motion,

Q̈s + 3HQ̇s +m2
s (eff)Qs ≈ 0 , (7.23)
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where m2
s (eff) is a super-Hubble effective mass for entropic fluctuations such that

m2
s(eff)

H2
=
V;ss

H2
+ 3η2

⊥ + εRfsM
2
pl , (7.24)

in which

η⊥ = V,s/Hφ̇ . (7.25)

Here V;ss ≡ eIse
J
sV;IJ is the projection of the Hessian matrix along the entropic

direction, η⊥ has been defined in Eqn. (7.25) and is a measure of the bending of

the trajectory, φ̇ =

√
GIJ φ̇I φ̇J , s is the field coordinate in the entropic direction

— the direction perpendicular to φ̇I — and Rfs is the Ricci scalar of the field-space

manifold. There is, however, an effect on the entropy perturbations, as they are

sensitive to the perpendicular projection of the effective mass matrix.

The effect of the curvature is somewhat less relevant if Rfs is positive, as it simply

contributes to a smaller amplitude of the entropy perturbations. If it is negative,

however, it reduces the effective mass and may even render it tachyonic should it

be large enough [212], thus dangerously enhancing the entropy fluctuations. Our

numerical results seem to indicate that this never occurs, given their similarity with

the single-field results, for which the curvature is not present. We can verify this by

checking whether the condition m2
s > 0 is always verified in our numerical results.

We can see this in Fig. (7.6), in which we show that the effective mass is always

positive for all values of n studied above. When ξ is large, the effective mass is

also large, with the dominant contribution coming from the first term on the right

hand side of Eqn. (7.24), the Hessian of the potential. Specifically, the effective

mass values calculated in the metric and Palatini cases are equivalent for small ξ

and consequently the resulting observables (ns, r and fNL) are affected in similar

ways in both cases. Where the observables deviate between the two cases, i.e. for

large ξ, the effective masses also deviate with an overall larger effective mass in the

metric case.

The evolution of the entropy modes is independent of the adiabatic modes on

large scales, and thus only depends on the effective mass. They can, however, source

curvature perturbations via the bending parameter η⊥ in the equation [38, 113, 213]

ζ̇ ≈
√

2Hη⊥
H

MP

√
ε

Qs

H
, (7.26)

with Qs the fluctuations in the entropic direction. Thus, we can recover the single-

field results if η⊥ is sufficiently small. We can estimate the entropy fluctuations via

their varianceQs ∼ H2/ms. Furthermore, we note thatH/ (MP

√
ε) is approximately

the value of ζ at horizon crossing, ζ∗, and that the typical time scale associated to

its variation is H, making Hζ∗ the natural size of ζ̇, should it vary considerably.
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Given these arguments, we can rewrite Eqn. (7.26) as

ζ̇

Hζ∗
∼ η⊥H

ms

, (7.27)

and conclude that if the the right-hand-side of Eqn. (7.27) is much smaller than 1,

the evolution of ζ is negligible. Therefore, to determine the importance of entropy

fluctuations in the evolution of adiabatic ones, we must only calculate η⊥H/ms. In

the right panel of Fig. (7.6), we show the size of η2
⊥ during inflation. Comparison with

the effective mass shown in the left panel demonstrates that the bending parameter

is sub-dominant relative to the effective mass. For example, for the n = 1 metric case

the ratio η2
⊥H

2/m2
s ∼ 10−3 when ξ is small and for large ξ, η2

⊥H
2/m2

s ∼ 10−8, demon-

strating that the entropy fluctuations are negligible at strong coupling. Comparing

the metric and Palatini case for small ξ we see that the results for the evolution

of η⊥ are the same. For large ξ, the evolutions diverge and η⊥ in the metric case

decays, while it grows in the Palatini case.

7.4.2. Extension to Scenarios with Higher Number of Fields

We have also extended our calculations to the three-field case for ns and r. We found

that the results resemble those for the two-field case, converging to the same limit

in the strong coupling approximation for both metric and Palatini gravity. This can

be seen in Fig. (7.7). The main difference is the spread in observable space, which is

substantially larger than in the two-field case. This is a consequence of the increased

number of possible background field trajectories that result in successful inflation

in higher field-space dimensions as well as the larger number of free parameters.

This can affect the ability of distinguishing between different models, with some

results for the Palatini model giving the same observables as those for the metric

case, even at strong coupling for the latter. The strongly coupled Palatini case is

still distinctive, given its very low tensor-to-scalar ratio prediction.

With an even larger number of fields, these predictions are expected to broaden

further, but may ultimately converge again, in a statistical sense, as such a behaviour

has been demonstrated in other scenarios with random potentials and very large

numbers of fields [72, 214–218].

7.5. Discussion

In this chapter we studied the multifield models of inflation non-minimally coupled

to gravity, for Einstein’s metric gravity and Palatini gravity. We primarily examined

two field models. By examining the evolution of the entropic modes, we have shown

that the multifield effects, sourced by the bending term η⊥, diminishes with large

couplings ξ. This mean we effectively recovered the single-field results for ns and r
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Figure 7.1.: Sampling of initial conditions for metric (grey) and Palatini gravity
(blue), n = (1/2, 1, 3/2, 2) from top to bottom. The left and right panels show the
scenarios for different parameter ratios: λσ/λφ = 19/14 (left) and λσ/λφ = 95/14
(right). In all cases ξ is varied between (10−3, 10).

in the limit of large ξ and the observe the same attractor behaviour for each case of

the gravity formulation. We extended this to three field models and have observed

the same convergence on single-field results.
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Figure 7.2.: Predictions for ns and r in metric (grey) and Palatini gravity (blue).
The panels are the same as in Fig. (7.1).
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Figure 7.3.: Predictions for ns and fNL in metric (grey) and Palatini gravity (blue).
The panels are the same as in Fig. (7.1).
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Figure 7.4.: Predictions for r and fNL in metric (grey) and Palatini gravity (blue).
The panels are the same as in Fig. (7.1).
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Figure 7.5.: Predictions for ns (top) r (middle) and fNL (bottom) as a function of
ξ along the x-axis and θ = tan−1(ξσ/ξφ) (illustrated by the color gradient in degrees)
in metric gravity for n = 2 and for the same λσ/λφ ratios as in Fig. (7.1).
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Figure 7.6.: Evolution of the effective mass normalized to H and bending parameter
η2
⊥ for metric (grey) and Palatini gravity (blue), n = (1/2, 1, 3/2, 2) from top to

bottom. The dashed lines represent a sample with a small magnitude of the coupling
parameters ξ whereas the solid lines represents one with a large coupling.
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Figure 7.7.: Predictions for ns and r in metric (grey) and Palatini gravity (blue)
for three fields.



8. Sidetracked Inflation

In this chapter we study a class of models where the inflaton is coupled

to a heavy scalar field and can initially undergo geometrical destabiliza-

tion [212] and then drive a second phase of inflation dubbed sidetracked

inflation. These models have the common feature of a negative field-space

curvature. In Sec. (8.2) we explain our implementation of the sidetracked

inflation scenario, including the way we reach this attractor phase from a

heuristic modeling of the geometrical destabilization that precedes the sec-

ond inflationary phase. We study in Sec. (8.3) the background dynamics

of the sidetracked phase, before devoting Sec. (8.4) to a detailed study of

the properties of linear cosmological fluctuations. We show how single-field

effective theories for the fluctuations can reproduce with a good accuracy

the exact results from numerical computations in the full two-field system,

and give results for the tensor-to-scalar ratio r and spectral index ns of the

curvature power spectrum computed for each model. Similarly in Sec. (8.5)

we give numerical results from the full two-field picture concerning the pri-

mordial bispectrum. Finally discuss the relationship between the class of

models that we analyze and the models of α-attractors in Sec. (8.7).

8.1. Introduction

Multifield inflation provides an extension of the minimal single-field inflationary

paradigm that is most natural from a theoretical point of view. Multiple scalars are

generically present in most top-down scenarios of the very early universe, including

constructions in the contexts of string theory [219], supergravity [220], and other

theories beyond the Standard Model [221]. Nevertheless, in view of the spectacular

agreement of the predictions of slow-roll single-field inflation with experimental data

[46], it is commonly argued that the additional fields must be very heavy, with masses

parametrically larger than the inflationary Hubble scale H, and should therefore

play no important role in the cosmological dynamics. A more precise statement

is that these “spectator” fields can be integrated out to yield an effectively single-

field description that is valid throughout the epoch of inflation [127, 132, 222], and

hence one may expect the heavy scalars to affect inflation only indirectly through

123
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the renormalization of operators controlling the dynamics of the inflaton.

Recently, however, it has been shown that heavy scalar fields with bare masses

m2
h � H2 can undergo, under very general conditions, a tachyonic-like instability

induced by kinetic couplings with the inflaton, as one generically has in nonlinear

sigma models. This has been named the geometrical destabilization of inflation [212].

It is akin to the instability that arises in models of hybrid inflation [223] where the

heavy scalars become tachyonic as a result of their coupling to the inflaton at the

level of the potential. The geometrical destabilization on the other hand is triggered

by the rolling of the inflaton in a negatively curved internal field space, and may take

place well before any potential-driven “waterfalls” along the inflationary trajectory.

If the geometrical destabilization does occur, its outcome is quite uncertain. Stan-

dard perturbation theory breaks down at the onset of the instability and the vacuum

state that describes inflation can no longer be trusted. Nevertheless, on physical

grounds we may expect either of two things to happen depending on the interac-

tions and the scales involved. The first possibility is that the universe becomes

dominated by inhomogeneities and that inflation ends prematurely, that is at a time

much before the end of the slow-roll phase as it would have happened in the absence

of any instability. The consequence is that cosmological modes that are observable

through cosmic microwave background (CMB) and large scale structure data probe

a different part of the inflaton potential, leading to modifications to their correlation

functions and the corresponding predictions for the cosmological parameters of in-

terest. This scenario was analyzed in reference [224] for a large class of inflationary

models using Bayesian techniques, and it was quantified how such a premature end

of inflation results in sizable changes to the constraints on theoretical models from

experimental data.

The second possible outcome is that the exponential growth of the unstable fields

drives the system to a new inflationary vacuum. Thus, in this set-up, the universe

undergoes a second phase of inflation in which one (or more) of the heavy scalars

evolves along a path away from its ground state. We dub this scenario sidetracked

inflation, owing to the way the geometric destabilization causes the field-space tra-

jectory to divert from its original, effectively single-field path (see fig. (8.1)). It is

our objective to perform an analysis of the dynamics and properties of sidetracked

inflation, with a focus on its peculiar multifield effects on the power spectrum and

primordial non-Gaussianities.

This picture obviously glosses over the details related to the physics of the in-

stability, which as explained lie beyond the reach of perturbative field theory. It is

motivated however by the fact that, at least in a large number of cases, the equations

of motion indeed admit a nontrivial time-dependent attractor away from the infla-

tionary valley of the potential, as we have investigated with a broad class of two-field

models. Thus, provided inflation does not abruptly end as described above in the
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Figure 8.1.: Schematic plot of the field-space trajectory in sidetracked inflation. The
field ϕ corresponds to the inflaton and χ is the heavy field that becomes unstable.
The dashed line represents the instability phase where the classical field picture is
lost. The orange surface represents the potential. The information on the field space
geometry is not represented.

first scenario, it is natural to expect that the unstable system will eventually settle

into this attractor and give rise to another phase of inflation. We will see that this

second phase features some very interesting dynamics: it can last extremely long, as

the increase in the value of the non-canonical kinetic term of the inflaton translates

into an effective flattening of the potential; its path in the internal field space can

deviate very strongly from a geodesic; and multifield effects are very important.

In particular, we show that the dynamics of linear cosmological fluctuations can be

effectively described by a single-field effective theory, that is characterized, depend-

ing on the field space manifold and the potential that is considered, by a modified

dispersion relation, a reduced speed of sound, or an imaginary one, describing a

transient tachyonic instability. The bispectrum is generically large in these models,

with shapes that can be of equilateral but also of orthogonal type, in particular in

models with hyperbolic field spaces and that feature an effective imaginary speed of

sound.

Hyperbolic field space geometry is an essential aspect of so-called cosmological

attractors—inflationary models whose predictions are insensitive to the form of the

inflaton potential [190, 192, 225]. It has been explained that this universality stems

from the presence of a pole in the kinetic term of the inflaton [194, 226], which trans-

lates into an exponential flattening of the potential upon canonical normalization. It

is thus natural to ask whether the geometrical destabilization and sidetracked infla-

tion could be relevant for such theories and possibly hinder some of their successful

features. We will show however that, on closer inspection, our models present a

subtle but crucial difference with cosmological attractors, to do with the fact that

in our case it is both the kinetic term and the potential that exhibit a pole (in a
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suitable parametrization). This possibility appears to have been overlooked perhaps

because it doesn’t arise in the single-field context where a singular potential would

be unnatural, but we will argue that it can be perfectly generic within multifield

scenarios.

We consider nonlinear sigma models for a set of scalar fields φI minimally coupled

to gravity,

S =

∫
d4x
√−g

[
1

2
R(g)− 1

2
GIJ(φ)∇µφI∇µφ

J − V (φ)

]
. (8.1)

8.2. Formalism and Setup

8.2.1. Geometrical Destabilization and Sidetracked Inflation

We now review the mechanism behind the geometrical destabilization uncovered in

[212], and our implementation of the sidetracked inflation scenario that we described

qualitatively in section (8.1). The crucial observation is that m2
s (eff) from Eqn. (7.24)

can become negative, for realistic values of the scales involved, whenever the field

space manifold is negatively curved.

This can be made more explicit by considering the following scenario, which is

the one we will focus on in the remainder of the chapter. Assume a model with

two scalar fields: an inflaton ϕ that initially drives inflation in a standard slow-roll

fashion, and a spectator field χ with a large bare mass mh sitting at the bottom of

the potential valley at χ = 0, corresponding to a field space geodesic. Thus, at this

stage, we have V;ss = m2
h and η⊥ = 0. We define the curvature scale M of the field

space manifold in such a way that Rfs = −4/M2 when restricted to the χ = 0 line

(or exactly if the space has constant curvature).1 During this “primary” inflationary

phase Eqn. (7.24) becomes

m2
s (eff)

H2
=
m2
h

H2
− 4ε

M2
Pl

M2
, (8.2)

which implies that the super-Hubble entropic perturbation Qs becomes tachyonic,

and therefore the instability of the background, at a critical time N = Nc when the

slow-roll parameter ε reaches the value

εc =
M2

4M2
Pl

m2
h

H2
c

, (8.3)

and with Hc = H(Nc). Notice that even though H decreases during inflation, ε

typically grows at a faster rate during a slow-roll regime,2 and therefore the insta-

1This assumes, as we will do, that the internal metric depends only on χ. We will further comment
on this point later.

2More precisely, a necessary condition for the geometrical destabilization to occur in this setup
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bility can be quite generic for reasonable values of mh and M . Taking for instance

mh ∼ 10H ∼ 10Hc and M ∼ MGUT ∼ 10−3MP one has εc � 1, and hence the

instability can take place well before the end of inflation as it would occur in a

single-field context.

As explained in [212] and above in section (8.1), what happens after the geomet-

rical destabilization is so far highly uncertain, and very likely model-dependent any-

way. It therefore makes sense, as a first step towards a more thorough understanding

of the physics involved, to adopt a specific outcome as a working assumption and

study its consequences for a broad and generic class of models. This is what we do

in this work for the situation where inflation doesn’t end as a result of the instability

(the case studied in [224]), but instead continues along a “sidetracked” trajectory

away from the bottom of the potential valley at χ = 0.

Our modeling of the sidetracked inflation scenario will be as a two-step process

(see fig. (8.1)). The system is assumed to start in the standard inflationary vacuum,

with χ = 0 and a slowly rolling inflaton ϕ. At the critical time of the instability,

defined by Eqn. (8.3), we displace the heavy field by an amount χc ≡ Hc/2π, which

is a typical value for the amplitude of quantum fluctuations in a massless field.

Together with the inflaton field’s amplitude ϕc (and its derivative) at the time Nc,

this provides the initial conditions for the second phase of inflation. The latter

then ends in a standard manner through slow-roll violation defined by the condition

ε = 1.

This is admittedly a very blurry picture of the dynamics involved, but it is moti-

vated by the fact that the second inflationary trajectory corresponds to an attractor

of the equations of motion, at least in the models we have analyzed. Indeed, we

have checked numerically that varying the initial conditions described in the previ-

ous paragraph, even by a large amount, doesn’t affect any of the conclusions, as the

system is inevitably driven towards the sidetracked attractor where the heavy field

slowly evolves with a typical amplitude χ ∼M , as might be expected on dimensional

grounds3. The evolution then ends as both χ and the inflaton ϕ fall into the stable

minimum of the potential (or in any case by slow-roll violation when the potential

chosen to model the inflationary phase solely does not admit a stable minimum).

The existence of this attractor solution may be heuristically understood as arising

from an interplay between the repulsive force of the negatively curved field manifold

and the stabilizing force of the χ potential, so that one can expect a regime where

the two effects compensate each other allowing for a stable inflationary phase — this

intuitive picture will be confirmed analytically and numerically in section (8.3). It

is worth emphasizing that, as we will see below, the field trajectory in this set-up is

typically very different from a geodesic, which is a central feature of the sidetracked

is that the quantity εH2 be an increasing function of time. This translates into the inequality
ε′/ε > 2ε, which holds for concave potentials and even some convex ones [212].

3This heuristic picture will be refined in section (8.3).
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scenario that we are putting forth.

8.2.2. Geometries and Potentials

We will study two classes of nonlinear sigma models with scalar fields φI = (ϕ, χ),

characterized by different field space metrics GIJ . For each class, we will consider

several choices of the potential V that are theoretically motivated and extensively

studied in the context of single-field inflation [227].

The first internal metric we scrutinize is

GIJdφ
IdφJ =

(
1 +

2χ2

M2

)
dϕ2 + dχ2 . (8.4)

We will refer to this as the “minimal” model, as it amounts to the addition of a

single dimension-6 operator to the standard scalar field action; it is also the minimal

sample realization of the geometrical destabilization used in reference [212]. The

corresponding scalar curvature is

Rfs = − 4

M2(1 + 2χ2/M2)2
, (8.5)

and so indeed Rfs ' −4/M2 before the time of the geometrical destabilization when

χ ' 0; see the previous subsection.

The second case is the metric of the hyperbolic plane,

GIJdφ
IdφJ =

(
1 +

2χ2

M2

)
dϕ2 +

2
√

2χ

M
dϕdχ+ dχ2 , (8.6)

which has a constant scalar curvature Rfs = −4/M2. We have chosen this particular

parametrization for the reason that it gives a seemingly “small” deformation of the

above minimal model (although in fact the extra operator is less irrelevant as it is

dimension-5), and hence may allow us to better understand the physical effects due

to changes in the field space manifold. We remark that (8.6) can be obtained from

the dilatonic-type metric dϕ2 + e−2
√

2ϕ/Mdψ2 upon letting e−
√

2ϕ/Mψ ≡ χ. The two

theories are of course inequivalent, however, as a field redefinition will have the effect

of changing the form of the potential. We will further elaborate on this point in

section (8.7) where we comment on the relation between our set-up and the models

of cosmological attractors.

The potentials we will consider are all of the form

V = Λ4V(ϕ) +
1

2
m2
hχ

2 , (8.7)

where V(ϕ) is a dimensionless function of ϕ. Similarly to [212, 224], we choose
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mh = 10Hc, so that, according to Eqn. (8.3), one has εc = 25(M/MP )2. As usual

the energy scale Λ will determine the overall scale of the power spectrum and can

therefore be fixed a posteriori to match the observed amplitude of the curvature

power spectrum.

The four specific models we have studied are shown in table (8.1). We refer the

reader to [224, 227] for details about these models and their relevant parameter

spaces, but in the following we give a brief rationale for our choices.

The first case we investigate is the Starobinsky potential (SI) [20, 228], a proto-

typical example of plateau models. It is an interesting case study because it has

no free parameter and, in its single-field realization, is in excellent agreement with

experimental constraints. Then we consider three characteristic hilltop models: nat-

ural inflation (NI) [62], quadratic small-field inflation SFI2, and quartic small-field

inflation SFI4. The case of SFI2 can be regarded as truncation of NI if we take the

scale µ = 2f , and hence the comparison between the two models gives a way to

study the effects of the nonlinearities of the potential. We use f = 1, 10, 100, which

are the orders of values commonly assumed in order to have agreement with data.

On the other hand SFI4 has a vanishing mass at the hilltop, V ′′(ϕ = 0) = 0, and

is therefore a priori in a different class. To enable comparison, we choose for it the

same values of the scale µ as in SFI2.

Eventually, to study the influence of the results on the curvature scale M , we

consider the three values M = (10−2, 10−2.5, 10−3)MPl, although for NI, SFI2 and

SFI4, we did that only for the central values of the parameters f = 10 and µ = 20.

Although we studied all these models (36 with the various parameters’ choice),

and we will indeed give results for the observables for each of them, when we display

detailed results and comparison with analytical formulae in the central part of the

chapter, we decided to use two representative examples: Starobinsky inflation and

Natural Inflation with f = 10, each with M = 10−3 (which is the value by default,

if not otherwise specified), as they exhibit both characteristic features and varied

properties.

Model Acronym Inflaton potential V(ϕ) Parameter values

Starobinsky inflation SI
(

1− e−
√

2/3ϕ
)2

—

Natural inflation NI 1 + cos
(
ϕ
f

)
f = {1, 10, 100}

Quadratic small field SFI2 1−
(
ϕ
µ

)2

µ = {2, 20, 200}

Quartic small field SFI4 1−
(
ϕ
µ

)4

µ = {2, 20, 200}

Table 8.1.: List of inflationary models and values considered for the free parameters.
The dimensionless potential function V(ϕ) is introduced in Eqn. (8.7).
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8.3. Background Dynamics of Sidetracked

Inflation

In this section, we describe in more details the physics of sidetracked inflation at the

level of the background. In a conventional phase of inflation driven by multiple scalar

fields all slowly rolling down the potential, the acceleration term DtφI in Eqn. (3.2) is

negligible compared to the Hubble friction and to the effect of the potential, so that

all fields approximately follow φ̇I ' −V ,I/(3H). The sidetracked phase is markedly

different, as we will see, as a central ingredient of it is that some acceleration terms

are large. This is not in conflict with the existence of a phase of inflation, as the

latter only requires ε (Eqn. (2.34))as well as its time derivative η (Eqn. (2.35)) to

be small, for inflation to occur and to last long enough. Given that ε = 1
2
σ̇2/H2,

this readily implies that σ̈ � 3Hσ̇, in other words that the acceleration of the fields

tangential to the background trajectory be small. The perpendicular acceleration,

quantified by the parameter η⊥, need not be small in general, and indeed it will be

large in sidetracked inflation.

8.3.1. Background Trajectories and Qualitative

Understanding

To gain a qualitative understanding of the second phase of inflation following the

geometrical destabilization, we begin by displaying some representative field space

trajectories. We show these for the SI and NI potentials in fig. (8.2) (taking the

NI scale f = 10). We have displayed each curve as divided into three portions:

(1) the first part starts at the time of the instability and ends at time N = N∗

when perturbations of the CMB pivot scale size exit the Hubble radius; (2) the

second is the phase of inflation that goes from N∗ to the time at which inflation

ends at N = Nend by slow-roll violation (i.e. when ε = 1), and corresponds roughly

to the range of field values, and hence the part of the potential, that can be probed

via cosmological and astrophysical observations; (3) the third phase shows how the

curve continues for a few more e-folds after the end of inflation. The curve of phase

(1) is of course uncertain in its initial part as a field trajectory cannot be defined

immediately following the geometrical destabilization. Similarly phase (3) is simply

a qualitative representation of how the fields settle down into the stable minimum of

the potential, as we expect other physical effects to become important after inflation

ends.

One important observation is that, for each inflaton potential, the trajectories

obtained with the minimal and hyperbolic field spaces are very nearly the same.

Although we only display two cases, we have checked that the same conclusion

applies for all the models we have studied, and we will prove this feature analytically

below. Another important feature, not visible in fig. (8.2), is that the sidetracked
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N* < N < Nend
Nend < N

-4 -2 2 4 6 8 10
χ/M

1

2

3

4

5

6

7
φ

(a) Starobinsky inflation

-1.0 -0.5 0.5 1.0 1.5 2.0 2.5
χ/M

0.5

1.0

1.5

2.0

2.5

3.0

φ/f

(b) Natural inflation (f = 10)

Figure 8.2.: Field space trajectories for the SI and NI potentials (with f = 10),
for both the minimal (solid line) and hyperbolic (dashed line) field space geometries.
The three portions of the curve indicated in the legend correspond to the phase from
the time of the instability to the Hubble crossing at N = N∗ of the CMB pivot scale;
the phase of inflation from N∗ to the time at which inflation ends at N = Nend;
and the phase after this instant obtained by continuing the integration for a few
more e-folds, ignoring any other physical effects. We use the representative value
∆Npivot ≡ Nend −N∗ = 55.

phase of inflation last in general very long, comparatively much longer than along

the (unstable) single-field trajectory lying at χ = 0: taking the minimal model for

concreteness, while there are 170 e-folds of inflation (respectively 531) left along

χ = 0 starting from the critical point in SI (respectively in NI), the corresponding

sidetracked phase lasts about 770 e-folds (respectively about 2630). Eventually,

the velocity of χ is negligible compared to the one of φ (see fig. (8.3)), and with

χ of order M , it is straightforward to see that χ gives a negligible contribution

to the total potential energy. The turing of the trajectory in Fig. (8.2) occurs

after the cancellation between the repulsive force originating from the field space

geometry and the one from the potential. The simple intuitive picture that emerges

from these observations is that the sidetracked phase of inflation is supported by a

slowly-varying inflaton field ϕ, slowed down on its potential due its non-canonical

normalization provided by the almost constant non-zero value of χ.

8.3.2. Minimal Geometry

Let us determine the conditions under which this can be realized, considering first

the minimal model. With the field space metric (8.4), the scalar fields’ equations of

motion (3.2) then take the form:

ϕ̈+ 3Hϕ̇+
4χ

M2
(

1 + 2χ2

M2

) χ̇ϕ̇+
V,ϕ

1 + 2χ2

M2

= 0 , (8.8)

χ̈+ 3Hχ̇− 2
ϕ̇2

M2
χ+ V,χ = 0 , (8.9)
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(b) Terms in the equation of motion for χ
in the minimal geometry.

3φ'
Vφ/H

2

GφχVχ/H
2

Γφφφ(φ')
2

2Γφφχφ'χ'

Γφχχ(χ')
2

(1+2χ2/M2)-1Vφ/H
2

0 10 20 30 40 50

10-21

10-16

10-11

10-6

10-1

104

N

(c) Terms in the equation of motion for ϕ
in the hyperbolic geometry.
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(d) Terms in the equation of motion for χ
in the hyperbolic geometry.

Figure 8.3.: Relative contributions of the absolute values of the different terms in
the equations of motion for the scalar fields ϕ (left) and χ (right), for the minimal
geometry (top) and the hyperbolic geometry (bottom). The model is Natural Inflation
with f = 10 and M = 10−3, and the plots show the last 63 e-folds of inflation. One
can explicitly check that the terms dominating the dynamics are the ones described
in the main text. We made use of derivatives with respect to the number of e-folds,
denoted by a prime. The spike observed in some of these plots occurs from the sign
of χ′ flipping to negative at the turning point observed in Fig. (8.2).
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where remember that we make use of the potential (8.7), so that V,χ = m2
hχ. A

non-zero approximately constant χ can only be a solution of Eqn. (8.9) provided

that

2
ϕ̇2

M2
' m2

h, (8.10)

expressing the almost cancellation between the repulsive force originating from the

field space geometry and the one from the potential. The fact that this relation holds,

and that the last two terms in (8.9) completely dominate the equation of motion

of χ, can be seen in Fig. (8.3b) for the representative example of NI with f = 10.

As we previously said, this is in sharp contrast with a field slowly rolling down its

potential, for which the dominating terms would be the Hubble friction term and the

gradient of the potential. This standard situation is at play however for the inflaton

ϕ, as can be checked in Fig. (8.3a), where the third term in (8.8), originating from

the non-standard field space metric, and suppressed by the velocity of χ, is shown

to be negligible in the dynamics. The inflaton field therefore approximately verifies

3Hϕ̇ ' − V,ϕ

1 + 2χ2

M2

, (8.11)

showing clearly how the non-standard normalization of ϕ generates an effective flat-

tened potential compared to the single-field case. Obviously, the agreement between

the two expressions (8.10) and (8.11) determines the yet unknown value of the field

χ that enables to support the sidetracked phase, such that

1 +
2χ2

M2
'
√

2

3

MPl|V,ϕ|
mhM

√
V (ϕ)

. (8.12)

Here, we used that 3H2M2
Pl ' Λ4V(ϕ) ≡ V (ϕ) to explicitly express that Eqn. (8.12)

fixes χ as a function of ϕ. As all the approximate relations given in this section, one

can check that the above relation is verified to a very good accuracy, determining χ

to a few 0.1% in NI with f = 10 for instance. To have a better understanding of the

order of magnitude of χ along sidetracked inflation, one can rewrite Eqn. (8.12) as

1 +
2χ2

M2
'
√

2

(
MPl
|V,ϕ|
V (ϕ)

)(
1

mh/H

)(
MPl

M

)
, (8.13)

where the first two terms in parentheses are small, due to the flatness of the inflaton

potential and the heavy bare mass of χ, while the last term is enhanced by the hier-

archy between the curvature and the Planck scale. It is hard therefore to conclude in

general about the amplitude of χ. As a very rough estimate though, one can assume

that the first two terms have a similar order of magnitude than at the critical time,

despite the very long duration of the sidetracked phase4. Together with Eqn. (8.3),

4This holds for the potentials we have studied, but it would not necessarily be true for potentials
whose shape is vastly different in the sidetracked phase and around the critical time. The values
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and the slow-roll expression εc ' M2
Pl/2 (V,ϕ/V )2

c , one therefore concludes that the

left hand side of Eqn. (8.12) is of order one, i.e. that χ is stabilized in the sidetracked

phase at χ of order M , as announced. Now that χ is known as a function of ϕ, one

can of course check the consistency of the approximations that we have performed.

In particular, one can determine the velocity of χ as

χ̇

ϕ̇
' sign(V,ϕ)

2
√

2

H

mh

M

χ

[
M2

Pl

V,ϕϕ
V
− M2

Pl

2

(
V,ϕ
V

)2
]
, (8.14)

which shows that it is indeed suppressed compared to the one of ϕ, by H/mh � 1,

and by the flatness of the inflaton potential.

8.3.3. Hyperbolic Geometry

We now turn to the hyperbolic field space, whose scalar fields’ equations of motion

can be out in the form:

ϕ̈+ 3Hϕ̇+
4χ

M2
χ̇ϕ̇+

√
2

M
χ̇2 +

√
2
χ

M

[
2
ϕ̇2

M2
χ− V,χ

]
+ V,ϕ = 0 (8.15)

χ̈+ 3Hχ̇− 2χ

M2
χ̇2 − 4

√
2
χ2

M3
ϕ̇χ̇+

(
1 + 2

χ2

M2

)[
−2

ϕ̇2

M2
χ+ V,χ

]
−
√

2
χ

M
V,ϕ = 0 .

(8.16)

As the field space metric (8.6) is non-diagonal, Eqns. (8.15)-(8.16) are more com-

plicated than their minimal counterparts (8.8)-(8.9). However, we will show that all

the approximate relations we have derived above for the minimal model still hold in

this seemingly more intricate case, and that the two dynamics are similar, something

we have already noted by looking at the field space trajectories in fig. (8.2).

We start again by looking for an approximately constant χ providing a non-trivial

solution of Eqn. (8.16). It can exist provided now that

2
ϕ̇2

M2
' m2

h −
√

2V,ϕ/M

(
1 +

2χ2

M2

)−1

, (8.17)

where the last term is new compared to the minimal case. One can check that it is

subdominant compared to the first term on the right hand side, although not always

negligible. In NI with f = 10 for instance, its value diminishes from about 15 % of

the first term in the bulk of the sidetracked phase to a few percent of it in the last 60

e-folds. The fact that it is subdominant can be understood using the same back of

at which χ is stabilized could then differ from M by a large amount, but our analysis and our
analytical estimates would still apply in that case.
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the envelope estimates as we have used below Eqn. (8.12), showing that it is smaller

than the first term by at least the ratio H/mh. In fig. (8.3d), we display the relative

contributions of the various terms in Eqn. (8.16), showing that the latter is indeed

dominated by the cancellation between the two terms in brackets in (8.16), so that

Eqn. (8.10) approximately holds, like in the minimal case. For simplicity, we do

not display the even more precise cancellation between the last three ‘forces’, which

gives the relation (8.17). However, this refined estimate is important to understand

the dynamics of the inflaton. Indeed, by using it in the equation of motion for ϕ,

one can see that the last three terms in Eqn. (8.15) sum up to ' V,ϕ/
(

1 + 2χ2

M2

)
. As

the third and fourth terms, involving the velocity of χ, are consistently negligible

(see fig. (8.3c)), one deduces that the inflaton field verifies, like in the minimal case,

the simple equation (Eqn. (8.11)), as shown in fig. (8.3c) by the superposition of the

black and dotted magenta lines.

Like in the minimal case, the agreement between the two expressions (8.17) and

(8.11) of ϕ̇ determine χ as a function of ϕ. Because of the subdominant second term

in (8.17), 1+ 2χ2

M2 now verifies a quadratic equation, whose solution is straightforward

to write down, but that we will not need in the following, and that is not particularly

illuminating. At leading order, one can thus simply employ expressions (8.12)-(8.13).

8.3.4. Summary and Effective Single-Field Theory for the

Background

Let us summarize the main findings above. Despite small and understood differ-

ences, the background dynamics of sidetracked inflation in the minimal and in the

hyperbolic field spaces are similar, and can be summarized at leading order by the

simple equations (Eqns.(8.11) and (8.12)), expressing: 1) the rolling of the inflaton

ϕ on its potential, further slowed-down through its interactions with the accompany-

ing scalar field χ, giving it more inertia. 2) the fact that the dynamics of the latter

is being completely fixed by the inflaton, as a result of the competition between

the force originating from the field space geometry and the one from the quadratic

potential of χ. The background dynamics can therefore be reformulated in terms of

ϕ uniquely, which sheds an interesting light on sidetracked inflation. In table (8.2),

we collect a number of useful relations that derive easily from the equations above,

that we compare to their counterparts in standard single-field slow-roll inflation.

One can see that the dynamics and the functional dependences of the various infla-

tionary parameters on the shape of the potential are very different between standard

slow-roll inflation and sidetracked inflation. For the latter, we give each time two

equivalent expressions, the first one in terms of the various mass scales MPl,M,mh

and the potential, and the second one that make appear the ratio mh/H(ϕ) by using

3H(ϕ)2M2
Pl ' V (ϕ). Strictly speaking, one could envisage situations in which mh

has no relationship with the Hubble scale. However, this is not the case in realistic
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Functions Sidetracked inflation Slow-roll inflation

dϕ
dN
'


−
√

3
2
MPlMmh/

√
V sign(V,ϕ)

−M√
2

mh
H(ϕ)

sign(V,ϕ)

−M2
Pl
V,ϕ
V

ε '


1
2

√
3
2
MPlMmh|V,ϕ|/V 3/2

1
2
√

2
M |V,ϕ|

V
mh
H(ϕ)

M2
Pl

2

(
V,ϕ
V

)2

η = d ln ε
dN
'


3ε−

√
3
2
MPlMmh

V,ϕϕ
|V,ϕ|V 1/2

3ε− M√
2

V,ϕϕ
|V,ϕ|

mh
H(ϕ)

4ε− 2M2
Pl
V,ϕϕ
V

N −Nini '


−
√

2
3

1
MPlMmh

∫ ϕ
ϕini

sign(V,ϕ′)
√
V (ϕ′)dϕ′

−
√

2
M

∫ ϕ
ϕini

sign(V,ϕ′)
H(ϕ′)
mh

dϕ′
− 1
M2

Pl

∫ ϕ
ϕini

V (ϕ′)
V,ϕ′

dϕ′

Table 8.2.: Comparison between sidetracked inflation and slow-roll inflation.

situations, and in our approach and our numerical examples, we took mh = 10Hc.

The ratio mh/H(ϕ) is a dynamical quantity and is larger in sidetracked inflation

than at the critical time because of the decrease of the Hubble scale, however, for

qualitative estimates, one can think of it as an O(10) quantity. The second expres-

sions of ε and η make it clear therefore that the overall scale Λ of the potential (see

Eqn. (8.7)) is irrelevant for the dynamics, and that only its shape V(ϕ) matters, like

in slow-roll inflation. In the latter case, the expressions of ε and η indicate the well

known fact that the (log) potential should be flat in Planck units. In sidetracked

inflation, the corresponding expressions rather indicate that the potential should be

flat with respect to the curvature scale M , with the requirements:

M
V,ϕ
V
� 1 , M

V,ϕϕ
V,ϕ
� 1 . (8.18)

Concretely, this implies that one can have a prolonged phase of inflation supported

by potentials that would be too steep to allow standard slow-roll inflation. This

is clearly visible in fig. (8.2) for instance, where inflation arises on the Starobin-

sky potential with ϕ ∼ MPl, and on the natural inflation potential with ϕ ∼ f .5

Additionally, the second criteria in Eqn. (8.18) does not involve M2
PlV,ϕϕ/V in the

standard way, but rather MV,ϕϕ/V,ϕ. In NI near the top of the hill for instance, this

translates into M � ϕ � f rather than the standard requirement that f � MPl.

More generally, it is interesting that inflation can occur in the presence of steep po-

tentials, both for the inflaton ϕ and its parter χ. This amusing feature of sidetracked

5Note that in the last 55 e-folds in NI, inflation does not arise near the top of the hill, but rather
near the minimum of the potential, so that it is approximately quadratic.
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inflation thus offers an interesting playground for future work, notably with respect

to the eta problem. Note however that it comes at the expense of the appearance

of the sub-Planckian curvature scale M , and is likely that a proper treatment of

naturalness issues in quantum field theory renders the situation more intricate.

8.4. Cosmological Fluctuations and Power

Spectrum

8.4.1. Numerical Methods

To determine the properties of the linear cosmological fluctuations generated in

sidetracked inflation, we solve the coupled equations (Eqns. (7.22)) in the natural

coordinate basis (ϕ, χ), choosing Bunch-Davies initial conditions. We follow a by

now standard procedure to implement numerically the quantization of the system

(see e.g. references [127, 172, 181, 229–234]): we identify two variables (as we

are dealing with two fields) that are independent deep inside the Hubble radius,

each corresponding to an independent set of creation and annihilation operators

whose effects add incoherently, and solve the system of equations (Eqn. (7.22)) two

times, each time imposing the Bunch-Davies initial conditions for only one of the

independent variables, while setting the other variables to zero initially. One then

extracts power spectra by summing the relevant quantities over the two runs. Deep

inside the Hubble radius, one can neglect the mass matrix in the action (3.24), so

that identifying a set of independent variables is equivalent to identifying a set of

vielbeins for the field space metric GIJ , which is straightforward. In practice, we

impose initial conditions eight e-folds before Hubble crossing. This is larger than

what is sufficient in more conventional circumstances but, as we will see, the strong

bending of the trajectory entails a non-trivial evolution of the fluctuations inside

the Hubble radius, and starting the evolution at a later time would give inaccurate

results.

As we encountered a highly non-trivial behaviour of the fluctuations, we also

used the completely independent so-called transport approach to determine their

properties, finding excellent agreement between the two methods. In this work, we

make use of the PyTransport 2.0 code from Ch.(5).

Contrary to the study of the premature end of inflation possibly triggered by the

geometrical destabilization [224], in which it was important to take into account

the uncertainties of the reheating phase, and given the exploratory nature of our

study here, we do not attempt to model reheating and simply assume throughout

the representative value ∆Npivot = 55 for the number of e-folds between Hubble

crossing of the CMB pivot scale and the end of inflation, the latter defined by the

instant at which ε = 1.
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8.4.2. Adiabatic and Entropic Fluctuations

With the two approaches described above, it is relatively straightforward to deter-

mine the power spectra of the curvature and entropic perturbations for any scale,

and therefore the scalar spectral index ns as well as the tensor-to-scalar ratio r6.

However, to gain more insight into the physics of the fluctuations, it is instructive

to formulate it in terms of the instantaneous adiabatic/entropic splitting. In partic-

ular, from Eqn. (7.22), one can deduce the coupled adiabatic and entropic equations

of motion as

Q̈σ + 3HQ̇σ +

(
k2

a2
+m2

σ

)
Qσ = (2Hη⊥Qs)

. −
(
Ḣ

H
+
V,σ
σ̇

)
2Hη⊥Qs , (8.19)

Q̈s + 3HQ̇s +

(
k2

a2
+m2

s

)
Qs = −2σ̇η⊥ζ̇ , (8.20)

where the adiabatic mass (squared) m2
σ is given by

m2
σ

H2
≡ −3

2
η − 1

4
η2 − 1

2
εη − 1

2
η̇/H , (8.21)

the entropic mass (squared) m2
s is given by

m2
s

H2
≡ V;ss

H2
+ εRfsM

2
pl − η2

⊥ , (8.22)

and in Eqn. (8.20), we employed in the right hand side the comoving curvature

perturbation ζ, directly proportional to the adiabatic fluctuation, such that

ζ =
H

σ̇
Qσ . (8.23)

In a symmetric way, note that it is also useful to introduce the rescaled entropic

perturbation

S =
H

σ̇
Qs . (8.24)

As in Eqn. (7.26), on super-Hubble scales such that k � aH, there exists a first

integral for Qσ, which can be conveniently rewritten in terms of ζ and S as

ζ̇ ≈ 2Hη⊥ S (8.25)

where σ̇ = H
√

2ε, (one can check indeed that the large-scale limit of (Eqn. (8.19))

is a consequence of Eqn. (8.25)). Inserting the latter result into Eqn. (8.20), one

6As usual, the tensor fluctuations are decoupled from the scalar sector, and the standard result
Pt(k) = 2/π2H2

k=aH/M
2
pl holds.
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finds that on super-Hubble scales,

Q̈s + 3HQ̇s +
(
m2
s + 4H2η2

⊥
)
Qs ≈ 0 , (8.26)

which is in agreement with the already given result (7.24), with m2
s (eff) = m2

s +

4H2η2
⊥. One can see that the two notions of entropic masses coincide in the case of

a geodesic motion with η⊥ = 0, but that they differ in general, a feature that plays

a central role in sidetracked inflation, as we will see.

Complementary to the super-Hubble limit discussed above, it is useful to recast

the equations of motion (Eqns. (8.19)-(8.20)) in a form that is more adapted to

understand the physics on sub-Hubble scales. By introducing the canonically nor-

malized fields in conformal time τ (such that dt = a dτ), vσ = aQσ and vs = aQs,

for the adiabatic and entropic fluctuations respectively, the equations can be put in

the compact form, derived in reference [235] in a more general context:

v′′σ − ξv′s +

(
k2 − z′′

z

)
vσ −

(zξ)′

z
vs = 0 , (8.27)

v′′s + ξv′σ +

(
k2 − a′′

a
+ a2m2

s

)
vs −

z′

z
ξvσ = 0 , ′ = d/dτ . (8.28)

In these two equations only, in order not to clutter the text with two many notations,

we used primes to denote derivatives with respect to conformal time, whereas other

instances in the rest of the text do denote derivatives with respect to the number of

e-folds. These equations render it clear that in addition to the scale factor, the only

other background quantities affecting the dynamics of fluctuations are

z ≡ aσ̇

H
= a
√

2ε , (8.29)

such that vσ = zζ, the entropic mass (8.22), and the time-dependent coupling

between the adiabatic and entropic fluctuation

ξ ≡ 2aHη⊥ . (8.30)

Although detailed predictions of the cosmological fluctuations, even in a single-field

context, depend on the precise time evolution of z, when the background evolution is

close to de Sitter, with ε, η and η̇/(Hη) all much smaller than unity, one can consider

at leading order that time derivatives of z are dominated by the variation of the scale

factor, i.e. 1
z

dz
dτ
' 1

a
da
dτ
' − 1

τ
and 1

z
d2z
dτ2
' 1

a
da
dτ2
' 2

τ2
. This corresponds to situations

in which the adiabatic mass (8.21) is negligible compared to the Hubble scale, which

applies in all the cases we have considered. Were the effect of the bending trajectory,

i.e of the coupling ξ, negligible in the dynamics of the fluctuations, this would lead

to the well known slow-roll single-field like result vσ k ' 1√
2k
e−ikτ

(
1− i

kτ

)
, and hence

to the standard result Pζk = (H2/(8π2ε))k=aH for the dimensionless power spectrum
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Pζk = k3/(2π2)Pζk , where 〈ζk1ζk2〉 ≡ (2π)3δ(k1+k2)Pζk with k = |k1| = |k2|. On the

contrary, as we have mentioned in section (8.3), the trajectory of sidetracked inflation

differs strongly from a geodesic, so that it is important to take into account the

coupled dynamics between the adiabatic and entropic degrees of freedom. For this,

we need to understand the behaviour of the various (related) mass scales m2
s, H

2η2
⊥

and m2
s (eff) compared to the Hubble scale. This is what we do in the following,

building on our understanding of the background dynamics in section (8.3).

8.4.3. Analytical Understanding of Relevant Mass Scales

We have explained in section (8.3) that χ̇� ϕ̇ in the sidetracked phase of inflation

(see Eqn. (8.14) for instance). To a very good approximation, one can then consider

that the adiabatic vector points in the direction of ϕ only, i.e. that eIσ ∝ (ϕ̇, 0) in

the natural coordinate basis. With the expressions (8.4) and (8.6) of the field space

metrics, this leads to

eIσ =

((
1 +

2χ2

M2

)−1/2

, 0

)
. (8.31)

From this, it is straightforward to deduce the form of the entropic unit vector as

eIs =


(0, 1) minimal(
−
√

2 χ
M

(
1 + 2χ2

M2

)−1/2

,
(

1 + 2χ2

M2

)1/2
)

hyperbolic

(8.32)

where here the two results differ in the minimal and in the hyperbolic model. Con-

trary to the background properties, the estimation of the various parameters, and

the resulting dynamics of the fluctuations, will be rather different for the two ge-

ometries, so we treat them separately in what follows. Before that, let us just

note the common formal expression of η⊥ that we will use. From its definition in

Eqn. (7.25), and the fact that the adiabatic acceleration σ̈ (derived from the stan-

dard Klein-Gordon equation for the scalar field, as in Eqn. (2.195)) is negligible

during inflation, we deduce that

η⊥ ' 3
V,s
V,σ

(8.33)

to a very good approximation.

Minimal Geometry

From the expression (8.33) of η⊥, together with (8.31)-(8.32), one finds η⊥ '
3V,χ/V,ϕ ×

(
1 + 2χ2

M2

)1/2

. Using Eqn. (8.11) to express V,ϕ in terms of ϕ̇, and the
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Figure 8.4.: Fully numerical and analytical result (8.34) for the absolute value of
η⊥ in the last 63 e-folds of sidetracked inflation in the minimal geometry, for the
potentials of SI (left) and NI, f = 10 (right).

simple form (8.11) of the latter, one then finds

η⊥ '
mh

H

√
2χ
M(

1 + 2χ2

M2

)1/2
× sign(V,ϕ) . (8.34)

One can of course express this result in terms of ϕ only, by using Eqn. (8.12). How-

ever, Eqn. (8.34) is more instructive: as χ = O(M), the second multiplicative factor

in (8.34) is of order one. Let us also recall that, as a consequence of the decrease of

the Hubble scale, mh/H > mh/Hc = 10. One therefore reaches the conclusion that,

as announced, the bending of the background trajectory, as measured by η⊥, is large

in sidetracked inflation in the minimal geometry. Intuitively, one can understand

this result: as the sidetracked phase stems from the competition (and neutraliza-

tion) of the effects from the geometry and from the potential, it is not surprising

that 1) the resulting trajectory deviates from a geodesic, and 2) that it does so by an

amount related to how massive the field χ is. The fully numerical result for η⊥, as

well as the analytical estimate (8.34), are shown in Fig. (8.4) for the two examples

of SI and NI with f = 10. Note that in each case the agreement is excellent, with a

relative accuracy of order 10−5 and 10−7 (not visible in the figures).

We now determine expressions for the two entropic masses. With (8.32), it is

straightforward to find that V;ss ' m2
h. For the geometrical contribution, we use

Eqn. (8.10) to find that ε '
(

1 + 2χ2

M2

)
m2
h

H2
M2

4M2
pl

, and hence, with the expression

(8.5) of the field space curvature, that εRfsM
2
pl ' −

m2
h

H2

(
1 + 2χ2

M2

)−1

. The three

contributions — the Hessian, the bending, and the geometrical ones — to m2
s (eff)/H

2

(Eqn. (7.24)) and m2
s/H

2 (Eqn. (8.22)) are therefore individually large, each of order
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Figure 8.5.: Absolute values of m2
s (eff)/H

2, its three contributions (see Eqn. (7.24)),

as well as m2
s/H

2, for our two representative examples of SI and NI with f = 10,
in the minimal geometry. The plots show the last 63 e-folds of inflation. One can
check that m2

s/H
2 � 1, and one actually has m2

s/H
2 < 0 around Hubble crossing.

of the large mass m2
h/H

2. However, by summing them, we find

m2
s (eff)

H2
' 4m2

h

H2

2χ2

M2(
1 + 2χ2

M2

) � 1 (8.35)

m2
s

H2
' 0 . (8.36)

In other words, while the effective mass m2
s (eff), which dictates the evolution of

the entropic fluctuations on super-Hubble scales according to Eqn. (7.23), is much

larger than the Hubble rate, the various large contributions to the entropic mass m2
s,

which is important for the sub-Hubble dynamics (see Eqn. (8.28)), cancel, at least in

our analytical treatment. This is confirmed numerically, as we can see in Fig. (8.5),

where we plot (the absolute values of) m2
s (eff)/H

2, its three contributions, as well as

m2
s/H

2, for the two representative examples of SI and NI with f = 10. In both cases,

we indeed find that m2
s � H2, and we also observe that m2

s is negative. Naturally,

we could keep track of subleading terms in our analytical treatment, beginning with

the correction to eIσ induced by the non-zero velocity of χ, that is suppressed by 10−5

compared to the one of χ in these two examples (see Fig. (8.3) and Eqn. (8.14)).

Although we did not attempt it, we expect it would reproduce the small value of

m2
s, that is indeed suppressed by 10−5 compared to m2

s (eff).

Hyperbolic Geometry

As for the hyperbolic geometry, we can follow the same steps as in the minimal one,

which used the estimate (8.10) for ϕ̇ in particular, finding again large individual

contributions to m2
s (eff)/H

2, of order m2
h/H

2, and a vanishing m2
s/H

2. While these

results are indeed quantitatively correct for each of the various contributions, and

for m2
s (eff), this result is misleading for m2

s, the reason being that the subleading

correction to ϕ̇ in the refined expression (8.17) has to be taken into account when
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Figure 8.6.: Absolute values of m2
s (eff)/H

2, its three contributions (see Eqn. (7.24)),

as well as m2
s/H

2, for our two representative examples of SI and NI with f = 10,
in the hyperbolic geometry. The plots show the last 63 e-folds of inflation. Contrary
to the minimal geometry, one has |m2

s|/H2 � 1 in that case. In addition, note that
m2
s is positive in SI, and negative in NI.

the leading order result vanishes. In what follows, we give both the leading-order

expressions of the various quantities involved, making use of (8.10), as well as refined

ones, making use of (8.17)-(8.11). We do this in particular because the magnitude

of these parameters is most easily understood with the leading-order estimates.

For η⊥, starting from (8.33), one then finds7

η⊥ '


√

2χ
M

mh
H

sign(V,ϕ) leading − order

2 χ
M

1+ 2χ2

M2

V,ϕ
3H2M

refined

(8.37)

where the leading-order (respectively the refined) estimate is accurate to the level

10−2 (respectively 10−4) for the NI potential with f = 10 for instance. As announced,

one finds a large bending, like in the minimal model, and the same remarks as in

that case apply regarding an intuitive picture of its origin.

By using (8.32), one can straightforwardly compute V;ss, finding

V;ss '
(

1 +
4χ2

M2

)
m2
h −
√

2
V,ϕ
M

(
1 +

2χ2

M2

)−1

+
2χ2

M2(
1 + 2χ2

M2

)V,ϕϕ , (8.38)

where one would keep the first term at leading-order, the second term in the refined

estimate, and the last term can always be neglected for practical purposes. Even-

tually, using ε '
(

1 + 2χ2

M2

)
ϕ̇2/(2H2M2

pl), together with Rfs = −4/M2, one deduces

7The complete leading-order result has an additional contribution −3
√

2χ/M , which however
exceeds the accuracy of this calculation.
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that

εRfsM
2
pl '


−
(

1 + 2χ2

M2

)
m2
h

H2 leading − order

− 2

1+ 2χ2

M2

(
V,ϕ

3H2M

)2

refined .

(8.39)

Summing these contributions, one deduces that

m2
s (eff)

H2
' 8

m2
h

H2

χ2

M2
� 1 leading − order (8.40)

m2
s

H2
' 2

√
2

2χ2

M2(
1 + 2χ2

M2

) V,ϕ
H2M

refined , (8.41)

where it is sufficient to give the leading-order form of the super-Hubble entropic

mass for our purpose. Now that a non-zero result for m2
s is found, one can use

Eqn. (8.11) and the simple leading-order estimate (8.10) to find the simple, more

intuitive form
m2
s

H2
' 12

mh

H

χ2

M2
sign(V,ϕ) . (8.42)

This shows that, contrary to the minimal case, |m2
s/H

2| � 1, and that it is smaller

than m2
s (eff)/H

2 only by a factor mh/H. In addition to its amplitude, a crucial

feature of the result (8.41)-(8.42) is that the sign of the entropic mass squared

m2
s can be positive or negative — with important observational consequences —

depending on whether the slope of the potential is positive or negative respectively.

It is rather unusual in inflationary models to find a physical quantity that depends

on the sign of the slope of the potential. In standard single-field inflationary models

in particular, one can arbitrarily change the definition of ϕ into −ϕ, and hence the

sign of V,ϕ, without physical consequences. One can do so because the standard

kinetic term (∂ϕ)2 is trivially Z2 symmetric. However, while this feature is still

true for the minimal field space metric (8.4), this is not the case for the hyperbolic

metric (8.6). Hence, it is not surprising that a physical quantity can depend on the

choice of labelling the field ϕ or −ϕ, and hence on the sign of V,ϕ, simply because

the starting point Lagrangian does depend on this choice in our hyperbolic model.

Similarly to the minimal model, all our analytical estimates above have been

checked to agree with very high accuracy with the fully numerical results. For

instance, the non-trivial result (8.41) for m2
s is accurate to the level 10−5 for our

two representative examples of SI and NI with f = 10. We show in Fig. (8.6) (the

absolute values of) m2
s (eff)/H

2, its three contributions, as well as m2
s/H

2, for these

two examples.



8.4: Cosmological Fluctuations and Power Spectrum 145

Summary

Let us summarize the important features for the dynamics of the fluctuations that

we learned in sections (8.4.3)-(8.4.3), and describe their consequences.

• The deviation of sidetracked inflation’s trajectory from a geodesic, and hence the

coupling between the adiabatic and entropic fluctuations, is very large, as measured

by the parameter η⊥ � 1.

• The super-Hubble effective mass m2
s (eff), governing the dynamics of entropic

fluctuations once they exit the Hubble radius (see (7.23)), is positive and much larger

than the Hubble rate. Hence entropic fluctuations decay extremely fast outside

the Hubble radius and the curvature perturbation is expected to be conserved on

super-Hubble scales. An adiabatic limit is therefore reached by the end of inflation,

rendering the multifield scenario of sidetracked inflation predictive without the need

to describe the reheating stage.

• The entropic mass squared m2
s, which dictates the evolution of the entropic

fluctuations inside the Hubble radius — together with its coupling to the adiabatic

degree of freedom — has different behaviours in the two field space geometries that

we consider: it is much smaller than the Hubble rate in the minimal model (and

negative), and much larger in the hyperbolic one. In that case, its sign depends on

whether inflation proceeds along increasing or decreasing ϕ, and hence on the choice

of the potential and the branch on which inflation occurs.

Let us stress that a negative entropic mass squared m2
s does not by no means imply

that the background is unstable. A direct measure of the stability of the latter is

provided by the sign of m2
s (eff) = m2

s + 4H2η2
⊥, which is the mass of the fluctuations

orthogonal to the background trajectory in the k → 0 limit. While this quantity

becomes negative along χ = 0 after the critical time, signaling the instability of this

inflationary solution, and hence the geometrical destabilization, the large positive

value of m2
s (eff)/H

2 in sidetracked inflation was expected, as the latter corresponds

by definition to the stable attractor trajectory in these models.

In addition, we saw in section (8.3.4) that one can achieve an effective description

of this attractor in terms of one degree of freedom only, in which case the curvature

perturbation ζ is conserved on super-Hubble scales [38]. Using the expression of

N(ϕini) given in table (8.2), and the δN -separate universe picture, one then obtains

ζ = N,ϕQϕ
8, where the right-hand side is evaluated at Hubble crossing such that

k = aH, and hence

Pζk =

(
2V

3(MplMmh)2
PQϕ

)
k=aH

. (8.43)

8Note that in table (8.2), the number of e-folds of inflation as a function of initial conditions is
evaluated on the sidetracked attractor, in particular with χ determined as a function of ϕ. This
is different from the quantity N(ϕini, χini) one should compute in the δN formalism, but it is
legitimate to do so given the strong attractor solution, and hence the negligible dependence of
N on χini
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Taking into account the fact that

Qσ =


(

1 + 2χ2

M2

)1/2

Qϕ minimal

(
1 + 2χ2

M2

)1/2

Qϕ +
√

2χ/M
(

1 + 2χ2

M2

)−1/2

Qχ hyperbolic

, (8.44)

Eqn. (8.43) consistently coincides with evaluating Pζk = (H/σ̇)2PQσ at Hubble

crossing (let us recall Eqn. (8.23)), when neglecting Qχ fluctuations in the hyperbolic

model. This is indeed a good approximation, as

Qs =


Qχ minimal

(
1 + 2χ2

M2

)−1/2

Qχ hyperbolic

, (8.45)

and, as we will see, entropic fluctuations are already negligible compared to adia-

batic ones at Hubble crossing. However, note that contrary to standard situations,

Eqn. (8.43) is of little practical use without further input, as the non-trivial sub-

Hubble dynamics caused by the bending trajectory renders
(
PQϕ

)
k=aH

unknown, or

more precisely, it can substantially differ from the purely adiabatic result
(
H
2π

)2

k=aH
.

Some analytical understanding can however be achieved. In the hyperbolic ge-

ometry in particular, we have seen that the entropic mass m2
s is much larger than

the Hubble rate. This type of framework has been extensively studied (see e.g.

[127, 132, 222, 236–246]), and it has been shown that the heavy entropic fluctua-

tion can then be integrated out, resulting in a single-field effective theory for the

adiabatic fluctuation, with a non-trivial speed of sound different from unity. More

surprisingly at first sight, when the entropic mass is much smaller than the Hubble

scale, one can still integrate out the entropic fluctuation in the presence of a large

bending, as is relevant in the minimal geometry, obtaining then a single-field effec-

tive theory with a modified dispersion relation [222, 236, 242, 246]. We make use of

these tools in the following section, treating each of the two situations in turn.

8.4.4. Effective Single-Field Theory for the Fluctuations

When the entropic mass of the entropic fluctuation m2
s is large compared to the

Hubble scale, as it is relevant in the hyperbolic geometry, one can integrate it out:

neglecting the first two terms in its equation of motion (Eqn. (8.20)), one can express

Qs in terms of the curvature perturbation ζ, plug it back into the second-order action

and deduce

S(2) (EFT) =

∫
dt d3k

a3 εM2
Pl

c2
s(k)

[
ζ̇2
k + c2

s(k)k2 ζ
2
k

a2

]
, (8.46)
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Figure 8.7.: Fully numerical c2
s(k) (8.47) and analytical result (8.50) for its ‘late

time’ behaviour when k2/a2 � m2
s, for the potentials of SI (left) and NI, f = 10

(right). The corresponding scale crosses the Hubble radius 55 e-folds before the end
of inflation, at N = 0 in the plots.

where
1

c2
s(k)

≡ 1 +
4H2η2

⊥
k2/a2 +m2

s

. (8.47)

We will discuss below the conditions determining the validity of such an effective

field theory (EFT), a subject which has been extensively studied (see e.g. [127, 132,

222, 236–246]). Note already that in addition to the condition of a heavy entropic

field, m2
s � H2, one should also verify the generalized adiabaticity condition [238]

|η̇⊥/(msη⊥)| � 1 , (8.48)

expressing the fact that the rate of change of the bending should be smaller than

the large entropic mass, so as not to excite high-frequency modes that are not

captured by the low-energy effective field theory (8.46). There is no restriction

on the amplitude of the bending however, which can consistently be large, as in

sidetracked inflation. From the expression (8.37) of η⊥ (see also the numerical results

in Fig. (8.5)), it is easy to see that the stronger condition |η̇⊥/(Hη⊥)| � 1 holds

in sidetracked inflation in the hyperbolic geometry, so that the condition (8.48) is

safely verified.

Note that deep on sub-Hubble scales, when k2/a2 � (m2
s, H

2η2
⊥), the speed of

sound equals unity and one recovers the Bunch-Davies behaviour of the full two-

field situation, as it should be. One can not integrate out the entropic field in this

regime, but the adiabatic and entropic fluctuations behave as uncoupled free fields,

and including the gradient terms in (8.47) can be seen as an effective way to treat in

a unified manner this regime and the subsequent one, with good results as we will

see. As soon as k2/a2 drops below m2
s, the speed of sound becomes k-independent,
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and approximately reads, using (8.37)-(8.42)

1

c2
s

− 1 ' 4H2η2
⊥/m

2
s '


2
3
mh
H

sign(V,ϕ) leading − order

1

1+ 2χ2

M2

4V,ϕ
9
√

2H2M
refined

(8.49)

where, as before, the refined estimate is very accurate (to the level 5×10−3 in SI for

instance), while the leading-order one is less accurate (to the level 8× 10−2 for the

same model), but easier to grasp the physics: as mh � H, one has |1/c2
s − 1| � 1,

and therefore a low speed of sound determined by the hierarchy between the heavy

mass mh and the Hubble scale, given by

c2
s '

3H

2mh

sign(V,ϕ) . (8.50)

We show in Fig. (8.7) the fully numerical result (8.47) for c2
s(k) and the analytical

result (8.50) for its ‘late time’ behaviour when k2/a2 � m2
s, for the scale k55 that

crosses the Hubble radius 55 e-folds before the end of inflation, at N = 0 in the plot,

and for the potentials of SI (left) and NI, f = 10 (right). Note that c2
s is moderately

small in the first case, but the agreement is nonetheless excellent.

As the reader should have noticed, we treated in a unified manner the situations

in which the large entropic mass squared m2
s/H

2 is positive, like in SI, or in which

it is negative, like in NI. Although the latter situation is unusual, as it corresponds

to a negative speed of sound squared, it does not violate the conditions under which

the effective field theory (8.46) has been derived, and its predictive power is equally

applicable here. The physical consequences are however very different and we treat

each of them separately, beginning with the more conventional situation.

Positive Speed of Sound

When the entropic mass m2
s is positive, c2

s(k) is always positive, and the action (8.46)

for k2/a2 � m2
s describes a standard set-up with a reduced speed of sound cs given

by (8.49)-(8.50). One then finds that ζk becomes constant soon after sound Hubble

crossing such that kcs = aH, with the usual result [79]

Pζk '
(

H2

8π2εcs

)
?

, (8.51)

where here ? denotes evaluation at kcs = aH (In the three different situations

studied respectively in sections (8.4.4), (8.4.4), (8.4.4), the subscript ? indicates an

evaluation at different times. This is summarized in table (8.3)). In SI, and for

the scale k55 that crosses the Hubble radius 55 e-folds before the end of inflation,

this predicts a value of the enhancement of the curvature power spectrum compared
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Figure 8.8.: Power spectra of the curvature perturbation as functions of the number
of e-folds, computed numerically in the full two-field model (exact, in dashed red),
and from the effective field theory (8.46) using (8.55), for SI (left) and NI with
f = 10 (right) in the hyperbolic geometry. The spectra are evaluated for the scale
that crosses the Hubble radius 55 e-folds before the end of inflation, at N = 0 in the
plots, and are normalized by the adiabatic result (8.52). The insets show the ratios
between the EFT and the exact results.

to the adiabatic result Pζ/Pad ' 3.50 (respectively 3.56 for the two-field numerical

result). In Fig. (8.8a) one can also see the very good agreement between the full two-

field numerical result and the numerical result corresponding to the effective theory

(8.46) (see below for the detailed procedure of the computation). Additionally, one

can see in Fig. (8.10a) how the entropic power spectrum decreases as 1/a3 as soon

as k2/(a2m2
s) drops below one. Note that all quantities in the various plots of the

power spectra in this section are for the scale k55, and are normalized by

Pad =
(
H2/(8π2ε)

)
k=aH

, (8.52)

which, as we have explained in section (8.4.2), is the prediction for the curvature

power spectrum if the effects of the bending were negligible, which we call the

adiabatic result. Thus, the deviation from one of the final value observed for Pζ in

these plots is a measure of the non-trivial multifield effects, that occur on sub-Hubble

scales in sidetracked inflation. Note also that deep inside the Hubble radius, the

Bunch-Davies behaviour implies that all plotted quantities behave as ' k2/(a2H2).

From the result (8.51) for the power spectrum, one deduces the familiar expression

of the scalar spectral index ns−1 ' −2ε?−η?−s?, where s ≡ c′s/cs. For the scale k55,

this gives ns ' 0.969, whereas the full two-field numerical result gives ns = 0.970,

and the adiabatic result would give ns = 0.965; the agreement between the effective

field theory and the full result is thus very good. Note eventually that with the

expression (8.50) for c2
s, one obtains 2s ' −ε, and hence the simplified form of the

result ns − 1 ' −3
2
ε? − η?.
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Imaginary Speed of Sound

We now discuss situations in which the effective speed of sound squared is negative

(situations in which m2
s is negative but c2

s is still positive do not arise in our frame-

work, but results of the previous section would apply in that case). Let us first give

a few details about how we calculate the EFT prediction. From the action (8.46),

one deduces the equation of motion for the complex mode function

ζ̈k +H(3 + η − 2s)ζ̇k +
c2
s(k)k2

a2
ζk = 0 , (8.53)

and the quantization condition, which states that

ζkζ̇
∗
k − ζ̇kζ∗k =

ic2
s(k)

2εa3
(8.54)

holds at all time. Following [247, 248], one can then easily deduce a non-linear

evolution equation for the power spectrum Pζk ≡ k3/(2π2)|ζk|2 itself, which reads,

in e-fold time:

P ′′ζk + (3− ε+ η − 2s)P ′ζk +
2c2
s(k)k2

a2H2
Pζk =

1

2Pζk

(
P ′2ζk +

(
k3c2

s(k)

4π2εHa3

)2
)
. (8.55)

One can then easily solve this equation numerically, with initial conditions Pζk =
1

8π2ε
k2

a2
(1 +O((aH)2/k2)) deep inside the Hubble radius, where we took into account

that cs equals unity in this regime. Note that in Eqs. (8.53)-(8.55), 2s ≡ c2′
s (k)/c2

s(k).

An important subtlety in models with m2
s < 0, and hence in which c2

s(k) crosses 0

around k2/a2 ' |m2
s|, is that s, which multiplies P ′ζk in (8.55), blows up at that

time. We then solve Eqn. (8.55) in two steps, before this jump, and afterwards,

imposing continuity and the regularity condition P ′ζk = 0 as an initial condition for

the second phase. In this respect, note that the artifact of c2
s crossing zero comes

from our will to have a single EFT that captures both the Bunch-Davies regime

k2/a2 � |m2
s|, and the subsequent period. Contrary to what the action (8.46) might

suggest, there is no ghost or strong coupling problem in the full two-field theory, and

c2
s(k) becoming negative around k2/a2 ' |m2

s| simply signals the tachyonic growth

of the entropic fluctuation, which in turns feeds the curvature perturbation. Our

matching procedure can thus be physically motivated as interpolating between the

Bunch-Davies behaviour, in which Pζk decreases as 1/a2, and the subsequent phase

in which Pζk grows, hence having P ′ζk = 0 at the transition.

We show in Fig. (8.8b) the result of this procedure for the model of NI with

f = 10, together with the numerical result of the full two-field theory. The agreement

between the exact result and the one derived from our effective field theory treatment

is impressive: the two differ only by a factor of 2 despite the unusually large growth of

the power spectrum on sub-Hubble scales, by five orders of magnitude. In addition,
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we show in what follows that one can derive an analytical understanding of this large

growth, as well as the final result for the power spectrum and its running, building

on the matching procedure described above.

Let us consider the action (8.46) in the regime where k2/a2 has dropped below

|m2
s|, so that c2

s is k-independent and negative. The canonically normalized field

vk = zζk with z = a
√

2ε/|cs| verifies the standard equation, of k-inflationary type,
d2vk
dτ2

+
(
c2
sk

2 − 1
z

d2z
dτ2

)
vk = 0. As we discussed below Eqn. (8.30), we assume that ε

and cs evolve much less rapidly than the Hubble scale, which is well verified in our

setup, so that one approximately obtains, with a ' −1/(Hτ):

d2vk
dτ 2

+

(
c2
s k

2 − 2

τ 2

)
vk ' 0 . (8.56)

For practical purposes, we can take c2
s to be constant, and the general solution of

(8.56) is simply obtained from the usual situation, in which c2
s > 0, by changing

cs into i|cs|, where we use the notation |cs| ≡
√
|c2
s| (and similarly for analogous

quantities). It reads

vk = Ake
k|cs|τ

(
1− 1

k|cs|τ

)
+Bke

−k|cs|τ
(

1 +
1

k|cs|τ

)
, (8.57)

where the standard oscillatory behaviour is now turned into increasing and decreas-

ing exponential ones, and where Ak and Bk are two constants to determined. As

explained above, we determine them by requiring that ζ ′k = 0 (implying P ′k = 0) at

the matching time such that k2 = a2|m2
s|, denoted by a ?, and the continuity with

the standard Bunch-Davies result vk ∼ 1√
2k
e−ikτ . This readily gives

Bk = Ake
2k|cs|τ? , (8.58)

and then

Ak =
1

2
√

2k
e−k|cs|τ? , (8.59)

where we omitted an irrelevant phase factor. The time dependent power spectrum

then reads

Pζk(τ) =
H2

32π2ε

[
ex−x?(x− 1) + e−(x−x?)(x+ 1)

]2
, (8.60)

where x = k|cs|τ ' −k|cs|/(aH) is negative and grows with time, from x? such that

x2
? � 1, towards zero on super-Hubble scales. Eqn. (8.60), which rightly reproduces

the time-dependence of the power spectrum seen in Fig. (8.8b), shows that the two

modes are equally important at the transition time, although it is dominated very

rapidly by the exponentially growing mode. With |x?| ' (|cs||ms|/H)?, this gives
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the final result for the power spectrum

Pζk =

(
H2

8π2ε

1

4
e2|cs| |ms|H

)
?

=

(
H2

8π2ε

1

4
e
| m2

s
H2η⊥

|
)
?

, (8.61)

where we should consistently take for the values of the slowly-varying quantities the

ones at the matching time ?, i.e at entropic mass crossing such that k2 = a2|m2
s|.

Let us stress that |cs|? here is evaluated using the k-independent limit (8.49) and

not (8.47), which would give a vanishing value. Note also that the result (8.61) is

expressed in terms of general quantities and holds beyond our particular framework

of sidetracked inflation.

Now specifying the general result (8.61) to this setup, and using Eqs. (8.37)-(8.41)-

(8.50), one finds that the exponential enhancement simply reads e6
√

2χ?/M , so that

the scalar spectral index reads

ns − 1 = −2ε? − η? + 6
√

2χ
′

?/M . (8.62)

For NI with f = 10, these results predict a value of the enhancement of the power

spectrum compared to the adiabatic result Pζ/Pad ' 4.4× 108 (respectively 1.26×
108 for the two-field numerical result), as well as ns = 0.973 (respectively 0.974).

Given the highly non-trivial and very large growth of the power spectrum, and the

degree of arbitrariness in our matching procedure, we find this order one agreement

very good for the first result, and rather remarkable for ns. In addition, although

we concentrated here on our representative example, we will comment in section

(8.4.5) how our analytical formula enable one to reproduce and understand the full

numerical results for a variety of models and parameters.

Before closing this section, let us note that a similar sub-Hubble growth of the

curvature perturbation induced by a transient tachyonic instability has already been

observed in the literature in reference [222], although it has not been studied in

detail. More recently, a two-field model with hyperbolic geometry and that features

the same type of behaviour has also been studied [249, 250]. The authors there used

a full two-field description, but we note that our description in terms of an effective

single-field theory with an imaginary speed of sound seems equally applicable there.

Modified Dispersion Relation

We now discuss the single-field effective field theory behind sidetracked inflation in

the minimal geometry. As we have seen, we have |m2
s|/H2 � 1 in that case, and

one would usually not expect to be able to integrate out a light field around Hubble

crossing. However, this picture can be modified when the background trajectory

does not follow a geodesic, as this introduces the new mass scale H2η2
⊥. When

it is much larger than the Hubble scale, like in sidetracked inflation, a non-trivial
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Figure 8.9.: Power spectra of the curvature perturbation as functions of the number
of e-folds, computed numerically in the full two-field model (exact, in dashed red),
and from the effective field theory (8.46) using (8.55), for SI (left) and NI with
f = 10 (right) in the minimal geometry. The spectra are evaluated for the scale
that crosses the Hubble radius 55 e-folds before the end of inflation, at N = 0 in the
plots, and are normalized by the adiabatic result (8.52). The insets show the ratios
between the EFT and the exact results.

dynamics is arising on sub-Hubble scales, and it is then legitimate to integrate out

the entropic field. This situation has been studied in references [222, 236, 242, 246],

to which we refer the reader for more details. The resulting effective action for the

curvature perturbation is still formally given by (8.46), but the relevant energy scale

of applicability and phenomenology are markedly different from what we discussed

previously.

On sub-Hubble scales, one can now neglect m2
s with respect to k2/a2 in the ex-

pression of the effective speed of sound (8.47). And while the dynamics is naturally

of Bunch-Davies type deep on sub-Hubble scales, with c2
s(k) ' 1 for k2/a2 � H2η2

⊥,

one obtains c2
s(k) ' k2/(4a2H2η2

⊥) in the relevant intermediate regime 4H2η2
⊥ �

k2/a2 � m2
s. The dynamics of the cosmological fluctuations is hence characterized

by a non-linear dispersion relation ω(k) ∝ k2, similarly to what arises in ghost infla-

tion [251]. It is distinct however, contrary to what the familiar form of the evolution

equation (8.53) might suggest. In that case, indeed, the speed of sound is not slowly

evolving compared to the scale factor, and the friction term −2sHζ̇k is not a small

correction to the Hubble friction. With s ' −1 and with η � 1, Eqn. (8.53) indeed

reads

ζ̈k + 5Hζ̇k +
1

4H2η2
⊥

k4

a4
ζk ' 0 , (8.63)

which displays both a quadratic dispersion relation and an unusual friction term.

Upon quantization and the choice of the Bunch-Davies vacuum, the relevant solution

reads [236]

ζk =
H

k3/2

√
π

2ε
η

1/4
⊥ y5/2H

(1)
5/4(y2) (8.64)

where y ≡ −kτ/(2√η⊥), and all slowly evolving parameters have taken to be con-
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Figure 8.10.: Adiabatic (Pζ) and entropic (PS) power spectra as functions of the
number of e-folds, for both the minimal (solid lines) and hyperbolic (dashed lines)
internal metrics. The spectra are evaluated for the scale crosses the Hubble radius
55 e-folds before the end of inflation, at N = 0 in the plots, and are normalized
by the adiabatic result (8.52). The insets are details of the same curves around the
time of Hubble crossing.

stants here to obtain an analytical solution. With y5/2H
(1)
5/4(y2) ∼

y∼0
−i25/4

π
Γ(5

4
), one

finds that the curvature perturbation becomes constant soon after y ∼ 1, with an

almost scale-invariant power spectrum

Pζk =

√
2Γ(5/4)2

π3

(
H2

ε

√
η⊥

)
?

(8.65)

(note that the enhancement of the power spectrum by
√
η⊥ in this kind of setup was

first given in [222]). Determining at which time τ? exactly should slowly evolving

parameters be evaluated exceeds the accuracy of the calculation here, but it is

natural to choose it such that y? = 1, at the transition between the two asymptotic

regimes of the solution (8.64). From (8.65), one then finds

ns − 1 = −2ε? − η? +
1

2

(
η′⊥
η⊥

)
?

, (8.66)

where the new last term is small, as we explained below Eqn. (8.48). With the

explicit expression (8.34) of η⊥, one finds
η′⊥
η⊥
' ε+ χ′

χ

(
1 + 2χ2

M2

)−1

, where it can easily

be checked that the second term is negligible compared to the first, simplifying the

general result (8.66) to

ns − 1 = −3

2
ε? − η?. (8.67)

In Fig. (8.9), we show the curvature perturbation power spectrum computed nu-

merically in the full two-field model, and from the effective field theory (8.46) using

(8.55), for SI (left) and NI with f = 10 (right) in the minimal geometry. The two

results are in very good agreement, as well as with the analytical solution (8.64). In

SI, the latter predict a value of the enhancement of the power spectrum compared
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to the adiabatic result Pζ/Pad ' 12.9 (respectively 13.6 for the two-field numerical

result), as well as ns = 0.969 (respectively 0.968). In NI, one predicts Pζ/Pad ' 22.5

(respectively 23.0 for the two-field numerical result), as well as ns = 0.969 (respec-

tively 0.969).

Summary

Here, we simply collect and present in a unified manner in table (8.3) the characteris-

tic features and analytical results for the observables ns and r, for the three different

types of sidetracked inflationary scenarios that we encountered. We give expressions

for the observables that are expressed in terms of general quantities, applicable to

other multifield scenarios with the same characteristics, as well as specific results

that take into account the particular background of sidetracked inflation. Note that

the factor
(
Hk=aH
H?

)2

appearing in the expression of r comes from the different time

around which the curvature power spectrum and the tensor one become constant.

8.4.5. Numerical Results for all Potentials

In this section, we give the results for the observables r and ns for the four type

of potentials that we have studied, and the various lists of parameters indicated in

table (8.1), both for the minimal and the hyperbolic geometry. It is interesting to

compare our results with the values of r and ns of single-field inflation, that is the

results in the absence of any geometrical destabilization. The difference between the

two outcomes is therefore a measure of the overall observable consequences of the

instability and the second sidetracked phase. To better quantify how the predictions

are affected by the non-trivial multifield effects, we further do another comparison by

displaying the power spectrum parameters calculated on the sidetracked trajectory

using the adiabatic description, i.e. by completely neglecting entropic perturbations.

As the evolution of the scale factor is close to the de-Sitter one, in the sense made

precise in section (8.4.2), the adiabatic power spectrum is given to a very good

approximation by Eqn. (8.52), which hence gives

rad = 16 ε , ns ad = 1− 2ε− η , (8.68)

where all quantities are evaluated at Hubble crossing such that k = aH.

We present the results in the (ns, r) plane in Figs. (8.11) and (8.12), while precise

values are also listed in the section (8.6). The different markers used in the plots

relate to the three descriptions above: the results labeled “exact” correspond to the

numerical results in the full sidetracked inflation set-up; the ones labeled “without

GD” mean those obtained along χ = 0, i.e. when the geometrical destabilization

is overlooked; and the description called “adiabatic” is the one where we use Eqn.

(8.68) to compute the results of the sidetracked phase.
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Minimal geometry

Entropic mass |m2
s| � H2

Single-field EFT Quadratic dispersion relation

Relevant time ? k/a = 2H
√
|η⊥|

r
√

2π
(Γ(5/4))2

ε?√
η⊥?

(
Hk=aH
H?

)2

ns − 1 −2ε? − η? + 1
2

(
η′⊥
η⊥

)
?
' −3

2
ε? − η?

Hyperbolic geometry Hyperbolic geometry

and V,ϕ > 0 and V,ϕ < 0

Entropic mass m2
s � H2, m2

s > 0 |m2
s| � H2, m2

s < 0

Single-field EFT
Reduced speed of sound Imaginary speed of sound

0 < c2
s � 1 c2

s < 0

Relevant time ? k/a = H/cs k/a = |ms|

r 16 ε?cs?

(
Hk=aH
H?

)2 64 ε?e
−| m2

s
H2η⊥

|
(
Hk=aH
H?

)2

' 64 ε?e
−6
√

2χ?/M
(
Hk=aH
H?

)2

ns − 1 −2ε? − η? − s? ' −3
2
ε? − η?

−2ε? − η? + | m2
s

H2η⊥
|′

' −2ε? − η? + 6
√

2χ
′
?/M

Table 8.3.: Comparison between the three different sidetracked inflationary scenar-
ios.

All the results that we obtained are in very good agreement with the predictions

of the single-field effective theories that we have derived in section (8.4.4), and

although it will be tedious to make a detailed account of all the 36 models, we will

comment on how the EFT results, summarized in table (8.3), enable one to explain

the different behaviours and parameters’ dependences that we observe.

Minimal Geometry

We show in fig. (8.11) the results in the minimal geometry (8.4) for the ten models

under study, at the fixed curvature scale M = 10−3MPl. One of the first thing to

notice is that the exact tensor-to-scalar ratio r is always smaller than its adiabatic

counterpart (8.68). This is well understood using the analytical result for r in table
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Figure 8.11.: Results for the power spectrum parameters ns and r in the mini-
mal field space geometry defined by the metric (8.4). The shaded region represents
approximately the experimental bounds of Planck 2015 [46]. As indicated in the leg-
ends, different colors label different models, while the marker shapes correspond to
the three descriptions we consider, as explained in the main text.
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(8.3), which gives

r

rad

' 0.34
ε?

εk=aH

(
Hk=aH

H?

)2
1√
|η⊥?|

. (8.69)

Because ε grows in time in these models, the time ? is earlier than the one of Hubble

crossing, and more importantly because of the large bending, all the factors in (8.69)

are indeed smaller than unity. Note that, since the adiabatic result can be greater

than without geometrical destabilization (and is often so), the exact r can also be

bigger, like in SI and SFI4. Concerning the scalar spectral index, one can observe

that in all models, ns > ns ad. This can also be easily understood, as the result of

two effects: first, as ε and η are increasing functions of time in these models, one

has (−2ε− η)k=aH < (−2ε− η)?. Moreover, compared to the adiabatic result, ns in

Eqn. (8.67) has the additional positive contribution +1
2

(
η′⊥
η⊥

)
?
' 1

2
ε?.

One can also observe that for a given model, the bigger the scale f or µ in its

potential, and the larger the decrease of r compared to the adiabatic result. One

should be careful in the comparison, because the various trajectories are different

then. One can nonetheless explain this trend using our analytical formulae. For this,

note that the suppression in Eqn. (8.69) is dominated by the large bending, with η⊥

given in (8.34) which depends on mh/H, and χ/M . The bigger the scale f or µ in

its potential, and the flatter it is. As the potential gets flatter, the duration of the

sidetracked phase increases. And as we used the same initial condition mh/Hc = 10

at the critical time preceding the sidetracked phase, this gives a larger mh/H when

evaluated ' 55 e-folds before Hubble crossing. Using (8.13), this effect, combined

with a flatter potential, generates smaller values of χ/M . This effect is however

numerically milder than the growth of mh/H. This explains why the bending is

larger for flatter potentials, and hence why the suppression of r by multifield effects

is more important.

Let us also briefly comment on the dependence on the observables on the curva-

ture scale M , with results listed in table (8.7). While the dependence of ns on M is

mild, we observe for all models (except SI) that a smaller M comes with a smaller r.

Again, one should be careful in comparing different models, but this result can be

understood intuitively: as the field space curvature increases, one expects the side-

tracked phase to display more bending, and hence more multifield effects. Indeed,

one can check more quantitatively that both χ/M and η⊥ increase as M decrease,

hence the smaller tensor-to-scalar ratio.

Hyperbolic Geometry

Continuing with the hyperbolic field space geometry (8.6), we present in fig. (8.12)

the results of r and ns for the ten models under study, at the fixed curvature scale

M = 10−3MPl. The most striking fact lies in the very small values of r obtained in

all models except SI, with a decrease with respect to the adiabatic result by several
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Figure 8.12.: Results for the power spectrum parameters ns and r in the hyper-
bolic field space geometry defined by the metric (8.6). The shaded region represents
approximately the experimental bounds of Planck 2015 [46]. As indicated in the leg-
ends, different colors label different models, while the marker shapes correspond to
the three descriptions we consider, as explained in the main text. Note the logarith-
mic scale used to represent the very large spread of values of r.



8.5: Primordial Non-Gaussianities 160

orders of magnitude. This is in perfect agreement with the understanding gained

in section (8.4.4): like NI, SFI2 and SFI4 have a negative slope, hence they fall in

the category studied in (8.4.4) of models with a transient tachyonic instability, and

that can be described by an effective single-fied theory with an imaginary speed of

sound around Hubble crossing. This leads to a very large enhancement of the power

spectrum compared to the adiabatic result, and hence a decreased r, following

r

rad

' 4
ε?

εk=aH

(
Hk=aH

H?

)2

e−6
√

2χ?/M . (8.70)

Like in the minimal case, all the factors on the right hand are smaller than unity,

but with χ? = O(M), the effect is largely dominated by the exponential factor.

Another observation is that ns in these models can deviate rather strongly from

scale invariance, notably with a blue spectrum in SFI2 and SFI4. This can be

understood using our estimate (8.62): ns − 1 = −2ε? − η? + 6
√

2χ
′
?/M . With the

approximate expressions (8.14)-(8.10), one can find indeed

χ′

M
' 1

4

M

χ

[
M2

Pl

2

(
V,ϕ
V

)2

−M2
Pl

V,ϕϕ
V

]
, (8.71)

where all the terms are positive for the concave potentials of SFI2 and SFI4 (and the

net result is also positive for NI), so that the last contribution to ns − 1 is positive.

Using these formulae, one can also understand the dependence of the observables

on the parameter (f and µ) controlling the steepness of the potential. We have seen

in section (8.4.5) that the smaller this scale, the bigger the value of χ?/M (remember

that the background in the minimal and the hyperbolic geometry are the same to a

good approximation). As r depends exponentially on χ?/M , this well explains the

huge decrease of r as this scale gets lower. As µ say, decreases, two competing effects

arise for χ′/M in Eqn. (8.71): M/χ decreases, but (V,ϕ/V )2 and V,ϕϕ/V decrease.

The latter effect, as 1/µ2, is however more important than the decrease of M/χ,

which roughly scales as µ1/2. As a result, χ′?/M increases when lowering µ or f , and

so does its large positive contribution to ns− 1, in plain agreement with the results

visible in fig. (8.12). Eventually, one can see in table (8.7) that for all models with

negative slope, r decreases exponentially as M decreases. We have indeed indicated

that χ/M increases as M decrease, so this result is well understood as a result of

the exponential dependence of r ∝ e−6
√

2χ?/M .

8.5. Primordial Non-Gaussianities

In the preceding section, we have seen that the curvature power spectrum generated

in sidetracked inflation can be understood by an effective single-field description

of the fluctuations with, depending on the type of scenarios, an imaginary speed
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of sound, a reduced speed of sound, or a modified dispersion relation. It is well

understood in the framework of the effective field theory of fluctuations that the two

latter situations come along with large primordial non-Gaussianities of the curvature

perturbation [252]. Hence it is a natural question to investigate the non-Gaussian

signal generated in sidetracked inflation (see e.g. [48, 253–255] for reviews about

primordial non-Gaussianities). For this purpose, we make a preliminary analysis by

numerically calculating the bispectrum for the various models under study. It is a

non-trivial task, both theoretically and numerically, to calculate the bispectrum from

generic nonlinear sigma models of inflation with curved field spaces, and it is only

recently that the powerful transport approach has been numerically implemented to

calculate the bispectrum in this framework, with the code PyTransport 2.0.

8.5.1. Numerical Results

We now discuss our numerical results for the bispectrum, which can all be found in

a tabulated form in the Sec. (8.6). In particular, for the minimal geometry (respec-

tively the hyperbolic one), we list in table (8.4) (respectively (8.5)) our numerical

results for fnl in the equilateral configuration for the pivot scale k55, for the 10 models

under study, and at the fixed curvature scale M = 10−3Mpl. In table (8.6) (respec-

tively (8.7)), similar results are shown when varying the curvature scale. Eventually,

in table (8.8) (respectively (8.9)) we give for all the models the correlations between

the shape of the bispectrum and the equilateral and orthogonal templates, as well

as the corresponding amplitudes f eq
nl and f orth

nl .

Minimal Geometry

Figure 8.13.: Shape dependence fnl(α, β) generated for NI with f = 10 and M =
10−3 in the minimal geometry. We used ks = 3 k55. The shape has a very large
correlation with the equilateral template and a very small one with the orthogonal
template.
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The first thing to notice is that a large non-Gaussian signal is generated in the

minimal geometry for all type of potentials, parameters in the potential and cur-

vature scales, as indicated by the consistently large (negative) values of fnl in the

equilateral limit that we find, typically of a few tens, ranging from −7 to −98. The

second striking result is that the non-Gaussian shape has a very large (anti) corre-

lation with the equilateral template — we find an overlap of −0.97 for all models —

and a negligible correlation with the orthogonal one — with an overlap always less

than 0.03 (see table (8.8)). The fact that the shape is almost indistinguishable from

the equilateral one is illustrated in fig. (8.13) for the representative example of NI

with f = 10. More quantitatively, the fact that the shape is faithfully represented

by the equilateral template implies a very low value of f orth
nl . 1, and a value of f eq

nl

almost identical to the reduced bispectrum (2.147) in the equilateral limit (only

lowered by few percents). Eventually, we observe a very clear correlation between

the curvature scale and the parameter controlling the steepness of the potential on

the one hand, and the value of f eq
nl on the other hand: the latter grows as M de-

creases, or the steepness parameter f or µ increases, in the same way as the bending

parameter η⊥ does. More quantitatively, we find that all the results are in very good

agreement with the simple behaviour

f eq
nl ' η⊥? , (8.72)

up to an order one coefficient. Similar results for the shape and the amplitude of the

bispectrum have been found in related contexts in references [236, 242, 246] by using

the effective field theory of fluctuations. There, however, only the quadratic action

for the entropic field was taken into account in the unitary gauge. The fact that our

full numerical results agree with this picture hints at the fact that the interactions

taken into account there are dominant, and it would be interesting to study this

further. Note also that although one obtains large negative values for f eq
nl , they lie

within the Planck constraints (2.199) for all the models we have studied, with the

only exception of NI with f = 100 and M = 10−3.

Eventually, we display in figure (8.14) the time evolution of the reduced bispec-

trum in the equilateral configuration for the scale k55, for the representative model

of NI with the five different combinations of parameters that we studied. We can see

that the bispectrum starts to differ from the Bunch-Davies regime a few e-folds be-

fore Hubble crossing (arising at N = 10 e-folds in the plot), and one can check that

this arises when 2H
√
|η⊥| becomes non-negligible compared to k/a, in agreement

with the identification in section (8.4.4) of this relevant timescale for the physics of

the fluctuations. After a rapid growth, the bispectrum then stabilizes at its final

value soon after Hubble crossing.
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Figure 8.14.: Time evolution of the reduced bispectrum (2.147), evaluated on the
equilateral triangle for the pivot scale k55, for NI in the minimal geometry, and
different parameters for the curvature scale M and steepness parameter f . Note
that that we use of a logarithmic scale for the number of e-folds, and that Hubble
crossing arises at N = 10 e-folds.

Hyperbolic Geometry

As far as the hyperbolic geometry is concerned, based on the understanding of the

linear fluctuations in section (8.4.4), one can expect two qualitatively different re-

sults, respectively for models with V,ϕ > 0, which are characterized by a reduced

speed of sound, and for the ones with V,ϕ < 0, that feature a transient tachyonic

instability induced by an effective imaginary speed of sound. In our models, only

Starobinsky inflation belong to the first class. Unfortunately, we have not been able

to reliably compute the bispectrum numerically for this model. As the effective field

theory of fluctuations indicate though [252], a reduced sound speed implies the ap-

pearance of boosted cubic interactions leading to an equilateral-type contribution to

the bispectrum of amplitude f eq
nl ∼ 1/c2

s. Additional cubic interactions can however

be present, and we leave for future work a more in-depth study of this setup, both

numerically and analytically.

Concentrating on the other class of models, with NI, SFI2 and SFI4, we find again,

for all models with curvature scale M = 10−3, a large negative reduced bispectrum

of a few tens in the equilateral limit, with values ranging from −16 to −57. The

same qualitatively holds true when varying the curvature scale, but the value of fnl

can sometimes be reduced to ' 1, as we find for NI (f = 10) and SFI2 (µ = 20)

with M = 10−2. However, the striking difference compared to the minimal geometry

concerns the shape of the bispectrum: although the values of the two correlations

depend on the precise model, we find across all of them a small overlap with the

equilateral template (typically ' −0.1, ranging from −0.01 to −0.47), and a very

significant one with the orthogonal shape (typically ' −0.78, ranging from −0.66 to



8.5: Primordial Non-Gaussianities 164

(a) Natural inflation (f = 10) (b) Natural inflation (f = 100)

Figure 8.15.: Shape dependence fnl(α, β) generated for NI with f = 10 (left) and
f = 100 (right), in the hyperbolic geometry for M = 10−3. We used ks = 3 k55. We
see for both of them a modest anti-correlation with the equilateral shape template
and a large anti-correlation with the orthogonal shape template.

−0.80). It is rather unusual to generate orthogonal non-Gaussianities. Let us recall

indeed that the orthogonal shape has been designed in the context of the effective

field theory of inflation by carefully choosing a linear combinations of otherwise

equilateral-type shapes [53], so as to fully cover the space of possible shapes in the

simplest singe-field extensions of slow-roll inflation. As a result, in the past it is only

for rather fine-tuned parameters that this shape of the bispectrum has been shown

to be generated in explicit models (see e.g. [47, 256, 257]).

We show in fig. (8.15) the shapes of the bispectra obtained for NI with M = 10−3,

for the two parameters f = 10 and f = 100, as they are representative of the other

models. The main difference with the shape obtained in the minimal geometry in

fig. (8.13) is readily apparent: the bispectrum is still negative in the equilateral

limit, but it changes sign and becomes positive for squashed, and more generally,

for flattened triangles, a distinctive feature of the orthogonal shape (with negative

f orth
nl ). In both cases, the amplitude of the signal is even more important in the

squashed configuration than in the equilateral limit. The difference between the

amplitudes in the two configurations is comparatively less pronounced for f = 100

however, which explains why the correlation with the equilateral shape is larger in

that case than for f = 10.

Similarly to the minimal geometry, we show in fig. (8.16) the time evolution of

the reduced bispectrum in the equilateral configuration for the scale k55, for the

representative model of NI with the five different combinations of parameters that

we studied. We can check that the bispectrum starts to differ from the Bunch-

Davies regime when |m2
s| becomes non-negligible compared to k2/a2, and that the

bispectrum has become constant already at Hubble crossing. The time-dependence

however is more complicated than in the minimal geometry, especially for M = 10−3

with an oscillatory behaviour of the bispectrum for f = 10 and f = 1, and in that



8.5: Primordial Non-Gaussianities 165

Figure 8.16.: Time evolution of the reduced bispectrum (2.147), evaluated on the
equilateral triangle for the pivot scale k55, for NI in the hyperbolic geometry, and
different parameters for the curvature scale M and steepness parameter f . Note
that that we use of a logarithmic scale for the number of e-folds, and that Hubble
crossing arises at N = 10 e-folds.

case, with even a brief spike of fnl to large positive values before returning to negative

values.

As far as the parameters’ dependence is concerned, one globally observes the same

trends as in the minimal geometry: decreasing the curvature scale, or the steepness

parameter of the potential, comes with an increase of the bispectrum in the equilat-

eral configuration. The latter monotonous behaviour is broken for NI though, which

generates fnl in this limit smaller for f = 100 than for f = 10. More importantly,

as the shape differs strongly from the equilateral one, the reduced bispectrum in

the equilateral configuration, although instructive, does not faithfully represent the

overall amplitude of the bispectrum. This can be easily seen in fig. (8.15) where, as

we have noticed, the bispectrum is larger in the squashed configuration than in the

equilateral one. A more robust measure of the non-Gaussianities is provided by the

amplitude of the orthogonal signal f orth
nl . The latter is always found to be roughly

minus a quarter of the reduced bispectrum in the squashed configuration, and con-

trary to the signal in the equilateral limit, the global trend is that f orth
nl decreases

as the steepness parameter increases (see table (8.9)). This is at least what we ob-

serve for NI and SFI2, with SFI4 breaking this monotonous behaviour in that case.

Thus there is no obvious universal relationship that we can observe between values

of background quantities and f orth
nl , although for NI and SFI2, one has the rough

behaviour f orth
nl ∼ O

(
6
√

2χ?/M
)
. It would of course be interesting to understand

analytically the appearance of the orthogonal shape as well as its amplitude, which

we leave for future work.9

Note eventually that the values one obtains for f orth
nl often lie beyond the Planck

9It has later been shown in reference [258] how an orthogonal-type shape originates on general
grounds from an imaginary speed of sound.
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Figure 8.17.: Left: scale dependence of the reduced equilateral bispectrum over a
range of scales exiting the Hubble radius between 60 and 50 e-folds before the end
of inflation, for NI with f = 10 and M = 10−3, in the minimal geometry (red)
and the hyperbolic one (blue). Right: for the same models and color coding, reduced
bispectrum fnl(k1, k2, k3) for k1 = k2 = kpivot = k55 and k3 → 0, showing how the
single-clock consistency relation is verified in the squeezed limit. Note each time the
two different scales for the vertical axes.

observational bound (2.199), contrary to the equilateral bispectrum generated in

the minimal geometry. Moreover, when f orth
nl is within the observational bound, it

is the spectral index that is often too blue compared to the observations, leaving

only, within the models we have studied, NI with f = 100 and M = 10−3 as a viable

model (and marginally NI with f = 10 and M = 10−2.5).

Squeezed Limit and Scale Dependence of the Bispectrum

Eventually, as the reader might have noticed from figs. (8.13) and (8.15), all the

bispectra that we have computed have a small amplitude in the squeezed limit. This

is expected theoretically, as we have seen that one can derive an effective single-

field theory for the fluctuations, so that all models should verify the single-clock

consistency relation from Eqn. (4.40) [106, 119]. This relation is indeed satisfied,

as one shows in fig. (8.17) (right) for the two models of NI with f = 10 and M =

10−3, in the minimal and in the hyperbolic geometry. There, we plot fnl(k1, k2, k3),

keeping two modes the same (k1 = k2 = kpivot = k55), and letting k3 → 0, i.e.

approaching the squeezed limit, finding that the single-clock consistency relation

f squeezed
nl = 5

12
(1− ns)(kpivot) is well verified as soon as k3 � kpivot.

Eventually, while we concentrated our efforts on studying the shape of the bis-

pectrum generated in sidetracked inflation, it is useful to comment on its scale

dependence. For this, we show in fig. (8.17) (left) the reduced bispectrum in the

equilateral configuration over a range of scales exiting the Hubble radius between

60 and 50 e-folds before the end of inflation, for the same models of NI with f = 10

and M = 10−3 in the two geometries. We have chosen to overlap the two cases for

better comparison (note therefore the two different scales for the vertical axis). It is
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clear they both have very small scale dependencies with d log |fnl|/d log(k) ∼ 0.02.

8.6. Tabulated Results

Acronym Parameter r ns fnl rad ns ad

SI - 0.0075 0.968 -16.31 0.10 0.965

f = 1 0.0095 0.968 -16.54 0.13 0.963

NI f = 10 0.0063 0.969 -47.71 0.14 0.964

f = 100 0.0046 0.970 -97.95 0.15 0.964

µ = 2 0.0065 0.971 -12.85 0.079 0.968

SFI2 µ = 20 0.0056 0.973 -25.32 0.094 0.970

µ = 200 0.0043 0.974 -46.63 0.097 0.970

µ = 2 0.0049 0.967 -11.40 0.057 0.965

SFI4 µ = 20 0.0059 0.973 -20.63 0.090 0.970

µ = 200 0.0046 0.974 -39.14 0.096 0.970

Table 8.4.: Results of sidetracked inflation in the minimal geometry with M =
10−3Mpl. fnl is the reduced bispectrum (2.147) evaluated on the equilateral triangle
for the pivot scale k55.

8.7. Comparisons with Cosmological Attractors

In this section we would like to address the question of whether the geometrical

destabilization, and sidetracked inflation in particular, could play a relevant role in

cosmological attractors. A recent work [259] has established that the predictions

for the power spectrum parameters in α-attractors remain universal even when the

multifield dynamics is important (see also the recent work [260] in which similar

conclusions are reached in multifield ξ attractors). Sidetracked inflation has some

interesting similarities with the axion-dilaton model of [259]—in both scenarios the

second field evolves away from the minimum of the potential trough—and yet the

predictions are markedly different. We have seen that the results of sidetracked

inflation are typically highly sensitive to multifield effects, while the opposite appears

to happen in the α-attractor set-up.

One reason for this discrepancy can be easily understood if we express our hyper-

bolic metric model, Eqn. (8.6), in Poincaré disk coordinates. It is simpler to first go
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Acronym Parameter r ns fnl rad ns ad

SI - 0.029 0.969 * 0.10 0.965

f = 1 4.5× 10−23 1.10 -26.77 0.13 0.963

NI f = 10 1.2× 10−9 0.974 -56.98 0.15 0.963

f = 100 5.9× 10−4 0.970 -31.24 0.15 0.964

µ = 2 1.5× 10−22 1.282 -19.00 0.079 0.968

SFI2 µ = 20 8.0× 10−14 1.066 -31.33 0.095 0.970

µ = 200 2.0× 10−8 1.019 -51.50 0.097 0.970

µ = 2 5.4× 10−21 1.476 –15.92 0.055 0.963

SFI4 µ = 20 4.0× 10−16 1.105 -25.21 0.091 0.969

µ = 200 1.1× 10−9 1.030 -46.69 0.097 0.970

Table 8.5.: Results of sidetracked inflation in the hyperbolic geometry with M =
10−3Mpl. fnl is the reduced bispectrum (2.147) evaluated on the equilateral triangle
for the pivot scale k55. * for SI indicates that we have not been able to reliably
compute the bispectrum, as we explain in the main text.

to half-plane coordinates (X, Y ) with

ϕ =
M√

2
log Y , χ =

M√
2

X

Y
, (8.73)

so that the field space metric takes the form

ds2
fs = 2M2 dX

2 + dY 2

4Y 2
(−∞ < X <∞ , 0 < Y ) . (8.74)

The transformation to disk coordinates (ρ, θ) is given by the standard formulae

X =
2ρ sin θ

1 + ρ2 − 2ρ cos θ
, Y =

1− ρ2

1 + ρ2 − 2ρ cos θ
, (8.75)

and

ds2
fs = 2M2 dρ

2 + ρ2dθ2

(1− ρ2)2
(0 6 ρ < 1 , 0 6 θ < 2π) . (8.76)

The contours of constant ϕ and χ in the Poincaré disk are shown in fig. (8.18).

The ϕ contours are given by circles of radius (1 + e
√

2ϕ/M)−1 and centered at the

Cartesian point (xϕ, 0) with xϕ = (1 + e−
√

2ϕ/M)−1. The χ contours are also part

of circles of radius
√

1 +M2/2χ2 with center at the Cartesian point (0, yχ), with

yχ = −M/(
√

2χ). Since during most of the sidetracked inflationary phase, ϕ/M �
1 for the models we have investigated, we observe that inflation is spent very near
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Acronym Parameter r ns fnl

M = 10−2 NA NA NA

SI M = 10−2.5 0.0057 0.965 -11.31

M = 10−3 0.0075 0.968 -16.31

M = 10−2 0.0131 0.969 -9.56

NI f = 10 M = 10−2.5 0.0085 0.969 -24.89

M = 10−3 0.0063 0.969 -47.71

M = 10−2 0.0088 0.975 -7.62

SFI2 µ = 20 M = 10−2.5 0.0067 0.973 -16.52

M = 10−3 0.0056 0.973 -25.32

M = 10−2 0.0070 0.976 -6.53

SFI4 µ = 20 M = 10−2.5 0.0064 0.972 -13.99

M = 10−3 0.0059 0.973 -20.63

Table 8.6.: Results of sidetracked inflation in the minimal geometry, here with
varying M . fnl is the reduced bispectrum (2.147) evaluated on the equilateral triangle
for the pivot scale k55. NA indicates that the sidetracked phase lasts less than 55
e-folds.

the rightmost corner of the disk, i.e. near the edge of the Poincaré disk at ρ = 1.

The single-field inflationary path χ = 0, which is potentially unstable because of

the geometrical destabilization, corresponds to the lines θ = 0, π, on which

ρ = tanh
(
±ϕ/

√
2M
)
, (8.77)

where the + sign (respectively −) correspond to ϕ > 0, θ = 0 (respectively ϕ < 0,

θ = π). This is the familiar relation that gives rise to the stretching of the potential

in α-attractors. The origin of this property can be traced to the presence of a pole

at ρ = 1 in the kinetic term of the inflaton before canonical normalization, and the

universality of the predictions of cosmological attractors stems from the fact that

inflationary parameters depend, to leading order in the number of e-folds, only on

the characteristics of the pole [194].

However, a crucial assumption behind this is that the potential must be regular

at ρ = 1. This is hardly restrictive when only the inflaton potential is concerned,

since in α-attractors the potential is usually analytic at the pole’s location. But

things get more intricate in the two-field scenario and the choice of parametrization
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Acronym Parameter r ns fnl

M = 10−2 NA NA NA

SI M = 10−2.5 NA NA NA

M = 10−3 0.029 0.969 *

M = 10−2 0.0024 0.991 -1.40

NI f = 10 M = 10−2.5 6.875× 10−6 0.977 -18.19

M = 10−3 1.2× 10−9 0.974 -56.98

M = 10−2 0.0020 1.038 -1.03

SFI2 µ = 20 M = 10−2.5 4.3× 10−7 1.027 -15.78

M = 10−3 8.0× 10−14 1.066 -31.33

M = 10−2 NA NA NA

SFI4 µ = 20 M = 10−2.5 9.0× 10−8 1.054 -14.74

M = 10−3 4.0× 10−16 1.105 -25.21

Table 8.7.: Results of sidetracked inflation in the hyperbolic geometry, here with
varying M . fnl is the reduced bispectrum (2.147) evaluated on the equilateral triangle
for the pivot scale k55. NA indicates that the sidetracked phase lasts less than 55
e-folds. * for SI with M = 10−3 indicates that we have not been able to reliably
compute the bispectrum, as we explain in the main text.

becomes important. Indeed, from (8.73) and (8.75) we see that

χ =
M√

2

2ρ sin θ

1− ρ2
, (8.78)

and so any pedestrian polynomial function of the heavy field χ will have a pole

at ρ = 1 when expressed in disk coordinates. In particular the simple mass term

m2
h χ

2/2 that we have used in our models has a pole of order two, just like the kinetic

term.

The conclusion is that the existence of a pole shared by both the kinetic and

potential terms in a hyperbolic nonlinear sigma model action can invalidate the uni-

versal predictions of cosmological attractors. Our results of sections (8.4) and (8.5)

are clear evidence that this is the case, as we have seen that the predictions of the

sidetracked inflation scenario are quite sensitive to the form of the potential and the

scales involved. We therefore expect that our findings may be useful to better un-

derstand the constrains that the potentials must satisfy for instance in α-attractors,
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χ=0

χ>0

χ<0

φ=0

φ<0

φ>0

Figure 8.18.: Constant ϕ (solid curves) and χ (dashed curves) contours in the
Poincaré disk.

but also more generally.10 Indeed, although above we focused on the hyperbolic

manifold, similar conclusions regarding the presence of coordinate singularities are

likely to apply for more general field space metrics.

8.8. Discussion

We observed that the background dynamics of the sidetracked phase is very similar

for the two types of geometries, which we have examined analytically. In each model,

the heavy field is adiabatically following the inflaton, stabilized by the competition

between the force originating from the field space geometry and the one from its

potential, like in the gelaton model [132]. This field in turn modifies the dynamics

of the inflaton, slowing it down by giving it more inertia. The background dynamics

can hence be described by an effective single-field model with unusual properties.

In particular it allows inflation on potentials that would otherwise be too steep for

standard slow-roll inflation, with the weaker requirement that the potential be flat

with respect, not to the Planck scale, but to the curvature scale of the field space

manifold.

Equipped with our analytical understanding of the background, we were able to

explain the very different behaviours exhibited by the cosmological fluctuations in

the two geometries, despite the very similar background dynamics. In both cases,

the deviation of sidetracked inflation’s trajectory from a geodesic, and hence the

coupling between the adiabatic and entropic fluctuations, is very large. However,

in the minimal geometry, the mass of the entropic fluctuation is small compared to

the Hubble scale, whereas it is large in the hyperbolic geometry. Moreover, in this

case, the entropic mass squared can be positive or negative, depending on whether

the slope of the inflaton potential being positive or negative. Building on previous

10We also remark that in the models we have considered the potential is clearly not a monotonic
function of ρ, which was one of the assumptions made in [259].
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studies, we showed that the resulting dynamics of the curvature perturbation can be

described by an effective single-field theory, in which the entropic fluctuations have

been integrated out, albeit with very different properties in each case: a modified

dispersion relation when the entropic field is light in the minimal geometry, and a

reduced speed of sound or an imaginary one, depending on the potential, in the

hyperbolic geometry. In each of these three qualitatively different scenarios, we

gave analytical formulae for the tensor-to-scalar-ratio r and the spectral index ns,

showing how they enable to reproduce and understand the full numerical results and

their parameter dependencies.

Scenarios described by a single-field effective theory with an imaginary speed of

sound around the time of Hubble crossing arise in the presence of a large and tachy-

onic mass of the entropic fluctuation. While this generates a transient tachyonic

growth of the fluctuations, we stress that these situations do not present any fun-

damental pathology. In particular, they can be perfectly compatible with a stable

background, as it is here, in the presence of a trajectory deviating strongly from a

field space geodesic that render the super-Hubble entropic mass squared, the true

indicator of the stability or not of the background, indeed positive.

We also made a preliminary numerical study of the bispectrum generated in side-

tracked inflation, finding for almost all models large non-Gaussianities, but char-

acterized by different shapes: equilateral in the minimal geometry, and orthogonal

in scenarios featuring an imaginary speed of sound in the hyperbolic geometry.11

While models of the first type are typically in agreement with observational bounds

on non-Gaussianities, for the second type we find large negative values of f orth
nl that

often exceed the Planck constraints, together with marked deviations from scale

invariance, although some models are observationally viable.

Lastly we made a brief comparison between sidetracked inflation and the two-field

cosmological attractor models that arise in supergravity implementations of infla-

tion. We pointed out that beyond the single-field case the choice of field parametriza-

tion becomes subtle—a simple quadratic potential for our heavy field was seen to

exhibit a pole at the edge of the Poincaré disk. We argued that such a singularity

evades the assumptions that lead to the universality of the predictions of cosmolog-

ical attractors, and indeed our results were seen to depend strongly on the details

of the potential. It would hence be interesting to gain further insight into the role

of the pole structure of the potential beyond the simple case we have considered as

well as for more general field space manifolds.

In the future it would be interesting to study if a fully non-linear single-field

effective description of sidetracked inflation can be made, that would enable to unify

the effective single-field dynamics that we derived separately for the background

and the fluctuations. Such a description is known in related frameworks like the

11The link between an imaginary speed of sound and orthogonal and flattened non-Gaussianities
has later been made in reference [258].
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gelaton model, giving rise to effective k-inflationary models. However, preliminary

investigations indicate that the two setup differ, as one can anticipate by noting that

sidetracked inflation can exhibit modified dispersion relations that are not present

in k-inflationary models.

We should note as well that the nonlinear sigma models we have examined are

phenomenological and don’t have an obvious theoretical justification, since our goal

for now has been to gain insight into the physics of sidetracked inflation rather than

to provide a top-down motivation for it. The hyperbolic plane metric is perhaps

the most interesting case study because of its maximal isometries and its relation to

α-attractor models, but the class of potentials we considered is of course restricted.

Similarly, our focus on the minimal geometry was motivated by its simplicity. It

cannot be regarded as a consistent truncation of an effective field theory for the

reason that the heavy scalar field probes values of order M during the sidetracked

inflationary phase, and this is precisely the scale at which the putative effective

theory is expected to break down (although as usual the true cutoff may be actually

even lower).
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Acronym Parameter M C(S, Seq) C(S, Sorth) f eq
nl f orth

nl

10−2 NA NA NA NA

SI 10−2.5 -0.97 -0.03 -10.4 -0.2

10−3 -0.97 -0.03 -15.0 -0.3

f = 1 10−3 -0.97 -0.03 -15.2 -0.3

f = 10 10−2 -0.97 -0.01 -8.99 -0.07

NI f = 10 10−2.5 -0.97 -0.03 -23.0 -0.43

f = 10 10−3 -0.97 -0.03 -44.0 -0.89

f = 100 10−3 -0.97 -0.02 -91.1 -1.30

µ = 2 10−3 -0.97 -0.03 -11.8 -0.23

µ = 20 10−2 -0.97 -0.01 -7.19 -0.05

SFI2 µ = 20 10−2.5 -0.97 -0.03 -15.2 -0.28

µ = 20 10−3 -0.97 -0.03 -23.3 -0.46

µ = 200 10−3 -0.97 -0.03 -43.0 -0.84

µ = 2 10−3 -0.97 -0.03 -10.5 -0.20

µ = 20 10−2 -0.97 -0.01 -6.21 -0.01

SFI4 µ = 20 10−2.5 -0.97 -0.03 -12.9 -0.24

µ = 20 10−3 -0.97 -0.03 -19.0 -0.37

µ = 200 10−3 -0.97 -0.03 -36.1 -0.71

Table 8.8.: Results for the bispectrum generated in sidetracked inflation in the
minimal geometry, indicating the correlation of the shape with the equilateral and
orthogonal templates, as well as the corresponding amplitudes. NA indicates that
the sidetracked phase lasts less than 55 e-folds.
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Acronym Parameter M C(S, Seq) C(S, Sorth) f eq
nl f orth

nl

10−2 NA NA NA NA

SI 10−2.5 NA NA NA NA

10−3 * * * *

f = 1 10−3 -0.03 -0.77 -13.9 -176.0

f = 10 10−2 -0.31 -0.71 -0.66 -0.78

NI f = 10 10−2.5 -0.22 -0.77 -7.73 -13.6

f = 10 10−3 -0.10 -0.79 -23.3 -90.4

f = 100 10−3 -0.37 -0.72 -15.7 -15.9

µ = 2 10−3 -0.01 -0.78 -3.98 -136.0

µ = 20 10−2 -0.47 -0.66 -0.62 -0.46

SFI2 µ = 20 10−2.5 -0.18 -0.78 -6.67 -14.5

µ = 20 10−3 -0.02 -0.79 -6.57 -105.0

µ = 200 10−3 -0.15 -0.78 -22.9 -59.6

µ = 2 10−3 -0.01 -0.79 -1.49 -106.0

µ = 20 10−2 NA NA NA NA

SFI4 µ = 20 10−2.5 -0.15 -0.79 -6.04 -15.7

µ = 20 10−3 -0.01 -0.80 -0.69 -123.0

µ = 200 10−3 -0.11 -0.79 -19.5 -71.8

Table 8.9.: Results for the bispectrum generated in sidetracked inflation in the
hyperbolic geometry, indicating the correlation of the shape with the equilateral and
orthogonal templates, as well as the corresponding amplitudes. NA indicates that
the sidetracked phase lasts less than 55 e-folds. * for SI with M = 10−3 indicates
that we have not been able to reliably compute the bispectrum, as we explain in the
main text.



9. Conclusions

In this thesis we have described the background to and the work that has gone into

the development of the transport method to calculate the statistics of non-canonical

inflation. Specifically we began in Ch. 2 by giving an introductory overview of the

success of ΛCDM and highlighted it’s major shortcomings which can be rectified by

inflation. We reviewed tools, such as cosmological perturbation theory, necessary

to construct observable quantities such as the power spectrum and bispectrum of

curvature perturbations that can be then compared to data.

In Ch. 3 the equations of motion and the evolution equations for perturbations

were derived for a multifield system. We reviewed how the system of equations can

be written with a non-trivial field-space metric as an autonomous system for a set of

covariant “field” perturbations. In terms of the covariant field-space perturbations

we then determined the curvature perturbation ζ. A neat result we found is that

our expressions for these quantities take the form of the covariant versions of the

expressions presented in Ref. [78], with no additional Riemann curvature terms

appearing (except through the new terms that appear in the a, b and c tensors of

Eqns. (3.32)–(3.34) which define the equations of motion).

To use the transport system in practice we also needed to calculate initial condi-

tions. In Ch. 4 we find the initial conditions for the two- and three-point function

and showed that they also take the form of covariant versions of the canonical ex-

pressions.

In the next chapter, Ch. 5 we reviewed methods for calculating inflationary statis-

tics and how the transport method is applied in combination with these equations

to give equations for the evolution of the correlations of the covariant perturbations

during inflation. Together with the work of the previous chapters, this provided an

extension to the method of calculating the power spectrum and bispectrum devel-

oped in Ref. [78] for canonical multifield inflation to include models which contain

a non-trivial field-space metric.

In Ch. 6 we demonstrated explicitly that our method is successful in evaluating

the observable statistics of inflationary models with many fields and a curved field-

space metric. The code we have developed to do this is the second iteration of

the PyTransport package, PyTransport 2.0, and agrees with its predecessor in the

case of models which can be written in Euclidean and non-Euclidean coordinates (as

discussed in Sec. 6.3.1). Moreover, we have shown that for simple 2-field models that

the speed of the new code compares well with that of the canonical model. It should
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be noted, however, that the new code has not been tested for models exceeding more

than six fields, and that we expect time taken to scale poorly with the number of

fields. Our hope is that this new code will be useful to the inflationary cosmology

community.

In Ch. 7 we studied multifield inflation in scenarios where the fields are coupled

non-minimally to gravity via ξI(φ
I)ngµνRµν . We concentrated on the so-called α-

attractor models with the potential U = λ
(2n)
I M4−2n

P (φI)2n in two formulations of

gravity: in the usual metric case where Rµν = Rµν(gµν), and in the Palatini formu-

lation where also the connection Γ and hence also Rµν = Rµν(Γ) are independent

variables.

As the main result, we showed that the curvature of the field-space in the Einstein

frame has no influence on the inflationary dynamics at the limit of large ξI , and one

effectively retains the single-field case regardless of the underlying theory of gravity.

In the metric case this means that multifield models approach the single-field α-

attractor limit, whereas in the Palatini case the attractor behaviour is lost also in

the case of multifield inflation.

In Ch. 8 we studied the sidetracked inflation model where the inflationary trajec-

tory deviates from its initial effectively single-field path as a result of the geometrical

destabilization. We explore two types of models; ones with hyperbolic geometries

and ones with minimal geometries. We find that their background evolutions are

similar in the sidetracked phase and both can be described by an effective single-field

trajectory. We then study the evolution of the cosmological perturbations, in par-

ticular, the two-point function. We construct an effective single-field model where

entropic fluctuations are integrated out. The effective field theory may have the

property of a modified dispersion relation when the entropic field is light in the min-

imal geometry, and a reduced speed of sound or an imaginary one, depending on the

potential, in the hyperbolic geometry. This allows us to construct analytical results

for ns and r which we compare to our numerical results. We then study the bispec-

trum that these models generate using our code. We find large non-Gaussianities

are produced in all models, particularly in the equilateral and orthogonal shapes.

Finally we conclude on a brief comparison between the sidetracked inflation and

cosmological attractors.

We see the interesting phenomenological consequences of sidetracked inflationary

scenarios as motivations to consider more realistic setups in the future. Eventually,

we have seen that several important features of sidetracked inflation are tied to the

heavy mass of the additional scalar field and it would be interesting to see how

observables may be modified when this field has an intermediate mass of order the

Hubble scale. We hope to come back to these questions in future works.



A. Appendices

A.1. Background Geometry

The background FLRW line element in Eqn. (2.6) has the following non-vanishing

Chistoffel symbols,

Γ0
00 = H ,

Γ0
ij = Hγij ,

Γj0i = Hδji ,
Γjij = γijk .

(A.1)

where γijk is the Chistoffel symbols of the 3 dimensional spatial metric γij. The

non-vanishing components components of the Riemann tensors are,

R0
i0j = H′γij ,

Ri
00j = H′δij ,

Ri
jml = (H′ + κ)

(
δimγjl − δilγjm

)
.

(A.2)

From these we construct the Ricci tensors,

R00 = −3H′ ,
Rij = (2H2 +H′ + 2κ)γij .

(A.3)

The Ricci scalar is then calculated as,

R =
6

a2

(
H2 +H′ + κ

)
, (A.4)

and the spatial curvature is,
(3)R = 6κ (A.5)

We can then calculate the Einstein tensor using Eqn. (2.3),

G00 = 3(H2 + κ) ,

Gij = −(H2 + 2H′κ)γij .
(A.6)
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A.2. Perturbed Geometry

We will now derive the perturbations to the geometric quantities necessary to obtain

the perturbations to the Einstein equations. We first fully expand out the perturbed

metric in Eqn. (2.43) by apply SVT decomposition as in Eqn. (2.44). Then by

substitution of the perturbations to the metric into the connection coefficients we

get the six non-vanishing quantities,

δΓ0
00 = φ1

′ δΓ0
ij = −2Hφ1δij + 2HCij + C ′ij −B,(ji) −Bvec

(j,i))

δΓ0
0i = ∂i(φ1 +HB) +HBvec

i δΓi00 = ∂i(φ1 +B′ +HB) +Bi′
vec +HBi

vec

δΓij0 = Ci′
j + δilBvec

[l,j] δΓijk = −H(∂iB +Bi
vec)δjk + 2Ci

(k,j) − ∂iCjk.
(A.7)

Next we calculate the Ricci tensor,

Rµν = ∂λΓ
λ
µν − ∂νΓλµλ + ΓλλρΓ

ρ
µν − ΓρµλΓ

λ
νρ. (A.8)

Into this we then substitute equation (A.7) and determine the components as,

δR00 =3Hφ1
′ +∇2φ1 +∇2(B′ +HB)− (C ′′ +HC ′),

δR0i =2H∂iφ1 + (H′ + 2H2)Bvec
i + ∂k∂[iB

vec
k] + (C ′ki,k − C ′,i),

δRij =−
[
2(2H2 +H′)φ1 +Hφ1

′ +H∇2B
]
δij − ∂i∂jφ1 − ∂(i[B

′vec
j) +HBj)]

+ 2(2H2 +H′)Cij + 2HC ′ij +HC ′δij + C ′′ij

+ 2Ck
(j|,k|i) −∇2Cij − Cij.

(A.9)

The Ricci scalar is then the trace of the Ricci tensor components which at linear

order becomes,

δR = a−2
[
2C ′′ + 6HC ′ − 4∇2ψ − 2∇2φ1 − 12(H′ +H2)ψ − 6Hφ1

′ − 2∇2 (B′ + 3HB)
]
,

(A.10)

where C is the trace of Cij. To compute the Einstein tensor we need to take the

results from the perturbed Ricci scalar and Ricci tensors in the form δGij = δRij −
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1
2
gijδR with components,

δG0
0 =2a−2

[
3H2φ− 3Hψ′ +∇2(ψ +HB −HE ′)

]
,

δG0
i =a−2

[
−2∂i[Hφ1 − ψ′]−

1

2
∇2(F ′i −Bvec

i )

]
,

δGi
j =a−2[∂i∂j

[
(E ′ −B)′ + 2H(Ei −B)− (ψ + φ1)

]
+ δij[−∇2(E ′ −B)′ − 2H∇2(E ′ −B)− 2ψ′′ − 4Hψ′ +∇2ψ

+ 2Hψ′ +∇ψ + 2(2H′ +H2)ψ]

+ δik∂(k

[
(F ′j) −Bvec

j) )′ + 2H(F ′j) −Bvec
j) )
]

+ F ′′ij + 2HF ′ij −∇2F i
j ].

(A.11)

A.3. Perturbed Matter

We will now derive the perturbations to the energy–momentum tensor for a fluid

and for scalar fields.

Using Eqn. (2.53) and Eqn. (2.51) for a fluid we get,

δT00 = ρ0a
2

(
δρ

ρ0

+ 2φ1

)
,

δT0i = −ρ0a
2[(1 +

P0

ρ0

)(v,i + v̄veci ) +B,i + B̄vec
i ] ,

δTij = Pa2

(
Cij +

δP

P
δij + a−2πij

)
.

(A.12)

Using Eqn. (2.62) we get the perturbed energy–momentum tensors,

δT00 = φ′0δφ
′ + 2a2V φ1 + a2V,φδφ ,

δT0i = φ′0δφ,i +

(
φ′20
2
− a2V

)
(B,i + B̄vec

i ) ,

δTij =
(
φ′0δφ

′ − φ′20 φ1 − a2V,φδφ
)
γij +

(
φ′20
2
− a2V

)
hij .

(A.13)
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