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Abstract 

Tertiary lymphoid organs named also tertiary lymphoid structures (TLS) often occur at sites 

of autoimmune inflammation, organ transplantation and cancer. Although the mechanisms 

for their formation/function are not entirely understood, it is known that TLS can display 

features of active germinal centres supporting the proliferation and differentiation of (auto)-

reactive B cells. In this Review, we discuss current knowledge on TLS-associated B cells with 

particular reference on how within diseased tissues these structures are linked to either 

deleterious or protective outcomes in patients and the potential for therapeutic targeting of 

TLS through novel drugs.  



Highlights 

• TLS develop in target organs of autoimmune diseases, transplantation and cancer. 

• TLS can function as germinal centres supporting B-cell selection/differentiation. 

• TLS can be destructive or have beneficial effects at the site of inflammation/disease. 

• Therapeutic targeting of TLS results in beneficial effects in patients, though inhibition may 

lead to immune suppression while stimulation may lead to autoimmunity. 

 

  



Introduction 

Tertiary lymphoid organs can develop at non-lymphoid sites in the target organs of chronically 

inflammatory and autoimmune diseases, allograft rejection, and solid tumours. They are 

commonly known as tertiary lymphoid structure (TLS) or ectopic lymphoid structure (ELS). 

Here, we will define them as TLS throughout the text. Unlike secondary lymphoid organs , TLS 

lack a capsule and afferent lymphatic vessels and they are transient structures which resolve 

after antigen clearance [1, 2]. TLS are characterised by B- and T-cell segregation, ectopic 

expression of lymphoid chemokines CXCL13, CCL19 and CCL21 that regulate T and B 

lymphocyte compartmentalisation, high endothelial venules, and often by the presence of 

CD21+ follicular dendritic cell (FDC) network which sustains the local humoral B-cell response. 

The general cellular and molecular mechanisms underlying their formation and pathogenic 

function have been extensively reviewed elsewhere [1-4*]; thus, for the purpose of this 

Review, we focus solely on the importance of B cells associated with TLS in the context of 

autoimmune diseases, transplantation and cancer highlighting their potential for deleterious 

and/or beneficial effects in diseases. 

 

B cells contribution in TLS in autoimmune diseases.  

TLS can form in some patients in the target organ of several autoimmune diseases such as the 

inflamed synovium in rheumatoid arthritis (RA), salivary and lacrimal glands in Sjögren’s 

syndrome (SS), the central nervous system in multiple sclerosis, in diabetic pancreas, and in 

the intestine in inflammatory bowel diseases [3*-5*]. In the target organs of rheumatic 

autoimmune diseases, TLS can display features of active germinal centres (GCs), including the 

expression of the enzyme activation-induced cytidine deaminase (AID) which regulates 

immunoglogulin gene affinity maturation via the process of somatic hypermutation, and they 



support a local antigen-driven B-cell proliferation and differentiation into antibody-producing 

plasma cells [6-9]. Growing evidences have demonstrated that TLS in RA are actually required 

for B-cell affinity maturation at ectopic sites since, in the absence of functional GCs the B cells 

that enter into the chronically inflamed synovial tissue do not acquire further diversification 

[7]. Accordingly, the expression of AID, which also initiates immunoglobulin isotype class-

switch recombination, is limited to TLS+ tissues and correlates with the presence of CD21+ 

FDC networks [6, 10, 11]. There is now conclusive evidence that TLS are actively implicated in 

sustaining autoimmunity to disease-specific antigens in the target organs of autoimmune 

diseases although this concept was initially challenged in RA since TLS are also found in 

seronegative RA patients (i.e., without circulating autoantibodies such as anti-citrullinated 

protein antibodies (ACPA) and rheumatoid factor) [12] and previous studies fail to show a 

direct correlation between the presence of TLS and circulating or synovial fluid ACPA which 

might be explained by the production of autoantibodies at extra-articular sites, such as 

secondary lymphoid organs  [12-14]. Conversely, we and others have produced  evidence that 

confirmed the active role of TLS in the perpetuation of local autoimmunity by showing that  i) 

the engraftment of TLS+ RA synovial tissue or SS salivary glands into severe combined 

immunodeficiency (SCID) mice results in the release of human class-switched ACPA [6] or anti-

Ro/SSA and anti-La/SSB human IgG [15] into the mice circulation, respectively; ii) >30% of the 

synovial B-cell response in TLS+ RA patients is directed toward citrullinated antigens, 

supporting the concept  that the presence of TLS in RA synovial tissue supports a selection 

toward ACPA-producing B cells [8*, 16]. As mentioned above, TLS support the local 

proliferation and differentiation of autoreactive B cells in a disease-specific manner 

suggesting that the maintenance of TLS is also sustained, at least in part, by an autoantigen-

dependent process with the differentiation of autoreactive plasma cells toward disease-



specific autoantigens (Figure 1) [15]. Recently, functional TLS have been described in an 

experimental autoimmune encephalomyelitis model of central nervous system (CNS) 

autoimmunity. Horn and colleagues [17*] demonstrated the expression of AID, hence SHM 

and CSR in meningeal TLS providing evidence of TLS functionality and in situ B-cell antigen-

driven affinity maturation. Using deep sequencing technology, the authors showed the 

presence of mutated Ig-VH within meningeal TLS which were absent in secondary lymphoid 

organs, thus supporting the concept that meningeal TLS are partially independent structures 

in sustaining B-cell differentiation at the local site. These data corroborate the concept that 

TLS can be actively involved in B-cell affinity maturation at the local site of inflammation.  

Although direct evidence of the importance of B cells in antigen presentation and cross-talk 

to Th cells in the context of TLS is currently missing, it is highly likely that TLS maintenance 

and function are regulated by the interaction with specialised T helper cell subsets, 

particularly T follicular helper (TFH) cells, which are critical in the regulation of active GC 

responses in secondary lymphoid organs. The possible pathogenic role of TFH cells in the 

activation and affinity maturation of B cells in TLS via the interaction between inducible T-cell 

co-stimulator (ICOS) and its ligand (ICOSL), CD40 and its ligand, CD40L, and IL-21 release which 

is critical for B-cell survival, proliferation and differentiation into plasma cells has been 

reviewed elsewhere [3*].  

 

B cells within TLS in organ transplantation: rejection or tolerance? 

Rejection during organ transplantation is caused by an alloimmune response to donor-specific 

human leukocytes antigens (HLA) which ultimately results into engrafted organ damage and 

failure. Rejected grafts are characterised by infiltration of several immune cells including B 

cells and plasma cells. In contrast to acute rejection where the infiltrating cells do not acquire 



a proper organisation, in chronic graft rejection the immune cells can organise in TLS [18]. B 

cells seem to play a central role in both initiation and organization of TLS within the graft. In 

particular, B cells might substitute lymphotoxin-a1b2-expressing lymphoid tissue inducer 

cells in the initiation of TLS [5, 18]. Gene expression studies on renal allograft biopsies have 

revealed that B cells are recruited into TLS by the interaction of specific chemokines with their 

receptors (CXCL10 and its receptor CXCR3 [19]; CXCL13 and CXCR5 [20]; CCL3, CCL5, CCL7 and 

CCR1 [21]) [5, 22]. Presence of B cell-producing autoantibodies after organ transplantation 

have been also correlated with chronic graft rejection. Interestingly, non-canonical anti-HLA 

antibodies have been shown to have an adverse effect on graft survival suggesting a breach 

of self-tolerance in TLS within the rejected graft [23*]. In a recent study Lu et al [24*] showed 

that the presence of CD20+ B cells in allograft rejection can be used as predictive marker of a 

poorer kidney allograft outcome since it was associated with an increased risk of graft loss. 

However, recent evidences have demonstrated the role of IL-10-producing B cells in 

regulating donor specific T-cell response and in contributing to long-term graft tolerance 

supporting a role of B cells in graft tolerance [25]. 

 

TLS-associated B cells in cancer. 

While the overall evidence for TLS in solid tumours points towards a protective anti-tumour 

immunity exerted by TLS in cancer, as discussed below and as previously reviewed [2], 

whether B cells play a  deleterious or beneficial role in anti-tumour immune response is still 

debated [26]. Depletion of B cells in tumour mice models [27*] and treatment with Rituximab, 

a humanised monoclonal antibody directed against human CD20 [28], led to the reduction of 

tumour size in colorectal cancer. Several mechanisms can potentially explain the pro-tumoral 

role of B cells in cancer: production of TGF-β and IL-10 responsible of an immune-suppressive 



environment or antibody production [29] and complement system activation providing a pro-

angiogenic and pro-tumoral environment. However, B cells have been clearly shown to 

correlate with an improved overall survival when present in aggregates forming tumour-

associated TLS [30-33]. TLS have been described in most of common as well as rare solid 

tumours. Their presence mostly correlates with better patient prognosis, therefore 

highlighting a critical role of TLS in development of anti-tumour immunity (Figure 1). A model 

for immune processes within tumour-associated TLS has been described in a previous review 

[34]. In ectopic lymphoid-like structures B cells can act as antigen presenting cells or undergo 

maturation in GCs, expressing AID and Bcl-6, and produce tumour associated (TA)-specific 

immunoglobulines. In situ antigen-driven B-cell activation and antibody production has been 

shown in several cancers. Sequencing data of BCR of TLS-associated B cells showed clonal 

expansion [35, 36]. For instance, in patients with non-small-cell lung carcinoma (NSCLC) [30] 

and patients with lung squamous cell carcinomas (LSCC) [37**] the organisation of intra-

tumoral B cells into B-cell follicles, but not the diffuse infiltration of lymphocytes, is associated 

with longer survival and TA-specific humoral responses [38**]. In pancreatic ductal 

adenocarcinoma (PDAC), generally considered an immunologically inert cancer, clusters of B 

cells, but not disorganised B-cell infiltration, correlate with better patient prognosis [33]. 

Recently, not only TLS density, but also TLS maturation, have been shown to jointly concur to 

a more accurate prognostic information on the risk of disease recurrence in untreated non-

metastatic colorectal cancer (TLS immunoscore) [39*]. As support of the role of an active GCs 

and importance of presence of mature tumour-associated TLS, a study in chemotherapy-

treated LSCC patients showed loss of prognostic value of TLS density after neo-adjuvant 

treatment that was associated with significantly less and smaller GCs when compared with 

untreated patients [37**].  



TLS-associated B cells are oligoclonal and may act as crucial players not only in terms of TA-

specific humoral response, but also cellular-mediated response as they can not only mature 

into TA-specific antibody producing cells , but also act as efficient APC within the tumour, 

capturing the antigen through their BCR and expressing co-stimulatory molecules upon 

activation, therefore inducing the generation of memory CD4+ T cells [40]. 

 

Concluding remarks: therapeutic agents to disrupt or enhance TLS  

Considering their impact on patient prognosis, TLS could be envisioned as either targets for 

immunotherapy in autoimmunity and graft rejection or as vehicles for a boost in anti-tumour 

immunity if enhanced in patients with solid cancer (Figure 2). In chronic inflammation, 

autoimmune diseases or organ transplantation, and possibly in some types of cancer where 

TLS has been suggested to exert a deleterious effect (i.e. hepatocellular carcinoma), a 

potential therapeutic approach might involve the disruption of their architecture and 

prevention of their formation for therapeutic purposes. Several clinical trials of drugs 

targeting TLS formation and function are already in place in autoimmune diseases [2, 3*]. 

Drugs capable of blocking TLS initiation include compounds targeting the lymphotoxin-b 

pathway but also pro-inflammatory cytokines such as IL-17 and IL-22 which have emerged as 

key players in TLS development in animal models [41, 42]. Moreover, blocking B-TFH cells 

interaction targeting ICOSL/ICOS, CD40L/CD40 or IL-21/IL-21R (for which there are ongoing 

clinical trials [3*]) could affect the downstream B-cell activation in TLS. Finally, targeting 

(auto)reactive long-lived plasma cells has also emerged as a promising therapeutic approach. 

New drugs include proteasome inhibitors and monoclonal antibodies targeting cell-surface 

molecules such as CD38 which is highly expressed on plasma cells [43*].  



By contrast, in cancer, where organised lymphocytic infiltration in the tumour 

microenvironment concurs to a better outcome and is associated with host protection, one 

could attempt to locally induce them, thus circumventing the need to therapeutically 

vaccinate to undefined antigens. Lymphoid chemokines are overexpressed in TLS of 

melanoma [44], colorectal [45], and lung [46] cancer patients. Therefore, TLS modulation can 

be addressed by targeting lymphoid chemokines in order to induce B- and T-cell recruitment 

and therefore TLS neogenesis in cancers. In vivo studies have shown promising results. The 

transduction of tumour cells with a recombinant adeno-associated virus (rAAV) expressing 

CCL21, or intra-tumoral injections of rAAV-CCL21, resulted in the recruitment at the tumour 

site of CD11c+ dendritic cells (DCs) and in the activation of CD3+ CD69+ T cells in a mouse 

model of hepatocellular carcinoma [47]. In PDAC, injection of CCL21 in a subcutaneous model 

showed a beneficial effect, by inhibiting tumour growth, decreasing distant metastasis, and 

recruiting DCs and T cells [48]. We can speculate that this vaccine therapy would induce a 

recruitment of T and B lymphocytes and boost TLS formation within the tumours, sites of an 

effective anti-tumour immune response.  

TLS development has been achieved in other studies after anti-tumour vaccination protocols. 

In patients with high-grade cervical intraepithelial neoplasia (CIN2/3) who received 

intramuscular therapeutic vaccination targeting HPV16 E6/E7 antigens formation of TLS was 

observed [49]. Similarly, TLS formation was observed in PDAC patients after vaccination with 

GM-CSF-secreting pancreatic tumour vaccine (GVAX), a granulocyte-macrophage colony-

stimulating factor (GM-CSF)-secreting, allogeneic PDAC vaccine [50]. The number of TLS 

increased after combination of GVAX with cyclophosphamide [50]. Still, in cancer a substantial 

amount of work remains to be done in order to take advantages from the activation of both 

the in situ present- and the newly formed- TLS associated with anti-tumour immune response, 



and combine them with target therapies and immunotherapies. Finally, a critical area for 

research regarding the modulation of TLS in cancer immunotherapy will relate to the 

understanding of whether immunotherapies with immune checkpoint inhibitors such as 

monoclonal antibodies targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and 

programmed cell death protein 1 (PD-1), exert their beneficial clinical efficacy by promoting 

TLS formation/function within the cancer tissue. By the same token, although highly effective 

in combination with chemotherapy, many studies have reported the adverse effects of 

immune checkpoints inhibitors, the so called immune-related adverse events (IRAEs), 

promoting inflammatory reactions commonly observed in autoimmune conditions including  

inflammatory arthritis, myositis, vasculitis, colitis, sialoadenitis and scleroderma [51**]. Once 

again, whether these adverse reactions are related to the de novo formation of TLS remains 

to be elucidated.  
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Figure legends 

Figure 1. Effect of TLS in solid tumours, autoimmune diseases and organ transplantation.  

Although the processes of TLS formation are similar, their effect seems to be disease- and 

antigen-disease specific. In solid tumours, TLS are responsible for the generation of an anti-

tumor immune response. In the target organs of rheumatic autoimmune diseases, such as the 

SS salivary glands and RA synovium, TLS sustain an antigen-disease driven immune response 

leading to tissue damage. Similarly, in rejected grafts TLS can sustain a donor-specific anti-

HLA response. 

Figure 2. Clinical trials of therapeutic drugs enhancing or disrupting TLS formation.  

Status of some studies identified in ClinicalTrials.gov reporting drugs targeting TLS in order to 

enhance TLS formation in cancer or disrupt TLS in autoimmune diseases and organ 

transplantation. PD-1 = programmed cell death protein-1; CTLA-4 = cytotoxic T lymphocyte-

associated antigen-4; CCL21 = Chemokine (C-C motif) ligand 21; LT = lymphotoxin; ICOS = 

inducible T-cell co-stimulator; L = ligand; RA = rheumatoid arthritis; SS = Sjögren’s syndrome; 

SLE = systemic lupus erythematosus 

 

 








